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ABSTRACT

This work explores deep learning based classification model on real-world
datasets with a long-tailed distribution. Most of previous works deal with the
long-tailed classification problem by re-balancing the overall distribution within
the whole dataset or directly transferring knowledge from data-rich classes to
data-poor ones. In this work, we consider the gradient distortion in long-tailed
classification when the gradient on data-rich classes and data-poor ones are incor-
porated simultaneously, i.e., shifted gradient direction towards data-rich classes
as well as the enlarged variance by the gradient fluctuation on data-poor classes.
Motivated by such phenomenon, we propose to disentangle the distinctive effects
of data-rich and data-poor gradient and asynchronously train a model via a dual-
phase learning process. The first phase only concerns the data-rich classes. In the
second phase, besides the standard classification upon data-poor classes, we pro-
pose an exemplar memory bank to reserve representative examples and a memory-
retentive loss via graph matching to retain the relation between two phases. The
extensive experimental results on four commonly used long-tailed benchmarks
including CIFAR100-LT, Places-LT, ImageNet-LT and iNaturalist 2018 highlight
the excellent performance of our proposed method.

1 INTRODUCTION

Past years have witnessed huge progress in visual recognition with the successful application of deep
convolutional neural networks (CNNs) on large-scale datasets, e.g., ImageNet ILSVRC 2012 (Rus-
sakovsky et al., 2015), Places (Zhou et al., 2017). Such datasets are usually artificially collected
and exhibit approximately uniform distribution concerning the number of samples in each class.
Real-world datasets, however, are always long-tailed that only a few classes occupy the majority
of instances in the dataset (data-rich) and most classes have rarely few samples (data-poor) (Reed,
2001; Van Horn & Perona, 2017). When modeling such datasets, many standard methods suffer from
severe degradation of overall performance. More specifically, the recognition ability on classes with
rarely few instances are significantly impaired (Liu et al., 2019).

One prominent direction is to apply class re-sampling or loss re-weighting to balance the influence
of different classes (Byrd & Lipton, 2019; Shu et al., 2019) and another alternative is to conduct
transferring (Wang et al., 2017; Liu et al., 2019) by the assumption that knowledge obtained on the
data-rich classes should benefit the recognition of data-poor classes. Recently, more sophisticated
models are designed to train the model either base on some new findings (Zhou et al., 2020; Kang
et al., 2020) or combine all available techniques (Zhu & Yang, 2020). However, the property of long-
tailed setting makes it remain to be difficult to achieve large gains compared to balanced datasets.

In contrast to the aforementioned strategies, we approach the long-tailed recognition problem by
analyzing gradient distortion in long-tailed data, attributing to the interaction between gradients gen-
erated by data-rich and data-poor classes, i.e., the direction of overall gradient is shifted to be closer
to the gradient on data-rich classes and its norm variance is increased due to the dramatic variation
in the gradient generated by data-poor classes. The degenerated performance when comparing with
balanced datasets indicates the gradient distortion is negative during model training. Motivated by
this, we hypothesize that the combined analysis for gradients generated by data-rich and data-poor
classes could be improper in long-tailed data and attempt to disentangle these two gradients. We
thus propose the conception of asynchronous modeling and split the original network to promote a
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dual-phase learning, along with the partition of the given dataset. In phase I, data-rich classes keeps
the bulk of the original dataset. It facilitates better local representation learning and more precise
classifier boundary determination by eliminating the negative gradient interaction produced by data-
poor classes. Based on the model learned in phase I, we involve the rest data to do new boundary
exploration in the second phase.

While transiting from the first phase to the second, it is hoped to reserve the knowledge learned in
the first phase. Specifically, we design an exemplar memory bank and introduce a memory-retentive
loss. The memory bank reserves a few most prominent examples from classes in the first phase and
collaborates with data in the second phase for classification. Also, the collaborated data, together
with the new memory-retentive loss, tries to preserve old knowledge when the model adapts to new
classes in the second phase.

