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ABSTRACT

Multiplication-free neural networks significantly reduce the time and energy cost
on the hardware platform, as the compute-intensive multiplications are replaced
with lightweight bit-shift operations. However, existing shift networks are all
directly transferred from state-of-the-art convolutional neural networks (CNNs),
which lead to non-negligible accuracy drop or even failure of model convergence.
To combat this, we propose AutoShiftNet, the first framework tailoring Neural
Architecture Search (NAS) to substantially reduce the accuracy gap between bit-
shift neural networks and their real-valued counterparts. Specifically, we pioneer
dragging NAS into a shift-oriented search space and endow it with the robust
topology-related search strategy and custom regularization and stabilization. As a
result, our AutoShiftNet breaks through the incompatibility of traditional NAS
methods for bit-shift neural networks and achieves more desirable performance
in terms of accuracy and convergence. Extensive experiments demonstrate that
AutoShiftNet generates more advanced model architectures for shift networks,
where the accuracy increases by (1.69∼8.07)% on CIFAR10, (5.71∼18.09)% on
CIFAR100 and ≥ 4.36% on ImageNet, especially when many conventional CNNs
fail to converge on ImageNet with bit-shift weights.

1 INTRODUCTION

In recent years, large-scale commercial applications based on convolutional neural networks (CNNs)
have prompted researchers to design more efficient networks, which can be deployed on platforms with
limited resource budgets, such as mobile or IoT devices. Early works utilized network quantization
(Cheng et al., 2017) to achieve this goal, by replacing high-precision model parameters with smaller
bit-width representations. It can reduce the computational cost of model execution, but also suffer
from a non-negligible performance degradation, especially on complex datasets (e.g., ImageNet). To
address this issue, recent works (Zhou et al., 2017; Elhoushi et al., 2021) turned to using binary bit
shifts rather than simple quantized bits to replace floating-point model parameters.

The key insight of these solutions is that multiplying an element by a power of 2 is mathematically
equivalent to a bit-shift operation on it, which is computationally much cheaper and hardware-friendly.
Based on this, researchers designed different types of bit-shift techniques (Zhou et al., 2017; Elhoushi
et al., 2021; Li et al., 2021; 2022), which show promising overhead reduction in model execution.
However, all these solutions only focus on designing advanced weight quantization algorithms
to reduce the accuracy gap between shift networks and their real-valued counterparts, where the
backbone models are all directly transferred from conventional CNNs, e.g., ResNets (He et al.,
2016) and VGG (Simonyan & Zisserman, 2014). Given these CNN models are all designed for
the continuous real-valued domain, such direct conversion would restrict the potential of bit-shift
techniques, causing less optimal network architecture with a non-trivial accuracy drop.

To overcome this limitation, we aim to design advanced shift networks from another perspective,
i.e., searching for network architectures that are more compatible with the bit-shift quantization.
This is inspired by the Neural Architecture Search (NAS) technique, which can automatically
identify the satisfactory network architecture for a given task. The searched models have shown
better performance than carefully hand-crafted models (Liu et al., 2018b; Chen et al., 2019). One
straightforward way is to directly transfer NAS models searched from real-valued domains to bit-shift
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networks. However, similar to the manually-crafted networks, such strategy also leads to sub-optimal
results due to the semantic gap between real and bit-shift domains (Sections 3 and 5.4).

For the first time, we present AutoShiftNet, a novel methodology to automatically search for
the optimal bit-shift network architectures directly, aiming to reduce the accuracy drop from the
state-of-the-art real-valued models. Moreover, the introduction of bit-shift operations can significantly
reduce the searching, training and inference cost, which can facilitate the deployment of large models
on dedicated hardware. Specifically, AutoShiftNet contains three components: (1) Shift-oriented
search space. While existing NAS techniques mainly focus on the real-valued domain, we are the
first to construct a new search space composed of bit-shift operations and design the corresponding
forward and backward pass. (2) Topology-related search strategy. Since shift networks tend to have
faster gradient descent or even vanishing gradient (Elhoushi et al., 2021), they are more vulnerable
to the conventional gradient-based NAS techniques, i.e., searched networks can be dominated by
skip connections (Liu et al., 2018a). Therefore, we decouple the search of model operations and
topology, which can efficiently mitigate this issue (Gu et al., 2021). (3) Search regularization and
stabilization. Given the weight sign freezing effect (Li et al., 2021) and unstable training process, we
adopt multiple approaches to regularize and stabilize the search procedure, including shift-adaptive
L2 regularization, learning rate reset scheme and shift weight re-parameterization.

