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ABSTRACT

We present a framework for optimizing prompts in vision-language models to
elicit multimodal reasoning without model retraining. Using an evolutionary algo-
rithm to guide prompt updates downstream of visual tasks, our approach improves
upon baseline prompt-updating algorithms, which lack evolution-esque ”survival
of the fittest” iteration. Crucially, we find this approach enables the language
model to independently discover progressive problem-solving techniques across
several evolution generations. For example, the model reasons that to ”break
down” visually complex spatial tasks, making a tool call to a Python interpreter to
perform tasks such as cropping, image segmentation, or saturation changes would
improve performance significantly. Our experimentation shows that explicitly
evoking this ”tool calling” call, via system-level XML ...<tool>...</tool>...
tags, can effectively flag Python interpreter access for the same language model to
generate relevant programs, generating advanced multimodal functionality. This
functionality can be crystallized into a system-level prompt that induces improved
performance at inference time, and our experimentation suggests up to≈ 50% rel-
ative improvement across select visual tasks. Downstream performance is trained
and evaluated across subtasks from MathVista, M3CoT, and GeoBench-VLM
datasets. Importantly, our approach shows that evolutionary prompt optimiza-
tion guides language models towards self-reasoning discoveries, which results in
improved zero-shot generalization across tasks.

1 INTRODUCTION

Vision-language models (VLMs) have made noteworthy progress in simultaneously understanding
and generating text and images, with recent work extending large language models (LLMs) to op-
erate effectively across multiple modalities (Chameleon, 2024; Zhou et al., 2024). Despite these
advances, current foundation models typically treat visual and textual reasoning as loosely con-
nected processes (Zhang et al., 2024; Chen et al., 2024), often underutilizing their full potential for
native multimodal reasoning.

In the text-only realm, chain-of-thought (CoT) prompting and its variants like zero-shot prompting
and self-consistency decoding have emerged as powerful paradigms for enabling systematic reason-
ing (Wei et al., 2023; Jin et al., 2024; Wang et al., 2023). While recent work has adapted CoT to
vision-language models through rationale distillation or latent space training (Zhang et al., 2024;
Hao et al., 2024), these approaches often require expensive retraining or specialized datasets.

A complementary research direction seeks to enhance reasoning purely at inference time through
prompt optimization. Methods like Promptbreeder (Fernando et al., 2023) and evolutionary algo-
rithms (Guo et al., 2024) have shown promise in text-only scenarios, but their application to vision-
language tasks remains understudied. The challenge of discovering effective multimodal reasoning
strategies through purely inference-time evolution presents unique opportunities and challenges.

In this paper, we propose a novel evolutionary prompt optimization framework tailored for vision-
language tasks. Our method operates on standard VLMs without any model retraining, evolv-
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ing task-specific prompts that coordinate visual and linguistic processing. We evaluate our ap-
proach on challenging multimodal benchmarks requiring commonsense physics, complex counting,
and mathematical reasoning. We demonstrate that evolutionary search can discover sophisticated
emergent behaviors such as recursive tool usage, hierarchical image partitioning, and dynamic-
programming–like counting entirely through prompt mutations. Critically, the performance gains
achieved by our methods require as few as 20 labeled examples per subtask, and generalize robustly
to unseen data.

Our contributions are the following: (1) Evolutionary search in natural language prompts can un-
cover natively multimodal reasoning strategies in vision-language models. (2) Purely inference-time
prompt evolution can discover sophisticated behaviors that mirror algorithmic reasoning. (3) Exten-
sive evaluations across multiple benchmarks demonstrate significant improvements and shed light
on the synergy between textual instructions and visual inputs.

2 RELATED WORKS

2.1 CHAIN-OF-THOUGHT PROMPTING IN LANGUAGE AND VISION-LANGUAGE MODELS

Chain-of-Thought (CoT) prompting has emerged as a powerful paradigm for enabling Large Lan-
guage Models (LLMs) to solve complex tasks by generating intermediate reasoning steps before
arriving at a final answer (Zhang et al., 2022). The success of CoT prompting has extended to
Vision-Language Models (VLMs) in recent work. Zhang et al. (2024) highlight that relying solely
on brief annotations constrains the depth of multimodal reasoning. By distilling more comprehen-
sive rationales from GPT-4 and incorporating reinforcement learning signals, they significantly en-
hance the interpretability and robustness of VLM outputs. Similarly, Chen et al. (2024) examine the
consistency of VLM reasoning and propose methods for systematically quantifying and improving
step-by-step visual grounding. While these advances have led to more transparent VLM behaviors,
they frequently rely on large-scale datasets or specific fine-tuning stages for reliable CoT generation.

