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ABSTRACT

The band gap is critical for understanding the electronic properties of materi-
als in semiconductor applications. While density functional theory is commonly
used to estimate band gaps, it often underestimates values and remains compu-
tationally expensive, limiting its practical usefulness. Machine learning (ML)
has become a promising alternative for accurate and efficient band gap predic-
tions. However, existing datasets are limited in data modality, fidelity and sam-
ple size, and performance evaluation studies often lack direct comparisons be-
tween traditional and advanced ML models. Therefore, a more comprehensive
evaluation is needed to make progress towards real-world impacts. In this pa-
per, we developed a benchmarking framework for ML-based band gap prediction
to address this gap. We compiled a new multimodal, multi-fidelity dataset from
the Materials Project and BandgapDatabasel, consisting of 60,218 low-fidelity
computational band gaps and 1,183 high-fidelity experimental band gaps across
10 material categories. We evaluated seven ML models, from traditional meth-
ods to graph neural networks, assessing their ability to learn from atomic prop-
erties and structural information. To promote real-world applicability, we em-
ployed three metrics: mean absolute error, mean relative absolute error, and co-
efficient of determination R2. Moreover, we introduced a leave-one-material-
out evaluation strategy to better reflect real-world scenarios where new mate-
rials have little to no prior training data. Our findings offer valuable insights
into model selection and evaluation for band gap prediction across material cate-
gories, providing guidance for real-world applications in materials discovery and
semiconductor design. The data and code used in this work are available at:
https://github.com/Shef-AIRE/bandgap-benchmark.

1 INTRODUCTION

The band gap, defined as the energy difference between the valence and conduction bands, is a
fundamental property of periodic solids and plays a critical role in determining their electrical con-
ductivity. This property is widely utilized in semiconductor applications (Yoder, [1996), including
light-emitting diodes (LEDs) (Lisensky et al.,|1992), transistors (Ueno et al.,2004)), and photovoltaic
devices (Goetzberger & Hebling), [2000). However, accurately determining the band gap of a mate-
rial remains a significant challenge. Theoretical methods, such as density functional theory (DFT),
are commonly used but often underestimate band gaps due to limitations in exchange-correlation
functionals. More advanced methods, such as the Gy, approximation and hybrid functionals
(Heyd et al.| [2003)), provide improved accuracy but are computationally intensive and require metic-
ulous parameter tuning. Recently, machine learning (ML) has emerged as a promising alternative
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Figure 1: Flowchart of our proposed benchmark. The benchmark categorizes data based on fi-
delity and modality, incorporating low-fidelity (DFT) and high-fidelity (experimental) band gaps,
along with multimodal features. Beyond traditional K-fold cross-validation, a leave-one-material-
out strategy is introduced to better reflect real-world scenarios. The machine learning (ML) pipeline
studies both traditional ML methods and more recent neural networks. For evaluation, mean relative
absolute error (MRAE) is introduced to enhance applicability, alongside mean absolute error (MAE)
and the coefficient of determination R?.

for predicting band gaps. Unlike conventional theoretical methods, ML methods can capture com-
plex structure-property relationships from large datasets, enabling accurate and efficient predictions
without expensive calculations.

Machine learning predicts band gaps primarily using two complementary types of information:
atomic properties and crystal structure. These modalities represent the material from different per-
spectives, forming a multimodal data representation (Liu et al., [2025)). Atomic properties capture
intrinsic characteristics of individual atoms that influence electronic behavior and have been widely
used in band gap modeling (Talapatra et al.,[2023). For instance, |Sabagh Moeini et al.| (2024) used
eight atomic features to train linear models and identified the standard deviation of valence electrons
as a key predictor for band gaps in perovskites.

Advanced graph representation learning models (Schiitt et al., [2017; |Choudhary & DeCost} [2021)
extract crystal structure information via graph neural networks (GNNs) and capture atomic inter-
actions by analyzing distance and orientation. These models better utilize the underlying physics
of crystal structures via the three-dimensional arrangement of atoms, making them an intuitive and
suitable approach for accurate property prediction. Additionally, structural information comple-
ments atomic properties by providing a global context that connects the local information carried by
individual atoms. The Crystal Graph Convolutional Neural Network (CGCNN) (Xie & Grossman,
2018) is one of the most widely used models for structure-based materials property prediction. It in-
corporates nine atomic properties along with interatomic distance information. Subsequent models,
such as CartNet (Solé et al.| 2025])), extend this idea by explicitly encoding the full 3D structure of
materials. Another approach, LEFTNet (Du et al., [2023), further improves predictive performance
by capturing higher-order geometric features, including bond angles and local orientations. How-
ever, none of these methods have been evaluated against traditional machine learning models within
a unified benchmark.

