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ABSTRACT

We present ReCAT, a recursive composition augmented Transformer that is able
to explicitly model hierarchical syntactic structures of raw texts without relying on
gold trees during both learning and inference. Existing research along this line re-
stricts data to follow a hierarchical tree structure and thus lacks inter-span commu-
nications. To overcome the problem, we propose novel contextual inside-outside
(CIO) layers, each of which consists of a top-down pass that forms representations
of high-level spans by composing low-level spans, and a bottom-up pass that com-
bines information inside and outside a span. The bottom-up and top-down passes
are performed iteratively by stacking CIO layers to fully contextualize span rep-
resentations. By inserting the stacked CIO layers between the embedding layer
and the attention layers in Transformer, the ReCAT model can perform both deep
intra-span and deep inter-span interactions, and thus generate multi-grained repre-
sentations fully contextualized with other spans. Moreover, the CIO layers can be
jointly pre-trained with Transformers, making ReCAT enjoy scaling ability, strong
performance, and interpretability at the same time. We conduct experiments on
various sentence-level and span-level tasks. Evaluation results indicate that Re-
CAT can significantly outperform vanilla Transformer models on all span-level
tasks and recursive models on natural language inference tasks. More interest-
ingly, the hierarchical structures induced by ReCAT exhibit strong consistency
with human-annotated syntactic trees, indicating good interpretability brought by
the CIO layers. 1

1 INTRODUCTION

Recent years have witnessed a plethora of breakthroughs in the field of natural language processing
(NLP), thanks to the advances of deep neural techniques such as Transformer (Vaswani et al., 2017),
BERT (Devlin et al., 2019), and GPTs (Brown et al., 2020; OpenAI, 2023). Despite the success
of the architecture, syntax and semantics in Transformer models are represented in an implicit and
entangled form, which is somewhat divergent from the desiderata of linguistics. From a linguistic
point of view, the means to understand natural language should comply with the principle that “the
meaning of a whole is a function of the meanings of the parts and of the way they are syntactically
combined” (Partee, 1995). Hence, it is preferable to model hierarchical structures of natural lan-
guage in an explicit fashion. Indeed, explicit structure modeling could enhance interpretability (Hu
et al., 2023), and result in better compositional generalization (Sartran et al., 2022). The problem is
then how to combine the ideas of Transformers and explicit hierarchical structure modeling, so as to
obtain a model that has the best of both worlds.

In this work, we attempt to answer the question by proposing novel Contextual Inside-Outside (CIO)
layers as an augmentation to the Transformer architecture and name the model “Recursive Composi-
tion Augmented Transformer” (ReCAT). Figure 1 illustrates the architecture of ReCAT. In a nutshell,
ReCAT stacks several CIO layers between the embedding layer and the deep self-attention layers in
Transformer. These layers explicitly emulate the hierarchical composition process of language and
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1Code released at https://github.com/ant-research/StructuredLM_RTDT.
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provide Transformers with explicit multi-grained representations. Specifically, we propose a variant
of the deep inside-outside algorithm (Drozdov et al., 2019), which serves as the backbone of the
CIO layer. As shown in Figure 1(a), multiple CIO layers are stacked to achieve an iterative up-and-
down mechanism to learn contextualized span representation. During the bottom-up pass, the model
composes low-level constituents to refine high-level constituent representations from the previous
iteration, searching for better underlying structures via a dynamic programming approach (Mail-
lard et al., 2017); while during the top-down pass, each span merges information from itself, its
siblings, and its parents to obtain a contextualized representation. By this means, the stacked CIO
layers are able to explicitly model hierarchical syntactic compositions of inputs and provide con-
textualized constituent representations to the subsequent Transformer layers, where constituents at
different levels can sufficiently communicate with each other via the self-attention mechanism. Re-
CAT enjoys several advantages over existing methods: first, unlike Transformer Grammars (Sartran
et al., 2022), our model gets rid of the dependence on expensive parse tree annotations from human
experts, and is able to recover hierarchical syntactic structures in an unsupervised manner; second,
unlike DIORA (Drozdov et al., 2019) and R2D2 (Hu et al., 2021), our model breaks the restriction
that information exchange only happens either inside or outside a span and never across the span
boundaries, and realizes cross-span communication in a scalable way. Moreover, we reduce the
space complexity of the deep inside-outside algorithm from cubic to linear and parallel time com-
plexity to approximately logarithmic. Thus, the CIO layers can go sufficiently deep, and the whole
ReCAT model can be pre-trained with vast amounts of data.

Figure 1: ReCAT model architecture. The contextual inside-outside layers take n token embeddings and output
2n− 1 node representations.

We evaluate ReCAT on GLUE (Wang et al., 2019) (sentence-level tasks), OntoNotes (Weischedel
et al., 2013) (span-level tasks), and PTB (Marcus et al., 1993) (grammar induction). The empir-
ical results indicate that: (1) ReCAT attains superior performance compared to Transformer-only
baselines on all span-level tasks with an average improvement over 3%; (2) ReCAT surpasses the
hybrid models composed of RvNNs and Transformers by 5% on natural language inference; and
(3) ReCAT outperforms previous RvNN based baselines by 8% on grammar induction. Our main
contributions are three-fold:
1. We propose a Contextual Inside-Outside (CIO) layer, which can be jointly pre-trained with
Transformers efficiently, induce underlying syntactic structures of text, and learn contextualized
multi-grained representations.
2. We further propose ReCAT, a novel architecture that achieves direct communication among con-
stituents at different levels by combining CIO layers and Transformers.
3. We reduce the complexity of the deep inside-outside algorithm from cubic to linear, and further
reduce the parallel time complexity from linear to approximately logarithmic.