In the experiments, we evaluate the proposed asynchronous modeling strategy by comparing to
typical strategies, which include the re-balancing based methods (Cao et al., 2019) and transferring
based methods (Liu et al., 2019). Furthermore, we also consider the latest, more sophisticated works,
like BBN (Zhou et al., 2020), IEM (Zhu & Yang, 2020). The comprehensive study and comparison
across four commonly used long-tailed benchmarks, including CIFAR100-LT, Places-LT, ImageNet-
LT and iNaturalist 2018 validate the efficacy of our method.

2 RELATED WORK

Class re-sampling. Most works along with this line can be categorized as over-sampling of tail
classes (Chawla et al., 2002; Han et al., 2005; Byrd & Lipton, 2019) or under-sampling over head
classes (Drummond et al., 2003). While the idea of re-sampling makes the overall distribution
more balanced, it may encounter the problem of over-fitting on rare data and the missing of critical
information on dominant classes (Chawla et al., 2002; Cui et al., 2019), thus hurting the overall
generalization. Beyond that, Ouyang et al. (2016); Liu et al. (2019) also involve a more refined idea
of fine-tuning after representation extraction to adjust the final decision boundary.

Loss re-weighting. Methods based on loss re-weighting generally allocate larger weights for tail
classes to increase their importance (Lin et al., 2017; Ren et al., 2018; Shu et al., 2019; Cui et al.,
2019; Khan et al., 2017; 2019; Huang et al., 2019). However, direct re-weighting method is difficult
to be optimized when tackling a large-scale dataset (Mikolov et al., 2013). Recently, Cao et al.
(2019) considers the margins of the training set and introduces a label-distribution-aware loss to
enlarge the margins of tail classes. Hayat et al. (2019) proposes the first hybrid loss function to
jointly cluster and classify feature vectors in the Euclidean space and to ensure uniformly spaced
and equidistant class prototypes.

Knowledge transfer. Along this line, methods based on knowledge transfer handle the challenge of
imbalanced dataset by transferring the information learned on head classes to assist tail classes.
While Wang et al. (2017) proposes to transfer meta-knowledge from the head in a progressive
manner, recent strategies take consideration of intra-class variance (Yin et al., 2019), semantic fea-
ture (Liu et al., 2019; Chu et al., 2020) or domain adaptation (Jamal et al., 2020).

Recently, BBN (Zhou et al., 2020) and LWS (Kang et al., 2020) boost the landscape of long-tailed
problem based on some insightful findings. The former asserts that prominent class re-balancing
methods can impair the representation learning and the latter claims that data imbalance might not
be an issue in learning high-quality representations. IEM (Zhu & Yang, 2020) designs a more
complex model that tries to concern available techniques, like feature transferring and attention. In
this paper, we are motivated by gradient distortion in long-tailed data, which is caused by the gradient
interaction between data-rich classes and data-poor classes. We thus propose to split the learning
stage into two phases. We demonstrate that this separation allows straightforward approaches to
achieve high recognition performance, without introducing extra parameters.

3 OUR METHOD

Let X = {xi, yi}, i ∈ {1, ..., n} be the training set, where xi is the training data and yi is its
corresponding label. The number of instances in class j is denoted as nj and the total number of
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(a) CIFAR100-LT (b) vanilla CIFAR100 (c) CIFAR100-LT (d) vanilla CIFAR100

Figure 1: ‘grad1’(‘grad2’): gradient generated by data-rich (data-poor) classes in CIFAR100-LT
or gradient generated by the same classes in vanilla CIFAR-100; ‘grad’: the overall gradient in
both datasets. (a) and (b): Cosine similarity between grad1 and grad, grad2 and grad; (c) and (d):
Norm of grad1, grad2, and grad; (a) and (b) indicate the overall gradient is shifted to be closer to
the direction of gradient generated by data-rich class. (c) and (d) show that the variance of overall
gradient is enlarged by the fluctuation of gradient on data-poor classes.

training samples is denoted as n =
∑C

j=1 nj , where C is the number of classes. Without loss of
generality, we assume that the classes are sorted in decreasing order, that is, if i > j, ni ≤ nj . We
define the whole network as f(x; [Wr;Wc]), where f is the implemented deep learning model with
parameters Wr for representation learning and parameters Wc for classification, and x is the input.