2.2 UNIFIED MULTIMODAL REASONING IN VISION-LANGUAGE MODELS

Recent studies have sought to broaden the scope of modern foundation models from reasoning purely
over text tokens to fully multimodal reasoning. Chameleon (Chameleon, 2024) and Transfusion
((Zhou et al., 2024) enable multimodal reasoning by enabling transformers to natively generate
mixed-modal tokens. However, no works have combined these omnimodal models with advanced
methods in reasoning, such as scaling inference-time compute or automatic prompt optimization.
With the recent successes in inference-time compute, such as OpenAI’s O1 and DeepSeek’s R1,
this is a highly motivated problem of study (DeepSeek-AI, 2025). Additionally, Hao et al. (2024)
shift from utilizing purely textual chains of thought to continuous latent spaces, and Zhang et al and
Chen et al leverage massive curated rationales from teacher models to bridge the modality gap in
reasoning. Although these methods show promise, they often require significant model re-training or
specialized data collection. Our approach diverges from these by focusing on a purely inference-time
adaptation that doesn’t require expensive pretraining or posttraining procedures.

2.3 EVOLUTIONARY ALGORITHMS FOR PROMPT OPTIMIZATION

Parallel to these developments in vision-language reasoning, evolutionary algorithms have been
increasingly employed to optimize prompts in LLMs. Guo et al. (2024) introduce EvoPrompt,
demonstrating that even discrete natural language prompts can be systematically evolved to enhance
downstream task accuracy. Jin et al. (2024) similarly leverage evolutionary strategies to iteratively
refine zero-shot CoT prompts, highlighting that diversity in prompt mutations can mitigate potential
blind spots in static prompts. Moving a step further, Fernando et al. (2023) propose Promptbreeder,
which uses self-referential, self-improving prompt mutation to outperform standard CoT methods
on arithmetic and commonsense benchmarks.

Beyond evolutionary approaches, there has been extensive recent work on automatic or optimized
prompting that does not rely on EAs. Methods such as RLPrompt (Deng et al., 2022), adversarial
in-context learning (Do et al., 2024), InstructZero (Chen et al., 2023), Instinct (Lin et al., 2024),
and gradient-based or search-based prompt optimization (Pryzant et al., 2023; Rubin et al., 2022;
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Sun et al., 2023; Wan et al., 2024; Zhou et al., 2023; Yang et al., 2024) collectively demonstrate the
general interest in systematically refining prompt instructions without exhaustive retraining of large
language models. However, these strategies remain mostly text-centric and do not directly address
complex multimodal tasks as in vision-language scenarios.

Despite the demonstrated success of these frameworks in purely text-based environments, the vision-
language domain brings additional challenges, such as object localization, visual attribute recogni-
tion, and scene context understanding. Additionally, these works fail to elicit truly novel reasoning
paradigms from evolutionary search. Thus, bridging evolutionary search techniques with multi-
modal CoT remains an open research question. Our work takes a step in this direction by proposing
a purely inference-time evolutionary approach that integrates visual and textual prompts for im-
proved multimodal reasoning.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We address the challenge of evolving task-specific prompts for vision-language models (VLMs)
applied to downstream multimodal reasoning tasks through an evolutionary prompt optimization
framework. Given a high-level multimodal cognitive task such as counting or classification, we
seek to discover optimal system prompts that enhance model performance across diverse problem
instances within that given task.

Let Q represent the complete set of question instances for a specific task. For any question q ∈ Q,
we define a system prompt p from the prompt space P that is prepended to the question. The
concatenation operation ⊕ : P × Q → S maps a prompt-question pair to the final input string
space S. Our objective function is then: p∗ = argmaxp∈P Eq∈Q[Score(p ⊕ q)] where Score :
S → [0, 100] evaluates the quality of the LLM’s response. The score normalization to [0, 100]
enables consistent comparison across different task types, with task-specific metrics (e.g., accuracy
for classification, precision for counting) mapped to this standardized range.

We partition Q into training and test sets A and B, respectively. Our method relies on a fundamental
assumption about the objective function’s behavior across these sets:

argmax
p∈P

Eq∈A[Score(p⊕ q)] ≈ argmax
p∈P

Eq∈B [Score(p⊕ q)] (1)

This assumption allows us to optimize prompts on the training set with the expectation that they will
generalize effectively to unseen test instances. For practical utility of our technique on downstream
tasks, we operate in the regime where |B| >> |A|, with the assumption that the evolutionary frame-
work can generalize past the train set and find the globally optimal task-specific prompt p∗. The
practical validity of this assumption is demonstrated empirically in Section 5. The small training set
serves as a ”few-shot training set” for evolution, so that the large test set is indeed the real target.