2 RELATED WORKS

The idea of equipping deep neural architectures with syntactic structures has been explored in many
studies. Depending on whether gold parse trees are required, existing work can be categorized into
two groups. In the first group, gold trees are part of the hypothesis of the methods. For example, Pol-
lack (1990) proposes encoding the hierarchical structures of text with an RvNN; Socher et al. (2013)
verify the effectiveness of RvNNs with gold trees for sentiment analysis; RNNG (Dyer et al., 2016)
and Transformer Grammars (Sartran et al., 2022) perform text generation with syntactic knowledge.
Though rendering promising results, these works suffer from scaling issues due to the expensive
and elusive nature of linguistic knowledge from human experts. To overcome the challenge, the
other group of work induces the underlying syntactic structures in an unsupervised manner. For in-
stance, ON-LSTM Shen et al. (2019b) and StructFormer (Shen et al., 2021) integrate syntactic struc-
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tures into LSTMs or Transformers by masking information in differentiable ways; Yogatama et al.
(2017) propose jointly training the shift-reduce parser and the sentence embedding components;
URNNG (Kim et al., 2019b) applies variational inference over latent trees to perform unsupervised
optimization of the RNNG; Chowdhury & Caragea (2023) propose a Gumbel-Tree (Choi et al.,
2018) based approach that can induce tree structures and cooperate with Transformers as a flexible
module by feeding contextualized terminal nodes into Transformers; Maillard et al. (2017) propose
an alternative approach based on a differentiable neural inside algorithm; Drozdov et al. (2019) pro-
pose DIORA, an auto-encoder-like pre-trained model based on an inside-outside algorithm (Baker,
1979; Casacuberta, 1994); and R2D2 reduces the complexity of the neural inside process by pruning,
which facilitates exploitation of complex composition functions and pre-training with large corpus.
Our work is inspired by DIORA and R2D2, but a major innovation of our work is that our model
can be jointly pre-trained with Transformers efficiently, which is not trivial to achieve for DIORA
and R2D2. Both of them have to obey the information access constraint (i.e., information flow is
only allowed within (inside) or among (outside) spans), due to their training objectives of predicting
each token via its context span representations. Joint pre-training with Transformers would break
the constraint and lead to information leakage, thus not feasible.

3 METHODOLOGY

3.1 MODEL

Overall, there are two basic components in ReCAT: CIO layers and Transformer layers. As illus-
trated in Figure 1, the CIO layers take token embeddings as inputs and output binary trees with
node representations. During the iterative up-and-down encoding within the CIO layers, each span
representation learns to encode both context and relative positional information. The multi-grained
representations are then fed into the Transformer layers where constituents at different levels can
interact with each other directly.

3.1.1 PRUNING ALGORITHM

Figure 2: Example of the pruning process. si and si:j denotes the i-th token and sub-string covering i to j, both
included. The numbers are split indices. In (e), the merge order is the reverse order of the split order, which is
{1, 5, 2, 4, 3}

We propose to improve the pruned deep inside algorithm of Hu et al. (2022) so that it can be com-
pleted in approximately logarithmic steps. The main idea is to prune out unnecessary cells and
simultaneously encode the remaining cells once their sub-span representations are ready. As shown
in Figure 2(e), an unsupervised parser is employed to assign each split point a score and recursively
splits the sentence in the descending order of the scores. Thus the reverse of the split order can be
considered as the merge order of spans and cells that would break the merged spans are deemed un-
necessary. During the pruning pass, we record the encoding order B of cells and their valid splits K.
As shown in Figure 2, there is a pruning threshold m which is triggered when the height of encoded
cells (in grey) in the chart table reaches m. At the beginning, cells beneath m are added bottom-up
to B row by row. Once triggered, the pruning process (refer to (a),(b),(c),(d) in Figure 2) works as
follows:

0. Group split points according to their height in the tree, with each group corresponding to their
height in the induced tree, e.g., group1: {1, 5}, group2: {2, 4}, group3: {3}.

1. Merge all spans simultaneously in the current merge group, e.g., (s1, s2) and (s5, s6) in (b).
2. Remove all conflicting cells that would break the now non-splittable span from Step 1, e.g., the

dark cells in (c), and reorganize the chart table much like in the Tetris game as in (d).
3. Append the cells that just descend to height m to B and record their valid splits in K, e.g., the

cell highlighted with stripes in (d) whose valid splits are {2, 3} and {3,4} respectively. Then go
back to Step 1 until no cells are left.
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In this way, the entire inside algorithm can be finished within tree-height steps, whose parallel
time complexity is approximately logarithmic based on our empirical study in Appendix A.6. The
detailed pseudo-code can be found in Appendix A.5. The optimization of the unsupervised parser is
explained in the next section.

3.1.2 CONTEXTUAL INSIDE-OUTSIDE LAYERS

Figure 3: The first layer of stacked CIO layers.

In this part, we explain contextual inside-
outside layers, and how to extend linear neu-
ral inside algorithm to our contextual inside-
outside layers.

Our contextual inside-outside algorithm bor-
rows the neural inside-outside idea from
DIORA (Drozdov et al., 2019), but differs from
it in the following ways. First, the outside pass
is designed to contextualize span representation
instead of constructing auto-encoding loss. As
a result of introducing information leakage, the original pre-training objective does not work any-
more. Second, we introduce an iterative up-and-down mechanism by stacking multiple CIO layers
to refine span representations and underlying structures layer by layer. We use masked language
modeling as the new pre-training objective thanks to the mechanism allowing spans affected by
masked tokens to contextualize their representations through iterative up-and-down processes.

