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Abstract

This work focuses on the replication of some of the results presented in [14] from
scratch. In particular, we implement the patch-wise adversarial regularization
(PAR) and its variants and apply them to two-layer CNN and ResNet for domain
adaptation (DA) and domain generalization (DG) tasks, respectively. The compre-
hensive experiments confirm the claims made in the paper, showing that

• The PAR and its variants could improve out-of-domain performance than
baseline models.

• The variants of the PAR do not consistently improve upon the vanilla PAR
across architectures and datasets.

Besides, we make following extension of [14]

• A review of the variants and application of the adversarial training approach,
which is the origin of the PAR proposed in the paper.
• A dissection of the approach described in the paper by providing additional

implementation and experiment details.

Eventually, the code for this work is hosted on GitHub 1

1 Introduction

In this work, we are trying to reproduce the paper "Learning Robust Global Representation by Pe-
nalizing Local Predictive Power" [14], which we refer to as "the paper" throughout this work.

The remaining sections are organized as follows. Section 2 restates the problem and method dis-
cussed in the paper. Section 3 shows the reproducibility setup, including experiment platform, model
architectures, hyperparameters, and experiment replication results. Key points regarding replications
differences of results are also discussed there. Section 4 gives advice for reproducibility. Section 5
provides an additional literature review of the adversarial training approach. This work is concluded
by Section 6 that summarizes the work.

1 https://github.com/guanqun-yang/reproducibility_challenge_neurips_2019
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2 Problem Statement

The paper is motivated by the observations that CNNs have a tendency to learn superficial regulari-
ties like color and texture rather than underlying semantics. This propensity cripples the classifier’s
ability to generalize well on samples where these regularities are not available. For example, when
we try to train a classifier that is to identify turtle (water-dwelling) from tortoise (land-dwelling)
based on images, we anticipate the classifier to mimic what humans do by finding the differences
of their appearances. However, as is shown in Figure 1, the classifier might exploit the fact that the
images of turtles generally have a background of waters while that of tortoise are mostly taken on
land. Then the error could occur when these superficial cues are removed. One might argue that this
classifier is still useful because of the high correlation between background and subject. Indeed, Jo
and Bengio show that the generalization attained in this way is only meaningful in a narrow distribu-
tional sense, where higher-level abstractions within datasets are omitted. Additionally, it is possible
to utilize natural image statistics to attack extant classifiers exploiting these regularities, causing
significant performance degradation [9].

Figure 1: Turtle (left) and tortoise (right) (both CC0). They have significant differences in ap-
pearance. But classifier might exploit information in the background while forgoing underlying
semantics

In order to address these issues, the paper extends the training approach in [7] by paying extra
attention to the subject of adversarial training. Specifically, the composition of the gradient-reversal
layer and a one-layer CNN is applied to the individual channel (fiber) of intermediate representation,
which creates the patch-wise adversarial regularization (PAR).

Formally, in a given CNN f(g(·; δ); θ), the first convolution layer g(·; δ) is meant to extract features z
that could capture semantics of input image x. However, g(·; δ) tends to overfit to superficial patterns
like color and textures. Then we introduce another classifier h(·;ϕ) that penalizes this tendency
of overfitting. It consists of a gradient-reversal layer R(·) that follows incompatible forward and
backward equations

R(z) = z, ∇zR = −I
where conventional∇zR should be I rather than −I.
More detailedly,

• Forward Pass
When an image x is transformed by g(·; δ), a representation of z ∈ Rc×m′×n′

is attained,
where c is number of channels and m′, n′ are width and height of z respectively. On one
hand, z is further transformed by remaining parts of f(·; θ) and gives one class membership
prediction at the output layer, which incurs a loss Lf . On the other hand, h(·;ϕ) selects
each individual location of z, generating m′ × n′ class membership predictions by affline
transformation. The m′ × n′ predictions incur a loss Lh with the same true class member-
ship. Note that h(·;ϕ) is indeed a fully connected neural network, but it is implemented
through 1× 1 convolution operation. See more details in Section 3.
• Background Pass

