
Zero-shot Transfer Learning within a Heterogeneous
Graph via Knowledge Transfer Networks

Minji Yoon∗

Carnegie Mellon University
John Palowitch
Google Research

Dustin Zelle
Google Research

Ziniu Hu∗

University of California Los Angeles
Ruslan Salakhutdinov

Carnegie Mellon University
Bryan Perozzi

Google Research

Abstract

Data continuously emitted from industrial ecosystems such as social or e-commerce
platforms are commonly represented as heterogeneous graphs (HG) composed
of multiple node/edge types. State-of-the-art graph learning methods for HGs
known as heterogeneous graph neural networks (HGNNs) are applied to learn
deep context-informed node representations. However, many HG datasets from
industrial applications suffer from label imbalance between node types. As there
is no direct way to learn using labels rooted at different node types, HGNNs have
been applied on only a few node types with abundant labels. We propose a zero-
shot transfer learning module for HGNNs called a Knowledge Transfer Network
(KTN) that transfers knowledge from label-abundant node types to zero-labeled
node types through rich relational information given in the HG. KTN is derived
from the theoretical relationship, which we introduce in this work, between distinct
feature extractors for each node types given in a HGNN model. KTN improves
performance of 6 different types of HGNN models by up to 960% for inference on
zero-labeled node types and outperforms state-of-the-art transfer learning baselines
by up to 73% across 18 different transfer learning tasks on HGs.

1 Introduction

Large technology companies commonly maintain large relational datasets, derived from their internal
logs, that can be represented as or joined into a massive heterogeneous graph (HG) composed of
nodes and edges with multiple types (30). For instance, in e-commerce networks, there are product,
user, and review nodes, all interconnected by many edge types that represent forms of interactions
such as spending (user-product), reviewing (user-review), and reviews-of (product-review). To learn
powerful features representing the complex multimodal structure of HGs, various heterogeneous
graph neural networks (HGNN) have been proposed (15; 26; 35; 43).

A common issue in these industrial applications of HGNNs is the label imbalance among different
node types. For instance, publicly available content nodes – such as those representing video, text,
and image content – are abundantly labelled, whereas labels for other types (such as user or account
nodes) may be much more expensive to collect (or even not available, e.g. due to privacy restrictions).
This means that in most standard training settings, HGNN models can only learn to make good
inferences for a few label-abundant node types, and can usually not make any inferences for the
remaining node types, given the absence of any labels for them.

If there is a pair of label-abundant and zero-labeled node types which share an inference task, could we
transfer knowledge between them? One body of work has focused on transferring knowledge between

∗Work done while interning at Google

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

nodes of the same type from two different HGs (i.e., graph-to-graph transfer learning) (16; 40).
However, these approaches are not applicable in many real-world scenarios for three reasons. First,
any external large-scale HG that could be used in a graph-to-graph transfer learning setting would
almost surely be proprietary. Second, even if practitioners could obtain access to an external industrial
HG, it is unlikely the distribution of that (source) graph would match their target graph well enough
to apply transfer learning. Finally, node types suffering label scarcity are likely to suffer the same
issue on other HGs (e.g. user nodes).

In this paper, we introduce a zero-shot transfer learning approach for a single HG (assumed to be
fully-owned by the practitioners), transferring knowledge from labelled to unlabelled node types.
This setting is distinct from any graph-to-graph transfer learning scenarios, since the source and target
domains exist in the same HG dataset, and are assumed to have different node types. Our model
utilizes the shared context between source and target node types; for instance, in the e-commerce
network, the latent (unknown) labels of user nodes can be strongly correlated with spending/reviewing
patterns that are encoded in the cross-edges between user nodes and product/review nodes. We propose
a novel zero-shot transfer learning problem for this HG learning setting as follows:
Informal Problem Definition 1. Zero-shot cross-type transfer learning running on a HG:
Given a heterogeneous graph G with node types {s, t, · · · } with abundant labels for source type s but
no labels for target type t, can we train HGNNs to infer the labels of target-type nodes?
A naïve solution to this problem would be to re-use an HGNN pre-trained on the source nodes for
target node inference, given that both domains exist in the same HG. However, as we show in our
paper, HGNNs have distinct parameter sets for each node type (15), edge type (26), and meta-path
type (8; 35). These facts cause HGNNs to learn entirely different feature extractors for nodes and
edges of different types – in other words, the final embeddings for source and target nodes are
computed by different sets of parameters in HGNNs. Thus, a classifier pre-trained on source nodes
will fail to perform well on inference tasks for target nodes. The field of domain adaptation (DA)
targets this setting, seeking to transfer knowledge from a source domain with abundant labels to a
target domain which lacks them (9; 19; 20; 27). However, distinct feature extractors across node
types in HGNNs break a standard assumption of DA setting, namely that source and target domains
share the same feature extractors (e.g., CNNs for both source and target image domains). As we
demonstrate in this paper, in our problem setting, DA approaches fail to achieve the outstanding
performance they are known for in computer vision and NLP.

In our work, we first dissect the gradient path of HGNN models to see how feature extractors are
designed independently for each node type, and some empirical consequences. Then we theoretically
analyze how feature extractors across node types relate to each other and how their output distributions
could be represented in terms of each other. We model this theoretical relationship between two
feature extractors as a Knowledge Transfer Network (KTN) which can be optimized to transform
target embeddings to fit the source domain distribution. We perform an extensive evaluation of our
method on 18 different transfer learning tasks on HGs where we compare against state-of-the-art
domain adaptation baselines. Additionally, in order to understand which environments are ideal for
transferring knowledge between different node types for HGs, we formulate a synthetic heterogeneous
graph generator that allows us to study the sensitivity of these methods.