Denotations. Given a sentence S = {s1, s2, ..., sn} with n tokens, Figure 3 shows multi-layered
chart tables. We denote the chart table at the l-th layer as T l, where each cell T l

i,j covers span
(i, j) corresponding to sub-string si:j . For span (i, j), its set of inside pair consists of span pairs
{(i, k), (k + 1, j)} for k = i, ..., j − 1. For span (i, j), its set of outside pair consists of span pairs
{(i, k), (j+1, k)} for k = j+1, ..., n and {(k, j), (k, i−1)} for k = 1, ..., i−1. For example, given
a sentence {s1, s2, s3, s4}, the inside pairs of span (1, 3) are {(1, 1), (2, 3)} and {(1, 2), (3, 3)}, and
the outside pairs of span (2, 3) are {(1, 3), (1, 1)} and {(2, 4), (4, 4)}. We denote the representations
computed during the inside pass and the outside pass as ê and ě respectively.

Pruned Inside Pass. During the inside process at the l-th layer, given an inside pair of a span
(i, j) split on k s.t. i ≤ k < j, we denote its composition representation and compatibility score
as êli,j [k] and ali,j [k] respectively. The compatibility score means how likely an inside pair is to
be merged. êli,j [k] is computed by applying the composition function to its immediate sub-span
representations êli,k and êlk+1,j . Meanwhile, the composition function additionally takes the outside
representation ěl−1

i,j from the previous layer to refine the representation, as illustrated in Figure 3.
ali,j [k] is computed by recursively summing up the scores of the single step compatibility score
āli,j [k] and the corresponding immediate sub-spans, i.e., ali,k and alk+1,j . The inside score ali,j and
representation êli,j of each cell Ti,j are computed using a soft weighting over all possible inside
pairs, i.e., ali,j [k] and êli,j [k] with k ∈ Ki,j , where K is the set of valid splits for each span generated
during the pruning stage. The inside representation and score of a cell are computed as follows:

êli,j [k] = Composelα(ê
l
i,k, ê

l
k+1,j , ě

l−1
i,j ) , āl

i,j [k] = ϕα(ê
l
i,k, ê

l
k+1,j) , a

l
i,j [k] = āl

i,j [k] + al
i,k + al

k+1,j ,

ŵl
i,j [k] =

exp(ai,j [k])∑
k′∈Ki,j

exp(ai,j [k′])
, êli,j =

∑
k∈Ki,j

ŵl
i,j [k]ê

l
i,j [k] , a

l
i,j =

∑
k∈Ki,j

ŵl
i,j [k]a

l
i,j [k].

(1)
We elaborate on details of the Compose function and the compatibility function ϕ afterwards. For a
bottom cell at the first chart table T 1

i,i, we initialize ê1i,i as the embedding of si and a1i,i as zero. For
T 0, we assign a shared learn-able tensor to ě0i,j . We encode the cells in the order of B so that when
computing the representations and scores of a span, its inside pairs needed for the computation are
already computed.

Contextual Outside Pass. A key difference in our outside pass is that we mix information from
both inside and outside of a span. Meanwhile, to reduce the complexity of the outside to linear, we
only consider cells and splits used in the inside pass. Analogous to inside, we denote the outside
representation and score of a given span as ěli,j [k] and bli,j [k] respectively, whose parent span is (i, k)
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or (k, j) for k > j or k < i. Then, ěli,j [k] and bli,j [k] can be computed by:

ě
l
i,j [k] =

{
Composelβ(êli,j , ê

l
j+1,k, ě

l
i,k)

Composelβ(êlk,i−1, ê
l
i,j , ě

l
k,j)

, b̄
l
i,j [k] =

{
ϕβ(ěli,k, ê

l
j+1,k)

ϕβ(ělk,j , ê
l
k,i−1)

, b
l
i,j [k] =

{
al
j+1,k + b̄li,j [k] + bli,k

al
k,i−1 + b̄li,j [k] + blk,j

,
for k > j
for k < i

(2)

The parameters of the Compose follow the order of left, right and parent span. According to K that
records all valid splits for each span during the pruned inside pass, we can obtain a mapping from
a span to its immediate sub-spans. By reversing such mapping, we get a mapping from a span to
its valid immediate parent spans denoted as P , which records the non-overlapping endpoint k in the
parent span (i, k) or (k, j) for a given span (i, j). Thus, we have:

w̌l
i,j [k] =

exp(bli,j [k])∑
k′∈Pi,j

exp(bli,j [k
′])

, ěli,j =
∑

k∈Pi,j

w̌l
i,j [k]ě

l
i,j [k] , b

l
i,j =

∑
k∈Pi,j

w̌l
i,j [k]b

l
i,j [k]. (3)

By following the reverse order of B, we can ensure that when computing ěi,j [k], the outside repre-
sentation of parent span (i, j) needed for the computation are already computed.2

Figure 4: The Compose function for the inside and out-
side pass

Composition and Compatibility functions.
We borrow the idea from R2D2 (Hu et al.,
2021) to use a single-layered Transformer as
the composition function. As shown in Fig-
ure 4, there are three special tokens indicating
the role of each input. During the inside pass,
we feed ěl−1

i,j , êli,k, ê
l
k+1,j summed up with their

role embeddings into the Transformer and take
the output of ěl−1

i,j as êli,j [k] as shown in Fig-
ure 4(a). Analogously, we can get the out-
side representation as shown in Figure 4(b). To
compute the compatibility score, we feed êli,k and êlk+1,j through MLPL

α , MLPR
α used to capture left

and right syntax features of sub-spans and calculate their scaled inner product:

ûl
i,k = MLPL

α(ê
l
i,k) , û

l
k+1,j = MLPR

α (ê
l
k+1,j) , ϕα(ê

l
i,k, ê

l
k+1,j) = (ûl

i,k)
⊺ûl

k+1,j/
√
d, (4)

where u ∈ Rd. ϕβ(ě
l
i,k, ê

l
j+1,k) and ϕβ(ě

l
k,j , ê

l
k,i−1) can be computed in a similar way. For effi-

ciency considerations, ϕα and ϕβ used in different layers share the same parameters.