3.2 EVOLUTIONARY ALGORITHM DESIGN

Our evolutionary framework operates across three hierarchical spaces: the task prompt space P ,
mutation prompt spaceM, and meta-mutation prompt space H. This hierarchical structure enables
both direct optimization of task prompts and meta-learning of effective mutation strategies.
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3.2.1 POPULATION EVOLUTION

Algorithm 1 Binary Tournament Evolution

1: for generation g = 1 to G do
2: Sample prompts p1, p2 ∼ Pg without replacement
3: pw ← argmaxp∈{p1,p2} Fitness(p)
4: pl ← argminp∈{p1,p2} Fitness(p)
5: m ∼M ▷ Sample mutation prompt
6: p′w ← LLM(m⊕ pw) ▷ Mutate winner
7: Pg+1 ← (Pg \ {pl}) ∪ {p′w}
8: end for

Our framework uses a binary tournament genetic algorithm to evolve task prompts. The population
evolves by replacing pl with p′w, maintaining size while improving fitness over G generations. The
binary tournament balances exploration and exploitation, reduces computational overhead, and cre-
ates selection pressure towards better solutions. Mutation combines structured guidance from M
with the LLM’s flexibility, enabling discovery of effective prompts that manual or fully automated
approaches might miss.

3.2.2 MUTATION OPERATORS

Our framework employs a hierarchical system of mutation operators that combines both zero-order
and first-order optimization strategies. The fundamental mutation process occurs in the prompt
space P , where each prompt p ∈ P represents a strategy for solving a given task. These mutations
are guided by prompts from the mutation spaceM and hyper-mutation spaceH.

We employ both first-order and zero-order prompt optimization techniques. For first-order optimiza-
tion, we generate a new task prompt by applying the mutation prompt to the current prompt:

p′ = µ1(p,m) = L(m⊕ p) (2)

where L represents the language model’s text generation function and ⊕ denotes concatenation.

For zero-order optimization, we generate a new task prompt independently by concatenating the
problem description D with a hint-generation template:

p′′ = µ0(D) = L(”A list of 100 hints:”⊕D) (3)

This allows for the generation of novel task prompts that are closely tied to the original problem
description, providing diversity in the evolutionary process.

The mutation prompt m itself evolves through both first-order and zero-order hyper-mutation oper-
ators. The first-order hyper-mutation operator is defined as:

m′ = ν1(m,h) = L(h⊕m) (4)

where h ∈ H is a hyper-mutation prompt.

The zero-order hyper-mutation operator generates new mutation prompts by combining the problem
description with a hint-generation template, simliar to the zero-order mutation operator.

m′′ = ν0(D, t) = ”A list of 100 hints:”⊕D (5)

We adapt this paradigm of zero and first-order prompt optimization from Promptbreeder, and find
that it generalizes well across vision-language tasks when initial prompt populations are vision-
specific. This hierarchical system allows for both direct optimization of task prompts and adaptation
of mutation strategies, while maintaining simplicity and interpretability in the evolutionary process.
The combination of zero-order and first-order operators ensures both exploration of new ideas and
refinement of existing solutions.
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3.3 FITNESS EVALUATION

The fitness function F : P → R evaluates task prompts through a weighted combination of task
performance and prompt quality metrics, defined as F (p) = (1 − λ)Ftask(p) + λFaux(p). The
task fitness component Ftask(p) = 1

k

∑
q∈C Score(p ⊕ q) measures empirical performance on a

stochastically determined minibatch C ⊂ A of size k, where Score : S → [0, 100] quantifies the
quality of the LLM’s response to task instance q when using prompt p. The score function is task-
specific–for example, in the case of a counting task, the score function is the percentage of correct
answers.

The auxiliary fitness component Faux(p) = Lcritic(critique ⊕ p) employs an LLM-based critique
system that evaluates the sensibility and adherence of task prompts to their intended goals. This
critique system acts as a regularizer for the evolutionary search process, steering the optimization
towards prompts that are not only effective but also semantically meaningful and aligned with the
task objectives. This aligns with previous literature that leverage LLMs’ expansive knowledge base
for optimization tasks, even in settings of sparse reward (Yang et al., 2024). We find that critique
prompts that emphasize the coherence, explicitness, and adherence of mutated task prompts to stan-
dard formatting perform the best, effectively guiding the evolutionary search process. By incorpo-
rating this linguistic prior, we significantly improve sample efficiency, as demonstrated empirically
in Section 5, while maintaining the discovery of high-performing prompts.