3.1 GRADIENT DISTORTION IN LONG TAIL

Given a long-tailed dataset, our goal is to achieve better overall performance across all classes. In
contrast to previous common heuristics (e.g., resampling, reweighting and feature transfer), we re-
visit the problem of long-tailed classification from the perspective of gradient distortion. The overall
gradient for updating is modulated by the gradients generated by data-rich classes in the head and
data-poor classes in the tail. To state the details, we visualize the associated metrics in the training
process of vanilla CIFAR100 and long-tailed CIFAR100 (CIFAR100-LT) in Fig. 1. Specifically,
the cosine similarity between the gradients is visualized in Fig. 1(a) (CIFAR100-LT) and Fig. 1(b)
(vanilla CIFAR100). Similarly, the norm of each gradient is recorded in Fig. 1(c) (CIFAR100-LT)
and Fig. 1(d) (vanilla CIFAR100). The higher similarity between the overall gradient and the data-
rich gradient indicates that the overall gradient is shifted to the direction of the data-rich gradient.
Meanwhile, the norm variance of overall gradient is enlarged due to more dramatic fluctuation of
the gradient on data-poor classes. Motivated by the degenerated performance in long-tailed dataset,
it is hypothesized that synchronous application of two distinctive gradients could impair the overall
performance.

3.2 ASYNCHRONOUS MODELING

Rather than directly regulating the overall gradient as previous methods, we begin with the disen-
tanglement of two gradients and propose a dual-phase asynchronous modeling strategy. The data
from data-rich classes is first considered in model training and then the rest classes are involved.
Such asynchronous operation not only reduces the potential disturbance between two gradients, but
also ensures the benefits of each gradient to be exploited. Mathematically, the original dataset is X
with C classes. Suppose C1 classes are considered in phase I, we then write X1 as the set of data
from C1 classes. The data in rest C2 classes is denoted as X2, where C2 = C − C1. Accordingly,
the parameters Wc for C classes in f(x; [Wr,Wc]) are truncated as W 1

c for C1 classes in the first
phase.

3.2.1 LEARNING IN THE FIRST PHASE

In model learning from data X1, the consideration of gradient on data-poor categories is avoided,
which keeps the truncated model f(x; [Wr;W 1

c ]) to be more concentrated. In optimization, the
cross-entropy loss over the classes in X1 is minimized with respect to parameters Wr and W 1

c .

L1 = −
∑

(x,y)∈X1

y log f(x; [Wr;W 1
c ]). (1)
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For further improvement in the training, some balanced sampling strategies could be incorporated
in this phase. For example, the progressively-balanced strategy in (Kang et al., 2020) combines
instance-balanced sampling and class-balanced sampling, that is, pj(t) = (1 − t

T )
nj∑C
i=1 ni

+ t
T

1
C ,

where pj(t) denotes the sampling probability for class j in training epoch t. It is computed with
linear combination for instances-based probability nj∑C

i=1 ni
and class-based probability 1

C . T is the
total epoch number.

3.2.2 JOINT PREDICTION IN THE SECOND PHASE

We wish to involve the data in X2 to obtain a complete model across all C classes for overall
evaluation. To do so, on the basis of parameters Wr obtained in phase I, we introduce the classifier
parameters W 2

c for the recognition of new classes in X2. Similar to phase I, the standard cross-
entropy loss across all data in X2 is considered. However, considering solely on data X2 tends
to forget the knowledge learned in the first phase. To tackle with the obstacle, we thus design a
memory bank and memory-retentive loss to realize the seamless connection between two data splits.
First, representative samples in X1 are retained in an augmented memory module to enable the joint
prediction over all classes. Second, the examples reserved in the memory are combined with X2,
which are collaboratively trained with a unified memory-retentive loss.

Exemplar memory bank. In maintaining the knowledge obtained in the first phase, we design
an exemplar memory bank that selects only a few most representative samples from classes in X1.
For simplicity, the number of selected samples from each class is set to be equal. We denote the
reserved data in the memory bank as M . Ideally, the most representative examples are samples that
are closest to the center of each class. However, a precise class center is not always accessible. Thus
in practice, the center is progressively estimated by accessing over the entries generated in previous
steps to infer new entry in the memory bank.