Tree induction. For a given span (i, j) at the l-th CIO layer, the best split point is k with the
highest ali,j [k], k ∈ Ki,j . Thus it is straightforward to recover the best parsing tree by recursively
selecting the best split point starting from the root node T L

1,n in a top-down manner, where L is the
total number of CIO layers.

Multi-grained self-attention. Once we recover the best parsing tree as described above (c.f., Fig-
ure 1(c)), we feed outside representations of nodes from the last CIO layer into subsequent Trans-
formers, to enable constituents at different levels to communicate directly and output multi-grained
representations fully contextualized with other spans.

3.2 PRE-TRAINING

Algorithm 1 Pre-training ReCAT
1: function FORWARD(S, x, y)
2: ▷ S is the original input, x is the input with 15% tokens masked. y is the target for MLM.
3: B = Prune(S,Φ) ▷ Corresponds to Section 3.1.1. Φ is the parameter for the top-down parser.
4: Initialize T 0 ▷ Initialize the chart table at the 0-th layer with word embeddings
5: for i ∈ 1 to L do ▷ Run L-layered CIO blocks. Iteratively encode the sentence up and down.
6: Inside(B, T i, T i−1, αi) ▷ Eq. 1, αi is the inside parameters of the i-th CIO layer
7: ContextualOutside(B, T i, T i−1, βi) ▷ Eq. 2, βi is the outside parameters of the i-th CIO layer
8: z = induce tree(T L)
9: r = gather(T L, z) ▷ Gather node representations from the last CIO layer.

10: out = Transformers(r) ▷ Feed contextualized node presentations into Transformers
11: parser loss = − log p(z|S; Φ) ▷ The loss for the top-down parser used in Prune.
12: mlm loss = cross entropy(cls(out), y) ▷ The loss for masked language modeling.
13: return parser loss + mlm loss

2Detailed parallel implementation could be found in the Appendix A.1.
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As our contextual outside pass brings information leakage, the original training objective designed
for DIORA does not work anymore. Instead, here we use the MLM objective. For simplicity, we
use the vanilla MLM objective instead of its more advanced variants such as SpanBERT (Joshi et al.,
2020). Since each masked token corresponds to a terminal node in the parsing tree, we just take the
Transformer outputs corresponding to these nodes to predict the masked tokens. As masking tokens
may bring an extra difficulty to the top-down parser, we make all tokens visible to the parser during
the pruning stage and only mask tokens during the encoding stage.

Parser feedback. We use a hard-EM approach (Liang et al., 2017) to optimize the parser used for
the pruning. Specifically, we select the best binary parsing tree z estimated by the last CIO layer.
As shown in Figure 2(e), at step t, the span corresponding to a given split at is determined, which is
denoted as (it, jt). Thus we can minimize the neg-log-likelihood of the parser as follows:

p(at|S) =
exp(vat)∑jt−1
k=it

exp(vk)
,− log p(z|S) = −

n−1∑
t=1

log p(at|S). (5)

Algorithm 1 summarizes the procedure to pre-train ReCAT.

4 EXPERIMENTS System # params
Fast-R2D2 52M
Fast-R2D2+Transformer 67M
DIORA*+Transformer 77M
Parser+Transformer 142M
Transformer×3 46M
Transformer×6 67M
Transformer×9 88M
ReCATnoshare[1, 1, 3] 63M
ReCATshare[3, 1, 3] 70M
ReCATnoshare[3, 1, 3] 88M
ReCATnoshare[3, 1, 6] 109M
ReCATshare w/o iter 70M

Table 1: Parameter sizes.

We compare ReCAT with vanilla Transformers and recursive
models through extensive experiments on a variety of tasks.
Data for Pre-training. For English, we pre-train our model and
baselines on WikiText103 (Merity et al., 2017). WikiText103 is
split at the sentence level, and sentences longer than 200 after to-
kenization are discarded (about 0.04‰ of the original data). The
total number of tokens left is 110M.
ReCAT setups. We prepare different configurations for ReCAT
to conduct comprehensive experiments. We use ReCATshare/noshare
to indicate whether the Compose functions used in the inside and
outside passes share the same parameters or not. Meanwhile, we use ReCAT[i, j, k] to denote Re-
CAT made up of i stacked CIO layers, a j-layer Compose function, and a k-layer Transformer.
Specifically, ReCATshare w/o iter and ReCATshare w/o TFM are designed for the ablation study, corre-
sponding to no iterative up-and-down mechanism and no Transformer layers.
Baselines. For fair comparisons, we select baselines whose parameter sizes are close to ReCAT
with different configurations. We list the parameter sizes of different models in Table 1. Details of
baseline models are explained in the following sections.3