Our main contributions are:

• Novel and practical problem definition: To the best of our knowledge, KTN is the first zero-shot
cross-type transfer learning method running on a heterogeneous graph — transfer knowledge
across different node types within a heterogeneous graph.

• Generality: KTN is a principled approach analytically induced from the architecture of HGNNs,
thus applicable to any HGNN models, showing up to 960% performance improvement for zero-
labeled node inference across 6 different HGNN models.

• Effectiveness: We show that KTN outperforms state-of-the-art domain adaptation methods, being
up to 73.3% higher in MRR on 18 different transfer learning tasks on HGs.

• Sensitivity Analysis: We provide a HG generator model to analyze how the node attribute and
edge distributions of HGs affect the performance of KTN and other methods on the task.

2 Related Work

Various transfer learning problems have been defined on the graph domain. (21; 22; 38; 42) construct
synthetic graphs from unstructured data and transfer knowledge over the graphs using GNNs. On

2

the other hand, (13; 14; 24; 37) focus on extracting knowledge from the existing graph structures.
They pretrain a GNN model on a source graph and re-use the model on a target graph. While these
methods focus on homogeneous graphs, (16; 40) transfer HGNNs across different HGs. However,
none of them can be directly applied to our cross-type transfer learning problem running on a single
HG. Here we cover two classes of learning approaches that are related to our problem. As HGNNs
are the models to which our method can be applied, we cover them extensively in Section 3.

Zero-shot domain adaptation (DA) transfers knowledge from a source domain with abundant
labels to a target domain which lacks them. Zero-shot DA can be categorized into three groups
— MMD-based methods, adversarial methods, and optimal-transport-based methods. MMD-based
methods (18; 20; 29) minimize the maximum mean discrepancy (MMD) (11) between the mean
embeddings of two distributions in reproducing kernel Hilbert space. Adversarial methods (9; 19)
are motivated by theory in (2; 3) suggesting that a good cross-domain representation contains no
discriminative information about the origin of the input. They learn domain-invariant features by
a min-max game between the domain classifier and the feature extractor. Optimal transport-based
methods (27) estimate the empirical Wasserstein distance (25) between two domains and minimizes
the distance in an adversarial manner. All three categories rely on two networks — a feature extractor
network and a task classifier network. Adversarial and OT-based methods use an additional domain
classifier network. Due to the assumption that source and target domains have the same modality 2,
the standard DA setting assumes identical feature extractors across domains. More descriptions can
be found in Appendix A.9.

Label propagation (LP) approaches (e.g., (45)) use message-passing to pass each node’s label to its
neighbors according to normalized edge weights. LP relies on only a graph’s edges, and is therefore
easily applied to a heterogeneous graph – labels are simply propagated across edges, regardless of
type. In this paper we also evaluate a similarly-simple baseline, embedding propagation (EP). Similar
to LP, EP recursively propagates source embeddings (computed using source labels) until they reach
the target domain. EP exploits both node attribute information and the node adjacencies, but only
uses the source node embeddings.

3 Preliminaries

In this section we review heterogeneous graphs and heterogeneous graph neural networks (HGNNs).

3.1 Heterogeneous graph

Heterogeneous graphs (HGs) are an important abstraction for modeling the relational data of multi-
modal systems. Formally, a heterogeneous graph is defined as G = (V, E , T ,R) where the node set
V; the edge set E consisting of ordered tuples eij := (i, j) with i, j ∈ V , where eij ∈ E iff an edge
exists from i to j; the set of node types T with associated map τ : V 7→ T ; the set of relation types
R with associated map ϕ : E 7→ R. This flexible formulation allows directed, multi-type edges. We
additionally assume the existence of a node attribute vector xi ∈ Xτ(i) for each i ∈ V , where Xt is
an attribute matrix specific to nodes of type t.

3.2 Heterogeneous Graph Neural Networks (HGNN)

Various HGNN models have been proposed (15; 26; 35; 41; 43). Fully-specified HGNN models
have specialized parameters for each node type (15), edge type (26), and meta-path type (8) to most
effectively utilize the complex relationships encoded in the HG data structure. In this paper, we use a
flavor of HGNN known as a Heterogeneous Message-Passing Neural Network (HMPNN) as our base
model on which to demonstrate KTN (though KTN can be implemented in almost any HGNN, as
we show in experiments in Section 6). The HMPNN merely extends the standard MPNN (10) by
specializing all transformation and message matrices in each node/edge type. With its generality,
HMPNN is itself a base model for RGCN (26) and HGT (15), and is also widely used as a default
HGNN model in popular GNN libraries (e.g., pyG (7), TF-GNN (6), DGL (34)).