Several benchmark studies have compared machine learning models for predicting various material
properties. For example, MatBench (Dunn et al., 2020) provides a leaderboard for structure-based
property predictions in inorganic materials, covering 13 supervised learning tasks (including band
gap prediction) and incorporating both DFT and experimental data. Similar ML benchmarking
efforts for band gap prediction include MatDeepLearn (Fung et al., [2021)), [Varivoda et al| (2023),
and the JARVIS-Leaderboard (Choudhary et al.| [2024). These benchmarks primarily rely on band



Accepted at the ICLR 2025 Workshop on Al for Accelerated Materials Design

gap databases, the Materials Project (Jain et al [2013) and QMOF (Rosen et al} [2021}; 2022), that
provide DFT-calculated band gaps only. On the other hand, experimental datasets, such as the
one from |Zhuo et al.[(2018), contain only compositional information, making them unsuitable for
structure-based approaches.

Masood et al.| (2023) introduced a multi-fidelity open-access dataset that includes 3D structures,
computational band gaps, and experimental band gaps, offering a more suitable resource for
structure-based band gap prediction. However, the evaluation dataset is relatively small, containing
only 30 materials, and lacks representation of key material categories such as oxides and halides.
This limited diversity does not adequately reflect the variety of real-world semiconductor materi-
als, highlighting the need for a more comprehensive dataset that covers a broader range of material
classes.

To address these limitations, we introduced a new benchmark that includes a large-scale, multi-
fidelity, and multimodal dataset, along with a systematic evaluation of various machine learn-
ing methods. The data and code used in this study are available at https://github.com/
Shef-AIRE/bandgap-benchmark for reproducibility.

Our work makes the following three key contributions:

* We compiled a multi-fidelity dataset from the Materials Project (Jain et al.| [2013)) and Bandgap-
Databasel (Dong & Cole, [2022), comprising 60,218 Perdew—Burke—Ernzerhof (PBE) band gaps
and 1,183 experimentally measured band gaps from scientific literature. In this dataset, experi-
mental data were aligned with corresponding 3D structures, enabling the prediction of experimen-
tal band gaps using multimodal inputs.

* We compared seven different ML prediction approaches, including traditional machine learning
methods and neural networks, in a multimodal (bimodal) setting that incorporates atomic prop-
erties and 3D structural information. Additionally, inspired by the pipeline proposed by Masood
et al.| (2023), we evaluate the effectiveness of multi-fidelity data in predicting experimental band
gaps.

* We evaluated each model using three metrics, which are mean absolute error (MAE), mean rel-
ative absolute error (MRAE), and coefficient of determination (R?). Moreover, we introduced a
leave-one-material-out strategy to test generalization to unseen material classes. This approach
realistically simulates scenarios in which the model encounters entirely new material families,
thereby providing a robust assessment of performance and generalization.

2 METHOD

In this study, we designed a benchmark for comparing various ML methods in predicting the band
gap of semiconductors. As illustrated in Fig. [I] we considered four key aspects: dataset, data
splitting, ML pipeline and evaluation.

2.1 DATASET

High-fidelity experimental data can significantly improve ML model performance, but such data are
costly to acquire and have limited availability. In contrast, computational data is more accessible
but prone to errors. Masood et al.| (2023)) proposed a transfer learning framework in which models
are first pre-trained on large amounts of low-fidelity computational data to capture general patterns
and then fine-tuned using a smaller set of high-fidelity experimental data. This strategy improves
predictive performance even when experimental data is scarce.

However, their approach has certain limitations. The evaluation set is relatively small and contains
structural overlaps with the training dataset, which may affect the effectiveness of the evaluation.