4.1 SPAN-LEVEL TASKS

Dataset. We conduct experiments to evaluate contextualized span representations produced by
our model on four classification tasks, namely Named entity labeling (NEL), Semantic role label-
ing (SRL), Constituent labeling (CTL), and Coreference resolution (COREF), using the annotated
OntoNotes 5.0 corpus (Weischedel et al., 2013). For all the four tasks, the model is given an input
sentence and the position of a span or span pair, and the goal is to classify the target span(s) into
the correct category. For NEL and CTL, models are given a single span to label, while for SRL and
COREF, models are given a span pair.
Baselines. We use Transformer and Fast-R2D2 as our baselines. Fast-R2D2 could be regarded as
a model only with the inside pass and using a 4-layer Transformer as the Compose function. For
reference, we also include BERT as a baseline which is pre-trained on a much larger corpus than our
model. For BERT, we use the HuggingFace (Wolf et al., 2019) implementation and select the cased
version of BERT-base. Given a span, R2D2-based models (our model and Fast-R2D2) can encode
the representation directly, while for Transformer-based models, we try both mean pooling and max
pooling in the construction of the span representation from token representations.
Fine-tuning details. Our model and the Transformers are all pre-trained on Wiki-103 for 30
epochs and fine-tuned on the four tasks respectively for 20 epochs. We feed span representations
through a two-layer MLP using the same setting as in Toshniwal et al. (2020). For the downstream

3Please find the hyper-parameters for the baselines in Appendix A.2.
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System NEL SRL CTL COREF
Fast-R2D2 91.67/92.67 79.49/80.21 91.34/90.43 87.77/86.97
Transformer6mean 90.41/90.17 88.37/88.48 95.99/93.84 89.55/88.11
Transformer6max 90.49/90.70 88.86/88.99 96.33/95.28 90.01/89.45
ReCATshare[3, 1, 3] 95.03/94.78 92.73/92.79 98.49/98.47 93.99/92.74
Transformer9mean 90.37/89.27 88.46/88.77 96.21/92.98 89.37/88.09
Transformer9max 90.93/90.28 89.00/89.12 96.49/95.92 90.32/89.38
ReCATnoshare[3, 1, 3] 94.84/94.18 92.86/93.01 98.56/98.58 94.06/93.19
For Reference
BERTmean 96.49/95.77 93.41/93.49 98.31/97.91 95.63/95.58
BERTmax 96.61/96.17 93.48/93.60 98.35/98.38 95.71/96.00

Table 2: Dev/Test performance for four span-level tasks on Ontonotes 5.0. All tasks are evaluated using F1
score. All models except BERT are pre-trained on wiki103 with the same setup.

classification loss, we use the cross entropy loss for single-label classification and binary cross en-
tropy loss for multi-label classification. In particular, during the first 10 epochs of fine-tuning, inputs
are also masked by 15% and the final loss is the summation of the downstream task loss, the parser
feedback loss, and the MLM loss. For the last 10 epochs, we switch to the fast encoding mode,
which is described in Appendix A.3, during which inputs are not masked anymore and the top-down
parser is frozen. We use a learning rate of 5e−4 to tune the classification MLP, a learning rate of
5e−5 to tune the backbone span encoders, and a learning rate of 1e−3 to tune the top-down parser.

Results and discussion. Table 2 shows the evaluation results. We can see that ReCAT outper-
forms the vanilla Transformers across all four tasks, with absolute improvements of around 4 F1
scores on average. Furthermore, though BERT has twice as many layers as our model and is pre-
trained on a corpus 20x larger than ours, ReCAT is still comparable with BERT (even better than
BERT on the CTL task). The results verify our claim that explicitly modeling hierarchical syntactic
structures can benefit tasks that require multiple levels of granularity, with span-level tasks being one
of them. Since Transformers only directly provide token-level representations, all span-level repre-
sentations reside in hidden states in an entangled form, and this increases the difficulty of capturing
intra-span and inter-span features. On the other hand, our model applies multi-layered self-attention
layers on the disentangled contextualized span representations. This enables the construction of
higher-order relationships among spans, which is crucial for tasks such as relation extraction and
coreference resolution. In addition, we also observe that although Fast-R2D2 works well on NEL,
its performance in other tasks is far less satisfactory. Fast-R2D2 performs particularly poorly in the
SRL task, where our model improves the most. This is because Fast-R2D2 solely relies on local
inside information, resulting in a lack of spatial and contextual information from the outside which
is crucial for SRL. On the other hand, our model compensates for this deficiency by contextualizing
the representations in an iterative up-and-down manner.

4.2 SENTENCE-LEVEL TASKS

Dataset. We use the GLUE (Wang et al., 2019) benchmark to evaluate the performance of our
model on sentence-level language understanding tasks. The General Language Understanding Eval-
uation (GLUE) benchmark is a collection of diverse natural language understanding tasks.

Baselines. We select Fast-R2D2, a DIORA variant, and vanilla Transformers as baselines which
are all pre-trained on Wiki-103 with the same vocabulary. The Transformer baselines include Trans-
formers with 3,6, and 9 layers corresponding to different parameter sizes of ReCAT with different
configurations. 4 To study the gain brought by representations of non-terminal nodes, we include a
baseline in which representations of non-terminal nodes in ReCAT are not fed into the subsequent
Transformer, denoted as ReCATw/o NT. The settings of the Fast-R2D2 and the Transformers are
the same as in Section 4.1. For reference, we list results of other RvNN variants such as Gumbel-
Tree Choi et al. (2018), OrderedMemory (Shen et al., 2019a), and CRvNN (Chowdhury & Caragea,
2021).

