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Abstract

Diffusion Transformers (DiTs) dominate video
generation but their high computational cost
severely limits real-world applicability, usually re-
quiring tens of minutes to generate a few seconds
of video even on high-performance GPUs. This
inefficiency primarily arises from the quadratic
computational complexity of 3D full attention
with respect to the context length. In this pa-
per, we propose a training-free framework termed
Sparse VideoGen (SVG) that leverages the inher-
ent sparsity in 3D full attention to boost inference
efficiency. We reveal that the attention heads can
be dynamically classified into two groups depend-
ing on distinct sparse patterns: (1) Spatial Head,
where only spatially-related tokens within each
frame dominate the attention output, and (2) Tem-
poral Head, where only temporally-related tokens
across different frames dominate. Based on this
insight, SVG proposes an online profiling strat-
egy to capture the dynamic sparse patterns and
predicts the type of attention head. Combined
with a novel hardware-efficient tensor layout
transformation and customized kernel implemen-
tations, SVG achieves up to 2.28× end-to-end
speedup on CogVideoX-v1.5, 2.33× on Hunyuan-
Video, while preserving generation quality. Our
code is open-sourced at https://github.com/svg-
project/Sparse-VideoGen.
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Dense Attention (38 mins ) VS Ours (16 mins )

HunyuanVideo, 720p, 128 frames, Text-to-Video

Prompt: "A woodpecker is pecking holes in the tree."
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Dense Attention (9 mins ) VS Ours (4 mins )

Prompt: "A beautiful woman in a blue sari posing in front of a wall"
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CogVideoX-v1.5, 720p, 80 frames, Image-to-Video

Figure 1. SVG accelerates video generation while maintaining
high quality. On CogVideoX-v1.5-I2V and Hunyuan-T2V, our
method achieves a 2.28× and 2.33× speedup with high PSNR.
In contrast, MInference (Jiang et al., 2024) fails to maintain pixel
fidelity (significant blurring in the first example) and temporal
coherence (inconsistencies in the tree trunk in the second example).

1. Introduction
Diffusion Transformers (DiTs) (Peebles & Xie, 2023) have
recently emerged as a transformative paradigm for genera-
tive tasks, achieving state-of-the-art results in image genera-
tion. This success has been naturally carried over to video
generation, with models adapting from a spatial 2D attention
to a spatiotemporal 3D full attention (Arnab et al., 2021;
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Figure 2. Attention dominates the computation in video diffu-
sion models. For CogVideoX-v1 and -v1.5 with 17k and 45k
context length, attention takes 51% and 73% of the latency, respec-
tively. For HunyuanVideo with 120k context length, attention can
take over 80% amount of the runtime latency.

Yang et al., 2024c; Kong et al., 2024), resulting in high-
fidelity and temporally consistent outputs. Close-sourced
models such as Sora and Kling, and open-sourced models
including Wan 2.1 (Wang et al., 2025), CogVideo (Hong
et al., 2023), and HunyuanVideo (Kong et al., 2024), have
showcased impressive capabilities in applications ranging
from animation (Guo et al., 2024; Feng et al., 2024) to
physical world simulation (Liu et al., 2024b).

Despite significant advances in generating high-quality
videos, the deployment of video generation models remains
challenging due to their substantial computation usage. For
instance, HunyuanVideo requires almost an hour on an
NVIDIA A100 GPU to generate only a 5-second video,
where the 3D full attention accounts for more than 80%
of end-to-end runtime (Figure 2). Moreover, due to the
quadratic computational complexity with respect to the con-
text length (Dao et al., 2022), the attention can be much
more dominant as the resolution and number of frames in-
crease, as shown in Figure 2.

Fortunately, attention in transformers is well-known for
its sparsity, offering a great opportunity to reduce redun-
dant computation. For example, in large language models
(LLMs), a small portion of the tokens can dominate the
attention output (Zhang et al., 2023c; Xiao et al., 2024b;
Tang et al., 2024). Therefore, the computation can be dra-
matically reduced by only computing the attention among
such important tokens, while still maintaining generation
accuracy. However, existing methods cannot be directly
applied to DiTs (as shown in Table 1), as video data has
fundamentally different sparsity patterns from text data.

Our key observation is that attention heads in DiTs exhibit
inherent sparsity in two categories: Spatial Head and Tem-
poral Head, based on their distinct sparsity patterns. As
shown in Figure 3, spatial head mainly focuses on tokens
that reside within the same frame, which determines the
spatial structures of generated videos. In contrast, temporal
head attends to tokens at the same spatial location across
all frames, contributing to the temporal consistency. There-

fore, the computation for both types of heads can be greatly
reduced by only calculating the attended tokens.

Despite the theoretical speedup, leveraging sparsity for end-
to-end acceleration is still challenging. Firstly, sparsity
patterns are highly dynamic across different denoising steps
and input prompts. It necessitates an online method to iden-
tify sparsity patterns without incurring overhead. Secondly,
some sparsity patterns are unfriendly to hardware accelera-
tors. For example, temporal head computes over noncontigu-
ous data that cannot be fed to GPU’s tensor cores, resulting
in significant efficiency degradations (Ye et al., 2023).