Building upon their work, we expanded the pre-training dataset by a factor of three and the fine-
tuning dataset by a factor of two, ensuring no overlap between the two subsets. Our dataset consists
of two parts: computational band gaps extracted from the Materials Project, and experimental band
gaps derived from Dong & Cole| (2022), which were collected from the literature. Given the larger
scale of our fine-tuning set, we expected the transfer learning approach to yield competitive perfor-
mance. While more advanced domain adaptation techniques (Li et al., 2024)) could be explored in
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future work, our current setup should provide a practical and scalable baseline that balances sim-
plicity and effectiveness.

Our data collection and curation process has two steps:

PBE Data Filtering. We first collected computational data from the Materials Project, which pro-
vides both 3D structures and PBE band gap values. To ensure relevance to semiconductor behaviour,
we excluded entries with formulas containing more than eight elements or with band gap values out-
side the range of 0.5-5 eV. After this filtering process, 61,570 entries remained.

Experimental Data Integration. Next, we sourced experimental band gaps from Bandgap-
Databasel (Dong & Colel 2022)), removing records without a DOI to maintain traceability. We
matched 39,300 records from BandgapDatabasel to the Materials Project database based on mate-
rial formulas. Any entries reporting a band gap range (e.g., 3.0-3.2 eV) were excluded. For materials
with multiple entries of the same formula, we took the median band gap value within the 0.5-5 eV
range. In cases of isomers, we selected the one with the lowest formation energy, assuming it is
the most likely to form. This data filtering method ensures that values largely agree across sources,
focusing less on environmental conditions and more on intrinsic material properties.

After processing, 1,183 materials with experimental band gaps were included in the fine-tuning
dataset, while 60,218 materials were allocated to the pre-training dataset. Although PBE band gap
values exist for the fine-tuning set, we did not use them to avoid assigning different targets to the
same input. There is no overlap between these two datasets.

2.2 MACHINE LEARNING MODELS

We adapted the multi-fidelity pipeline from|Masood et al.| (2023) to leverage both computational and
experimental datasets. Specifically, GNN-based models are first pre-trained on the computational
(PBE-level) dataset, which provides a large volume of low-fidelity data. This step is important be-
cause GNNs typically require substantial amounts of data to learn meaningful representations. The
pre-trained models were then fine-tuned on the experimental dataset, which contains high-fidelity
band gap measurements.

For comparison, we also trained each GNN-based model from scratch using only the experimental
dataset. In the case of traditional ML models, pre-training is not applied, as these simpler archi-
tectures rely on feature engineering rather than hierarchical feature learning. Unlike deep neural
networks, they do not benefit from large-scale parameter initialization, making pre-training unnec-
essary (Pan & Yang, [2010).

Our benchmark study evaluated seven machine learning methods, three traditional ML models and
four GNN-based models.

Traditional ML Models. We considered three traditional methods: Linear Regression (LR), Sup-
port Vector Regression (SVR), and Random Forest Regression (RFR). These methods rely on atomic
properties and interatomic distance encoding derived from the raw input data.

Graph Neural Networks. We considered four GNN-based methods: The Crystal Graph Convo-
lutional Neural Network (CGCNN) (Xie & Grossman, [2018]), CartNet(Solé et al., 2025) and two
variants of LEFTNet(Du et al.| [2023). CGCNN represents materials as graphs, where nodes cor-
respond to atoms and edges encode pairwise interatomic distances. This model utilizes structural
information solely from these distances, without an explicit representation of the complete three-
dimensional spatial relationships. A summary of the key architectural configurations used for these
GNN-based methods is provided in Table

CartNet employs Cartesian coordinate-based encoding of crystal structures, capturing higher-order
geometric information through absolute positional features. LEFTNet also captures higher-order ge-
ometric information, but does so by emphasizing local substructural relationships. It models detailed
3D spatial features such as bond angles and relative atomic arrangements, making it particularly ef-
fective for representing localized atomic environments. These enriched representations are valuable
for predicting properties influenced by complex three-dimensional interactions.
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LEFTNet-Z (the original LEFTNet), which encodes atoms using only their atomic numbers while
also integrating 3D structural information, and LEFTNet-Prop where we modify LEFTNet-Z by
adopting a more informative one-hot encoding scheme inspired by CGCNN, allowing the network
to capture richer atomic-level information in addition to the structural features. By leveraging both
explicit atomic properties and structural relationships, LEFTNet-Prop aims to enhance the model’s
ability to generalize across different material compositions.