Fine-tuning details. Our model and the Transformer models are all pre-trained on Wiki-103 for
30 epochs and fine-tuned for 20 epochs. Regarding to the training scheme, we use the same masked
language model warmup as in 4.1 for models pre-trained via MLM. The batch size for all models is

4Detail setup of baselines is described in Appendix A.4
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System natural language inference single-sentence sentence similarity
MNLI-(m/mm) RTE QNLI SST-2 CoLA MRPC(f1) QQP

Fast-R2D2 69.64/69.57 54.51 76.49 90.71 40.11 79.53 85.95
Fast-R2D2+Transformer 68.25/67.30 55.96 76.93 89.10 36.06 78.09 87.52
DIORA*+Transformer 68.87/68.35 55.56 77.23 88.89 36.58 78.87 86.69
Parser+Transformer 67.95/67.16 54.74 76.18 88.53 18.32 77.56 86.13
Transformer×3 69.20/69.90 53.79 72.91 85.55 30.67 78.04 85.06
Transformer×6 73.93/73.99 57.04 79.88 86.58 36.04 80.80 86.81
ReCATnoshare[1, 1, 3] 72.77/73.59 54.51 73.83 84.17 23.13 79.24 85.02
ReCATshare w/o iter 75.03/75.32 56.32 80.96 84.94 20.86 78.86 85.36
ReCATshare w/o NT 74.24/74.06 55.60 80.10 85.89 28.36 79.03 85.98
ReCATshare w/o TFM 68.87/68.24 — — 83.94 — — —
ReCATshare[3, 1, 3] 75.48/75.43 56.68 81.70 86.70 25.11 79.45 86.10
Transformer×9 76.01/76.47 56.70 83.20 86.92 36.89 79.71 88.18
ReCATnoshare[3, 1, 3] 75.75/75.79 57.40 82.01 86.80 26.69 80.65 85.97
ReCATnoshare[3, 1, 6] 76.33/77.12 56.68 82.04 88.65 35.09 80.62 86.82
For reference
GumbelTree† 69.50/ — — — 90.70 — — —
CRvNN† 72.24/72.65 — — 88.36 — — —
Ordered Memory† 72.53/73.2 — — 90.40 — — —

Table 3: Evaluation results on GLUE benchmark. The models with † are based on GloVe embeddings and their
results are taken from Ray Chowdhury & Caragea (2023). The others are pre-trained on wiki103 with the same
setups.

128. As the test dataset of GLUE is not published, we fine-tune all models on the training set and
report the best performance (acc. by default) on the validation set.

Results and discussion. Table 3 reports evaluation results on GLUE benchmark. First, we ob-
serve an interesting phenomenon that ReCAT significantly outperforms RvNN-based baselines on
NLI tasks, underperforms the models on single-sentence tasks, and achieves comparable perfor-
mance with them on sentence similarity tasks. Our conjecture is that the phenomenon arises from
the contextualization and information integration abilities of the self-attention mechanism that en-
able the MLPs in pre-trained Transformers to retrieve knowledge residing in parameters in a better
way. Therefore, for tasks requiring inference (i.e., knowledge beyond the literal text), ReCAT can
outperform RvNN-based baselines. RvNN-based baselines perform well on tasks when the literal
text is already helpful enough (e.g., single-sentence tasks and sentence similarity tasks), since they
can sufficiently capture the semantics within local spans through explicit hierarchical composition
modeling and deep bottom-up encoding. ReCAT, on the other hand, sacrifices such a feature in
exchange for the contextualization ability that enables joint pre-training with Transformers, and
thus suffers from degradation on single-sentence tasks. Second, even with only one CIO layer,
ReCATnoshare[1, 1, 3] significantly outperforms Transformer×3 on the MNLI task. When the number
of CIO layers increases to 3, ReCATnoshare[3, 1, 3] even outperforms Transformer ×6. The results
verify the effectiveness of explicit span representations introduced by the CIO layers. An expla-
nation is that multi-layer self-attention over explicit span representations is capable of modeling
intra-span and inter-span relationships, which are critical to NLI tasks but less beneficial to single-
sentence and sentence similarity tasks. Third, the iterative up-and-down mechanism is necessary,
as ReCATnoshare[3, 1, 3] significantly outperforms ReCATshare w/o iter and ReCATnoshare[1, 1, 3], even
though ReCATnoshare[3, 1, 3] and ReCATshare w/o iter have almost the same number of parameters. We
speculate that multiple CIO layers could enhance the robustness of the masked language models
because the masked tokens may break the semantic information of inputs and thus affect the induc-
tion of syntactic trees, while multi-layer CIO could alleviate the issue by contextualization during
multiple rounds of bottom-up and top-down operations. Finally, we notice that ReACTnoshare[3, 1, 3]
has a parameter size close to Transformer×9 but underperforms Transformer×9. This may stem
from the difference in the number of layers (i.e., 6 v.s. 9). The results imply that the increase in
parameters of the independent Compose functions in the inside and outside pass cannot reduce the
gap brought by the number of layers. It is noteworthy that Parser+Transformer is worse than Fast-
R2D2+Transformer, especially on CoLA, indicating that syntactic information learned from a few
human annotations is less useful than that obtained by learning from vast amounts of data.

4.3 STRUCTURE ANALYSIS

We further evaluate our model on unsupervised grammar induction and analyze the accuracy of
syntactic trees induced by our model.

