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ABSTRACT

Approximate unlearning has gained popularity as an approach to efficiently up-
date a model so it (roughly) behaves as if it was not trained on a subset of data.
However, approximate unlearning methods have been shown to be quite brittle in
practice. In fact, such approaches can easily be attacked to reveal supposedly un-
learned information. To address this issue, we instead propose a model merging
approach, ClAMU, which produces combined models that can support both effi-
cient and exact deletion of unlearning data. In addition to leveraging techniques
from model merging and localization, ClAMU relies on two key innovations. First,
we cluster tasks together and serve per-cluster models, balancing the tradeoff be-
tween the utility of local models versus the storage cost of a global model. Second,
unlike existing localization methods which compress local models into masks, we
propose directly optimizing local (or cluster-level) masks, which greatly improves
utility. Relative to model merging and localization baselines, ClAMU serves mod-
els with up to 20% improved accuracy while reducing storage costs by up to 75%.

1 INTRODUCTION

Many modern applications of machine learning require finetuning a pretrained model on a collection
of data. Once a model has been finetuned, it may be necessary to unlearn a subset of data and
produce a model identical to one trained as if the data were never present. This is because finetuning
can introduce risks such as learning harmful model behavior or exposing private information (Carlini
et al., 2023; More et al., 2024; Su et al., 2024; Ahmadian et al., 2024). Moreover, data privacy
regulations such as GDPR and CCPA state that consumers have a “right to be forgotten”. For ML,
this not only requires that data controllers delete user data in accordance with removal requests, but
also retrain any models trained on the data. To address these concerns, there has been significant
recent interest in methods for machine unlearning that can efficiently remove the influence of data
from a model (Cao & Yang, 2015; Ginart et al., 2019; Bourtoule et al., 2021; Tarun et al., 2023).

In this work, we propose using model merging for both exact and efficient unlearning. Given a
dataset split over several tasks (i.e. potential forget sets), we first finetune the pretrained model
separately on each task to obtain a set of local models. Then, we merge the local models’ weights to
produce a single global model. Finally, we discard the local models, since storing all local models
is prohibitive. To unlearn a particular task, we deterministically retrain the local model for that
task and subtract it from the global model. When merging is a simple additive operation (e.g.
averaging), subtracing the model provides exact unlearning. This approach has several efficiency
benefits, namely (1) cheap execution of merging, (2) cheap storage cost of a single global model,
and (3) cheap unlearning via training on the forget set rather than the retain set.

While model merging provides efficient and exact unlearning by design, it faces a critical issue
of task scaling. To support a large number of unlearning requests (tasks), we must merge many
models—one from each task. While prior work has only considered merging a small number of
models (e.g., 2-30), we attempt to merge a large number of models (up to 500). We find that
depending on the task data, merging quality can vary significantly between improving or degrading
local performance.

When merging alone results in a poor global model, localization is a promising addition which
learns masks from combining the global and local models — applying a mask to the global model
recovers task-specific utility (Wang et al., 2024; Huang et al., 2024). Like merging, localization
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has only been tested at small scales, and we show that localization also has limited utility at larger
scales. Furthermore, localization introduces non-trivial costs which make unlearning less efficient
than desired. Specifically, while local masks reduce storage by ∼ 32× over naively storing all the
local models, this cost still scales linearly with the number of tasks. Furthermore, in order to provide
exact unlearning, all the local masks must be reconstructed after unlearning.

To address these challenges, we propose ClAMU, a framework that uses CLustering, Averaging, and
Masking for Unlearning. ClAMU makes two key modifications to adapt merging and localization
for large scale unlearning. First, we cluster tasks together and learn cluster-level masks rather than
task-level masks. Second, we improve localization by optimizing masks on training data. Overall,
these techniques allow ClAMU to outperform similar baselines in all dimensions: utility, storage,
and unlearning cost. Our contributions are as follows:

1. We merge up to 500 models finetuned on sharded vision and language datasets. We identify
settings where the merged model is within (both above and below) 15% accuracy of the
local models, making it a suitable choice for exact and efficient unlearning systems.

2. In settings where merging is insufficient, we show that existing localization methods are
a promising solution, but may still perform far worse than the local models. We propose
optimizing masks on local data, which fully recovers or even exceeds local performance.