2.3 DATA ENCODING

In our benchmark, different models rely on distinct feature representations. In this section, we
describe the encoding strategies used for atomic properties and interatomic distances, which serve
as the input representations for these models.

Atomic-Level Feature Encoding. To represent atomic properties, we adopted a one-hot encoding
scheme over nine features: group number, period number, electronegativity, covalent radius, number
of valence electrons, first ionization energy, electron affinity, block, and atomic volume. This feature
set—motivated by the design in CGCNN—is applied to all models except for CartNet and LEFTNet-
Z. By transforming these atomic properties into categorical variables, our models can effectively
discern elemental differences crucial for predicting material properties.

Structural Encoding with Radial Basis Functions (RBF). Structural interactions between atoms
are encoded via a set of radial basis functions (RBFs) that transform Euclidean distances into infor-
mative edge features. For any pair of atoms ¢ and j with Cartesian coordinates x; and x;, we define
the edge attribute as:

ri; = RBF (dist(xi,xj)>, (1)

where RBF(+) denotes the collection of radial basis functions. In the CGCNN model, this distance
encoding is integrated by concatenating the feature vector of atom 7 (v;) with that of its neighbor j
(v;) and the RBF-transformed distance 7;;, forming the combined neighbor feature:

h;; = concat (vi7 vj, rij). 2)

These concatenated features are then processed through successive graph convolution layers to yield
an atom-level encoding that encapsulates the local chemical environment.

Model-Specific Aggregation. Different architectures use the encoded features in tailored ways:

* Traditional ML models: For LR, SVR, and RFR, we adopt a similar encoding approach to
CGCNN but concatenate features at the compound level instead of the atom level. A single
compound-level representation is obtained by averaging the atom-level encodings h; across the
entire crystal. This global aggregation provides a fixed-length descriptor for each material.

* CGCNN: In CGCNN, we use the original encoding scheme, where concatenated neighbor fea-
tures are propagated through the network to form atom-level representations.

» CartNet: CartNet uses the atomic number as the atomic-level encoding and treats the RBF-
encoded distance as a scalar edge attribute. It focuses on atomic positions and addresses rotational
equivariance through data augmentation techniques based on Cartesian coordinates.

* LEFTNet-Z and LEFTNet-Prop: Both models retain the same structural encoding as in the
original work, differing only in their atomic-level encoding, as previously described. They treat
the RBF-encoded distance 7;; as a scalar edge attribute during the message-passing process, pre-
serving local geometric nuances and enabling the networks to learn the interplay between atomic
features and interatomic distances.

2.4 DATA SPLITTING

We performed evaluation using two different splitting strategies: cross-validation and leave-one-
material-out.



Accepted at the ICLR 2025 Workshop on Al for Accelerated Materials Design

A Pre-training Dataset B Pre-training Dataset
5000

25000

4000
20000

3000
15000

Count
Count

10000 2000

5000 l 1000
0

c Fine-tuning Dataset D Fine-tuning Dataset
350

300
250

S 200

Count

3
© 150

50
|| -

E Evaluation Dataset F Evaluation Dataset

5
5
|| —
OB B B E P B © P 1 2 4 5
FF FLE FE FE
¢ & SEE N

3
Band Gap (eV)
S ¢

S

%

&

Figure 2: Distribution of datasets used in this study. (A, C, E) show the distribution of material
categories in the pre-training, fine-tuning, and evaluation datasets, respectively. (B, D, F) illustrate
the corresponding band gap distributions.

K-fold Cross-Validation Split. The experimental band gap was first split into a fine-tuning set
(used for cross-validation) and an evaluation set in a 0.9:0.1 ratio. To ensure both sets are balanced
across material categories and maintain similar distributions, we used stratified splitting, randomly
selecting data points from each category according to this ratio. Specifically, 118 out of the 1,183
materials were placed in the evaluation set, reserved exclusively for performance testing and not
used in any training or validation. The remaining 1,065 materials were used for cross-validation.

Figure [2] illustrates the distribution of material classes and band gaps for each split: panels (A)
and (B) correspond to the pre-training dataset, (C) and (D) to the fine-tuning dataset, and (E) and (F)
to the evaluation dataset. The distribution between the pre-training dataset and the fine-tuning dataset
shows slight differences. Chalcogenides appear more frequently in the experimental datasets, sug-
gesting that band gap measurements for these materials are more commonly available. Additionally,
in contrast to the pre-training dataset, which is skewed towards low band gap values, the fine-tuning
dataset shows a more centered distribution around 1.5-3 eV.