2In our problem, source and target node types could have either (1) different distributions on the same
attribute space or (2) entirely different attribute spaces

3

In a HMPNN, for any node j, the embedding of node j at the l-th layer is obtained with the following
generic formulation:

h
(l)
j = Transform(l)

(
Aggregate(l)(E(j))

)
(1)

where E(j) = {(i, j) ∈ E : i, j ∈ V} denotes all the edges which connect (directionally) to j. The
above operations typically involve type-specific parameters to exploit the inherent multiplicity of
modalities in heterogeneous graphs. First, we define a linear Message function:

Message(l)(i, j) = M
(l)

ϕ((i,j)) ·
(
h
(l−1)
i ∥ h(l−1)

j

)
(2)

where M
(l)
r are the specific message passing parameters for each edge type r ∈ R and each of L

HMPNN layers. Then defining Er(j) as the set of edges of type r pointing to node j, the Aggregate
function mean-pools messages by edge type, and concatenates:

Aggregate(l)(E(j)) = ∥
r∈R

1
|Er(j)|

∑
e∈Er(j)

Message(l)(e) (3)

Finally, the Transform function maps the message into a type-specific latent space:
Transform(l)(j) = α(W

(l)

τ(j) · Aggregate(l)(E(j))) (4)

where W
(l)
t are the specific transformation parameters for each node type t ∈ T and each of L

HMPNN layers. By stacking L layers, HMPNN outputs highly contextualized final node represen-
tations, and the final node representations can be fed into another model to perform downstream
heterogeneous network tasks, such as node classification or link prediction.

3.3 Problem definition

Using notations defined above, we formalize our novel transfer learning problem on HGs.
Problem Definition 1. Zero-shot cross-type transfer learning running on a HG:
In a given heterogeneous graph G = (V, E , T ,R) with node attributes X = ∪t∈T Xt, assume node
types s and t share a classification task {(i, yi) : i ∈ Vs,Vt}. During the training phase, using labels
{(i, yi) : i ∈ Vs} only for source-type nodes, we train an HGNN model f : f(G,X) = hi to get node
embeddings hi for all nodes i ∈ V and a classifier g : g(hi) = ŷi to predict labels ŷi from the node
embeddings hi. During the test phase, our task is to predict labels {(j, yj) : j ∈ Vt} of target-type
nodes where none of labels of target-type nodes were used for training.

4 Cross-Type Feature Extractor Transformations in HGNNs

We define ft : G 7→ Rd to be the “feature extractor" of a HGNN, which is composed of parameters
participating to map input node attributes of type t into a shared feature space Rd. In this section, we
derive a strict transformation between feature extractors within a HMPNN. Specifically, for any two
nodes i, j with types τ(i) = s and τ(j) = t, we derive an expression for fs in terms of ft, and use
that expression to inspire a trainable transfer learning module called KTN in the following section.
For simplicity, throughout this section we ignore the activation α(·) within the Transform function
in Equation (4).

4.1 Feature extractors in HMPNNs

We first reason intuitively about the differences between fs and ft when s ̸= t, using a toy hetero-
geneous graph shown in Figure 1(a). Consider nodes v1 and v2, noticing that τ(1) ̸= τ(2). Using
HMPNN’s equations (2)-(4) from Section 3.2, for any l ∈ {0, . . . , L− 1} we have

h
(l)
1 = W (l)

s

[
M (l)

ss

(
h
(l−1)
3 ∥ h(l−1)

1

)
∥M (l)

ts

(
h
(l−1)
2 ∥ h(l−1)

1

)]
(5)

h
(l)
2 = W

(l)
t

[
M

(l)
st

(
h
(l−1)
1 ∥ h(l−1)

2

)
∥M (l)

tt

(
h
(l−1)
4 ∥ h(l−1)

2

)]
(6)

where h
(0)
j = xj . From these equations, we see that h(l)

1 and h
(l)
2 , which are features of different

types, are extracted using disjoint sets of model parameters at l-th layer. In a 2-layer HMPNN,
this creates unique gradient backpropagation paths between the two node types, as illustrated in
Figures 1(b)-1(c). In other words, even though the same HMPNN is applied to node types s and t, the
feature extractors fs and ft have different computational paths. Therefore they project node features
into different latent spaces, and have different update equations during training.

4

(a) Toy graph (b) Gradient path for feature
extractor fs

(c) Gradient path for feature
extractor ft

Figure 1: Illustration of a toy heterogeneous graph and the gradient paths for feature extractors fs and ft.
Colored arrows in figures (b) and (c) show that the same HGNN nonetheless produces different gradient paths
for each feature extractor. Color density of each box in (b) and (c) is proportional to the degree of participation
of the corresponding parameter in each feature extractor.

(a) Test accuracy across various
feature extractors

(b) L2 norms of gradients of
Wτ(·)

(c) L2 norms of gradients of
Mϕ(·)

Figure 2: HGNNs trained on a source domain underfit a target domain even on a “nice" heterogeneous graph. (a)
Performance on the simulated heterogeneous graph for 4 kinds of feature extractors; (source: source extractor fs
on source domain, target-src-path: source extractor fs on target domain, target-org-path: target extractor ft
on target domain, and theoretical-KTN: target extractor ft on target domain using KTN.) (b-c) L2 norms of
gradients of parameters Wτ(·) and Mϕ(·) in HGNN models.

4.2 Empirical gap between fs and ft

Here we study the experimental consequences of the above observation via simulation. We first
construct a synthetic graph extending the 2-type graph in Figure 1(a) to have multiple nodes per-type,
and multiple classes. To maximize the effects of having different feature extractors, we sample source
and target nodes from the same feature distributions and each classes are well-separated in the both
the graph and feature space (more details available in Appendix A.7.1).