Without loss of generalization, we consider class j in dataset X1 to demonstrate the detailed oper-
ation. We first compute the average feature from all examples in class j in original training set X1

to serve as a class prototype cj , which is thus the initial estimation of class center. We return the
instance which is closest to cj in X1 and set it as the first selected sample for the memory bank,

m1 = arg max
xi∈X1

{s(cj , X1)}, (2)

where s is a vector space similarity metric, like cosine similarity. m1 is used to denote the returned
sample xi. Before selecting the rest instances from X1, we need to update the estimated center cj .
Without loss of generality, suppose we have selected k samples from X1 and denote the feature
map of data in memory bank as Mj = [m1,m2, ..,mk] ∈ Rk×d, where d is the dimension of each
feature map. Each sample in Mj serves as a guided hypothesis and its correlation with cj can then
be computed for the new state zk+1, that is,

pi =
exp(s(cj ,mi))∑
i exp(s(cj ,mi))

, (3)

zk+1 =

k∑
i=1

pimi = pMj , (4)

where s is the same similarity metric as above. pi is computed by the distances between the selected
data and the center prototype and it serves as weights to update state zk+1. zk+1 is the weighted
average of all feature maps in Mj . New samples can then be returned for k + 1 step by performing

mk+1 = arg max
xi∈X1

{s(cj + ∆, X1)}, (5)

where ∆ is the residual between cj and zk+1, i.e., ∆ = cj − zk+1. mk+1 is used to denote the
returned sample xi.

Memory-retentive loss. Based on the memory bank, we obtain a combined data setD by extending
X2 with examples in the memory bank M , i.e., D = M

⋃
X2. Similarly, the joint prediction with

a cross-entropy loss is first considered. When the model is adapted to fit data X2, the knowledge
learned in X1 tends to be forgotten. We thus introduce a new memory-retentive loss LGdis based on
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graph matching, which provides a strong constraint in memorizing previous knowledge. Specifi-
cally, the feature map of each data in the training set D is a node in a graph. Based on the model
learned in the first stage and the new model to be trained in the second phase, two graphs Gold and
Gnew can thus be constructed. That is, we not only consider feature similarity of a single example
on the old model and the new model, but also compute the global matching similarity on the whole
training set D. Suppose the feature map of one node in Gold is zi and in Gold is ẑi, thus the similar-
ity between old graph Gold and new graph Gnew is measured by computing the change between any
node zi in Gold and any node zj in Gnew, that is,

aji =
exp(s(zi, ẑj))∑
j′ exp(s(zi, ẑj′))

, zi ∈ Gold, ẑj , ẑj′ ∈ Gnew, (6)

µi =
∑
j

aji‖zi − ẑj‖, zi ∈ Gold, ẑj ∈ Gnew, (7)

LGdis =
∑
i

µi, zi ∈ Gold, (8)

where s is the vector similarity metric. aji represents the distance between node i in graph Gold and
node j in graph Gnew, µi thus ntuitively measures the difference between zj and its closest neighbor
in graph Gnew. Consider all nodes in graph Gold together, we obtain the memory-retentive loss LGdis,
which describe graph similarity between two graphs.

Overall loss. Combined the above analysis together, the overall loss in phase II is thus as below:

L =
1

|D|
∑
x∈D

(Lcls(x) + Lintra(x)) + λLGdis, (9)

where the first term is for classification and the second is the designed loss which constrains the
knowledge in old model through graph matching, λ is a hyperparameter to balance the two terms.
Notice that, apart from the standard cross-entropy loss Lcls(x) for input x in the first term, we
also consider an intra-classification loss Lintra(x) to avoid memory data in M being dominated
by new classes in X2. When we consider cosine linear classifier, one of the instantiations could
be Lintra(x) =

∑K
k=1 max(0,m− 〈w̄, z̄(x)〉+ 〈w̄k, z̄(x)〉, in which, w̄ is the ground-truth class

embedding and w̄k denotes the other class embedding, z̄(x) is the normalized feature map of x,m is
a margin value. 〈w̄, z̄(x)〉 denotes a positive score between w̄ and z̄(x), while 〈w̄k, z̄(x)〉 denotes
the negative score between w̄k and z̄(x). Lintra optimizes the network to maintain a margin of m
between the positive score and the highest negative score. Finally, for a comprehensive overview of
the asynchronous modeling structure, we can find it in Algorithm 1 in Appendix B.