We clarify that our work is orthogonal to and different from ShiftAddNAS (You et al., 2022), which
aims to search for more accurate models from a hybrid search space with four operations (Attention,
Convolution, Shift and Add). Although ShiftAddNAS also considers bit-shift operations, it actually
still focuses on multiplication operations as they can provide much higher prediction accuracy. The
model searched by ShiftAddNAS is still dominated by multiplications while the shift operations only
take a very small part (ShiftAddNAS-T1↑ contains 7.1G multiplications and 8.5G additions, but only
1.4G shifts). Such model cannot be regarded as an actual shiftnet, and is difficult to be deployed on
resource-constrained mobile devices, as the number of multiply-add operations is normally restricted
below 600M for an ImageNet-mobile setting (Dong & Yang, 2019). In contrast, AutoShiftNet
totally removes multiplications and only considers efficient bit-shifts and additions. The searched
model only contains about 300M additions, so that it is more compatible for the bit-shift domain and
also more practical for real-world applications on resource-restricted edge devices.

The networks searched by AutoShiftNet show much better performance than conventional CNNs in
the bit-shift domain, especially when many CNNs fail to converge on large datasets (e.g., ImageNet)
with bit-shift weights. AutoShiftNet achieves an accuracy improvement of (1.69∼8.07)% on
CIFAR10, (5.71∼18.09)% on CIFAR100 and ≥ 4.36% on ImageNet, with more compact parameter
sizes and smaller numbers of operation computations. Compared with previous NAS methods,
networks from AutoShiftNet are more compatible with the bit-shift domain, which lead to a
smaller accuracy drop from the complex real-valued models. More importantly, AutoShiftNet
consumes less computing resources and time as it directly searches with the bit-shift weights.

2 PRELIMINARIES

2.1 BIT-SHIFT NETWORK QUANTIZATION

Bit-shift quantization techniques (Zhou et al., 2017; Elhoushi et al., 2021) round the float-point
model weights to the powers of 2, so that the intensive multiplications on weights can be achieved
with cheaper binary bit shifts. Formally, given a number x and a rounded model weight 2p, their
multiplication is mathematically equivalent to shifting p bits of x. Since model weights can be either
positive or negative for input feature extraction, while 2p is always positive, a sign flip function
flip(w, s) is thus introduced to represent the signs of weight values. This operation is achieved with
a ternary sign operator s ∈ {−1, 0,+1}. Finally, we can replace the weight matrix W in the model
as: W = flip(2P , S), where P is the shift matrix and S is the sign matrix. Both bit shift and sign
flip are computationally cheap, as the former is the fundamental operation in modern processors
and the latter just computes 2’s complement of a number. Therefore, such weight replacement can
efficiently reduce the computation cost of CNN model execution.
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Figure 1: The overview of AutoShiftNet

2.2 NEURAL ARCHITECTURE SEARCH

NAS has gained great popularity in recent years, due to its capability of building machine learning
pipelines with high efficiency and automation. Early methods used reinforcement learning (Zoph &
Le, 2016) and evolutionary algorithms (Real et al., 2019) to search for optimal network architectures
for a given task, which normally takes thousands of GPU hours. Recent works tended to use a gradient-
based strategy (Liu et al., 2018b) that can reduce the search cost to a few hours. Such methods usually
aim at searching for optimal cell structures, since stacking cells as a model is more efficient than
searching the whole network architecture. Formally, a cell is represented as a directed cyclic graph
(i.e., supernet) with N nodes {xi}Ni=1, including two inputs and one output, and several intermediate
nodes. The j-th intermediate node xj connects to all previous nodes xi through the edge (i, j).
The operation choice over the edge (i, j) can be relaxed as o(i,j)(x) =

∑
α
(i,j)
o o(i,j)(xi), where

o ∈ O, andO denotes the search space of candidate operations. α(i,j)
o is the trainable weight for each

operation on the edge (i, j), which is normalized with the softmax function. Therefore, the feature
map of node xj can be computed by adding all results from its predecessors xi: xj =

∑
o(i,j)(xi).