To tackle these challenges, we propose Sparse VideoGen
(SVG), a training-free framework that accelerates video
DiTs with the following novel designs: (1) To efficiently
identify the best sparsity pattern for each attention head,
SVG introduces an online profiling strategy with minimal
overhead (∼3%). It randomly samples 1% tokens from each
attention head and processes sampled tokens with full atten-
tion computation and two distinct sparse attentions (spatial
head and temporal head). Finally, the sparse pattern with a
lower error compared to the full attention is selected for each
head. (2) To improve hardware efficiency, SVG proposes a
novel layout transformation, which reorders the noncontigu-
ous sparsity pattern of temporal head into a compact and
hardware-friendly sparsity pattern.

We prototype SVG with customized kernel implementation
by Triton (Tillet et al., 2019) and FlashInfer (Ye et al., 2025)
and evaluate SVG’s accuracy and efficiency on representa-
tive open video generative models including CogVideoX-
v1.5-I2V, CogVideoX-v1.5-T2V, and HunyuanVideo-T2V.
SVG delivers significant efficiency improvements, achiev-
ing an end-to-end speedup of up to 2.33× while maintaining
high visual quality with a PSNR of up to 29, outperforming
all prior methods. Additionally, we show that SVG is com-
patible with FP8 quantization, enabling additional efficiency
gains without compromising quality. We summarize our
key contributions as follows:

• We conduct in-depth analysis of video DiTs’ sparse pat-
terns, revealing two inherent sparse attention patterns
(temporal head and spatial head) for efficient video gener-
ation.

• We propose SVG, a training-free sparse attention frame-
work comprising an efficient online profiling strategy and
an efficient inference system for accurate and efficient
video generation.

• SVG delivers significant speedup while maintaining good
video generation quality, paving the way for practical
applications of video generative models.
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(a) Spatial Head (c) Temporal Head(b) Spatial Attention Map (d) Temporal Attention Map

Hunyuan-T2V

CogVideoX-I2V CogVideoX-I2V CogVideoX-T2V

Spatial
Correlation

Temporal
Correlation

(e) Visualization of Spatial and Temporal Correlation. This example have 6 frames and 4 tokens per frame.

Text Prompt

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6

Hunyuan-T2V

CogVideoX-T2V

Figure 3. We observe two types of attention maps with distinct sparse patterns: spatial map (b) and temporal map (d). Based on the
attention map, we classify all attention heads into Spatial Head (a) and Temporal Head (c), which contribute to the spatial and temporal
consistency of generated videos respectively. As visualized in (e), spatial head primarily focuses on all tokens within the same frame
(painted as red). In contrast, temporal head attends to tokens at the same position across all frames (painted as green).

2. Related Work
2.1. Efficient diffusion models

Decreasing the denoising steps. Most diffusion models
employ SDEs that require many sampling steps (Song &
Ermon, 2019; Ho et al., 2020; Meng et al., 2022). To ad-
dress this, DDIM (Song et al., 2020) approximates them
with an ODE; subsequent techniques refine ODE paths and
solvers (Lu et al., 2022a;b; Liu et al., 2022; 2024c) or in-
corporate consistency losses (Song et al., 2023; Luo et al.,
2023). Distillation-based methods (Yin et al., 2024a;b) train
simpler, few-step models. However, these require expensive
re-training or fine-tuning—impractical for most video use
cases. In contrast, our approach directly uses off-the-shelf
pre-trained models without any additional training.

Diffusion model compression. Weight compression
through quantization is a common tactic (Li et al., 2023;
Zhao et al., 2024a; Li* et al., 2025), pushing attention mod-
ules to INT8 (Zhang et al., 2025b) or even INT4/FP8 (Zhang
et al., 2024). Other work proposes efficient architectures
(Xie et al., 2024; Cai et al., 2024; Chen et al., 2025) or high-
compression autoencoders (Chen et al., 2024a) to improve
performance. Our Sparse VideoGen is orthogonal to these
techniques and can incorporate them for additional gains.

Efficient system implementation. System-level optimiza-
tions focus on dynamic batching (Kodaira et al., 2023; Liang
et al., 2024), caching (Chen et al., 2024b; Zhao et al., 2024b),
or hybrid strategies (Lv et al., 2024; Liu et al., 2024a). While

these methods can improve throughput, their output quality
often drops below a PSNR of 22. By contrast, our method
preserves a PSNR above 30, thus substantially outperform-
ing previous approaches in maintaining output fidelity.

2.2. Efficient attention methods

Sparse attention in LLMs. Recent research on sparse
attention in language models reveals diverse patterns to
reduce computational overhead. StreamingLLM (Xiao
et al., 2023) and LM-Infinite (Han et al., 2023) observe that
attention scores often concentrate on the first few or local
tokens, highlighting temporal locality. H2O (Zhang et al.,
2023b), Scissorhands (Liu et al., 2024d) and DoubleSparsity
(Yang et al., 2024b) identify a small set of “heavy hitter”
tokens dominating overall attention scores. TidalDecode
(Yang et al., 2024a) shows that attention patterns across
layers are highly correlated, while DuoAttention (Xiao et al.,
2024a) and MInference (Jiang et al., 2024) demonstrate
distinct sparse patterns across different attention heads.
However, these methods focus on token-level sparsity and
do not leverage the inherent redundancy of video data.