The weighting coefficient λ balances the trade-off between empirical performance and prompt qual-
ity, with this value determined through ablation studies. We find that across subtasks, when we
enforce Faux(p) → [0, 100], that λ = 0.25 performs well empirically. This balanced approach en-
sures that the evolutionary process discovers prompts that are both effective and interpretable, while
the LLM-based critique system provides a computationally efficient mechanism for maintaining se-
mantic coherence throughout the optimization process. This novel modification reduces the need for
more complicated mutation mechanisms adopted by other works, such as Promptbreeder.

3.4 EVOLUTIONARILY EMERGENT TOOL SYNTHESIS

A key discovery in our evolutionary framework is the emergence of self-referential tool generation
capabilities. Through our robust and performant evolutionary search procedure, as well as high-
quality initial universes of mutation prompts and task prompts, we find that evolutionary search
procedures for certain visual tasks yield task prompts that attempt to modify and re-ingest the input
image(s) for multiple passes of reasoning. A successful example of this evolutionary reasoning is
shown in Figure A.4, in contrast to an unsuccessful naive prompting example in Figure 2.

Rather than predefining a fixed tool universe, we observe that evolved system prompts naturally
develop the ability to decompose problems into tool-like operations. We then leverage the natural
capacity of LLMs to generate performant code from natural-language instructions by converting the
natural language tool description into Python code with an auxillary LLM and executing it on the
input image(s).

The evolutionary process operates on system prompts s ∈ S that guide the primary language model
L1 in processing inputs. Through mutation and selection pressure, these prompts evolve to incorpo-
rate structured tool suggestions enclosed in XML tags:

L1(s, x)→ (...<tool>τi</tool>...)
k
i=1 (6)

where each τi represents a natural language description of a proposed tool operation. These tool
suggestions emerge organically as the system discovers that breaking down complex tasks into com-
posable operations improves performance. A secondary language model L2 acts as an interpreter,
translating each tool suggestion into executable Python code:

L2(τi)→ ci ∈ C (7)

where C is the space of valid Python programs. This creates a flexible tool synthesis pipeline
where L2 leverages its code generation capabilities to implement operations like image manipu-
lation, mathematical computations, or data processing based on natural language descriptions.
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The composed transformation on input x becomes:

T (x) = eval(ck ◦ ... ◦ c1)(x) (8)

where the composition emerges from the sequential application of synthesized tools. Critically, this
approach allows for open-ended tool discovery, because the system isn’t constrained by predefined
tools. Additionally, this approach allows for recursive refinement, as the tool outpquts can be fed
back into L1 for iterative processing. This represents a novel reasoning paradigm for traditional
vision-language models, as they can have multiple iterative reasoning passes at the same image,
allowing for more complex reasoning patterns such as examining different patches of the image
multiple times, increasing the brightness/contrast of patches, and applying external models such
as Meta’s Segment Anything (SAM) tool Kirillov et al. (2023). Due to the expressivity of natural
language and the efficacy of LLMs in converting natural language instructions to executable code,
tool usage patterns become increasingly effective on downstream tasks with respect to generation
count.

The emergence of structured tool suggestions in evolved prompts indicates that the system has dis-
covered a fundamental principle: complex tasks often benefit from decomposition into smaller,
well-defined operations. Crucially, this discovery happens naturally through the evolutionary pro-
cess, as prompts that effectively utilize this pattern tend to produce better results across diverse
inputs, resulting in a iteratively-optimized final prompt. yeah th

4 RESULTS

Our experimental results demonstrate significant improvements across multiple vision-language
reasoning benchmarks through evolutionary prompt optimization. In all cases we benchmark results
on OpenAI’s model 4o mini (OpenAI, 2023). Table 1 presents a comprehensive comparison of our
approach against several baselines, including the base model with no Chain-of-Thought prompting
(4o mini), standard Chain-of-Thought prompting (+CoT) using “Let’s think step by step” as in
Wei et al. (2023), and PromptBreeder (+PB). Our evolutionary tool synthesis approach (+Tools)
achieves substantial gains across nearly all tasks, with particularly notable improvements in tasks
requiring complex spatial and physical reasoning.