4 EXPERIMENTS

Datasets. We perform extensive experiments on four long-tailed datasets, including CIFAR100-
LT (Cao et al., 2019), Places-LT (Liu et al., 2019), ImageNet-LT (Liu et al., 2019), and iNaturalist
2018 (iNatrualist, 2018). CIFAR100-LT is created with three different imbalance factors 50, 100,
200. For different versions of CIFAR100-LT, they are created from the original CIFAR100 that the
samples in class y are truncated to nyµ

y
c−1 , where c is the number of all classes, y is the index of

class and ny is the original number of training examples in class y. By varying µ to be 0.02, 0.01,
0.005, we obtain three groups of CIFAR100-LT with imbalance factor 50, 100, 200. More dataset
details can be found in Appendix A.

Evaluation Metrics. We evaluate the models on the corresponding balanced test/validation datasets
and report the overall top-1 accuracy over all classes, denoted as Overall. Furthermore, to better de-
scribe the internal diversity across classes with different training samples, we follow Liu et al. (2019)
to split the given dataset into three disjoint sets: Many-shot (classes with more than 100 images),
Medium-shot (20∼100 images) and Few-shot (fewer than 20 images) and report the corresponding
accuracy for comparison.

4.1 COMPARISON WITH STATE-OF-THE-ART

In this section, we compare our method with a wild range of previous works in addressing long-tailed
classification from different directions.
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Table 1: Evaluation results on Places-LT. † denotes our result with extended parameters.

Method Many Medium Few Overall

Joint (Kang et al., 2020) 45.7 27.3 8.2 30.2
Lifted Loss (Oh Song et al., 2016) 41.1 35.4 24.0 35.2
Focal loss (Lin et al., 2017) 41.1 34.8 22.4 34.6
Range Loss (Zhang et al., 2017b) 41.1 35.4 23.2 35.1
FSLwF (Gidaris & Komodakis, 2018) 43.9 29.9 29.5 34.9
OLTR (Liu et al., 2019) 44.7 37.0 25.3 35.9
NCM (Kang et al., 2020) 40.4 37.1 27.3 36.4
cRT (Kang et al., 2020) 42.0 37.6 24.9 36.7
LWS (Kang et al., 2020) 40.6 39.1 28.6 37.6
IEM (Zhu & Yang, 2020) 46.8 39.2 28.0 39.7
Ours (plain) 46.2 36.3 24.5 37.6
Ours 44.2 40.2 30.9 39.8
Ours† 44.5 40.9 31.8 40.4

Table 2: Evaluation on ImageNet-LT with different backbones. † denotes our result with extended
parameters.

Method ResNet-10 ResNet-50 ResNet-152

FSLwF (Gidaris & Komodakis, 2018) 28.4 - -
Focal Loss (Lin et al., 2017) 30.5 - -
Range Loss (Zhang et al., 2017b) 30.7 - -
Lifted Loss (Oh Song et al., 2016) 30.8 - -
FSA (Chu et al., 2020) 35.2 - -
IEM (Zhu & Yang, 2020) 43.2 - -
OLTR (Liu et al., 2019) 35.6 36.7 43.2
Joint (Kang et al., 2020) 34.8 41.6 44.9
NCM (Kang et al., 2020) 35.5 44.3 47.8
cRT (Kang et al., 2020) 41.8 47.3 50.1
LWS (Kang et al., 2020) 41.4 47.7 50.5
Ours (plain) 41.3 49.7 51.7
Ours 42.0 51.0 53.0
Ours† 43.8 52.2 53.8

Places-LT. We initialize the ResNet-152 backbone with ImageNet pre-trained parameters following
Kang et al. (2020). In Table 1, we report the result of our baseline without asynchronous modeling
and denote it as Ours (plain), that is, considering the dataset together without distinguishing the head
and tail. The result based on asynchronous modeling is denoted as Ours. In order to compare with
baselines like Zhu & Yang (2020), in which more parameters are introduced, we also consider the
upgraded version Ours† with extended parameters. By comparing our asynchronous modeling with
the plain baseline, we notice that the introduction of asynchronous modeling improves the overall
result notably. We also outperform the state-of-the-art methods, including OLTR (Liu et al., 2019),
LWS (Kang et al., 2020), etc. In comparison with IEM (Zhu & Yang, 2020), we see that comparable
result is achieved without introducing any extra parameters. With more parameters considered,
much higher accuracy is achieved in our setting.