Linear and low-bit attention. Another direction involves
linear attention (Cai et al., 2023; Xie et al., 2024; Wang et al.,
2020; Choromanski et al., 2020; Yu et al., 2022; Katharopou-
los et al., 2020), which lowers complexity from quadratic
to linear, and low-bit attention (Zhang et al., 2025b; 2024),
which operates in reduced precision to accelerate attention
module. Sparse VideoGen is orthogonal to both approaches:
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Figure 4. Overview of SVG framework. (a) During generation, SVG adaptively classifies each attention head as either a spatial head or
a temporal head and applies a dedicated sparse attention computation accordingly. (b) This adaptive classification is driven by online
profiling strategy, which extracts a small portion of Q, denoted as Qp, to perform both spatial and temporal attention computations. SVG
then selects the attention patter that yields the minimal MSE compared to full attention, ensuring accurate classification.

it can be combined with techniques like FP8 attention while
still benefiting from the video-specific spatial and temporal
sparsity in video diffusion models.

3. Motivation and Analysis
3.1. 3D Full Attention shows instinct sparsity

We identify that 3D full attention possess inherent sparsity,
characterized by different distinct sparse patterns tailored
for different functions (Xiao et al., 2024a). We deeply inves-
tigate the sparsity nature across various text-to-video and
image-to-video models and identify two types of attention
heads based on sparse patterns: Spatial Head and Temporal
Head, as shown in Figure. 3.

Spatial Head. As illustrated in Figure 3(a-b), spatial head
primarily focuses its attention scores on spatially-local
tokens. This leads to the attention map exhibiting a
block-wise layout. Since pixels within the same frame
are tokenized into contiguous tokens, spatial head attends
exclusively to pixels within the same frame and its adjacent
frames. This property is essential for maintaining the spatial
consistency of generated videos. In spatial head, the block
size relates to the number of tokens per frame.

Temporal Head. In contrast, temporal head exhibits a slash-
wise layout with a constant interval (Figure 3(c-d)). Since
each frame is tokenized into a fixed number of tokens L,
pixels occupying the same spatial position across different
frames are arranged at a stride of L. Consequently, temporal
head captures information from the token with the same spa-
tial position across multiple frames. This pattern is impor-
tant for ensuring temporal consistency in video generation1.

1We hypothesize that this occurs because the majority of the

In addition to the spatial and temporal patterns, we observe
that the text prompts and the first frame hold significant
attention scores for both spatial and temporal head, which
aligns with previous investigations (Xiao et al., 2024b; Shen
et al., 2024; Su et al., 2025). Therefore, we include these
tokens in both the spatial and temporal head.

3.2. Sparse attention achieves lossless accuracy

Furthermore, we find that directly applying sparse patterns
to corresponding heads does not hurt the quality of gener-
ated videos. We demonstrate this by evaluating CogVideoX-
v1.5 and HunyuanVideo on VBench (Huang et al., 2023)
with sparse attention. We determine the sparse pattern by
computing full attention along with two different sparse
mechanisms (spatial head and temporal head) for each at-
tention head and denoising step. The sparse pattern with the
lowest mean squared error (MSE) relative to full attention
is chosen for further inference. This approach achieves a
PSNR over 29, showing that the right sparse pattern main-
tains the high quality of generated videos.

However, despite its accuracy, this strategy does not provide
practical efficiency benefits, as full attention computation
is still required to determine the optimal sparse pattern. We
will address this issue in Sec 4.1.

3.3. Sparse attention promises theoretical speedup

Instead of computing full attention, sparse attention selec-
tively processes only the important tokens based on sparsity
patterns, leading to significant computational savings. We

training data consists of slow-motion videos, making the temporal
head’s focus on tokens with the same spatial position in several
frames adequate to maintain temporal consistency.
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Algorithm 1 Online Profiling Strategy

# Q, K, V, O: [B, H, S, D] - query, key, value, output
# S: - Total Token Number E.g., 18k
# t: - Sampled Token Number. E.g., 32

# Sample the Indices
indices = sample_indices(S, t) # (t,)
Q_i = Q[:, :, indices, :]

# Get the attention masks
mask_spatial = gen_spatial_mask()[:, :, indices, :]
mask_temporal = gen_temporal_mask()[:, :, indices, :]

# Compute sampled attention score
# Shape: [B, H, t, D]
O_full = mask_attention(Q_i, K, V, None)
O_spatial = mask_attention(Q_i, K, V, mask_spatial)
O_temporal = mask_attention(Q_i, K, V, mask_temporal)

# Calculate MSE and get best mask
# Shape: [B, H]
MSE_s = (O_full - O_spatial).norm().mean(dim=(2,3))
MSE_t = (O_full - O_temporal).norm().mean(dim=(2,3))
best_mask_config = (MSE_s < MSE_t)

analyze the theoretical computation saving below.

Given a model configuration of hidden dimension H , num-
ber of tokens per frame L, and number of total frames N ,
the total computation (FLOPS) for each full attention is
2 · 2 · (LN)2 ·H = 4L2N2H . For spatial head, assuming
each head only attends to nearby cs frames, the computation
is reduced to (2 · 2 · L2H) · csN , resulting in a sparsity
of cs

N . For temporal head, assuming each token only at-
tends ct tokens across all the frames, the computation is
(2 · 2 · N2H) · ctL, with a sparsity of ct

L . Since both cs
and ct are typically much smaller compared to N and L
respectively, the sparsity can easily achieve 30%. E.g., the
aforementioned CogVideoX-v1.5-T2V achieves a sparsity
of 31% for both spatial and temporal head while maintaining
an average of 29.99 PSNR.