Benchmark Task 4o mini +CoT +PB +Ours ++Tools

MathVista Visual QA 49.5 51.0 49.6 53.3 60.5
Figure QA 58.6 60.1 58.7 61.5 64.1
Math Word Problem 61.8 63.2 61.9 64.5 68.0

M3CoT Geometry 37.8 39.1 37.9 35.2 42.1
Theory 6.1 9.0 6.2 6.3 –
Physical Commonsense 42.6 43.9 42.7 47.2 61.7

GeoBench-VLM Damaged Building Count 21.5 22.2 21.6 21.0 32.1
Crop Type Classification 9.8 10.1 9.9 9.8 10.0
Farm Pond Change Detection 12.3 12.7 12.4 14.1 20.2

Table 1: Performance across benchmarks showing the impact of different reasoning approaches.
Best results for each task are bolded.
CoT = Chain of Thought, PB = PromptBreeder, Ours = Our method (with vision initial population) without tool
interpreter access, +Tools = our method with tool interpreter access. A dash (–) in the +Tools column indicates
that Tools were not elicited due to the nature of the subtask, so the performance is identical to the Ours column
for that subtask.

The experimental results clearly demonstrate that our evolutionary prompt optimization framework
markedly enhances multimodal reasoning in vision-language models. As evidenced in Table 1, while
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the standard chain-of-thought (CoT) prompting yield only incremental improvements, our evolved
prompts (denoted as “+Ours”) already push performance higher across tasks, and the addition of
tool interpreter access (“++Tools”) consistently achieves the best outcomes. For example, in the
MathVista benchmark, performance on Visual QA improves from 49.5 with 4o mini to 53.3 with
our approach, and further to an impressive 60.5 when tool usage is enabled. Similar trends are
observed across other tasks—including Figure QA and Math Word Problems—indicating that the
evolutionary process not only refines prompt instructions for better task alignment but also facilitates
the spontaneous emergence of sophisticated strategies such as hierarchical problem decomposition
and dynamic tool synthesis. These findings underscore the potential of inference-time prompt evo-
lution to unlock latent reasoning capabilities in vision-language models, thereby offering a scalable
and efficient pathway toward more robust multimodal AI systems.

4.1 ANALYSIS OF EMERGENT BEHAVIORS

A particularly interesting finding is the emergence of sophisticated tool-use patterns through evo-
lution. The evolved prompts frequently develop structured approaches to problem decomposition,
often breaking complex tasks into sequences of simpler operations. For instance, in the Math Word
Problem task, we observe prompts that systematically partition large images into manageable sec-
tions.

These behaviors emerged naturally through the evolutionary process, without explicit programming
or human demonstration. Similarly, in physical reasoning tasks, the evolved prompts often exhibit a
form of ”mental simulation,” breaking down complex physical scenarios into sequences of simpler
state transitions.

The results demonstrate that our evolutionary framework not only improves raw performance met-
rics but also discovers interpretable and generalizable reasoning strategies. The emergent behaviors
often mirror human problem-solving approaches, suggesting that the framework is finding natural
and effective solutions to complex reasoning tasks.

7



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

4.2 GENERALIZATION EXPERIMENTS

We also measure the generalization capabilities of our
evolution framework compared to the base-line method
in multimodal reasoning domains. Due to cost con-
straints induced by evaluating on larger datasets, we
run these generalization experiments on MolmoE-1B-
0924 (Deitke et al., 2024) rather than 4o mini. Evolu-
tionary prompt optimization only poses significant util-
ity on downstream tasks if our assumption holds–that
the optimal system prompt generated through prompt
optimization and evaluation on a train set generalizes
to perform near-optimally on a withheld test set. We
compare the baseline PromptBreeder (Fernando et al.,
2023) method to our vision-language-specific approach
(both with tool usage enabled and without), and find
that both our approaches generate high-fitness system
prompts with just 20-30% of the total dataset, which is
often under 20 individual samples. We attribute this to
our improved LLM-augmented fitness function, which
serves as an effective regularizer to the search process
and yields higher sample efficiency.

Figure 1: Generalization performance
of various prompt optimization tech-
niques on Damaged Building Count
vision-heavy reasoning task

5 DISCUSSION

Our results demonstrate the remarkable potential of evolutionary prompt optimization for enhancing
multimodal reasoning capabilities in vision-language models. This work offers several important
insights about the nature of artificial reasoning, the power of guided search in prompt space, and the
future of multimodal AI systems.

5.1 EVOLUTIONARY SEARCH AS A PATH TO ADVANCED REASONING

Perhaps the most intriguing aspect of our findings is how evolutionary search, guided by LLM-
based mutations, discovers sophisticated reasoning strategies without explicit programming or hu-
man demonstration. The framework’s success across diverse tasks—from geometric reasoning to
temporal change detection—suggests that the prompt space contains rich, generalizable programs
for complex cognitive tasks. This emergence of advanced reasoning patterns through guided explo-
ration has several important implications:

First, it demonstrates that LLMs can serve as effective mutation operators in evolutionary search,
leveraging their understanding of language and task structure to make meaningful modifications to
prompts. This is particularly noteworthy because it creates a form of ”cognitive bootstrap,” where
the LLM’s capabilities are used to evolve prompts that then enhance the same model’s performance.