3. Since localization introduces new costs associated with local masks, we propose clustering
tasks and learning a mask for each cluster rather than task. We find that clustering tasks with
similar features or task vectors can significantly improve utility over random clustering.

4. Finally, we evaluate the utility and costs of combining clustering and masking. While these
two methods generally sacrifice some utility compared to storing all of the local models,
they overall improve upon the efficiency-utility tradeoff offered by existing baselines.

2 RELATED WORK

Machine Unlearning. Unlearning methods can be broadly categorized as exact or approximate.
Standard approaches for exact machine unlearning tend to have high computational costs from re-
training over a large retain set or high storage costs from training ensembles on disjoint shards of
data (Bourtoule et al., 2021; Yan et al., 2022; Chen et al., 2022; Li et al., 2024; Chowdhury et al.,
2024). On the other hand, approximate unlearning methods do not provably remove the influence
of data points from the model and are evaluated through empirical testing (Eldan & Russinovich,
2024; Liu et al., 2024; Maini et al., 2024). However, many prior works show that such approaches
are brittle and can be easily attacked (Marchant et al., 2022; Bertran et al., 2024; Hu et al., 2024a;b).
Unlearning is also a natural problem in distributed settings where users benefit from sharing their
data; methods tailored to these settings can also be categorized as exact (Qiu et al., 2023; Xiong
et al., 2023; Xia et al., 2024) or approximate (Wu et al., 2022; Halimi et al., 2022).

Model Merging. Early work in model merging averages the parameters of multiple models trained
with different hyperparameters on the same data to improve generalization (Wortsman et al., 2022).
Concurrent works extend merging multi-task learning by considering models trained on diverse tasks
and merging them via a weighted or rescaled average (Matena & Raffel, 2022; Dimitriadis et al.,
2023; Ilharco et al., 2023). Since then, many methods have been proposed to improve the quality of
model merging, such as linearized finetuning (Ortiz-Jimenez et al., 2024), dropping parameters with
sign conflicts (Yadav et al., 2024a), and sparsifying task vectors (Marczak et al., 2024; Yu et al.,
2024; He et al., 2024; Davari & Belilovsky, 2025). Scaling merging to a large number of models is
an open question; current works focus more on the benefits of scaling the model size while merging
relatively few tasks (Yadav et al., 2024b). Besides a few works that need all the task vectors to
selectively merge subsets/permutations of weights (Ainsworth et al., 2022; Stoica et al., 2023; Ye
et al., 2023; Xu et al., 2024), the methods listed above are all directly applicable to unlearning.
However, they all face the same limitation as simple averaging: performance degrades with scale.

Model Localization. Localization applies task-specific masks which can recover much of the per-
formance lost during model merging (Wang et al., 2024; Huang et al., 2024). A few recent works
utilize merging and localization in ways which are applicable for unlearning, but do not consider
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Figure 1: A step-by-step overview of ClAMU. Given multiple tasks which may need to be unlearned
in the future, we (1) finetune a model separately on each task, (2) merge these models into one global
model, (3) cluster similar tasks together, and (4) serve a uniquely masked model to each cluster. To
unlearn a given task, we retrain its local model and unmerge (subtract) it from the global model.

unlearning and/or large-scale merging. Hu et al. (2024c); Lu et al. (2024) use input-based routing
to select merging candidates, but consider only up to 4 and 8 tasks respectively. Zhang et al. (2024)
uses extra storage to preserve specialization of individual experts, but only merges up to 4 experts.

3 CLAMU: CLUSTERING, AVERAGING, AND MASKING FOR UNLEARNING

In this work, we focus on exact unlearning methods which have the benefit of provable unlearning
by design. Given a model trained on the union of a retain set and forget set (data to be unlearned),
exact unlearning produces a model which is identical to a model trained on only the retain set.

Model merging is well-suited for exact unlearning. As Figure 1 shows, merging is a framework
which finetunes a pretrained model M0 separately on several tasks, constructs residual task vectors
τc = M0 − Mc, and then combines these to produce a multi-task vector τ =

∑
c∈[T ] τc and a

global model M = M0 + ατ , where α is a hyperparameter (Ilharco et al., 2023). When our dataset
is the union of several non-overlapping tasks c1, ..., cT (e.g. data sources or clients), unlearning
task cu updates the multi-task vector τ − τu =

∑
c∈[T ]\{cu} τc and the global model to match that

from merging as if cu were never present. Furthermore, we can efficiently store τ , as it is a single
parameter vector, as well as efficiently unmerge Mu from M after retraining only on cu.