Despite the theoretical speedup, the temporal head can not
be directly translated into real speedup since the pattern is
hardware-inefficient. We will discuss our practical solution
in Sec. 4.2 and prove it can achieve theoretical speedup in
Sec. 5.3. Note that we do not include the text prompts and
first frame in the theoretical calculation for simplicity, as
they are constant and small compared to the remaining part.

4. Methodology
In this section, we introduce SVG, a training-free framework
designed to exploit the sparse patterns of 3D full attention
while addressing practical deployment challenges through
careful design. To identify sparse patterns, SVG employs
an online profiling strategy (Sec 4.1). To effectively utilize
sparsity, SVG introduces a hardware-efficient layout trans-
formation, which enables real-world hardware acceleration
(Sec 4.2). Additionally, by integrating techniques such as
customized kernels and quantization (Sec 4.3), SVG signifi-
cantly accelerates video generation without compromising
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Figure 5. Visualization of hardware-efficient layout transforma-
tion. (a) Non-contiguous sparsity layout of temporal head, which
is hardware inefficient due to the contiguous layout required by
hardware accelerators. (b) Contiguous layout generated by trans-
posing the token-major tensor into a frame-major one, which can
be efficiently handled by block sparse attention.

generation quality.

4.1. Online profiling strategy for sparsity identification

As discussed in Sec 3.1, all attention heads can be clas-
sified and sparsified into spatial head and temporal head.
However, we find that such sparse patterns can be highly
dynamic across different denoising steps and input data.
E.g., a certain head can be a spatial head for one prompt
while being a temporal head given another. This dynamic
nature necessitates an efficient online sparsity identification
method, which classifies attention heads on the fly without
extra overhead.

To this end, SVG proposes an online profiling strategy. In-
stead of computing the entire full attention to identify sparse
attention, SVG only samples a subset of input rows (x%)
and calculates results with both the spatial and temporal
sparsity patterns. By choosing the one with the lower MSE
compared to full attention, SVG can efficiently approximate
the oracle identification method discussed in Sec 3.2. We
detail the profiling process in Algorithm 1.

To demonstrate the effectiveness of the proposed method,
we conduct a sensitivity test on profiling ratio x with
CogVideoX-v1.5-I2V. As shown in Table 3, profiling only
1% can achieve up to 31.1 PSNR, with only 3% runtime
overhead compared to full attention.

4.2. Hardware-efficient layout transformation

Despite the high sparsity in attention computation, speedups
are limited without a hardware-efficient sparsity layout (Ye
et al., 2023; Zheng et al., 2023). For instance, NVIDIA’s
Tensor Core, a matrix-matrix multiplication accelerator,
requires at least 16 contiguous elements along each
dimension to use. However, temporal head exhibits a sparse
layout of non-contiguous elements with a stride of L (i.e.,
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Table 1. Quality and efficiency benchmarking results of SVG and other baselines.
Type Method Quality Efficiency

PSNR ↑ SSIM ↑ LPIPS ↓ ImageQual ↑ SubConsist ↑ FLOPS ↓ Latency ↓ Speedup ↑
I2V CogVideoX-v1.5 (720p, 10s, 80 frames) - - - 70.09% 95.37% 147.87 PFLOPs 528s 1x

DiTFastAttn (Spatial-only) 24.591 0.836 0.167 70.44% 95.29% 78.86 PFLOPs 338s 1.56x
Temporal-only 23.839 0.844 0.157 70.37% 95.13% 70.27 PFLOPs 327s 1.61x
MInference 22.489 0.743 0.264 58.85% 87.38% 84.89 PFLOPs 357s 1.48x
PAB 23.234 0.842 0.145 69.18% 95.42% 105.88 PFLOPs 374s 1.41x
Ours 28.165 0.915 0.104 70.41% 95.29% 74.57 PFLOPs 237s 2.23x

T2V CogVideoX-v1.5 (720p, 10s, 80 frames) - - - 62.42% 98.66% 147.87 PFLOPs 528s 1x

DiTFastAttn (Spatial-only) 23.202 0.741 0.256 62.22% 96.95% 78.86 PFLOPs 338s 1.56x
Temporal-only 23.804 0.811 0.198 62.12% 98.53% 70.27 PFLOPs 327s 1.61x
MInference 22.451 0.691 0.304 54.87% 91.52% 84.89 PFLOPs 357s 1.48x
PAB 22.486 0.740 0.234 57.32% 98.76% 105.88 PFLOPs 374s 1.41x
Ours 29.989 0.910 0.112 63.01% 98.67% 74.57 PFLOPs 232s 2.28x

T2V HunyuanVideo (720p, 5.33s, 128 frames) - - - 66.11% 93.69% 612.37 PFLOPs 2253s 1x

DiTFastAttn (Spatial-only) 21.416 0.646 0.331 67.33% 90.10% 260.48 PFLOPs 1238s 1.82x
Temporal-only 25.851 0.857 0.175 62.12% 98.53% 259.10 PFLOPs 1231s 1.83x
MInference 23.157 0.823 0.163 63.96% 91.12% 293.87 PFLOPs 1417s 1.59x
Ours 29.546 0.907 0.127 65.90% 93.51% 259.79 PFLOPs 1171s 1.92x
Ours + FP8 29.452 0.906 0.128 65.70% 93.51% 259.79 PFLOPs 968s 2.33x

number of tokens per frame). This sparsity pattern prevents
effective utilization of Tensor Core, thereby constraining
overall efficiency.