ImageNet-LT. For ImageNet-LT, the most commonly adopted architecture is ResNet-10. We also
evaluate with different backbones for a thorough comparison to previous works. Table 2 shows the
overall results on three different backbones, i.e., ResNet-10, ResNet-50 and ResNet-152. We find
that our asynchronously obtained model achieves the top performance with impressive improve-
ments over decoupled methods cRT, NCM and LWS in Kang et al. (2020) across all backbones.
Also, when comparing with OLTR (Liu et al., 2019) which also applies the memory mechanism, the
memory bank in our strategy is obviously more efficient and useful. What is more, our method also
outperforms IEM (Zhu & Yang, 2020) when more parameters are considered. More detailed results,
i.e., the performance on three splits can be found in Appendix C.
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Table 3: The overall results of CIFAR100-LT under
different balance factors (200, 100, 50).

Imbalance factor 200 100 50

Cross Entropy 35.63 38.32 43.85
Focal loss (Lin et al., 2017) 34.69 38.41 44.32
Mixup (Zhang et al., 2017a) 36.20 39.54 44.99
CB-Focal (Cui et al., 2019) 36.23 39.60 45.32
LDAM (Cao et al., 2019) 38.06 42.04 46.62
BBN (Zhou et al., 2020) 37.93 42.56 47.02
Ours (plain) 39.35 42.48 47.61
Ours 40.53 44.79 49.32

CIFAR100-LT. We follow Cao et al.
(2019) and consider three different
long–tailed versions with imbalance fac-
tors 50, 100, 200. The results in Table 3
demonstrate that in comparison with
state-of-the-arts including CB-Focal (Cui
et al., 2019), LDAM (Cao et al., 2019)
and BBN (Zhou et al., 2020), our method
consistently achieves the best performance
across all three versions. Especially for
CIFAR100-LT with imbalance factor
100, the incorporation of asynchronous
modeling introduces more than 2% gains
over our plain baseline.

Table 4: Evaluation results on iNaturalist 2018.

Method ResNet-50 ResNet-152

CB-Focal (Cao et al., 2019) 61.1 -
LDAM (Cao et al., 2019) 68.0 -
BBN (Zhou et al., 2020) 69.6 -
NCM (Kang et al., 2020) 63.1 67.3
Joint (Kang et al., 2020) 65.8 69.0
FSA (Chu et al., 2020) 65.9 69.1
cRT (Kang et al., 2020) 67.6 71.2
LWS (Kang et al., 2020) 69.5 72.1
Ours 69.8 72.5

iNaturalist 2018. We further evaluate our
methods on iNaturalist 2018. iNaturalist
2018 is a real-world long-tailed dataset,
consisting of over 8K categories. We fol-
low Kang et al. (2020) to train the net-
work for 200 epochs and show the re-
sults of two backbones, i.e., ResNet-50
and ResNet-152. From Table 4 we see
the results are consistent with the previous
datasets: training with asynchronous mod-
eling strategy performs best across differ-
ent backbones. It not only achieves better
results than loss re-weighting or transfer-
ring based methods (Cao et al., 2019; Chu
et al., 2020) but also outperforms decou-
pled cRT, NCM, LWS (Kang et al., 2020).

5 ABLATION STUDY

We now perform ablation study to investigate the effect of specific modules. We use ResNet-152 as
the backbone and conduct related experiments on Places-LT to study the size of exemplar memory
bank and the ratio between the classification loss and the memory-retentive loss. We consider the
result under separated {Many, Medium, Few}-shots and the overall result. Similarly in Fig. 2 and
Fig. 3, the axis for describing different shots is in the left. The change of overall result is depicted
in the right of the figure, which is an independent axis.