Localization recovers utility lost from merging. When M performs poorly, localization methods
additionally learn a mask mt for each task which approximates the local model weights once applied
to the multi-task vector, i.e. Mt ≈ M0 + mt ⊙ τ . TALL-masks constructs the mask mt =
1{|τt| ≥ |τ − τt| · λt} using a similarity threshold hyperparameter λt (Wang et al., 2024), while
EMR-merging simply uses sign agreement: mt = 1{τt ⊙ τ > 0} (Huang et al., 2024).

Instead of optimizing for the similarity between mt ⊙ τMTL and τt, ClAMU directly optimizes the
mask mt to minimize training loss on task t. To solve this high-dimensional discrete optimization
problem, we learn a score vector st in a similar fashion to prior work in neural network pruning (Ra-
manujan et al., 2020). Details on mask optimization are provided in Algorithm 2 of the appendix.

Unfortunately, localization introduces additional costs. Localization requires us to: (1) relearn
the local masks after unlearning and (2) store masks during model serving. (1) can be done much
more quickly than retraining a single model from scratch, as we can relearn the masks in parallel
across all tasks. Meanwhile, the cost of (2) scales linearly with the number of tasks to be merged.

Clustering improves utility and storage. To reduce storage costs, we cluster tasks and learn
cluster-level (rather than task-level) masks. We cluster tasks based on their hidden features or their
task vectors. Compared to task-level masking, this not only gives model providers a flexible tradeoff
between storage and utility, but can also improve utility by serving a common model to similar tasks.

3.1 WHEN IS MODEL MERGING SCALABLE?

We claim that the key factor affecting merging quality is data heterogeneity i.e. different local data
generating process at each task. Merging degrades when data is highly heterogeneous i.e. “too
different”, an issue which is exacerbated as more tasks are merged. To illustrate this, Figure 2 tests 4
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Figure 2: We evaluate accuracy (y-axis) after merging up to 500 models (x-axis, log-scale) trained on
(i) task-level subsampled CLIP data, (ii) task-and-label-level subsampled CLIP data, (iii) Sent140,
and (iv) Reddit. In settings (ii) and (iv), merging quickly degrades to zero-shot accuracy, while in
setting (i) merging improves over individual models and in setting (iii) stabilizes at non-trivial utility.

distinct settings (i-iv). For the first two settings, we split three vision datasets (DTD, RESISC45, and
MNIST) into 500 tasks by assigning each task to one of these three datasets and then partitioning
each dataset such that each task gets 100 unique training and 10 validation examples. In setting
(i), each task samples data uniformly at random from the dataset it is assigned to. In setting (ii),
we use a finer-grained partitioning where each dataset is split into disjoint label subsets and each
task samples from one of these label subsets. In setting (i), local performance starts out poor and
improves as more models are merged. The opposite is true in setting (ii); local performance is high,
but this drops sharply after merging. For the latter two setings, we use Sent140 and Reddit, which
are text datasets naturally generated by users on social media sites. In Sent140 (iii), the labels are
balanced across all tasks, while in Reddit (iv), each task samples its data from a subset of two labels.
In a similar observation to settings (i,ii), we find that merging is more harmful when individual tasks’
data is restricted to label subsets within a dataset. Full dataset details are in Table 6 of the appendix.

4 RESULTS
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Figure 3: ClAMU combines clustering
and localization to achieve strong per-
formance while only storing a global
merged model and cluster-level masks.

In this section, we present experiments on our two ma-
jor methods and how they improve over baselines. Data-
driven clustering outperforms random clusters or even
the local models (i.e. no clustering), while optimizing
local masks outperforms heuristic localization methods.
ClAMU combines these two methods to achieve large im-
provements in utility. In Figure 3, we compare ClAMU to
other baselines in the CLIP label subset (ii) setting. A
single global model has the least storage but low utility,
local models have high utility but are prohibitive to store,
and TALL/EMR strike a balance between these two ex-
tremes. Meanwhile, ClAMU simutaneously outperforms
local models while also costing less storage than other
localization baselines. Additionally, ClAMU offers a flex-
ible tradeoff of these two constraints for practitioners to
choose from.