Let Ltrain and Lval denote the model loss on the training and validation sets. A bi-level optimization
is applied to the operation weight α and network weight w as:

min
α
Lval(w

∗(α), α), s.t. w∗(α) = argmin
w

(Ltrain(w,α)) (1)

The final model architecture can be derived from the trained operation weight α by retaining operations
with the largest weight and pruning edges with the smaller weight.

3 OVERVIEW OF AutoShiftNet

The main idea is to automatically generate well-performed bit-shift networks with high efficiency.
Challenges arise when we apply exiting NAS techniques for searching bit-shift networks:

Design of shift-oriented search space. Given that existing NAS methods mainly focus on the
real-valued models, their search spaces are also designed for real domain, which is not applicable
to bit-shift models. Specifically, a conventional NAS search space normally consists of multiple
manually defined operations, such as dilated convolutions and separable convolutions. To build the
shift-oriented search space, we need to transfer these operations from the real domain into the bit-shift
domain, in which the forward pass and backward pass need to be carefully designed.

Dominance of skip connections. While most of recent NAS methods adopt the gradient-based
search strategy (i.e., DARTS (Liu et al., 2018b)), it has a big drawback: the searched networks are
easy to be dominated by skip connections (Chen et al., 2019), as the strategy prefers the fastest
way of gradient descent. Unfortunately, searching in the bit-shift domain inherits and amplifies this
drawback, which would lead to the ”cell collapsing” of searched architectures. Hence, a new search
strategy considering both the model operations and topology should be adopted.

Less robust search procedure. Replacing floating-point weights with bit shifts brings fast computa-
tions, but also results in the accuracy drop and difficulty of model training. Specifically, the introduced
shift parameters and sign flips should be well regularized to avoid errors in the gradient descent.
Besides, since bit-shift operations are extremely sensitive to a large learning rate, the selection and
scheduling of the learning rate should also be carefully crafted.

We design a novel NAS technique AutoShiftNet to address the above challenges. Figure 1 shows
the overview of our methodology, which consists of three key components:
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• Shift-oriented search space. This new search space consists of 8 operations, which are converted
from the real domain to bit-shift domain.

• Topology-related search strategy. This new strategy considers the optimal combination of model
operations and topology, which can efficiently mitigate the dominance of skip connections.

• Search regularization and stabilisation. Three approaches are proposed to regularize and stabilize
the search procedure: applying a shift-adaptive L2 regularization for shift parameters and resetting
the learning rate during search.

4 METHODOLOGY

4.1 SHIFT-ORIENTED SEARCH SPACE

Following previous NAS works (e.g., DARTS (Liu et al., 2018b)), we adopt 8 operations as our
operation search spaceO: 3×3 and 5×5 dilated convolutions, 3×3 and 5×5 separable convolutions,
3 × 3 max pooling, 3 × 3 average pooling, identity (skip) and the zero1. To construct a shift-
oriented search space, we group and transfer these operations into the bit-shift domain and study the
corresponding forward and backward pass computations.

Grouping candidate operations. Since not every candidate operation needs to be transferred into
the bit-shift version, e.g., the identity and pooling, we first divide 8 candidate operations (excluding
zero) into two groups. The first group Oc contains four convolution operations, which involve dense
multiplications. The second group Ot contains the remaining operations, which mainly focus on the
model topology, such as skip and pooling. The entire search space is denoted as O = {Oc,Ot}. To
construct the shift-oriented search space, we just need to transfer operations in Oc into the bit-shift
domain, and keep operations in Ot unchanged. Note that this operation group scheme will also be
adopted in the topology-related search strategy (Section 4.2).