Leave-One-Material-Out Split. In this experiment, each material was assigned to exactly one
category based on the presence of specific elements in its formula (see Table [A2). To ensure a
clear separation among categories, we excluded 279 out of 1,183 materials that belong to multiple
categories or do not fit into any category to avoid ambiguity and potential “leakage” in the leave-
one-material-out setting. Table[A3]shows the number of materials associated with different category
counts. After removing those that belong to more than one category or none, the remaining dataset
contains materials that can be uniquely categorized. Figure[A2]illustrates the distribution and vari-
ability of experimental band gaps within these categories, highlighting their distinct properties.

Table [A4]lists the final number of compounds in each category. To evaluate the model’s ability to
generalize beyond its training distribution, we adopted a leave-one-material-out evaluation protocol.
Following the category definitions from [Masood et al. (2023), we excluded the “double anion”
category, as these materials may overlap with other categories, potentially affecting the evaluation’s
effectiveness. The dataset is then divided into 10 distinct categories: chalcogenides, oxides, halides,
nitrides, phosphides, arsenides, antimonides, silicides, carbides, and hydrides.

For the GNNs training instance, we used the same pre-trained model for each split. One category was
held out from the training process, and the model was fine-tuned using all remaining categories. The
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Figure 3: (a) t-SNE visualization of the learned material embeddings, showing distinct clusters for
most categories. (b) Violin plot of the difference between PBE-calculated and experimental band
gaps (AE) across different compound categories, illustrating the variability in each category.

trained model was then tested on the held-out category to assess how well the learned representations
transfer to an unseen class of materials.

This evaluation approach simulates a realistic scenario where the model must predict the properties
of a new material family with minimal or no prior examples in the training set. It also serves as a
rigorous test of whether the model can generalize, evaluates how effectively it captures fundamental
patterns in the data, and demonstrates the transferability of the learned representations.

2.5 EVALUATION METRICS

We evaluated the regression tasks using three metrics: mean absolute error (MAE), mean relative
absolute error (MRAE), and the coefficient of determination (R?). MAE, a widely used metric in
existing works, measures the average magnitude of errors between predicted and actual values, pro-
viding an intuitive interpretation of model performance. R? quantifies the proportion of total varia-
tion of outcomes the model explains. MRAE normalizes the error, making it meaningful regardless
of the band gap’s magnitude and allowing for fair comparisons across materials with diverse band
gap ranges. In particular, for materials with small band gaps, a small absolute error may correspond
to a large relative error, which can significantly affect their properties. Therefore, we emphasized
MRAE in our experimental setting and selected the best model for each cross-validation fold based
on the lowest MRAE.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

For traditional ML methods, we encoded the data before using it as input for training. We imple-
mented LR, RFR, and SVR using Scikit-learn version 1.6.0 (Pedregosa et al., [2011). To ensure a
fair comparison, we followed the default settings in Scikit-learn without performing any hyperpa-
rameter fine-tuning. For the GNNs, we first pre-trained the model on the computational dataset for
200 epochs at a learning rate of 0.01. During the fine-tuning phase, we performed a 10-fold cross-
validation on the experimental dataset. To ensure stable gradient updates and mitigate catastrophic
forgetting of the pre-trained weights, the learning rate was reduced to 0.001. For models without
pre-training, each network was trained directly on the experimental dataset using the same learning
rate (0.001) for comparison. The best model for each fold was selected based on the lowest MRAE
on the validation set. To ensure the model reaches an optimal state at the end of training, we set
the total number of epochs to 50 for pre-trained models and 100 for those without pre-trained mod-
els, allowing sufficient convergence for the best model selection. Each method was evaluated using
10-fold cross-validation. In each fold, the validation set was randomly selected from the fine-tuning
dataset, while the evaluation dataset served as the test set to assess the performance of the selected
best model. For both validation and test sets, we reported the average and standard deviation of each
metric across the 10 folds.
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Table 1: Performance of different models on the validation and test sets, reported as mean =+ standard
deviation (best in bold, second best in underline). Higher values indicate better performance (1),
otherwise ().