Losses Lf and Lh are back-propagated to update parameter θ, δ and ϕ. The loss Lf is back-
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propagated normally until the first layer g(·; δ) and parameter θ is updated along the way.
Another loss Lh is back-propagated normally until gradient-reversal layer R(·), where ϕ
gets updated. When gradient stream meets R(·), the gradient is negated

∇zLh = ∇zR · ∇RLh = −I · ∇RLh = −∇RLh

which prevents the h(·;ϕ) from correctly predicting class memberships in the future. Then
two streams join together, forming ∇zLf +∇zLh = ∇zLf −∇RLh to update δ.
Additionally, an additional parameter λ that governs the strength of regularization could be
plugged in, then the gradient becomes

∇zLh = −λ∇RLh

Wang et al. also introduce several variants of the PAR

• More Powerful Pattern Predictor (PARM)
In the setting mentioned above, h(·;ϕ) is a gradient-reversal layer plus a one-layer fully
connected neural network without non-linearity. The one-layer fully connected neural net-
work could be replaced with more powerful classifiers.
• Broader Local Pattern (PARB)

Previously h(·;ϕ) focuses 1× 1 location of z, yielding m′ × n′ predictions. The region of
interest could be broadened to 3× 3.

• Higher Level Local Concept (PARH)
The h(·;ϕ) is designed to append to the first convolution layer in the PAR. It could also
be appended to the second convolution layer. Note, it is not advisable to append h(·;ϕ)
to very high-level convolution layer since these layers are meant to synthesize high-level
abstractions and applying adversarial training to these layers undermine our objective to
learn robust global representations.

The PAR and its variants are experimented under the setting of domain adaptation (DA) and domain
generalization (DG), where the predictive power of a classifier is preserved while the distributions
of input data x vary across the source and target datasets. Their main difference is whether or not
they have access to target domain samples in training time [11].

• Domain Adaptation
Learning from both source and (labeled or unlabeled) target domains to adapt source model
to the target domain.

• Domain Generalization
Learning from the source domain and extract a domain-agnostic model that could be ap-
plied to the unseen target domain.

Section 3 provides more information about experiment settings, results, and other critical implemen-
tation details.

3 Experiment Replication

This section starts with several important setups for the experiment, including the experiment plat-
form, critical implementation details of the PAR, and many others. Then the experiment results
on perturbed MNIST and perturbed CIFAR10 dataset are provided, which correspond to domain
adaptation (DA) and domain generalization (DG) task, respectively.

3.1 Experiment Setup

Experiment Platform
All experiments in this work are conducted on a gaming laptop that costs $1,300 as of 2019 fall. The
detailed platform specification is shown in Table 1.

Implementation Detail of the PAR and its Variants
When implementing h(·;ϕ), one critical detail is that all m′ × n′ channel ls for an individual im-
age share the same parameter ϕ. However, if it is implemented directly through a fully-connected
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Table 1: Platform specification for experiment replication
Item Specification
CPU Intel Core i7-9750H
GPU NVIDIA GeForce RTX 2060 6GB

Operating System Ubuntu 18.04.3 LTS
Framework PyTorch 1.3,1

layer (torch.nn.Linear in PyTorch), nested loops are inevitable and could consume unnecessar-
ily more runtime. Equivalently, it could be implemented through a 1 × 1 convolution operation
(torch.nn.Conv2d in PyTorch) with C output channels, where C is number of classes.

Precisely, they could be described with Protocol 1 and Protocol 2. In these protocols, z ∈ Rc×m′×n′

is the feature extracted by lower level convolution layer g(·; δ), where c is number of channels
and m′, n′ are height and width of z. The ultimate goal for representation is to be identified as
ŷ ∈ {1, 2, · · · , C} by h(·;ϕ) given true membership y. Additionally, ℓ(·, ·) is some loss function
like cross entropy loss, α is learning rate, and λ is the strength of regularization.