Replacement of operation weights. As introduced in Section 2.1, quantization of bit-shift networks
can be implemented by replacing the floating-point model weights with two parameters: bit shift
P and sign flip S. Hence, the weights w of operations in Oc need to be replaced with the trainable
parameters (P, S), which is formulated as below:

P = round(P ), S = sign(round(S)), w = flip(2P , S) (2)

where P is the rounded shift matrix and S is the rounded sign matrix. Note that the function sign
generates a ternary value, and can be represented as:

sign(s) =

{ −1 if s ≤ −0.5
0 if − 0.5 < s < 0.5
+1 if s ≥ 0.5

(3)

Designing forward and backward pass. Different from some previous works (Zhou et al., 2017)
which just rounded the trained models into the bit-shift domain, our goal is to directly search and train
the model in the shift domain. So we need to design and implement the forward and backward pass
of shift operations. With the transferred weights w = flip(2P , S), the forward pass for convolutions
in Oc can be represented as: Y = w ∗X = flip(2P , S) ∗X + b, where (X,Y ) denote the operation
input and output, and b denotes the bias. The gradients of the backward pass can be formulated as:

∂L
∂X

=
∂L
∂Y

∂Y

∂X
=

∂L
∂Y

wT ,
∂L
∂P

=
∂L
∂Y

∂Y

∂w

∂w

∂P

∂P

∂P
,

∂L
∂S

=
∂L
∂Y

∂Y

∂w

∂w

∂S

∂S

∂S
,

∂L
∂b

=
∂L
∂Y

(4)

where L denotes the model loss.

We use the straight through estimators (Yin et al., 2019) to compute the derivatives of the round
and sign functions as: ∂round(x)

∂x ≈ 1 and ∂sign(x)
∂x ≈ 1. For the sign flip function, we have:

∂flip(x,s)
∂x ≈ flip(x, s) and ∂flip(x,s)

∂s ≈ 1. With these estimations, we can set ∂P
∂P ≈ 1 and ∂S

∂S ≈ 1,

1Zero means no connection between two nodes.

4



Under review as a conference paper at ICLR 2023

and then obtain the following expressions:

∂w

∂S
=

∂flip(2P , S)

∂S
≈ 1

∂w

∂P
=

∂flip(2P , S)

∂P
=

∂flip(2P , S)

∂2P
∂2P

∂P

≈ flip(2P , S)2P ln2 = w2P ln2

(5)

As a result, the gradients of the trainable parameters (P, S) with respect to the model loss L are:
∂L
∂P
≈ ∂L

∂Y

∂Y

∂w
w2P ln2,

∂L
∂S
≈ ∂L

∂Y

∂Y

∂w
(6)

Based on the above constructed forward and backward pass of bit-shift operations, we can achieve
searching and training a NAS model in the bit-shift domain.

4.2 TOPOLOGY-RELATED SEARCH STRATEGY

The dominance of skip connections caused by the gradient-based search strategy is a major restriction
for applying NAS techniques to quantized networks (Bulat et al., 2020). Besides, ignoring the
model topology during a search in some NAS methods also limits the generation of optimal network
architectures. Hence, we determine to decouple the operation search and topology search. This
search strategy can efficiently suppress the dominance of skip-connections and also improve the
performance of searched networks.

Operation search. As introduced in Section 4.1, the 8 candidate operations in the shift-oriented
search space can be divided into two groups: Ot contains topology-related operations that can
explicitly affect the model topology (e.g., skip), while operations in Oc do not have such impact.
Therefore, the operation search spaceO is split into two subspacesO = {Ot,Oc}, and each operation
subspace is relaxed to be continuous independently. Then a bi-level optimization is applied to train
the model weight w and operation weight α. With the trained α, we retain the operation with the
maximum weight in each operation subspace, which can be formulated as:

o
(i,j)
t = arg max

ot∈Ot

α(i,j)
ot , o(i,j)c = arg max

oc∈Oc

α(i,j)
oc (7)

Such group operation scheme can avoid the elimination of potential topology choices during the
operation search, which then allows the subsequent topology search to find out the optimal topology.
Finally, all the retained operations are collected to construct a new operation search space ON =

{o(i,j)t , o
(i,j)
c } on each edge (i, j), which is used for the topology search.

Topology search. The previous operation search step aims to determine the best operations on each
edge. In this topology search step, we try to search for the optimal combinations of model edges. It
can well prevent skips from dominating the searched model topology.

First, a topology search space is constructed. Following previous works, we restrict two input edges
for each node in the cell supernet, so the topology search space Exj

for node xj can be represented as
a set of all possible pairwise combinations of its incoming edges: Exj = {⟨(i1, j), (i2, j)⟩|0 < i1 <

i2 < j}. The topology search space contains C2
n = n!