Validation set Test set

Model MAE@eV)|, MRAE| R?1 |MAE(eV)| MRAE| R?%
No pre-training (fine-tuning only)

LR 0.664(0_008) 0.460(().128) 0.1 21(0.026) 0.709(0.055) 0.423(0_()93) 0.231 (0.097)
RFR 0.533 9010y 0-326(0.007) 0.4430.022) | 0.602(0.051) 0.337 060, 0.440(0.054)
SVR 0.524 0 005 0.329 004y 0:425 010 | 0-616(0.050) 0.3390.052) 0.422 50,
CGCNN 0.698(0_038) 0-353(0.056) 0.213(0.177) 0.659(0.039) 0.364(0_009) 0.092(0,()92)
CartNet 0.660(0'035) 0.362(0,019) 0. 144(0,127) 0.721 (0.063) 0-353(0.048) 0. 155(0‘ 198)

LEFTNet-Z 0.656(0.045) 0.3480.054y 0.365¢0.031) | 0.5970.0199 0.357(0.016) 0.337(0.033)
LEFTNet-Prop 0.653(0_053) 0.341(0.053) 0.371(0.055) 0.575(0.024) 0.351(0_020) 0.379(0,044)

Computational data pre-training + fine-tuning

CGCNN 0.684(0.067 0.3620.0s8) 0.138(0.246) | 0.626(0.043) 0.354(0.015) 0.1790.098)
CartNet 0.670(0_061) 0-350(0.066) 0.282(0.083) 0.643(0.020) 0.375(0_025) 0.25 1(0_042)
LEFTNet-Z 0.654(0,058) O~341(0.O61) 0~292(O.160) 0.608(0.043) 0.335(0,014) 0.300(0,]05)
LEFTN@t-PI‘Op 0.642(0.059) 0.348(04()64) 0.333(().129) 0.596(0.014) 0.362(0_0()9) 0.342(()_03())

LR, RFR, SVR, and four pre-trained GNN models were evaluated using the leave-one-material-
out strategy. Training was repeated five times, and the mean values of the metrics were recorded.
Compared to the MAE, MRAE offers a more meaningful assessment of materials science applica-
tions. By normalizing against the actual band gap values, this approach provides clearer insights
into the model’s performance for both small-gap and large-gap materials, ensuring a more balanced
evaluation across the entire band gap range.

3.2 CROSS-VALIDATION RESULTS

Table |1| presents the performance of seven different ML models for band gap prediction under two
training strategies: (1) direct fine-tuning on experimental data without prior knowledge from com-
putational data and (2) pre-training on computational data followed by fine-tuning on experimental
data. All models were evaluated using 10-fold cross-validation, with MRAE as the primary met-
ric for identifying the best-performing model. The results are reported as the mean and standard
deviation. RFR and SVR consistently achieve low MRAE values on both the validation and test
sets. Among the pre-trained neural networks, LEFTNet-Z generally outperforms CGCNN and Cart-
Net in terms of MRAE across both validation and test data. Notably, LEFTNet-Z’s best test set
MRAE (0.33540.014) is lower than most other methods but remains comparable to the RFR results
(0.3374:0.060). However, when considering R? values, RFR and SVR perform significantly better
than the neural networks, indicating that there is still room for improvement in deep learning mod-
els. These findings suggest that, in our experiments, simpler models such as RFR and SVR serve
as strong baseline choices for band gap regression tasks. Overall, pre-training on a large computa-
tional dataset helps reduce MRAE when transitioning to real experimental samples. However, RFR
trained solely on experimental data proves to be highly effective, often matching or even surpassing
the performance of pre-trained GNNs. This suggests that, despite the advantages of deep learning
models, traditional machine learning approaches such as RFR and SVR remain strong contenders,
particularly when high-quality experimental data is available.

3.3 LEAVE-ONE-MATERIAL-OUT RESULTS

The MRAE results for different material categories are shown in Figure d] The MRAE varies sig-
nificantly across categories, indicating that some materials are inherently more challenging for all
models to predict accurately. We also provide the MAE results in Figure to offer additional
insights into the models’ performance. Silicides and antimonides are among the most challenging
categories for all models. This may be due to the diverse bonding characteristics and structural
variations of these materials.
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Figure 4: Mean Relative Absolute Error (MRAE) across different material categories in the leave-
one-material-out experiments. Each bar represents the performance of a model when a specific
material category is excluded from training.