4.1 CLUSTERING TRADES STORAGE FOR UTILITY
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Figure 4: We evaluate the storage vs.
accuracy of clustering tasks and storing
a merged model for each cluster.

Because the performance of the merged model can be
much worse than applying each local model to its respec-
tive task, we consider a flexible tradeoff between these
two extremes by storing multiple merged models. More
specifically, we cluster tasks and then merge the task-level
models within each cluster. We run experiments on Red-
dit where we train a GPT2-Small model individually on
500 tasks and then cluster these tasks into 4, 20, or 100
clusters. Finally, we merge the models within each clus-
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ter and evaluate each merged model on the tasks within its corresponding cluster. We compare the
utility of these models after running the experiment with two clustering strategies: random versus
feature-based clusters. When clustering by features, we use the hidden features at the last layer and
last token of the model. Figure 4 shows that feature-based clustering is extremely useful and offers
a 12-30% increase in accuracy over random clustering, depending on the number of clusters.

4.2 OPTIMAL LOCALIZATION

Localization can be viewed as either reducing the storage cost of local models (replacing them with
local masks) or recovering performance of the globally merged model (at an extra storage cost). To
demonstrate the effectiveness of localization, we evaluate sequence generation on TOFU in Table 1.
Each local model can be trained to 100% local probability, but this drops sharply after merging.
By using a larger model and optimizing the mask, we can recover 100% probability.

TOFU GPT2-Small (125M) GPT2-XL (1.5B)

#Tasks Global TALL EMR ClAMU Merged TALL EMR ClAMU

2 0.71 0.71 0.80 1.00 0.92 0.92 0.96 1.00
5 0.20 0.20 0.40 0.94 0.47 0.98 0.76 1.00

50 0.06 0.11 0.18 0.40 0.13 0.54 0.38 1.00
200 0.06 0.11 0.17 0.35 0.06 0.53 0.33 1.00

Table 1: We evaluate answer generation probability on TOFU. Each author’s local model can be
trained to 1.00 probability. The global model, TALL, and EMR all have limited utility as the number
of clients increases, while ClAMU achieves 100% probability.

4.3 CLAMU: CLUSTERING AND MASKING
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Figure 5: We train a model for each task on
Reddit, merge these 500 models, then cluster the
tasks based on their training features. Finally, we
learn a mask for each cluster using either ClAMU,
TALL, or EMR. While TALL and EMR are de-
signed for task-level masking, we merge models
within each cluster to provide these methods with
a cluster-level model for localization.

Motivated by the strong individual results of
clustering and localization, we combine these
two methods and learn cluster-level masks. In
this experiment, we use the same setup and
feature-based clusters as in Figure 4. We merge
all 500 models into a single global model and
then use either ClAMU, TALL, or EMR to learn
a mask for each cluster. To learn the mask
for TALL and EMR, we treat the per-cluster
merged models from Figure 4 as the local task
vector. Figure 5 shows the accuracy of each
of these methods while varying the number of
clusters from 4 to 100. While storing all 500
masks is already quite efficient (x = 8 GB),
clustering can reduce this even further e.g. to
2 GB. Depending on the number of clusters,
ClAMU improves accuracy by 5% to 20% over
the two baselines. Because all three methods
share the same clustering, these gains are en-
tirely due to optimizing the mask.

4.4 UNLEARNING COSTS

Finally, we evaluate the unlearning costs and post-unlearning performance of merging alone on
Sent140 and task-level CLIP. Since we observe in Figure 2 that merging more models hurts in
several settings, the opposite is expected as we perform unlearning in these settings. In settings
besides CLIP (i), the quality of the merged model will actually increase as we unlearn, because
there is less interference between the remaining models that participate in merging.
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For unlearning costs, we report the accumulated “Gradient Steps” required to retrain unlearned
models in Table 2. This is simply the number of unlearned tasks × the number of steps used to train
a local model (20 steps for Sent140 and Reddit, 500 for CLIP). Because merging only stores a single
model, the only baseline with equal storage is training a single model from scratch. However, this
cost would be orders of magnitude greater than merging-based unlearning. For example, unlearning
250 tasks (retraining from scratch after each task is unlearned) would require sequential training
over

∑499
i=250 i = 93625 tasks worth of data, while merging-based unlearning would only need to

train over the 250 tasks to be unlearned, a 374.5× difference in computational cost.