2!(n−2)! candidates, where n denotes the number
of incoming edges for node xj . Similar to the operation search, we also relax the topology search
space Exj

to be continuous:

βc
xj

=
exp(β′c

xj
/Tβ)∑

c′∈Exj

exp(β′c′
xj
/Tβ))

(8)

where βc
xj

is the topology weight that denotes the normalized probability of the edge combination
c ∈ Exj

. Tβ(t) = T0θ
t is the temperature for architecture annealing, which can efficiently bridge the

optimization gap between the supernet and child networks (Xie et al., 2018).

Then, the importance weight γ(i,j) for each edge (i, j) can be computed from those combinations
containing this edge, which can be formulated as:

γ(i,j) =
∑

c∈Exj
,(i,j)∈c

1

N(c)
βc
xj

(9)
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where N(c) is the number of edges in the edge combination c. As a result, the feature map of node xj

can be obtained by summing all the incoming edges weighted by the edge importance weight γ(i,j):

xj =
∑
i<j

γ(i,j)o(i,j)(xi) (10)

where o(i,j)(xi) denotes the mixed operations on edge (i, j) obtained from the operation search. In
the topology search, as the number of candidate operations is largely reduced (i.e., 2 in ON ), we can
directly use the one-level optimization to update three weights (w,α, β) in the search.

Determining the architecture. After the operation and topology search, we select the edge combina-
tion c with the maximal weight in topology weight β to construct the model topology, and then attach
to each edge the operation with the maximal weight in the operation weight α.

4.3 SEARCH REGULARIZATION AND STABILISATION

Based on the shift-oriented search space and topology-related search strategy, an efficient bit-shift
network architecture can be identified for each specific task automatically. However, the adoption of
bit-shift weights makes the architecture search much more unstable and also leads to more difficult
model training. The search process usually converges to a sub-optimal solution, sometimes even
cannot converge. So we need to regularize and stabilize the optimization of the three trainable weights
during search: network weight w, operation weight α and topology weight β.

Figure 2: Learning rate curve in the search

For the optimization of the network weight w, note
that w consists of the bitwise shift P and sign flip S,
i.e., w ← {P, S}. We use an adaptive L2 regular-
ization term to regularize the gradient descent of P ,
which is defined as

∑
W 2 =

∑
(2PS)2 rather than

the conventional formulation
∑

(P 2 + S2). While
most weights in a trained model are rarely larger than
1 (i.e., |2P | < 1), the range of the value of P is also empirically set to be smaller than 0. As a negative
parameter, a smaller P instead leads to a larger P 2, which gives a reverse activation to the training
loss. Hence, the regularization term should be modified to avoid misguiding the direction of the
gradient descent. Formally, the regularized loss L′ can be formulated as: L′ = L + λ

2

∑
(2PS)2,

where L denotes the original model loss and λ is the fixed weight decay. Our experiments in Section
5.4 show that this adaptive L2 regularization improves the accuracy of searched architectures.

To stabilize the optimization of the operation weight α and topology weight β, in addition to using
the temperature regularization in Eq.(8), we also carefully implement a learning rate reset scheme.
Since bit-shift networks are extremely sensitive to large learning rates, we need to use a much smaller
initial learning rate than that in previous NAS techniques to avoid model convergence failure. Besides,
while previous works (Gu et al., 2021) adopt the annealed learning rate from the previous operation
search step for following topology search, we find that resetting the learning rate to an initial value
again at the start of topology search allows to obtain a better network architecture. Figure 2 shows
the learning rate curve in the search with the cosine annealing: the learning rate is reset at the 30th
epoch, when the topology search starts.

5 EVALUATION

We implement AutoShiftNet with Pytorch. Following previous works (Elhoushi et al., 2021; Zhou
et al., 2017), we emulate the precision of an actual bit-shift hardware implementation by rounding
the operation input and bias to the 32-bit fixed-point format precision (16-bit for the integer part and
16-bit for the fraction part). The shift parameter P is constrained in [-15, 0], i.e., the absolute value
of the model weight is within [2−15, 1], which only needs 4 bits to represent. The model weight also
needs an extra bit to denote its sign S.