SVR shows consistently leading performance, maintaining moderate errors across most categories,
even for those with high MRAE and greater prediction challenges. GNN-based methods generally
outperform LR, suggesting that they can better capture features from multimodal data than sim-
pler models. Among them, LEFTNet-Prop achieves the lowest MRAE and MAE, indicating that
atomic property encoding and geometric features may be particularly useful for adapting the model
to unseen material categories.

4 CONCLUSION AND DISCUSSION

In this work, we presented a benchmarking study for band gap prediction using multi-fidelity and
multimodal data, systematically comparing various machine learning approaches from traditional
models to graph neural networks (GNNs). Our study addresses the limitations of existing datasets by
compiling a comprehensive dataset that integrates 60,218 computational PBE band gaps and 1,183
experimental band gaps, aligned with 3D structural information. This dataset supports structure-
based machine learning approaches and provides a stronger foundation for evaluating predictive
models in materials science.

Our results highlight that pre-training on computational PBE band gaps can improve the predictive
performance of deep learning models on experimental band gaps. However, we also found that
traditional models, such as RFR and SVR, remain competitive when trained solely on experimental
data. In some cases, these simpler models outperform GNNss, a trend also observed in prior studies
such as Dadi et al.[(2019). The relatively poor performance of GNNs in our setting may be due to
the limited size of the experimental dataset, which restricts their capacity to generalize.

Our leave-one-material-out evaluation revealed that certain material categories, such as silicides and
antimonides, pose greater challenges due to their structural and compositional diversity. Addition-
ally, GNNs generally outperform traditional ML models, suggesting their ability to capture complex
atomic and structural interactions.

Our evaluation indicates that there is still room for improvement, particularly for neural network
models, as their R? values remain relatively low. This suggests that the models struggle to capture
the variance in the data, potentially limiting their generalization ability. Future work could focus on
addressing the limitations identified in the current models to enhance their predictive performance.

Another promising direction is to expand the range of models included in the benchmark. For exam-
ple, MEGNet, which is designed to handle multi-fidelity data more effectively, could be evaluated
to assess whether it better integrates computational and experimental band gaps. Furthermore, ex-
panding the dataset by incorporating additional experimental band gap values from literature and
databases could enhance model training and improve generalization across diverse material classes.
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A APPENDIX 1: SUPPLEMENTARY FIGURES
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Figure Al: Mean Absolute Error (MAE) across different material categories in the leave-one-
material-out experiments. Each bar represents the performance of a model when a specific material
category is excluded from training.
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Figure A2: Experimental band gaps across different compound categories, illustrating the distribu-
tion and variability within each group.
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Table Al: Length of one-hot encoded vectors for the elemental properties used in the model.

Atomic property Encoding length
Group 19
Period 7
Electronegativity 10
Covalent radius 10
Valence electrons 12
First ionization energy 10
Electron affinity 10
Block 4
Atomic volume 10

Table A2: Categorization of materials based on chemical composition.

Category \Arsenides Antimonides Silicides Halides Chalcogenides Oxides
Key element(s) \ As Sb Si F, Cl, Br, I S, Se, Te O
Category | Nitrides  Phosphides Carbides Hydrides Others

Key element(s) | N P C H Not classified above

Table A3: Category distribution showing the number of categories each compound belongs to, in-
cluding those that do not belong to any category.

Category # | 1 2 3 Not belong to any
Count | 904 263 12 4

Table A4: Number of compounds in each category.

Category | Oxides  Chalcogenides Halides Nitrides  Phosphides
Count | 387 283 128 34 21

Category \ Hydrides Arsenides Antimonides  Carbides Silicides
Count | 15 12 10 7 7

Table AS5: Key configurations for CGCNN, CartNet, and LEFTNet-Z/Prop.

Parameter CGCNN CartNet LEFTNet-Z/Prop
Batch size 64 32 64

Cutoff radius 8.0A 8.0 A 8.0A
Maximum neighbors 12 12 12

RBF dimension 41 64 32

Atom feature dimension 64 256 128
Embedding dimension 128 256 128
Number of layers 3 4 4
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