On such a well-aligned heterogeneous graph, without considering the observation in Section 4.1,
there may seem to be no need for domain adaptation from ft to fs. However, when we train the
HMPNN model solely on s-type nodes, as shown in Figure 2(a) we find the test accuracy for s-type
nodes to be high (90%, blue line) and the test accuracy for t-type nodes to be quite low (25%, green
line). Now if instead we make the t-type nodes use the source feature extractor fs, much more
transfer learning is possible (∼65%, orange line). This shows that the different feature extractors
present in the HMPNN model result in the significant performance drop, and simply matching input
data distributions can not solve the problem.

To analyze this phenomenon at the level of backpropagation, in Figures 2(b)-2(c) we show the
magnitude of gradients passed to parameters of source and target node types. As illustrated in
Figures 1(b)-1(c), we find that the final-layer Transform parameter W (2)

t for type-t nodes have
zero gradients (Figure 2(b)), and similarly for the final-layer Message parameters (Figure 2(c)).
Additionally, those same parameters in the first-layer for t-type nodes have much smaller gradients
than their s-type counterparts: W (1)

t (blue line in Figure 2(b)), M (1)
st and M

(1)
tt (blue and orange lines

in Figure 2(c)) appear below than other lines. This is because they contribute to fs less than ft

This case study shows that even when an HGNN is trained on a relatively simple, balanced, and
class-separated heterogeneous graph, a model trained only on the source domain node type cannot
transfer to the target domain node type.

5

4.3 Relationship between feature extractors in HMPNNs

We show that a HMPNN model provides different feature extractors for each node type. However,
still, fs and ft are built inside one HMPNN model and interchange intermediate feature embeddings
with each other. Both H

(L)
s and H

(L)
t (the output of fs and ft) are computed using the previous

layer’s intermediate embeddings H(L−1)
s , H

(L−1)
t , and any other connected node type embeddings

H
(L−1)
x at the L-th HMPNN layer. Therefore H

(L)
s and H

(L)
t can be mathematically presented by

each other using the (L−1)-th layer embeddings as connecting points, so do fs and ft. Based on this
intuition, we derive a strict transformation between fs and ft, which will motivate the core domain
adaptation component of our proposed KTN model.

Theorem 1. Given a heterogeneous graph G = {V, E , T ,R}. For any layer l > 0, define the set of
(l − 1)-th layer HMPNN parameters as

Q(l−1) = {M (l−1)
r : r ∈ R} ∪ {W (l−1)

t : t ∈ T }. (7)

Let A be the total n× n adjacency matrix. Then for any s, t ∈ T there exist matrices A∗
ts = ats(A)

and Q∗
ts = qts(Q(l−1)) such that

H(l)
s = A∗

tsH
(l)
t Q∗

ts (8)

where ats(·) and qts(·) are matrix functions that depend only on s, t.

The full proof of Theorem 1 can be found in Appendix A.1. Notice that in Equation 8, Q∗
ts acts as a

macro-Transform operator that maps H(L)
t into the source domain, then A∗

ts aggregates the mapped
embeddings into s-type nodes. In other words, Q∗

ts acts as a mapping matrix from the target domain
to the source domain. To examine the implications, we run the same experiment as described in
Section 4.2, while this time mapping the target features H(L)

t into the source domain by multiplying
with Q∗

ts in Equation 8 before passing over to a task classifier. We see via the red line in Figure 2(a)
that, with this mapping, the accuracy in the target domain becomes much closer to the accuracy in the
source domain (∼70%). Thus, we use this theoretical transformation as a foundation for our trainable
HGNN domain adaptation module, introduced in the following section.

4.4 Generalized cross-type transformations for HGNNs

In this section we showed that a HMPNN feature extractor on the (label-abundant) source node
type can be expressed in terms of the (label-scarce) target node type feature extractor, and this
transformation enables cross-type zero-shot learning for the target node type. As most HGNNs have
distinct feature extractors for each node types (even single-layer HGNNs, which have specialized
parameters for each node/edge attribute projection layer), they will suffer from the under-trained target
embeddings phenomena we showed in Section 4.2. For instance, in the meta-path based MAGNN
model (8), meta-paths directing toward the target node types are generally less engaged in the source
node feature computation and thus receive smaller gradients. While we cannot derive the exact
cross-type transformation for all possible HGNNs, the core intuition in the HMPNN theory holds,
namely that H(L)

s and H
(L)
t are both computed using the previous layer’s intermediate embeddings

(see Section 4.3) across all HGNN models. This observation allows us to extend our KTN and apply
it to almost any HGNN. We illustrate this by applying KTN to 6 different HGNN models in Section 6,
where we see greatly increased target-type accuracy.

5 KTN: Trainable Cross-Type Transfer Learning for HGNNs

Inspired by these derivations we introduce our primary contribution, Knowledge Transfer Networks.
We begin by noting Equation 8 in Theorem 1 has a similar form to a single-layer graph convolutional
network (17) with a deterministic transformation matrix (Q∗

ts) and a combination of adjacency
matrices directing from target node type t to source node type s (A∗

ts). Instead of hand-computing
the mapping function Q∗

ts for arbitrary HGs and HGNNs (which would be intractable), we learn the
mapping function by modelling Equation 8 as a trainable graph convolutional network, named the

6

Algorithm 1 Training step on a source domain

Require: heterogeneous graph G = (V, E , T ,R), node feature matrices X , source node type s, target node
type t, adjacency matrix Ats, source node label matrix Ys.