Second, the discovered prompts often exhibit surprisingly sophisticated behaviors, such as hier-
archical decomposition, systematic scanning patterns, and implicit error checking. These strategies
mirror human problem-solving approaches but emerge purely through the evolutionary process. This
suggests that guided search in prompt space can uncover ”natural” cognitive algorithms that are both
effective and interpretable.

5.2 SYSTEM PROMPTS AS LIGHTWEIGHT NEURAL PROGRAMS

Our work underscores the importance of viewing system prompts as a powerful and underexplored
form of neural programming. Unlike traditional neural architecture modifications or fine-tuning
approaches, system prompts can encode complex computational strategies without changing model
weights. We emphasize several advantages of this paradigm, including computational efficiency,
architectural flexibility, and program-like expressivity:
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First, our approach requires only inference-time computation for prompt evolution and no expensive
model retraining. This makes it particularly attractive for deployment scenarios where computa-
tional resources are relatively limited at inference time.

Second, the evolved prompts can be added to existing vision-language models as a lightweight
inference-time intervention, improving performance without drastic architectural changes. This
modularity is valuable for practical applications, as its performance improves with performance-
based optimizations for vision-language models.

Third, the prompts effectively serve as programs, capable of encoding sophisticated control flow, de-
composition strategies, aggregation of subproblems, and error-handling mechanisms. This suggests
that natural language itself can serve as a powerful programming medium for neural systems.

5.3 THE CASE FOR NATIVE MULTIMODAL REASONING

The emergence and strong performance of image-based tool calling behavior within the evolved
prompts motivates native multimodal reasoning as a future reasoning paradigm. Our method of
decomposing complex multimodal tasks into smaller image-based patches, performing text-based
reasoning on the subproblems, and then aggregating back up outperforms purely text-based reason-
ing methods across several subdomains. Through evolutionary tool usage, the system prompts learn
to decompose complex tasks into smaller patches and reasoning over these patches. This can be
seen as a primitive of reasoning natively over both text and image modalities flexibly, and hence
motivates the development of more advanced multimodal reasoning models. Additionally, allowing
the vision-language model to conduct multiple passes over the visual patches enables more robust
feature extraction and relationship understanding. This iterative processing allows the model to
build up a hierarchical representation of the visual information, where initial passes might capture
low-level features and spatial relationships, while subsequent passes can integrate this information
with higher-level semantic understanding and task-specific goals. The emergence of this multi-pass
behavior in our evolved prompts suggests that effective multimodal reasoning requires not just the
ability to process different modalities, but also the capability to dynamically revisit and reinterpret
information as the reasoning process unfolds. This finding has implications for architectural design
choices in future multimodal systems, particularly in how attention mechanisms and information
flow are structured across multiple reasoning steps.

5.4 SCALING GUIDED SEARCH TOWARDS OMNIMODAL AI

Our findings have several implications for the future development of vision-language model systems
focused on reasoning.

Guided Search as a Development Paradigm: The success of our evolutionary framework suggests
that guided search in prompt space could be a powerful paradigm for developing AI capabilities
more broadly. This approach might be particularly valuable for discovering reasoning strategies in
domains where human intuition is limited (DeepSeek-AI, 2025).

Towards Omnimodal AI: The framework’s ability to evolve effective multimodal reasoning strate-
gies motivates a path toward truly omnimodal AI systems that can seamlessly integrate information
across different modalities. This could be particularly important for real-world applications that
require understanding complex multi-modal scenarios.

Novel Test-Time Scaling Laws: Our approach achieves notable emergence through continual system
prompt evolution, with emergent paradigms such as multimodal tool usage and dynamic program-
ming emerging as we increase the amount of compute expended on evolution. This suggests a
potential future inference-time scaling law in prompt / system program space, which may act as
complementary to the recent advances in inference-time compute.