#Tasks Unlearned 0 250 375 475 495 499
Dataset #Tasks Remaining 500 250 125 25 5 1

Sent140 Accuracy 69.8 70.1 70.8 71.9 75.9 85.7
Gradient Steps 0 5K 7.5K 9.5K 9.9K 10K

CLIP (i) Accuracy 83.8 83.8 83.9 83.2 81.7 69.4
Gradient Steps 0 125K 188K 238K 248K 250K

Table 2: We evaluate the post-unlearning utility and cost of unlearning when only performing model
merging. “Accuracy” is the average accuracy across all remaining tasks. “Gradient Steps” is the
number of steps needed to retrain the local models and perform unlearning.

Next, we evaluate the costs of unlearning when applying both merging and localization. Although
we must relearn the local model (TALL) or local mask (ClAMU) for each task after unlearning,
this relearning can be done in parallel across each task’s data. Therefore, we report the number of
“Parallel Steps” required for unlearning, which is 2× that of the merging-only approach. We require
1× steps to unlearn a given model, and then another 1× steps to relearn the masks in parallel. We
use an equal number of steps to retrain the local model for TALL and the mask for ClAMU .

Method #Tasks Unlearned 0 250 375 475 495 499
#Tasks Remaining 500 250 125 25 5 1

Parallel Steps 0 10K 15K 19K 19.8K 20K

No clusters

Storage (GB) 100 53 29.4 10.7 6.9 6
TALL Accuracy 64.0 63.4 65.3 65.2 73.0 82.6
ClAMU 80.0 79.4 79.9 78.6 82.0 82.6

20 clusters

ClAMU
Storage (GB) 9.8 9.8 9.8 9.8 6.9 6

Accuracy 70.3 71.2 72.2 77.8 82.0 82.6

Table 3: We evaluate the post-unlearning utility and cost of unlearning when performing both model
merging and localization on Reddit with a GPT2-XL model.

5 CONCLUSION AND FUTURE WORK

In this work, we propose using model merging and localization for exact unlearning. While merging
is a very practical framework for exact unlearning, we show that the merged model suffers when
too many heterogeneous data sources are merged. Based on this observation, we adapt merging
and localization for the purposes of large-scale unlearning. We propose ClAMU, a method that
improves (1) merging quality via clustering and (2) localization quality via direct optimization of
mask variables, and we validate the effectiveness of ClAMU across both vision and language tasks.
Overall, our work makes an important first step in identifying both the strengths and limitations of
merging for exact unlearning, and proposes modifications that allow merging to achieve strong utility
at scale. Finally, our results suggest that to make model merging truly effective for unlearning, future
work should focus on (1) ways to improve the quality of the merged model and (2) modifications for
recovering utility which are amenable to efficient unlearning.
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A APPENDIX

Algorithm details. One key detail of ClAMU is that finetuning must be fully deterministic. In
order to guarantee that a model is properly unlearned, we must obtain the original weights that were
used during merging and subtract them from the model.

We also provide more details on mask optimization: when computing the mask (L20), σ is the sig-
moid function. To compute the score update (L24), we backpropagate the loss L to the parameters of
Mk to obtain a gradient ∂L

∂Mt
.In order to backpropagate through the indicator function, we substitute

its gradient with 1 (i.e. the straight-through estimator). Backpropagating to the scores sk yields the
update rule sk ← sk − η( ∂L

∂Mk
)⊙ (σ(sk)⊙ (1− σ(sk)))⊙ τ , where η is the learning rate.