Ensure: HGNN f, classifier g, KTN tKTN

1: H
(L)
s , H

(L)
t = f(G, H(0) = X)

2: H∗
t = tKTN (H

(L)
t) = AtsH

(L)
t Tts

3: LKTN =
∥∥∥H(L)

s −H∗
t

∥∥∥
2

4: L = LCL(g(H(L)
s),Ys) + λLKTN

5: Update f, g, t using ∇L

Algorithm 2 Test step on a target domain
Require: pretrained HGNN f, classifier g, KTN tKTN
Ensure: target node label matrix Yt

1: H
(L)
t = f(G, H(0) = X)

2: H∗
t = H

(L)
t Tts

3: return g(H∗
t)

Knowledge Transfer Network, tKTN(·). KTN replaces Q∗
ts and A∗

ts in Equation 8 as follows:

tKTN(H
(L)
t) = AtsH

(L)
t Tts (9)

LKTN =
∥∥∥H(L)

s − tKTN(H
(L)
t)

∥∥∥
2

(10)

where Ats is an adjacency matrix from node type t to s, and Tts is a trainable transformation matrix.
By minimizing LKTN, Tts is optimized to a mapping function of the target domain into the source
domain.

5.1 Algorithm

We minimize a classification loss LCL and a transfer loss LKTN jointly with regard to a HGNN model
f, a classifier g, and a knowledge transfer network tKTN as follows:

min
f, g, tKTN

LCL(g(f(G,X)s),Ys) + λ ∥f(G,X)s − tKTN(f(G,X)t)∥2

where λ is a hyperparameter regulating the effect of LKTN; and f(G,X)s and f(G,X)t denote H
(L)
s

and H
(L)
t , respectively. Algorithm 1 describes a training step on the source domain. After computing

the node embeddings H(L)
s and H

(L)
t , we map H

(L)
t to the source domain using tKTN and compute

LKTN. Then, we update the models using gradients of LCL (computed using only source labels) and
LKTN. Algorithm 2 describes the test phase on the target domain. After we get node embeddings H(L)

t

from the trained HGNN model, we map H
(L)
t into the source domain using the trained transformation

matrix Tts. Finally we pass the transformed target embeddings H∗
t into the classifier which was

trained on the source domain.

Indirect Connections We note that in practice, the source and target node types can be indirectly
connected in HGs via other node types (i.e., there is no Ats). Appendix A.2 describes how we can
easily extend KTN to cover domain adaption scenarios in this case.

6 Experiments

6.1 Datasets

Open Academic Graph (OAG). A dataset introduced in (44) composed of five types of nodes:
papers (P), authors (A), institutions (I), venues (V), fields (F) and their corresponding relationships.
Paper and author nodes have text-based attributes, while institution, venue, and field nodes have
text- and graph structure-based attributes. Paper, author, and venue nodes are labeled with research
fields in two hierarchical levels, L1 and L2. We construct three field-specific subgraphs from OAG:
computer science, computer networks, and machine learning academic graphs.

7

Table 1: Open Academic Graph on Computer Science field. The gain column shows the relative gain of our
method over using no domain adaptation (Base column). o.o.m denotes out-of-memory errors.

Task Metric Base DAN JAN DANN CDAN CDAN-E WDGRL LP EP KTN (gain)

P-A (L1) NDCG 0.399 0.452 0.405 0.292 0.262 0.261 0.260 0.178 0.425 0.623 (56%)
MRR 0.297 0.361 0.314 0.179 0.129 0.111 0.138 0.041 0.363 0.629 (112%)

A-P (L1) NDCG 0.401 0.566 0.598 0.294 0.364 0.246 0.195 0.153 0.557 0.733 (83%)
MRR 0.318 0.508 0.544 0.229 0.270 0.090 0.047 0.022 0.507 0.711 (123%)

A-V (L1) NDCG 0.459 0.457 0.470 0.382 0.346 0.359 0.403 0.207 0.461 0.671 (46%)
MRR 0.364 0.413 0.458 0.341 0.205 0.253 0.327 0.011 0.389 0.698 (92%)

V-A (L1) NDCG 0.283 0.443 0.435 0.242 0.372 0.418 0.272 0.153 0.154 0.584 (107%)
MRR 0.133 0.365 0.345 0.094 0.241 0.444 0.144 0.006 0.006 0.586 (340%)

P-A (L2) NDCG 0.229 0.230 o.o.m 0.239 o.o.m o.o.m 0.168 o.o.m 0.215 0.282 (23%)
MRR 0.121 0.118 o.o.m 0.140 o.o.m o.o.m 0.020 o.o.m 0.143 0.2248 (86%)

A-P (L2) NDCG 0.197 0.162 o.o.m 0.204 0.158 0.161 0.132 o.o.m 0.208 0.287 (46%)
MRR 0.095 0.052 o.o.m 0.106 0.032 0.045 0.017 o.o.m 0.132 0.242 (155%)

A-V (L2) NDCG 0.347 0.329 0.295 0.325 0.288 0.273 0.289 o.o.m 0.297 0.402 (16%)
MRR 0.310 0.296 0.198 0.223 0.128 0.097 0.110 o.o.m 0.227 0.399 (29%)

V-A (L2) NDCG 0.235 0.249 0.251 0.214 0.197 0.205 0.217 o.o.m 0.119 0.252 (7%)
MRR 0.129 0.157 0.161 0.090 0.044 0.068 0.085 o.o.m 0.000 0.166 (28%)

Table 2: PubMed graph. The gain column shows the relative gain over using Base column.