To tackle this, SVG introduces a layout transformation strat-
egy that transforms the sparsity layout of temporal head
into a hardware-efficient one. As illustrated in Figure 5,
this strategy transposes a token-major tensor into a frame-
major one, which makes the tokens across different frames
into a contiguous layout. Such transformation maintains
a mathematically equivalent output as attention computa-
tion is associative (Dao et al., 2022; 2019). We ablate the
effectiveness of the proposed method in Sec 5.3.

4.3. Other optimizations

Efficient kernel customization. We notice that current
implementations of QK-norm and RoPE suffer from per-
formance issues, due to limited parallelism on small head
dimensions (e.g., 64 in CogVideoX-v1.5). Therefore, we
customize those operations with CUDA by a sub-warp re-
duction implementation, providing up to 5× speedup com-
pared to torch implementation (see Table 2). We also use Tri-
ton to implement fused online profiling strategy and layout
transformation kernels, followed by a block sparse attention
kernel with FlashInfer (Ye et al., 2025).

Quantization. We further incorporate FP8 quantization
into sparse attention (Zhang et al., 2025b; 2024; Zhao et al.,
2024c), which further boosts up to 1.3× throughput with
minimal accuracy drop as shown in Table 1. We also cus-
tomize an attention kernel that supports both FP8 quantiza-
tion and block sparse computation.

5. Experiment
5.1. Setup

Models. We evaluate SVG on open-sourced state-of-the-art
video generation models including CogVideoX-v1.5-I2V,
CogVideoX-v1.5-T2V, and HunyuanVideo-T2V to generate
720p resolution videos. After 3D VAE, CogVideoX-v1.5
consumes 11 frames with 4080 tokens per frame in 3D full
attention, while HunyuanVideo works on 33 frames with
3600 tokens per frame.

Metrics. We assess the quality of the generated videos us-
ing the following metrics. We use Peak Signal-to-Noise
Ratio (PSNR), Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018), Structural Similarity Index
Measure (SSIM) to evaluate the generated video’s similar-
ity, and use VBench Score (Huang et al., 2023) to evaluate
the video quality, following common practices in commu-
nity (Horé & Ziou, 2010; Zhao et al., 2024b; Li* et al., 2025;
Li et al., 2024). Specifically, we report the imaging quality
and subject consistency metrics, represented by ImageQaul
and SubConsist in our table.

Datasets. For CogVideoX-v1.5, we generate video using
the VBench dataset after prompt optimization, as suggested
by CogVideoX (Yang et al., 2024c). For HunyuanVideo, we
benchmark our method using the prompt in Penguin Video
Benchmark released by HunyuanVideo (Kong et al., 2024).

Baselines. We compare SVG against sparse attention
algorithms DiTFastAttn (Yuan et al., 2024) and MInfer-
ence (Jiang et al., 2024). As DiTFastAttn can be considered
as spatial head only algorithm, we also manually imple-
ment a temporal head only baseline named Temporal-only
attention. We also include a cache-based DiT acceleration
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(d) Prompt: Several ducks are lying in the mud pit, 
occasionally preening their feathers leisurely.

(c) Prompt: Several swallows are carrying mud to build 
nests under the eaves, low angle shot.

(a) Prompt: A blue boat is navigating in the ocean next to a cruise ship. (b) Prompt: A book on fire with flames coming out of it.
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Figure 6. Examples of generated videos by SVG and original implementation on CogVideoX-v1.5-I2V and HunyuanVideo-T2V. We
showcase four different scenarios: (a) minor scene changes, (b) significant scene changes, (c) rare object interactions, and (d) frequent
object interactions. SVG produces videos highly consistent with the originals in all cases, maintaining high visual quality.
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Figure 7. The breakdown of end-to-end runtime of HunyuanVideo
when generating a 5.3s, 720p video. SVG effectively reduces
the end-to-end inference time from 2253 seconds to 968 seconds
through system-algorithm co-design. Each design point contributes
to a considerable improvement, with a total 2.33× speedup.

algorithm PAB (Zhao et al., 2024b) as a baseline.

Parameters. For MInference and PAB, we use their official
configurations. For SVG, we choose cs as 4 frames and ct as
1224 tokens for CogVideoX-v1.5, while cs as 10 frames and
ct as 1200 tokens for HunyuanVideo. Such configurations
lead to approximately 30% sparsity for both spatial head
and temporal head, which is enough for lossless generation
in general. We skip the first 25% denoising steps for all
baselines as they are critical to generation quality, following
previous works (Zhao et al., 2024b; Li et al., 2024; Lv et al.,
2024; Liu et al., 2024a).