Protocol 1 PAR through FC layer

1: procedure PAR(z)
2: Lh ← 0
3: Initialize FC layer with number of in-

put features c′ and output features C.
▷ Initialization

4: for i← 1 : m′ do
5: for j ← 1 : n′ do
6: zi,j ∈ Rc′ is extracted
7: ŷi,j ← SoftMax(FC(zi,j))
8: Lh ← Lh + ℓ(y, ŷi,j)
9: end for

10: end for
▷ Forward pass

11: ∇zLh ← ∇zR · ∇RLh = −∇RLh

12: ∇zLh ← λ∇zLh

13: ▷ Adjust regularization strength λ
14: ϕ← ϕ− α∇zLh = ϕ+ αλ∇RLh

▷ Backward pass
15: end procedure

Protocol 2 PAR through 1× 1 CONV layer

1: procedure PAR(z)
2: Lh ← 0
3: Initialize 2D CONV layer with kernel

size 1×1, stride 1 , padding 0, input chan-
nels c′, and output channels C.

▷ Initialization
4: ŷ← SoftMax(CONV(z))

▷ ŷ ∈ RC×m′×n′

5: Construct y by repeating y m′ × n′

times.
6: Lh ← ℓ(y, ŷ)

▷ Forward Pass
7: ∇zLh ← ∇zR · ∇RLh = −∇RLh

8: ∇zLh ← λ∇zLh

9: ▷ Adjust regularization strength λ
10: ϕ← ϕ− α∇zLh = ϕ+ αλ∇RLh

▷ Backward pass
11: end procedure

PAR Variants
The specifications of PAR variants in the experiments are summarized in the Table 2.

Table 2: Specifications of the PAR variants
PAR variant Specification

PARM Replace one-layer FC network with thee-layer ReLU network
PARH Apply h(·;ϕ) at the second layer
PARB Apply h(·;ϕ) to 3× 3 regions rather than 1× 1 regions

Hyperparameter Choice
The following two sections share the same hyperparameter setting shown in Table 3. These choices
are consistent with the one in the paper except the number of epochs because of limited computation
resources. The hyperparameter search is not conducted for this work as a result of extensive runtime.
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Table 3: Hyperparameter choice for perturbed MNIST and perturbed CIFAR experiment
Hyperparameter Value
Learning rate α 1e− 4

Batch size 64
Dropout rate 0.5

Adversarial strength λ 1.0
Number of epochs (MNIST) 100

Epoch that starts adversarial training (MNIST) 50
Number of epochs (CIFAR10) 80

Epoch that starts adversarial training (CIFAR10) 50

Ablation Study
We argue that ablation study is not applicable in this work since the architecture of main contribution
of the paper (i.e. PAR) has already been its simplest possible case (one-layer fully connected network
without non-linearity). Taking into account of the variants of the PAR, including PARH, PARM, and
PARB, have validated the soundness of this approach.

Perturbation to Dataset
The perturbation to the dataset is either used to mimic different superficial patterns present in the
natural images or to intentionally shift the distribution of dataset. For example, the paper proposes
to apply frequency domain filtering using radial and random kernel in MNIST and CIFAR10 dataset
and apply negative color and grayscale transformation to CIFAR10 dataset. All of these preprocess-
ing operations are based on the paper’s code repository 2 for this work.

3.2 MNIST with Perturbation

The architecture used for MNIST classification is shown in Table 4. Most of the operations are
routine except L2 normalization, which normalizes each entry of tensor v with the maximum ∥v∥2
across one axis.