Task Metric Base DAN JAN DANN CDAN CDAN-E WDGRL LP EP KTN (gain)

D-G NDCG 0.587 0.629 0.615 0.614 0.624 0.646 0.604 0.601 0.571 0.700 (19%)
MRR 0.372 0.425 0.414 0.397 0.428 0.443 0.388 0.389 0.336 0.499 (34%)

G-D NDCG 0.596 0.599 0.577 0.599 0.581 0.606 0.578 0.576 0.580 0.662 (11%)
MRR 0.354 0.362 0.332 0.356 0.337 0.362 0.340 0.351 0.353 0.445 (26%)

PubMed.(39) A network composed of of four types of nodes: genes (G), diseases (D), chemicals
(C), and species (S), and their corresponding relationships. Gene and chemical nodes have graph
structure-based attributes, while disease and species nodes have text-based attributes. Each gene and
disease is labeled with a set of diseases they belong to or cause.
Synthetic heterogeneous graphs. We generate stochastic block models (1) with multiple node/edge
types. We label each node types with the same set of classes. Then we control feature/edge distribu-
tions within/between node types by manipulating feature/edge signal-to-noise ratio within/between
classes. A complete definition of the generative model is given in Appendix A.7.

6.2 Baselines

We compare KTN with two MMD-based DA methods (DAN (18), JAN (20)), three adversarial
DA methods (DANN (9), CDAN (19), CDAN-E (19)), one optimal transport-based method (WD-
GRL (27)), and two traditional graph mining methods (LP and EP (45)). For KTN and DA methods,
we use HMPNN as their base HGNN model. More information of each method is in Appendix A.9.

6.3 Zero-shot transfer learning

We run 18 different zero-shot transfer learning tasks across three OAG and PubMed graphs. We
run each experiment 3 times and report the average value. Due to the space limitation, we report
the standard deviations and results on OAG-computer networks and OAG-machine learning in
Appendix A.3. Each heterogeneous graph has the same node classification task for both source and
target node types. During training, we are given 1) the heterogeneous graph structure information (i.e.,
adjacency matrices), 2) input node attribute matrices for all node types, and 3) labels on source-type
nodes for the classification task. During the test phase, we predict labels on target-type nodes for
the same classification task. The performance is evaluated by NDCG and MRR — widely adopted
ranking metrics (14; 15).

In Tables 1 and 2, our proposed method KTN consistently outperforms all baselines on all tasks and
graphs by up to 73.3% higher in MRR (P-A(L1) task in OAG-CS, Table 1). When we compare with
the base accuracy using the model pretrained on the source domain without any domain adaptation
(3rd column, Base), the results are even more impressive. We see our method KTN provides relative
gains of up to 340% higher MRR without using any labels from the target domain. These results show
the clear effectiveness of KTN on zero-shot transfer learning tasks on a heterogeneous graph. We
mention that venue and author node types are not directly connected in the OAG graphs (Figure 5(b)
in Appendix), but KTN successfully transfer knowledge by passing intermediate node types.

8

Table 3: KTN on different HGNN models. The Source column shows accuracy on for source node types. Base
and KTN columns show accuracy for target node types without/with using KTN, respectively. The Gain column
shows the relative gain of our method over using no domain adaptation.

P-A (L1) A-P (L1)
HGNN type Metric Source Base KTN Gain Source Base KTN Gain

R-GCN NDCG 0.765 0.337 0.577 71.12% 0.648 0.388 0.647 66.82%
MRR 0.757 0.236 0.587 148.73% 0.623 0.270 0.611 126.18%

HAN NDCG 0.476 0.179 0.520 190.56% 0.515 0.182 0.512 181.33%
MRR 0.416 0.047 0.497 960.55% 0.509 0.055 0.527 850.90%

HGT NDCG 0.757 0.294 0.574 95.07% 0.670 0.283 0.581 104.83%
MRR 0.749 0.178 0.563 216.17% 0.670 0.149 0.565 279.52%

MAGNN NDCG 0.657 0.463 0.574 24.01% 0.676 0.557 0.622 11.68%
MRR 0.631 0.378 0.556 47.33% 0.680 0.509 0.592 16.14%

MPNN NDCG 0.602 0.443 0.590 33.11% 0.646 0.307 0.621 101.92%
MRR 0.572 0.319 0.575 80.10% 0.660 0.145 0.595 311.42%

HMPNN NDCG 0.789 0.399 0.623 56.14% 0.671 0.401 0.733 82.88%
MRR 0.777 0.297 0.629 111.86% 0.661 0.318 0.711 123.30%

Baseline Performance. Among baselines, MMD-based models (DAN and JAN) outperform
adversarial-based methods (DANN, CDAN, and CDAN-E) and optimal transport-based method
(WDGRL), unlike results reported in (19; 27). These reversed results are a consequence of HGNN’s
unique feature extractors for each domains. Adversarial- and optimal transport-based methods define
separate losses for source and target feature extractors (which are not separated in their shared feature
extractor assumption), resulting in divergent gradients between different feature extractors and poor
domain adaption performance. This shows again the importance of considering different feature
extractors in HGNNs. More analysis can be found in Appendix A.4.