Size of memory bank. We first explore the effect of memory bank with different sizes. In the
experiment, the size of memory bank depends on the selected number of samples from each class.
Particularly, we consider five cases and set the reserved number of samples from each class in X1 as
2, 6, 10, 14, 18, respectively. For each cases, other operations are kept as the same. From Fig. 2(a),
we see that with the increment of memory size, the performance on Few-shot is decreasing, which
is opposite to the result on Many-shot. Generally speaking, the best overall result is achieved when
memory size equals to 10. We notice that the overall result is changed under different memory sizes,
but it is rather stable, varying from 39.4 to 39.8.

The ratio between the classification loss and the memory-retentive loss. Similarly, we also
study how the ratio between the classification loss and the memory-retentive loss affects the final
results. In practice, such balance is controlled by parameters λ in Eq. 9. Based on the initial option
λ =

√
C/C1, in whichC is the number of all class and C1 is the class used in phase I, the initial λ is

scaled properly to obtain other four values. As shown in Fig. 2(b), we conclude that the best overall
result of Places-LT is achieved when λ equals to 2.03. More importantly, the overall performance
retains good for a wild range of λ, i.e., λ ≤ 2.03.

7



Under review as a conference paper at ICLR 2021

(a) (b)

Figure 2: The classification results on Places-LT with backbone ResNet-152. The right y-axis is to
depict the overall result and the left one is for {Many, Medium, Few}-shots in each figure. (a): The
change of classification results under different memory bank size. (b): The change of classification
results under different λ, which balances the classification loss and memory-retentive loss.

Figure 3: The classification results on three datasets with different disentanglement points. The right
y-axis is for the overall performance and the left y-axis is for results on {Many, Medium, Few}-shots.
With the movement of the disentanglement point, the overall result first increases then decreases.

Through the above analysis of memory bank size and the λ, we notice that the changes of different
modules do affect the overall performance. However, the mild variation indicates that our method is
robust and stable.

Influence of different partitions. In this part, we investigate the influence of disentanglement point
on the final performance. The disentanglement point also corresponds to the index of class since
we arrange the order of classes by the number of instance in the paper. We conduct experiments
on three datasets, including CIFAR100 with imbalance factor 100, Places-LT and ImageNet-LT and
explore five disentanglement points for each dataset. The final results are shown in Fig. 3. To better
show the variation of overall performance (the red line), we depict it using a separated vertical axis
(the right one in each figure). We also show the change of different shots in each dataset: Many-shot
in orange, Medium-shot in blue and Few-shot in purple. From the comparison on three datasets, we
conclude the best disentanglement point for each dataset.

6 CONCLUSION

In this paper, we begin with the visual phenomenon of gradient distortion in long tail and propose an
asynchronous modeling strategy that learns a unified recognition model through two phases to better
exploit the gradients generated by data-rich classes and data-poor classes. In unifying the training
process, we introduce a memory bank and a memory-retentive loss to retain the knowledge learned
in the first phase while exploring new boundaries in the second phase. The extensive results on four
long tailed benchmark datasets which significantly outperform previous works validate the superior
efficacy of our method.
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A APPENDIX

Dataset Details. Places-LT and ImageNet-LT are artificially truncated to follow a long-tailed dis-
tribution from Places-2 (Zhou et al., 2017) and ImageNet-2012 (Deng et al., 2009), respectively.
Places-LT contains 62.5K images from 365 categories and the number of images per class varies
from 4980 to 5. ImageNet-LT has 115.8 samples from 1000 classes and the number of images per
class is decreased from 1280 to 5 images. iNaturalist 2018 is a real-world visual recognition dataset,
that naturally exhibits long-tailed distribution. It consists 435,713 samples from 8,142 species.