8
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mem. PTB
Model cplx F1(µ)

Fast-R2D2m=4 O(n) 57.22
ReCATshare[3, 1, 3]m=4 O(n) 56.07
ReCATshare[3, 1, 3]m=2 O(n) 55.11
ReCATnoshare[3, 1, 3]m=4 O(n) 65.00
ReCATnoshare[3, 1, 3]m=2 O(n) 64.06
ReCATnoshare w/o iter m=2 O(n) 45.20
For Reference
C-PCFG O(n3) 55.2†
NBL-PCFG O(n3) 60.4†
TN-PCFG O(n3) 64.1†
ON-LSTM O(n) 47.7‡
S-DIORA O(n3) 57.6†
StructFormer O(n2) 54.0‡

Model NNP VP NP ADJP
Fast-R2D2 83.44 63.80 70.56 68.47
ReCATshare[3, 1, 3]m=2 77.22 67.05 66.53 69.44
ReCATshare[3, 1, 3]m=4 85.41 66.14 68.43 72.92
ReCATnoshare[3, 1, 3]m=2 80.36 64.38 80.93 80.96
ReCATnoshare[3, 1, 3]m=4 81.71 70.55 82.94 78.28

Table 4: Left table: F1 score of unsupervised parsing on PTB
dataset. Values with † and ‡ are taken from Yang et al. (2022)
and Shen et al. (2021) respectively.
Upper table: Recall of constituents.
Word-level: NNP (proper noun). Phrase-level: VP (Verb Phrase),
NP (Noun Phrase), ADJP (Adjective Phrase).
Samples of deduced trees can be found in Appendix A.7.

Baselines & Datasets. For fair comparison, we select Fast-R2D2 pre-trained on Wiki-103 as the
baseline. In both models, only the top-down parser after training is utilized during test. Some
works have cubic complexity, and thus not feasible to pre-train over a large corpus. Therefore, we
only report their performance on PTB (Marcus et al., 1993) for reference. These works include
approaches specially designed for grammar induction based on PCFGs such as C-PCFG (Kim et al.,
2019a), NBL-PCFG (Yang et al., 2021), and TN-PCFG (Yang et al., 2022), and approaches based on
language modeling tasks to extract structures from the encoder such as S-DIORA (Drozdov et al.,
2020), ON-LSTM (Shen et al., 2019b), and StructFormer (Shen et al., 2021).

Training details. We pre-train our model on Wiki-103 for 60 epochs, and then continue to train it
on the training set of PTB for another 10 epochs. We randomly pick 3 seeds during the continue-
train stage, then select the checkpoints with the best performance on the validation set, and report
their mean f1 on the test set. As our model takes word pieces as inputs, to align with other models
with word-level inputs, we provide our model with word-piece boundaries as non-splittable spans.

Results and discussions. Table 4 reports the evaluation results. ReCAT significantly outperforms
most of the baseline models in terms of F1 score and achieves comparable performance with TN-
PCFG which is specially designed for the task. Moreover, from the cases shown in Appendix A.7,
one can see strong consistency between the structures induced by ReCAT and the gold trees obtained
from human annotations. The results indicate that the CIO layers can recover the syntactic structures
of language, even though the model is learned through a fully unsupervised approach. The induced
structures also greatly enhance the interpretability of Transformers since each tensor participating in
self-attention corresponds to an explicit constituent. We also notice a gap between ReCATshare and
ReCATnoshare. To further understand the difference, we compute the recall of different constituents,
as shown in the right table in Table 4. We find that both models work well on low-level constituents
such as NNP, but ReCATnoshare is more performant on high-level constituents such as ADJP and
NP. Considering the intrinsic difference in the meaning of the Compose function for the inside
and outside passes, non-shared Compose functions may cope with such discrepancy in a better
way. Despite of this, when referring to Table 3, we do not see a significant difference between
ReCATshare and ReCATnoshare on downstream tasks. A plausible reason might be that the self-
attention mechanism mitigates the gap owing to the structural deficiencies in its expressive power.
The pruning threshold m only has a limited impact on the performance of the model on grammar
induction, which means that we can largely reduce the computational cost by decreasing m without
significant loss on the learned structures.

5 CONCLUSION & LIMITATION

We propose ReCAT, a recursive composition augmented Transformer that combines Transformers
and explicit recursive syntactic compositions. It enables constituents at different levels to commu-
nicate directly, and results in significant improvements on span-level tasks and grammar induction.

The application of ReCAT could be limited by its computational load during training. A straight-
forward method is to reduce the parameter size of CIO layers. Meanwhile, the limitation can be
mitigated to a significant extent under the fast encoding mode described in Appendix A.3 during the
fine-tuning and the inference stage, whose total cost is around 2 ∼ 3× as the cost of Transformers.
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A APPENDIX

A.1 PARALLELED IMPLEMENTATION FOR OUTSIDE

Unlike the inside pass in which the count of the inside pairs for a given span is m at most, the
count of the outside pairs for a given span is not determined. Thus this brings extra difficulty
to compute weighted outside representations. To compute outside representations efficiently, we
propose a cumulative update algorithm. We traverse span batches in the reverse order of B and then
compute the outside representations for their immediate sub-spans and update their weighted outside
representations by cumulative softmax as follows:

w̄t
i,k

wt
i,k

 = Softmax(

bcuml,t−1
i,k

bl,ti,k[
⌢
p ]

) , bcuml,t
i,k = log(exp(bcuml,t−1

i,k ) + exp(b̄l,ti,k[
⌢
p ]))

čl,ti,k = w̄t
i,k č

l,t−1
i,k + wt

i,k č
l
i,k[

⌢
p ] , bl,ti,k = w̄t

i,kb
l,t−1
i,k + wt

i,kbi,k[
⌢
p ]

(6)

As a sub-span may be updated many times, we denote the outside score at t-th time as b̄l,ti,k[
⌢
p ].