5.5 LIMITATIONS AND FUTURE WORK

Despite the promising performance of our evolutionary seach procedure for discovering multimodal
reasoning paradigms, several limitations warrant further investigation. First, the failure to improve
performance on theoretical tasks suggests limitations in the current framework’s ability to handle
highly abstract reasoning. Our evaluations are currently confined to a limited set of benchmarks
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(MathVista, M3CoT, GeoBench-VLM) and a single model (4o mini), underscoring the need for
broader testing across diverse tasks and architectures to establish generalizability. Additionally, our
reliance on the underlying LLM for both mutation and fitness evaluation introduces variability in
prompt quality and tool synthesis reliability, highlighting the necessity for enhanced error-handling
and verification mechanisms, potentially through ensemble approaches. The extra inference-time
computational overhead, while lower than model retraining, could still be pose challenges for de-
ployment in resource-constrained or latency-sensitive environments, indicating that more efficient,
parallelizable evolution strategies are needed. Exploring other search paradigms for prompt opti-
mization on multimodal reasoning tasks, such as reinforcement learing or reasoning in latent spaces,
are promising and well-motivated given our positive results. Finally, while our framework natu-
rally uncovers sophisticated behaviors such as hierarchical decomposition and emergent tool syn-
thesis, the mechanisms driving these phenomena remain underexplored, and integrating our few-
shot, inference-time optimization with continuous learning paradigms presents an exciting yet open
challenge.
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A APPENDIX

A.1 FULL EVOLUTIONARY ALGORITHM OUTLINE

Algorithm 2 Evolutionary Prompt Optimization

1: Input:
• Training set A
• Initial prompt population P0 of size N

• Mutation prompt spaceM and hyper-mutation spaceH
• Fitness function F (p) = (1− λ)Ftask(p) + λFaux(p)

• Maximum number of generations G
2: Output: Optimized prompt p∗
3: Initialization:
4: Set generation counter g ← 0
5: Initialize prompt population P0 with N candidate prompts
6: while g < G do
7: Selection and Evaluation:
8: Randomly sample two distinct prompts p1, p2 ∈ Pg

9: Compute fitness scores F (p1) and F (p2)
10: if F (p1) ≥ F (p2) then
11: Set winner pw ← p1 and loser pl ← p2
12: else
13: Set winner pw ← p2 and loser pl ← p1
14: end if
15: Mutation:
16: Sample a mutation prompt m ∈M
17: Generate mutated prompt: p′w ← L(m⊕ pw)
18: Population Update:
19: Update population: Pg+1 ← (Pg \ {pl}) ∪ {p′w} Apply hyper-mutation operators using

h ∈ H.
20: Increment generation: g ← g + 1
21: end while
22: Return: p∗ ← argmaxp∈PG

F (p)

A.2 NAIVE PROMPTING EXAMPLE - FAILURE

Figure 2: A naive example of directly prompting an input image using the original dataset prompt.
Note that the LLM misses one of the metallic shapes, leading to an incorrect conclusion. Given the
visual complexity of the input image, Vision Language Models may struggle to accurately analyze
subcomponents without further guidance.
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A.3 EVOLUTIONARY PROMPTING EXAMPLE - SUCCESS

Figure 3: Walk through of an example where an initial prompt fails to elicit a correct answer, while
a successful evolutionarily optimized prompt including a tool call (cropping) succeeds. Via the
evolved prompt, the model elicits a tool call that crops the original image, allowing the LLM to
better ingest the image’s contents. With the improved quadrant division of visual analysis, the model
is able to correctly answer the question.

13



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A.4 PROMPT FITNESS AS A FUNCTION OF EVOLUTION TIME

Figure 4: Baseline evolutionary prompt optimization method (Promptbreeder, Fernando et. al. 2023)
fails to generalize to vision-language reasoning domains. We find this is because their instruction-
following prompting for LLM mutation, hypermutation, and their initial universes are not suited for
vision-language reasoning tasks.

Figure 5: Our naive method outperforms baselines in the evolution process, due to significant im-
provements in mutation methods, our auxillary loss preventing significant and nonsensical devia-
tions from current task prompts, and our initial universes of task prompts, mutation prompts, and
hypermutation prompts, that are tuned specifically for image tasks.
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Figure 6: With tool use enabled, and an improved set of mutation and hypermutation prompts that
encourages emergence of tool use, population fitness scales positively with time. The notable drops
in average performance (red curve) are the critical windows in which tool usage emerges through
evolution. Initially, fitness falls, because the tool usage and reasoning paradigms are nascent, but
as they are evolved more, they become high-performing. Towards the end, the evolution process
guides the highest-performing system prompts towards another layer of tool calling. This emergent
strategy results in an immediate drop in performance, due to its nascence and incompleteness. We
hypothesize that continuing the evolution process further would lead to even more advanced reason-
ing paradigms like these results indicate, but under our fixed computation budget, this remains an
avenue for future research.