Visualizations. We present a comparison of the videos
generated by Dense Attention and Sparse VideoGen in Ap-
pendix B. Additionally, real video samples are available on
Google Drive and can be accessed here.

5.2. Quality evaluation

We evaluate the quality of generated videos by SVG com-
pared to baselines and report the results in Table 1. Results
demonstrate that SVG consistently outperforms all base-
line methods in terms of PSNR, SSIM, and LPIPS while
achieving higher end-to-end speedup.

Specifically, SVG achieves an average PSNR exceeding
29.55 on HunyuanVideo and 29.99 on CogVideoX-v1.5-
T2V, highlighting its exceptional ability to maintain high
fidelity and accurately reconstruct fine details. For a visual
understanding of the video quality generated by SVG, please
refer to Figure 6.

SVG maintains both spatial and temporal consistency by
adaptively applying different sparse patterns, while all other
baselines fail. E.g., since the mean-pooling block sparse
cannot effectively select slash-wise temporal sparsity (see
Figure 3), MInference fails to account for temporal depen-
dencies, leading to a substantial PSNR drop. Besides, PAB
skips computation of 3D full attention by reusing results
from prior layers, which greatly hurts the quality.

Moreover, SVG is compatible with FP8 attention quanti-
zation, incurring only a 0.1 PSNR drop on HunyuanVideo.
Such quantization greatly boosts the efficiency by 1.3×.
Note that we do not apply FP8 attention quantization on
CogVideoX-v1.5, as its head dimension of 64 limits the
arithmetic intensity, offering no on-GPU speedups.
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Table 2. Inference speedup of customized QK-norm and RoPE
compared to PyTorch implementation with different number of
frames. We use the same configuration of CogVideoX-v1.5, i.e.
4080 tokens per frame, 96 attention heads.

Frame Number 8 9 10 11

QK-norm 7.44× 7.45× 7.46× 7.47×

RoPE 14.50× 15.23× 15.93× 16.47×

Table 3. Sensitivity test on online profiling strategy ratios. Profiling
just 1% tokens achieves generation quality comparable to the
oracle (100%) while introducing only negligible overhead.

Ratios PSNR ↑ SSIM ↑ LPIPS ↓
CogVideoX-v1.5-I2V (720p, 10s, 80 frames)

profiling 0.1% 30.791 0.941 0.0799
profiling 1% 31.118 0.945 0.0757
profiling 5% 31.008 0.944 0.0764
profiling 100% 31.324 0.947 0.0744

5.3. Efficiency evaluation

To demonstrate the feasibility of SVG, we prototype the
entire framework with dedicated CUDA kernels based on
FlashAttention (Dao et al., 2022), FlashInfer (Ye et al.,
2025), and Triton (Tillet et al., 2019). We first showcase
the end-to-end speedup of SVG compared to baselines on
an H100-80GB-HBM3 with CUDA 12.4. Besides, we also
conduct a kernel-level efficiency evaluation. Note that all
baselines adopt FlashAttention-2 (Dao et al., 2022).

End-to-end speedup benchmark. We incorporate the end-
to-end efficiency metric including FLOPS, latency, and cor-
responding speedup into Table 1. SVG consistently out-
performs all baselines by achieving an average speedup
of 2.28× while maintaining the highest generation quality.
We further provide a detailed breakdown of end-to-end in-
ference time on HunyuanVideo in Figure 7 to analyze the
speedup. Each design point described in Sec 4 contributes
significantly to the speedup, with sparse attention delivering
the most substantial improvement of 1.81×.

Kernel-level efficiency benchmark. We benchmark in-
dividual kernel performance including QK-norm, RoPE,
and block sparse attention with unit tests in Table 2. Our
customized QK-norm and RoPE achieve consistently bet-
ter throughput across all frame numbers, with an average
speedup of 7.4× and 15.5×, respectively. For the sparse
attention kernel, we compare the latency of our customized
kernel with the theoretical speedup across different spar-
sity. As shown in Figure 8, our kernel achieves theoretical
speedup, enabling practical benefit from sparse attention.
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Figure 8. Latency comparison of different implementations of
sparse attention. Our hardware-efficient layout transformation
optimizes the sparsity pattern of temporal head for better con-
tiguity, which is 1.7× faster than naive sparse attention (named
original), approaching the theoretical speedup.

5.4. Sensitivity test

In this section, we conduct a sensitivity analysis on the hy-
perparameter choices of SVG, including the online profiling
strategy ratios (Sec 4.1) and the sparsity ratios cs and ct
(Sec 4.2). Our goal is to demonstrate the robustness of SVG
across various efficiency-accuracy trade-offs.

Online profiling strategy ratios. We evaluate the effec-
tiveness of online profiling strategy with different profiling
ratios on CogVideoX-v1.5 using a random subset of VBench
in Table 3. In our experiments, we choose to profile only
1% of the input rows, which offers a comparable generation
quality comparable to the oracle profile (100% profiled)
with negligible overhead.

Generation quality over different sparsity ratios. As dis-
cussed in Sec 3.3, different sparsity ratio of the spatial head
and temporal head can be set by choosing different cs and
ct, therefore reaching different trade-offs between efficiency
and accuracy. We evaluate the LPIPS of HunyuanVideo
over a random subset of VBench with different sparsity ra-
tios. As shown in Table 4, SVG consistently achieves decent
generation quality across various sparsity ratios. E.g., even
with a sparsity of 13%, SVG still achieves 0.154 LPIPS. We
leave the adaptive sparsity control for future work.