6.4 Generality of KTN

Here, we use 6 different HGNN models, R-GCN (26), HAN (35), HGT (15), MAGNN (8),
MPNN (10), and HMPNN. MPNN maps all node types to the shared embedding space using
projection matrices at the beginning then applies MPNN layers designed for homogeneous graphs. In
Table 3, KTN improves accuracy on the target nodes across all HGNN models by up to 960%. This
shows the strong generality of KTN. More results and analysis can be found in Appendix A.5.

6.5 Sensitivity analysis

Using our synthetic heterogeneous graph generator, we generate non-trivial 2-type heterogeneous
graphs to examine how the feature and edge distributions affect the performance of KTN and other
baselines. We generate a range of test-case scenarios by manipulating (1) signal-to-noise ratio σe of
within-class edge distributions and (2) signal-to-noise ratio σf of within-class feature distributions
across all of the (a) source-source (s ↔ s), (b) target-target (t ↔ t), and (c) source-target (s ↔ t)
relationships.

Figure 3: Synthetic HG generator

For instance, in Figure 3, for each edge type
(s ↔ s, t ↔ t, and s ↔ t, differentiated by
colors), there are two different types of edges,
edges within the same class (plain line) and
edges across different classes (dotted line). For
each edge type, we manipulate σe by chang-
ing the ratio of within-class and cross-class
edges, and σf by diverging feature distribu-
tions between classes. Thus there will be 6
signal-to-noise ratios in total. A higher signal-
to-noise ratio for a particular data dimension
(edges or features) across a particular relation-
ship r ∈ {s ↔ s, t ↔ t, s ↔ t} means that
classes are more separable in that data dimension, when comparing within r, and hence easier for
HGNNs. Note that while tuning one σ(·) on the range [1.0, 10.0], the remaining five σ(·) are held
at 10.0. Additionally, we vary σ(·) across two scenarios: (I) “easy": source and target node types
have same number of clusters and same feature dimensions, (II) “hard" source and target node types
have different number of clusters and feature dimensions. Note that clusters and classes are different
concepts in this experiment; several clusters could have the same class label.

9

(a) Edge dist. (easy) (b) Feature dist. (easy) (c) Edge dist. (hard) (d) Feature dist. (hard)

Figure 4: Effects of edge and feature distributions across classes and types in heterogeneous graphs.

Figures 4(a) and 4(c) show results from changing σe across the three relation types. We see that KTN
is affected only by σe across the s ↔ t (cross-types) relationship, which accords with our theory,
since KTN exploits the between-type adjacency matrix. Surprisingly, as seen in Figures 4(b) and 4(d),
we do not find a similar dependence of KTN on σf , which shows that KTN is robust by learning
purely from edge homophily in the absence of feature homophily. Regarding the performance of
other baselines, EP shows similar tendencies as KTN— only affected by cross-type σe — because
EP also relies on cross-type propagation along edges. However, its accuracy is bounded above
due to the fact that it does not exploit the (unlabelled) target features. DAN and DANN, which do
not exploit cross-type edges, are not affected by cross-type σe. However, they show either low or
unstable performance across different scenarios. DAN shows especially poor performance in the
“hard" scenarios (Figure 4(c) and 4(d)), failing to deal with different feature spaces for source and
target domains.

7 Conclusion

In this work, we proposed the first cross-type zero-shot transfer learning method for heterogeneous
graphs. Our method, Knowledge Transfer Networks (KTN) for Heterogeneous Graph Neural
Networks, transfers knowledge from label-abundant node types to label-scarce node types. We
illustrate KTN handily improves HGNN performances up to 960% for zero-labeled node types across
6 different HGNN models and outperforms many challenging baselines up to 73% higher in MRR.
Future work in the area includes filtering noisy edges between source and target domains and making
KTN more robust and less dependent on structure of given noisy heterogeneous graphs.

Limitation Statement Our transfer learning method is limited to node types sharing the same task
(i.e., the same classifier). We plan to extend our work to transfer knowledge between different tasks
running on different node types on a heterogeneous graph.

Societal Impact Statement KTN allows organizations to learn better from their own graph data,
leveraging its structure without requiring external information. We believe this has a number of
positive applications (preserving model quality without needing extra datasets). However like all
modeling improvements, its true impact depends on what modeling tasks the technique is applied to.

8 Acknowledgement

MY gratefully acknowledges support from Amazon Graduate Research Fellowship. GPUs are
partially supported by AWS Cloud Credit for Research program.

References
[1] Emmanuel Abbe. Community detection and stochastic block models: recent developments. The

Journal of Machine Learning Research, 18(1):6446–6531, 2017.

[2] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Machine learning,
79(1):151–175, 2010.

10

[3] Shai Ben-David, John Blitzer, Koby Crammer, Fernando Pereira, et al. Analysis of represen-
tations for domain adaptation. Advances in neural information processing systems, 19:137,
2007.

[4] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information
processing systems, 26, 2013.

[5] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scalable representation
learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 135–144, 2017.

[6] Oleksandr Ferludin, Arno Eigenwillig, Martin Blais, Dustin Zelle, Jan Pfeifer, Alvaro Sanchez-
Gonzalez, Sibon Li, Sami Abu-El-Haija, Peter Battaglia, Neslihan Bulut, et al. Tf-gnn: Graph
neural networks in tensorflow. arXiv preprint arXiv:2207.03522, 2022.

[7] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

[8] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath aggregated graph
neural network for heterogeneous graph embedding. In Proceedings of The Web Conference
2020, pages 2331–2341, 2020.