We initialize bcuml,0
i,k as −∞. Thus once all parents are traversed, the final result of čl,ti,k will be

equivalent to the result computed according to Equation 3.

A.2 HYPERPARAMETERS.

For all baselines, we use the same vocabulary and hyperparameters but different layer numbers. We
follow the setting in Devlin et al. (2019), using 768-dimensional embeddings, a vocabulary size of
30522, 3072-dimensional hidden layer representations, and 12 attention heads as the default setting
for the Transformer. The top-down parser of our model uses a 4-layer bidirectional LSTM with
128-dimensional embeddings and a 256-dimensional hidden layer. The pruning threshold m is set
to 2. Training is conducted using Adam optimization with weight decay using a learning rate of
5 × 10−5 for the tree encoder and 1 × 10−3 for the top-down parser. Input tokens are batched by
length, which is set to 10240. We pre-train all models on 8 A100 GPUs.

A.3 FAST ENCODING

After pre-training, one can exploit ReCAT to encode a sequence of tokens. Though the complexity
of the inside-outside process is O(n) with n the length of the sequence, the computational load
is still many times higher than that of the vanilla Transformer. Specifically, the complexity of a
single CIO layer is O(m2n) with m the pruning threshold (set as 2 in our experiments). Please
refer to Appendix A.6 for detailed efficiency analysis. To further speed up encoding in fine-tuning
and evaluation, we follow the force encoding proposed in Fast-R2D2. Specifically, we directly use
the pretrained top-down parser to predict a parse tree for a given sentence and apply the trained
Compose functions to compute contextualized representations of nodes following the tree and feed
them into the Transformer.

A.4 BASELINE SETUPS

The DIORA variant uses the linear inside-outside and a Transformer-based Compose function just
as our model but still with the information access constraint. We also include an RvNN variant with a
trained parser Zhang et al. (2020). The parser provides constituency trees and we use the encoder of
Fast-R2D2 to compose constituent representations following the tree structure. The parser is trained
with gold trees from Penn Treebank(PTB) (Marcus et al., 1993). Except for the RvNN+Parser
baseline, all other models have no access to gold trees. For fair comparisons, we further combine
Fast-R2D2, DIORA, and RvNN+Parser with Transformer by taking their node representations as
the input of the Transformer and name the models Fast-R2D2+Transformer, DIORA+Transformer,
and Parser+Transformer respectively.
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A.5 IMPROVED PRUNING ALGORITHM

We propose an improved implementation of the pruning algorithm which could reduce the steps to
complete the inside algorithm from n to approximate log(n). Such an improvement could largely
increase the training efficiency under parallel computing environments like GPU groups. The key
idea is to simultaneously encode all cells whose sub-span representations are ready, thus more cells
could be encoded in one batch even if they are not on the same row. To achieve this goal, we just
need to build the encoding order of the cell batches according to the merge order, which is shown in
Algorithm 2. Once the cell dependency graph is built, the cells at the bottom row are set as ready.
Once a cell is set to ready, it will notify the higher-level cells that depend on it. Once all sub-spans
of a cell are ready, the cell will be encoded in the next batch.

Algorithm 2 Build cell batches
1: function BUILD CELL DEPENDENCIES(B, T )
2: ▷ B is the encoding order after pruning described in Section 3.1.1. T is the chart table.
3: for (i, j) ∈ B do
4: for k ∈ Ki,j do ▷ k is splits for span (i, j).
5: append(Ti,k.N , (i, j)) ▷ Add (i, j) to the notify list. Once (i, k) is encoded, inform (i, j).
6: append(Tk+1,j .N , (i, j))

7:
8: function BUILD CELLS BATCH(B, T )
9: BUILD CELL DEPENDENCIES(B, T )

10: B = [] ▷ Rebuild new encoding orders of cells
11: Q = []
12: Qnext = []
13: for i ∈ 0 to T .length do
14: Ti,i.ready = true ▷ Ready is default false for each cell.
15: append(Q, Ti,i)
16: for c ∈ Q do ▷ Iterate ready cells in the last batch
17: for (i, j) ∈ c.N do
18: if all sub-spans of Ti,j are ready & |Ti,j .N| > 0 then
19: ▷ If a cell does not participate in the encoding of higher-level cells, there is no need to encode it.
20: Ti,j .ready = true
21: append(Qnext, Ti,j)
22: append(B, Qnext) ▷ Cells to encode for a single step in the inside-outside algorithm
23: Q = Qnext

24: return B

A.6 EFFICIENCY ANALYSIS

Figure 5: MLP runs for the inside pass.
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Figure 6: Steps for the inside pass.

Figure 7: Practical training time.

To further study the efficiency improvement compared with the original pruning algorithm, we com-
pare the MLP runs, inside steps, and training time of CIO layers using the original pruning algorithm
versus our improved version. We set the pruning threshold m to 2 and limit the input sentence length
ranging from 0 to 200. We keep the model architecture the same but only differ in the pruning algo-
rithm. We denote the original pruning algorithm as Fast-R2D2 and the improved one as ReCAT. The
total training time is evaluated on 5,000 samples with different batch sizes on 1*A100 GPU with
80G memory. The result is shown in Figure 5, Figure 6 and Figure 7. The overall FLOPS is reduced
by around 1/3. As we can find from the result, the total training time has a significant improvement.
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A.7 SAMPLES OF LEARNED CONSTITUENCY TREES
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