5.5. Ablation study

We conduct the ablation study to evaluate the effectiveness
of the proposed hardware-efficient layout transformation
(as discussed in Sec 4.2). Specifically, we profile the la-
tency of the sparse attention kernel with and without the
transformation under the HunyuanVideo configuration. As
shown in Figure 8, the sparse attention with layout transfor-
mation closely approaches the theoretical speedup, whereas
the original implementation without layout transformation
falls short. For example, at a sparsity level of 10%, our
method achieves an additional 1.7× speedup compared to
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Table 4. Video quality of HunyuanVideo on a subset of VBench
when varying sparsity ratios. LPIPS decreases as the sparse ratio
increases, achieving trade-offs between efficiency and accuracy.

Sparsity↓ 0.13 0.18 0.35 0.43 0.52

LPIPS↓ 0.154 0.135 0.141 0.129 0.116

the original approach, achieving a 3.63× improvement.

6. Conclusion
We accelerate video diffusion transformers by exploiting
sparse attention. We reveal that attention heads have in-
herent sparsity patterns and we classify them into spatial
head and temporal head. We proposed Sparse VideoGen
(SVG), a training-free method to utilize these sparsity pat-
terns for end-to-end efficiency boosts, including an efficient
online profiling algorithm and an efficient inference sys-
tem. On representative open video diffusion transformers
(CogVideoX-v1.5 and HunyuanVideo), SVG demonstrates
prominent end-to-end speedup without losing quality.
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R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36:34661–34710, 2023b.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
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A. A full version of related work
A.1. Efficient Diffusion Models

Diffusion Models function primarily as denoising models that are trained to estimate the gradient of the data distribution
(Song & Ermon, 2019; Zhang et al., 2023a). Although these models are capable of generating samples with high quality
and diversity, they are known as inefficient. To enhance the efficiency of diffusion models, researchers often focus on three
primary approaches: (1) decreasing the number of denoising steps, (2) reducing the model size, and (3) optimizing system
implementation for greater efficiency.

Decreasing the denoising steps. The main diffusion models rely on stochastic differential equations (SDEs) that learn to
estimate the gradient of the data distribution through Langevin dynamics (Ho et al., 2020; Meng et al., 2022). Consequently,
these models generally require numerous sampling steps (, e.g., 1,000). To improve sample efficiency, DDIM (Song et al.,
2020) approximates SDE-based diffusion models within an ordinary differential equation (ODE) framework. Expanding on
this concept, DPM (Lu et al., 2022a), DPM++ (Lu et al., 2022b), and Rectified Flows (Liu et al., 2022; 2024c) enhance ODE
paths and solvers to further reduce the number of denoising steps. Furthermore, Consistency Models (Song et al., 2023;
Luo et al., 2023) integrate the ODE solver into training using a consistency loss, allowing diffusion models to replicate
several denoising operations with fewer iterations. In addition, approaches grounded in distillation (Yin et al., 2024a;b)
represent another pivotal strategy. This involves employing a simplified, few-step denoising model to distill a more complex,
multi-step denoising model, thereby improving overall efficiency.

Nevertheless, all these approaches necessitate either re-training or fine-tuning the complete models on image or video
datasets. For video generation models, this is largely impractical due to the significant computational expense involved,
which is prohibitive for the majority of users. In this work, our primary focus is on a method to enhance generation speed
that requires no additional training.

Diffusion Model Compreesion A common approach to enhancing the efficiency of diffusion models involves compressing
their weights through quantization. Q-Diffusion (Li et al., 2023) introduced a W8A8 strategy, implementing quantization in
these models. Building on this foundation, ViDiT-Q (Zhao et al., 2024a) proposed a timestep-aware dynamic quantization
method that effectively reduces the bit-width to W4A8. Furthermore, SVDQuant (Li* et al., 2025) introduced a cost-effective
branch designed to address outlier problems in both activations and weights, thus positioning W4A4 as a feasible solution
for diffusion models. SageAttention (Zhang et al., 2025b) advanced the field by quantizing the attention module to INT8
precision via a smoothing technique. SageAttention V2 (Zhang et al., 2024; 2025d) and V3 (Zhang et al., 2025a) extended
these efforts by pushing the precision boundaries to INT4 hybridized with FP8 or even full FP4. Another common approach
is to design efficient diffusion model architectures (Xie et al., 2024; Cai et al., 2024; Chen et al., 2025) and high-compression
autoencoders (Chen et al., 2024a) to boost efficiency. Our Sparse VideoGen is orthogonal to these techniques and can utilize
them as supplementary methods to enhance efficiency.