A.5 AUXILIARY LLM CRITIC IMPLEMENTATION DETAILS

The auxiliary critic component ensures evolved prompts maintain coherence and stay aligned with
task objectives. Implemented using GPT-4o-mini, the critic evaluates prompts through a multi-
dimensional rubric designed to prioritize clarity, logical structure, and task relevance. We assign
weights to different components of the given task prompt’s quality, which are determined empiri-
cally. The critic operates via a structured evaluation template that emphasizes task fidelity:

Evaluate this prompt for:

Relevance to the stated visual reasoning task

Logical flow between instructions

Clarity of language and specificity
Score each dimension 1-5, then compute weighted total (0-100).
Flag any instructions that deviate from the task’s core requirements.
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A.6 MUTATION PROMPTS AND TASK PROMPTS INITIAL UNIVERSES

Table 2: Sample Vision-Language Starting Prompts

Initially Evolved Prompt (Vision-Task Aligned) Reasoning Strategy

“Generate a diagram highlighting the fundamental shapes and
key objects in the image. Use these as anchors to guide your final
answer (such as a numeric value).”

Focuses on style-invariant structures to
capture essential spatial and content
information.

“Translate the relevant visual features into symbolic or textual
notations, aiming for both clarity and accuracy. Then refine this
representation to produce a final answer.”

Balances interpretability and precision,
handling trade-offs between simplicity
and completeness.

“Segment the image according to the task requirements, focusing
on regions most relevant to the question. Prioritize these segments
for deeper analysis.”

Applies task-specific segmentation to
isolate key areas, reducing distraction
from less important regions.

“Iteratively refine your approach by generating bounding boxes
or region proposals for the image. Retain only the proposals that
significantly improve the clarity or correctness of your final re-
sult.”

Uses a population-based or iterative
mechanism to refine localized views of
the image.

“Simulate common edge cases or distortions (like occlusion and
unusual lighting) to see how they affect your answer. Refine the
prompt steps that cause ambiguous or incorrect responses.”

Incorporates robustness testing and it-
erative prompt fixes for improved fault
tolerance.

“Construct a hierarchical representation of objects in the image,
capturing relationships at multiple scales. Merge the partial find-
ings into one cohesive conclusion.”

Organizes local and global features in a
multi-scale structure for more holistic
reasoning.

“Generate several possible answers for the question by varying
the approach. Compare how well each aligns with the visual de-
tails, and select the most fitting explanation.”

Uses contrastive evaluation to identify
the answer best supported by the evi-
dence in the image.

“Apply a mix of symbolic and sub-symbolic steps to interpret the
image. For instance, if the question involves counting objects,
express it in conditional form (IF more than X, THEN...). Evaluate
which approach yields the clearest final result.”

Combines rule-based reasoning with
learned representations for inter-
pretable and flexible analysis.
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Table 3: Sample Mutator Prompts

Prompt

“Rewrite the instruction so that it focuses on breaking down any complex parts
into simpler steps. Include a helpful tip for someone struggling.”

“Note there is likely a critical error in the last response. Please revise and share
reasoning akin to a careful human. A corrected version would be:”

“Rephrase the instruction as if you are guiding someone who does not have visual
stimulus, making sure every detail is crystal clear.”

“Imagine you must teach this instruction to a peer who could be easily confused.
Simplify it, but offer one surprising or creative example.”

“Imagine a shortcut for this task, if you had infinite resources and capabilities.
SHORTCUT=”

“Flip the point of view: rewrite the instruction as if the user is already an expert,
and you are simply double-checking their approach.”

“Break the instruction into two different methods—one for someone who learns
best by doing, and another for someone who prefers planning.”

“If useful for the task, explicitly highlight additional external functionality that
you would find beneficial using XML tags.”

“Create a more visual-oriented version of the instruction by prompting the user to
sketch out key steps or components before proceeding.”

“Rewrite the instruction in a step-by-step checklist format, then add a final insight
or reminder that ensures the goal is met.”

Table 4: Sample System Prompt via Evolution

Prompt

You are an expert visual reasoning assistant specializing in detailed image analysis and precise counting.
Break the image into key components and analyze each individually using iterative reasoning. Document
your steps briefly and employ image tools (e.g., cropping, segmentation) when beneficial. Clearly mark any
tool usage with <TOOL> tags (e.g., <TOOL>CROP</TOOL>, <TOOL>Segment</TOOL>); if no tools
are used, output <TOOL>n/a</TOOL>. Begin with an overview of the image, provide concise reasoning
and segmentation strategies, and conclude with your final verified result.
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