Implementation Details. We use the platform of PyTorch (Paszke et al., 2019) for all experiments.
For CIFAR100-LT, we adopt ResNet-32 as the backbone. The batch size is 64 and the learning rate
is initialized with 0.1. The number of epoch for training is 200 and we decay the learning rate at the
160th and 180th epochs by 0.01. For Places-LT, we choose ResNet-152 as the backbone with pre-
trained parameters from ImageNet 2012. The learning rate for representation learning is initialized
with 5e-4 and that for classifier is 0.05. We train the model for 60 epochs and all the learning rate
is decayed at 20th and 40th epochs by 0.01. On ImageNet-LT, we report results with ResNet-10,
50,101,152 (He et al., 2016). Similarly, ResNet-50, 152 are also used for iNaturalist 2018. For
ImageNet and iNaturalist 2018, the learning rate is initialized with 0.05 and cosine learning rate
scheduler (Loshchilov & Hutter, 2016) is applied to gradually decay learning rate from 0.05 to 0.
For all experiments, if not specified, we use SGD optimizer with momentum 0.9, weight decay 5e-4.
The image resolution for CIFAR100-LT is 32×32 and the rest is 224×224. The λ is empirically set

based on
√

num old
num new , where “num old” indicates the number of classes in the first stage and “num

new” is the number of new classes in the second stage. The threshold to split the dataset is set as the
sum of classes in Many- and Medium-shot. For CIFAR100-LT, the threshold is 70, which means that
we first learn the 70 classes in the head and then involve the rest. For ImageNet-LT, the threshold is
864 and Places-LT, the threshold is 294.

B APPENDIX

Algorithm 1 Asynchronous Modeling for Long-Tailed Recognition
Input: Dataset X = {xi, yi}, learning rate η, training epoch T ;
1: Divide dataset X into two parts according to the number of instances in each class. The one

covered data-rich classes is X1 and the rest is X2.
2: Model parameters W1 = [Wr;W 1

c ] in phase I;
3: for i = 1, 2, · · · , T do
4: Sample mini-batch B from training set X1;
5: Compute cross-entropy loss L1 on B;
6: Update overall parameters W1 ←W1 − η∇W1L1;
7: end for
8: Construct memory bank with a few samples from classes in X1 and denote the set as M ;
9: Update training set D = X2

⋃
M , extend model parameters as W = [Wr;Wc];

10: for i = 1, 2, · · · , T do
11: Sample mini-batch B from training set D;
12: Compute classification loss 1

|B|
∑

x∈B(Lcls(x) + Lintra(x));

13: Compute memory-retentive loss LGdis on B;
14: Compute overall loss L = 1

|B|
∑

x∈B(Lcls(x) + Lintra(x)) + λLGdis;
15: Update W ←W − η∇WL;
16: end for
Output: Model with parameters W .
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C APPENDIX

In Table 5, the detailed results of {Many, Medium, Few}-shots on ImageNet-LT are described. Be-
sides from ResNet-{50, 152}, ResNet-101 is also considered here. Compared to the baseline without
asynchronous learning (Ours (plain)), our method sacrifices little in Many-shot but improves a lot in
Medium- and Few-shot. More importantly, we see that our asynchronous strategy boosts the overall
performance across all backbones.

Table 5: Comprehensive results on ImageNet-LT with different backbones.

Backbone Method Many Medium Few Overall

ResNet-50

Joint (Kang et al., 2020) 64.0 33.8 5.8 41.6
NCM (Kang et al., 2020) 53.1 42.3 26.5 44.3
cRT (Kang et al., 2020) 58.8 44.0 26.1 47.3
LWS (Kang et al., 2020) 57.1 45.2 29.3 47.7
Ours (plain) 66.3 45.0 19.2 49.7
Ours 64.6 48.3 22.1 51.0

ResNet-101

Joint (Kang et al., 2020) 66.6 36.8 7.1 44.2
NCM (Kang et al., 2020) 56.8 45.1 28.8 47.4
cRT (Kang et al., 2020) 61.6 46.5 28.0 49.8
LWS (Kang et al., 2020) 60.1 47.6 31.2 50.2
Ours (plain) 67.8 46.5 20.6 51.2
Ours 65.8 49.1 23.5 52.1

ResNet-152

Joint (Kang et al., 2020) 66.9 27.7 7.7 44.9
NCM (Kang et al., 2020) 56.9 45.6 29.9 47.8
cRT (Kang et al., 2020) 61.8 46.8 28.4 50.1
LWS (Kang et al., 2020) 60.6 47.8 31.4 50.5
Ours (plain) 67.9 47.3 21.5 51.7
Ours 66.5 50.6 23.6 53.0
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