Algorithm 1: PyTorch-like pseudocode helper functions for ClAMU

1 Require: T (task indices), {ct}t∈T (tasks), M0 (pretrained model), Etune (finetuning
steps), K (num. of clusters), Emask (mask optimization steps)

2 Function Finetune(t):
3 Mt ← Finetune M0 on ct for Etune steps (fully deterministic)
4 τt ←Mt −M0

5 return τt
6 Function Merge({τt}t∈T):
7 τ ←

∑
t∈T τt

8 return τ
9 Function Cluster({τt}t∈T):

10 A← [0]T×T

11 for i=1..T do
12 for j=i..T do
13 Ai,j , Aj,i ← τi · τj/(||τi||||τj ||) # cosine similarity affinity matrix
14 C1..K ← sklearn.cluster.SpectralClustering(A)
15 return C1..K

16 Function Localize(τ , C1..K):
17 sk ← 0⃗
18 for k = 1..K in parallel do
19 for i = 1..Emask do
20 mk ← 1{σ(sk) > 0.5}
21 Mk = M0 +mk ⊙ τ
22 x, y ← sample batch of data from Ck

23 L ← torch.nn.functional.cross entropy(Mk(x), y)

24 sk ← sk − η( ∂L
∂Mk

)⊙ (σ(sk)⊙ (1− σ(sk)))⊙ τ

25 return {mk}Kk=1

26 Function Unlearn(τ , t):
27 τt = Finetune(t)
28 τ ← τ − τt
29 T ← T \ t
30 C1..K ← Cluster({τt}t∈T)
31 m1..K ← Localize(τ , C1..K)
32 return τ ,m1..K

Algorithm 2: PyTorch-like pseudocode for ClAMU (pre-unlearning)

1 Require: T (task indices), {ct}t∈T (tasks), M0 (pretrained model), K (clusters)
2 for t ∈ T do
3 τt ← Finetune(t)
4 τ ← Merge({τt}t∈T )
5 C1..K ← Cluster({τt}t∈T)
6 m1..K ← Localize(τ , C1..K)
7 return τ ,m1..K
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Task format impacts merging and localization. We find that on Sent140, it is better to learn a
classification layer but the differences are relatively small. On Reddit, it is significantly better to
finetune the language modeling head.

Clustering Random clusters Cluster by features

Model CLS Head LM Head CLS Head LM Head

Local 36.4 38.3 64.8 70.8
TALL 25.1 27.8 40.1 45.7
EMR 24.6 28.1 40.8 48.4

ClAMU 31.3 43.1 48.3 65.6

Table 4: On Reddit, we merge 500 fully finetuned GPT2-Small models and learn masks for 100
clusters. We compare two different methods of modeling the classification output during finetuning:
We either finetune a (randomly initialized) classification head to directly output the class index or
finetune the (pretrained) language modeling head to output the class name as text. Using the LM
head results in better cluster-level merged models than the CLS head (“Local”), under both random
and data-driven clusters. These differences become even more apparent when applying localization.

Clustering Random clusters Cluster by features

Model CLS Head LM Head CLS Head LM Head

Local 67.8 63.2 69.4 66.3

TALL 64.4 61.7 65.3 62.8
EMR 63.3 59.1 64.2 61.2

ClAMU 65.7 64.7 66.3 66.3

Table 5: We run the same experiment in Table 5 on Sent140. While the classification head does better
after merging (“Local”) and applying localization baselines (TALL and EMR), the two modeling
choices perform similarly when masking with ClAMU.

Effect of model size . Models with more pretrained knowledge generally have better utility after
merging. In Figure 7, we compare GPT2-Small (125M params) and GPT2-XL (1.5B params). Using
a GPT2-XL model improves the utility of local fientuning (x = 1) by 5%, while the improvement
for the merged model (x = 500) is slightly greater at 7%.
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Labels (per task) Task Size
Dataset Type Tasks Labels (global) Min Max Min Max

CLIP (i) Image 500 102 10 47 100 100
CLIP (ii) Image 500 102 2 5 100 100

TOFU Text 200 50256 ? ? 20 20
Sent140 Text 500 2 2 2 ? ?

Reddit Text 500 10 2 2 100 100

Table 6: TOFU is a sequence generation task, which requires exactly matching an output sequence
of GPT2 tokens. On the image tasks, we train a ViT-B-32 (87M params) vision encoder with a
classification head initialized using a CLIP text encoder. On the text tasks, we train GPT2-Small
(125M params) and GPT2-XL (1.5B params) models.
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