Table 4: Two-layer CNN for MNIST classification
Operation Output dimension Activation

Input x (N, 1, 28, 28) -
Layer1

CONV (N, 32, 28, 28) ReLU
POOL (N, 32, 14, 14) -

Layer2
CONV (N, 64, 14, 14) ReLU
POOL (N, 64, 7, 7) -

Output
Flatten (N, 64× 7× 7) -
Linear (N, 1024) ReLU

L2 Normalization (N, 1024) -
Dropout (N, 1024) -
Linear (N, 10) -

Table 5 corresponds to Figure 1 in the original paper. Here the figure is replaced with a table for
clarity. It could be seen that

• PAR and its variants consistently improve out-of-domain accuracy
Across six different cases, the test accuracies are consistently improved due to the appli-
cation of the PAR and its variants. The most significant improvement occurs at "Original
independent" for PARH with a 15.81% improvement in test accuracy. Half of the cases have
more than 8% improvement. Other cases embody at least a 1% increase in test accuracy.

2https://github.com/HaohanWang/PAR_experiments
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Table 5: Test accuracy of vanilla CNN, PAR and its variants on perturbed MNIST dataset
Vanilla PAR PARB PARM PARH

Original independent 0.7744 0.8814 0.85070 0.82020 0.9325
Random independent 0.7100 0.6953 0.75540 0.79380 0.7692
Radial independent 0.7435 0.7721 0.68830 0.71260 0.7111
Original dependent 0.7222 0.7714 0.80590 0.71840 0.7757
Random dependent 0.4253 0.3875 0.43530 0.44090 0.4239
Radial dependent 0.5336 0.3956 0.47640 0.47690 0.6158

Average 0.6515 0.65055 0.668667 0.660467 0.7047

Table 6: ResNet for CIFAR10 classification

(a) ResNet

Operation Output dimension Activation
Input x (N, 3, 32, 32) -

Layer1
CONV (N, 16, 32, 32) -

BN (N, 16, 32, 32) ReLU
Layer2

ResidualBlock×5 (N, 16, 32, 32) -
Layer3

ResidualBlock×5 (N, 32, 16, 16) -
Layer4

ResidualBlock×5 (N, 64, 8, 8) -
Output

BN (N, 64, 8, 8) ReLU
AdaptiveAvgPool (N, 64, 1, 1) -

Flatten (N, 64) -
FC (N, 10) -

(b) Residual block

Input z

Shortcut

CONV
BN

ReLU
CONV

BN
Output ReLU(z+ f(z))

• No consistent winner for one particular PAR variant
Despite the consistent increase in testing accuracy than the vanilla baseline, there is no con-
sistently better regularization method among the PAR and its variants. The responsibility
of choosing a particular type of the PAR is shifted to their users through understandings of
the problem in hand.

3.3 CIFAR with Perturbation

The architecture of ResNet used in the paper is outlined in Table 6. Note that

• Some revisions are made to the original architecture proposed in [8] because the size of the
image is reduced from (3, 227, 227) (ImageNet) to (3, 32, 32) (CIFAR10). Specifically, the
first layer is no more made from residual block. At the same time, the first few layers are
removed since reducing image size is not necessary in this application.
• The paper proposes a different way to construct shortcut in residual block. When number

of channels increases because of convolution operation in f : CONV → BN → ReLU
→ CONV → BN, the shorcut first reduces the size of z using average pooling, then in-
creased channels of in z are padded with 0 to match the dimension of f(z). For example,
when a representation z of size (16, 32, 32) becomes (32, 16, 16) because of convolution
operation in f(·). The shortcut in residual block will pad 0 to increased 16 channels to
AvgPOOL(z) ∈ R16×16×16.

The replication results in Table 7 correspond to the ones Table 1 in the original paper. One might
frown upon this performance at first glance due to its large deviation from the original results. How-
ever, we argue this comes from significantly fewer number of training epochs in this work. The
number of epochs is just 20% (80 versus 400) of the original paper, where Wang et al. achieve
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Table 7: Test accuracy of vanilla ResNet, PAR and its variants on perturbed CIFAR10 dataset
Vanilla PAR PARB PARM PARH

Original 0.7069 0.73550 0.7265 0.7210 0.7241
GrayScale 0.1000 0.10000 0.1000 0.1000 0.1000
NegColor 0.2617 0.29790 0.2676 0.2849 0.2645

RandKernel 0.2409 0.16680 0.2104 0.2547 0.1850
RadialKernel 0.1420 0.13200 0.1560 0.1256 0.1351

Average 0.1862 0.17418 0.1835 0.1913 0.1712

92% accuracy in original test image. We believe the original results are reproducible with additional
program runtime.