Efficient System Implementation In addition to enhancing the efficiency of diffusion models by either retraining the
model to decrease the number of denoising steps or compressing the model size, efficiency improvements can also be
achieved at the system level. For instance, strategies such as dynamic batching are employed in StreamDiffusion (Kodaira
et al., 2023) and StreamV2V (Liang et al., 2024) to effectively manage streaming inputs in diffusion models, thereby
achieving substantial throughput enhancements. Other approaches include: DeepCache (Ma et al., 2024), which leverages
feature caching to modify the UNet Diffusion; ∆−DiT (Chen et al., 2024b), which implements this mechanism by caching
residuals between attention layers in DiT to circumvent redundant computations; and PAB (Zhao et al., 2024b), which
caches and broadcasts intermediary features at distinct timestep intervals. FasterCache (Lv et al., 2024) identifies significant
redundancy in CFG and enhances the reuse of both conditional and unconditional outputs. Meanwhile, TeaCache (Liu et al.,
2024a) recognizes that the similarity in model inputs can be used to forecast output similarity, suggesting an improved
machine strategy to amplify speed gains.

Despite these advanced methodologies, they often result in the generated output diverging significantly from the original, as
indicated by a PSNR falling below 22. In contrast, our method consistently achieves a PSNR exceeding 30, thus ensuring
substantially superior output quality compared to these previously mentioned strategies.
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A.2. Efficient Attention

Sparse Attention in LLM Recent studies on sparse attention in language models have identified patterns that reduce
computational costs by targeting specific token subsets. StreamingLLM (Xiao et al., 2023) and LM-Infinite (Han et al.,
2023) reveal concentration on initial and local tokens, highlighting temporal locality in decoding. H2O (Zhang et al., 2023b)
and Scissorhands (Liu et al., 2024d) note attention focuses mainly on a few dominant tokens. TidalDecode (Yang et al.,
2024a) shows cross-layer attention pattern correlations, aiding in attention sparsity. DuoAttention (Xiao et al., 2024a)
and MInference (Jiang et al., 2024) find distinct sparse patterns among attention heads, with varying focus on key tokens
and context. MMInference (Li et al., 2025) speedup the vision language models through modality-aware permutation.
SpargeAttention (Zhang et al., 2025c) and XAttention (Xu et al., 2025) propose general sparsity identification algorithms
that can be applied to all forms of models. Despite their success in LLMs or VLMs, these mechanisms are constrained to
token-level sparsity and miss the redundancy unique to video data.

Linear and Low-bit Attention Significant advancements have been achieved in enhancing attention efficiency, notably
through linear attention (Cai et al., 2023; Xie et al., 2024) and low-bit attention techniques (Zhang et al., 2025b; 2024).
Linear attention models, including Linformer (Wang et al., 2020), Performer (Choromanski et al., 2020), MetaFormer (Yu
et al., 2022), and LinearAttention (Katharopoulos et al., 2020), reduce the quadratic complexity of traditional attention to
linear. Low-bit attention approaches decrease computational demands by utilizing lower precision, with SageAttention
(Zhang et al., 2025b) employing INT8 precision to enhance efficiency without notable performance loss.

Sparse VideoGen, as a sparse attention method, is orthogonal to both linear attention and low-bit attention techniques.
Moreover, it can be integrated with low-bit attention methods, such as FP8 attention, to further enhance computational
efficiency.

B. Visualization of the generated videos
We provide visualization comparison between Dense Attention and Sparse VideoGen on HunyuanVideo and Wan 2.1.
We conduct both Text-to-Video generation and Image-to-Video generation under 720p resolution. Results demonstrate
that Sparse VideoGen can preserve high pixel-level fidelity, achieving similar generation quality compared with the dense
attention.
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Figure 9. Comparion of Dense Attention and Sparse VideoGen on HunyuanVideo Text-to-Video generation.
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Figure 10. Comparison of Dense Attention and Sparse VideoGen on Wan 2.1 Image-to-Video generation.
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C. Theoretical Analysis of Sparse Video Attention
Here we provide the theoretical analyses of SVG. Consider a video with N frames, each containing F tokens. Every
token can be encoded by an indices pair (i, j), where 0 ≤ i < N, 0 ≤ j < F . In the attention map we will flatten these
two-dimensional indices into a 1D vector. Corresponding formula is x = i · F + j.

Spatial Head

For spatial head, let a1 > 0 denote the threshold for spatial closeness between tokens. The spatial attention mask is defined
as:

fs((i1, j1), (i2, j2)) =

{
1 if |i1 − i2| < a1,

0 otherwise

For flattened indices x1 = i1 · F + j1 and x2 = i2 · F + j2,

fs(x1, x2) = 1 ⇔
⌊x1

F

⌋
−

⌊x2

F

⌋
< a1

The resulting attention map takes the form of block-banded structures: the attention mask will be on the main diagonal and
also on neighboring ±(a1 − 1) diagonals.

Temporal Head

For temporal head, let a2 > 0 denote the threshold for temporal closeness between tokens. The temporal attention mask is
defined as:

ft((i1, j1), (i2, j2)) =

{
1 if |j1 − j2| < a2,

0 otherwise

For flattened indices x1 = i1 · F + j1 and x2 = i2 · F + j2,

ft(x1, x2) = 1 ⇔ |(x1 mod F )− (x2 mod F )| < a2 ⇔ ∃k, 0 ≤ k < 2N − 1, |(x1 − x2)− kF | < a2

The resulting attention map forms 2N − 1 slanted diagonals that align along constant column index differences. These
diagonals, often referred to as “slashes,” correspond to the token positions sharing similar temporal locations across frames.
The corresponding points in the attention matrix yield a “slash-wise” pattern with width a2.
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