[9] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks. The journal of machine learning research, 17(1):2096–2030, 2016.

[10] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

[11] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773,
2012.

[12] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 1025–1035, 2017.

[13] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019.

[14] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1857–1867, 2020.

[15] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of The Web Conference 2020, pages 2704–2710, 2020.

[16] Tiancheng Huang, Ke Xu, and Donglin Wang. Da-hgt: Domain adaptive heterogeneous graph
transformer. arXiv preprint arXiv:2012.05688, 2020.

[17] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[18] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features
with deep adaptation networks. In International conference on machine learning, pages 97–105.
PMLR, 2015.

[19] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. arXiv preprint arXiv:1705.10667, 2017.

11

[20] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with
joint adaptation networks. In International conference on machine learning, pages 2208–2217.
PMLR, 2017.

[21] Yadan Luo, Zijian Wang, Zi Huang, and Mahsa Baktashmotlagh. Progressive graph learning
for open-set domain adaptation. In International Conference on Machine Learning, pages
6468–6478. PMLR, 2020.

[22] Xinhong Ma, Tianzhu Zhang, and Changsheng Xu. Gcan: Graph convolutional adversarial
network for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8266–8276, 2019.

[23] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013.

[24] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan
Wang, and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 1150–1160, 2020.

[25] Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation
with optimal transport. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 737–753. Springer, 2017.

[26] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic
web conference, pages 593–607. Springer, 2018.

[27] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided representation
learning for domain adaptation. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[28] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Hsu, and Kuansan
Wang. An overview of microsoft academic service (mas) and applications. In Proceedings of
the 24th international conference on world wide web, pages 243–246, 2015.

[29] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

[30] Yizhou Sun and Jiawei Han. Mining heterogeneous information networks: principles and
methodologies. Synthesis Lectures on Data Mining and Knowledge Discovery, 3(2):1–159,
2012.

[31] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction
and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 990–998, 2008.

[32] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with
graph neural networks. arXiv preprint arXiv:2006.16904, 2020.

[33] Anton Tsitsulin, Benedek Rozemberczki, John Palowitch, and Bryan Perozzi. Synthetic graph
generation to benchmark graph learning. WWW’21, Workshop on Graph Learning Benchmarks,
2021.

[34] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

[35] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Het-
erogeneous graph attention network. In The World Wide Web Conference, pages 2022–2032,
2019.

12

[36] Thomas Wolf, Julien Chaumond, Lysandre Debut, Victor Sanh, Clement Delangue, Anthony
Moi, Pierric Cistac, Morgan Funtowicz, Joe Davison, Sam Shleifer, et al. Transformers: State-
of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages 38–45, 2020.

[37] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain
adaptive graph convolutional networks. In Proceedings of The Web Conference 2020, pages
1457–1467, 2020.

[38] Qitian Wu, Chenxiao Yang, and Junchi Yan. Towards open-world feature extrapolation: An
inductive graph learning approach. Advances in Neural Information Processing Systems,
34:19435–19447, 2021.

[39] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. Heterogeneous network
representation learning: A unified framework with survey and benchmark. IEEE Transactions
on Knowledge and Data Engineering, 2020.

[40] Shuwen Yang, Guojie Song, Yilun Jin, and Lun Du. Domain adaptive classification on hetero-
geneous information networks. In Proceedings of the Twenty-Ninth International Conference
on International Joint Conferences on Artificial Intelligence, pages 1410–1416, 2021.

[41] Yaming Yang, Ziyu Guan, Jianxin Li, Wei Zhao, Jiangtao Cui, and Quan Wang. Interpretable
and efficient heterogeneous graph convolutional network. IEEE Transactions on Knowledge
and Data Engineering, 2021.

[42] Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochenderfer, and Jure Leskovec. Handling
missing data with graph representation learning. Advances in Neural Information Processing
Systems, 33:19075–19087, 2020.

[43] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla. Het-
erogeneous graph neural network. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 793–803, 2019.

[44] Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao Gu, Yan Wang,
Bin Shao, Rui Li, et al. Oag: Toward linking large-scale heterogeneous entity graphs. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 2585–2595, 2019.

[45] Xiaojin Zhu. Semi-supervised learning with graphs. Carnegie Mellon University, 2005.

13

	Introduction
	Related Work
	Preliminaries
	Heterogeneous graph
	Heterogeneous Graph Neural Networks (HGNN)
	Problem definition

	Cross-Type Feature Extractor Transformations in HGNNs
	Feature extractors in HMPNNs
	Empirical gap between fs and ft
	Relationship between feature extractors in HMPNNs
	Generalized cross-type transformations for HGNNs

	KTN: Trainable Cross-Type Transfer Learning for HGNNs
	Algorithm

	Experiments
	Datasets
	Baselines
	Zero-shot transfer learning
	Generality of KTN
	Sensitivity analysis

	Conclusion
	Acknowledgement
	Appendix
	Proof of Theorem 1
	Indirectly Connected Source and Target Node Types
	More results for Zero-shot Transfer Learning in Section 6.3
	Analysis for Baselines in Section 6.3
	More results for Generality of KTN in Section 6.4
	Effect of trade-off coefficient
	Synthetic Heterogeneous Graph Generator
	Toy Heterogeneous Graph in Section 4.2
	Sensitivity test in Section 6.5

	Real-world Dataset
	Baselines
	HGNN models
	Experimental Settings