Besides the similar conclusions we could draw from the MNIST experiment, we could find that

• CIFAR10 dataset is more difficult than the MNIST dataset
Despite consistent improvement except "GrayScale", the improvements become signifi-
cantly smaller than that of the MNIST experiment, with maximum test accuracy boost
merely 3.62%. However, it is still exciting to know that all cases except "GrayScale" still
have at least a 1% improvement.

• The "GrayScale" case requires extra attention
In the original paper, the best performance is attained in the case of "GrayScale". However,
the replication of experiments shows the otherwise, where it has the worst performance.
Future work is required to take a closer look at why this happens.

4 Advice on Reproducibility

Use existing code as much as possible
Due to the page limits of the publications and overwhelmingly many fine details of experiment, it is
not likely that one could recover all the details needed to reproduce the experiment by just reading
the paper. Thanks to the fact that machine learning community are open to share research codes, we
could refrain from rebuilding the wheels and spare our time and energy to most interesting parts.

In this work, even though we are trying to rewrite the code from scratch with the different framework
(PyTorch vs. TensorFlow in the original paper), we use some of the codes released by authors for
data preprocessing, which greatly accelerate our experiment reproduction process.

Make good use of OpenReview platform
The ambiguities might occur even for a well-written paper. This problem is made even more so when
trying to approach the fine details of experiments. OpenReview provides a platform for authors and
readers to discuss details of the research paper.

This work is not possible without clarifications made by authors on the OpenReview platform.

Writing everything in one script might not something to avoid
We used to believe that structured project management could always help streamline working flow,
where the main script with various parameter settings, models, utility functions, and many other
components are organized in different folders and scripts. Even though this might be true for re-
search projects, the goal of the reproducibility challenge is to reproduce existing work. Since the
degree of uncertainty is largely reduced and quick reproduction is the concern, it might be preferable
to try alternative project management strategy.

In this work, we organize codes according experiment in the original paper rather than carefully
designed project structure.

5 Extended Literature Review

Motivated by the domain adaptation problem, the adversarial training approach is first introduced in
[7]. Ganin et al. propose a generic gradient-reversal layer appended to multi-task branch in helping
neural networks learn representations that are invariant across domains but discriminate within the
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domain, thus encouraging generalization to new domains. After this trailblazing work, there have
been significant efforts in its improvement and application.

• Improvement
The improvement focus on location and subject of adversarial training branch. In terms of
location, most works follow the setup in [7] and place the adversarial branch at the output
layer. However, this choice is not backed by strong theoretical support. Yang proposes
to inspire the location of the adversarial branch using mutual information and reduce the
discriminative power of intermediate representation with maximum mutual information to
labels [16]. On the other hand, the study of subject is still in its nascent stage. Most works
do not focus on a particular form of representation when try to apply adversarial training ap-
proach for the regularization. Wang et al. divert their attention to adversarially train against
local image fiber (individual image channel) and achieve state-of-the-art performance on
multiple domain generalization (DG) and domain adaptation (DA) tasks.

• Application
The works employing adversarial training approach mostly come from the study of domain
adaptation (DA) and domain generalization (DG), including image classification [13], low-
resource machine translation [10], and human-to-human speech recognition [12]. When
algorithmic fairness becomes concerns because of discrimination of automated decisions
against under-represented groups [5, 4], learning representations that could yield predic-
tive results under some fairness constraints becomes a new direction of study [17]. The
adversarial training approach is among all methods that learn fair representation and show
empirical success [6, 3, 15, 2, 1, 16].

6 Summary

This work reproduces two of the experiments presented in [14]. We confirm the main findings
made by authors through validating the usefulness of the patch-wise adversarial regularization (PAR)
and its variants. Additionally, we extend this previous work by providing more details about the
implementation and an extended literature review.
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