We run evaluations on CIFAR10, CIFAR100 and ImageNet datasets. We comprehensively compare
AutoShiftNet with a variety of state-of-the-art CNN models (e.g., ResNet, VGG, MobileNet,
ShuffleNet, GoogleNet, SqueezeNet) and NAS models (e.g., NASNet, AmoebaNet, DARTS, GDAS,
DOTS). For fair comparisons, these baseline models are trained in the bit-shift domain, unless
otherwise specified.

6



Under review as a conference paper at ICLR 2023

Architecture Top-1 Acc. (%) Params (M) Top-1 Acc. (%) Params (M) Search Cost Search
CIFAR10 CIFAR10 CIFAR100 CIFAR100 (GPU-days) Method

ResNet18 (He et al., 2016) 93.20 11.2 69.11 11.2 - -
ResNet20 (He et al., 2016) 88.84 0.3 60.12 0.3 - -
ResNet50 (He et al., 2016) 93.89 23.6 70.64 23.6 - -
ResNet56 (He et al., 2016) 91.11 0.9 65.57 0.9 - -
ResNet101 (He et al., 2016) 93.43 42.8 69.18 42.8 - -
ResNet152 (He et al., 2016) 93.17 58.5 65.58 58.5 - -
MobileNet-v2 (Sandler et al., 2018) 92.64 2.4 70.24 2.4 - -
VGG19 (Simonyan & Zisserman, 2014) 91.57 20.1 64.88 20.1 - -
ShuffleNet-v2 (Ma et al., 2018) 87.51 0.5 58.26 0.5 - -
NASNet (Zoph et al., 2018) 95.28 3.3 75.33 3.3 1800 RL
AmoebaNet (Real et al., 2019) 95.22 2.3 75.05 2.3 3150 EA
DARTS-v1 (Liu et al., 2018b) 94.39 3.2 74.93 3.2 0.4 GD
DARTS-v2 (Liu et al., 2018b) 94.80 3.5 75.17 3.5 0.4 GD
GDAS (Dong & Yang, 2019) 94.62 2.5 74.87 3.4 0.2 GD
P-DARTS (Chen et al., 2019) 94.21 3.4 74.54 3.6 0.3 GD
DARTS- (Xu et al., 2019) 93.87 3.4 70.85 3.5 0.4 GD
DOTS (Gu et al., 2021) 95.12 3.7 75.05 4.2 0.3 GD
AutoShiftNet (Best) 95.58 3.3 76.35 3.8 0.23* GD
AutoShiftNet (Avg)† 95.43±0.12 3.3 76.08±0.23 3.8 0.23* GD

Table 1: Evaluation results on CIFAR10/100. The results of conventional CNNs are obtained by
running open code of DeepShift (Elhoushi et al., 2021). †: The results are computed from four
individual runs with random seeds. *: The search cost can be much smaller on the dedicated hardware
as we emulate the bit-shift operations with software.

5.1 EVALUATION ON CIFAR

Search settings. The entire search process on CIFAR 10/100 consists of two steps: operation search
for 30 epochs and then topology search for 40 epochs. The network skeleton consists of 8 cells (6
normal cells and 2 reduction cells) with the initial channel size of 16. The learning rate is scheduled
from 0.01 following the reset scheme in Section 4.3. The search process takes about 5.5 hours on one
GeForce RTX 3090 GPU. However, since we emulate the hardware bit-shift operations with software
implementation, the search time actually can be significantly shortened on the dedicated hardware
platforms. We will discuss more about the search efficiency in Section 5.5. The best cells searched
from CIFAR are shown in Appendix C.

Evaluation settings. The evaluation network is composed of 20 cells, including 18 normal cells
and 2 reduction cells. We set the initial channel size as 36 and optimize the network via the RAdam
optimizer (Liu et al., 2019) with an initial learning rate of 0.01 (cosine annealing to 0) and weight
decay of 3e-4. Following the setting in DeepShift, the netowrk is trained from scratch with bit-shift
weights for 200 epochs. The batch size is set as 128. Cutout and drop-path with a rate of 0.2 are used
to prevent overfitting. The training accuracy curves can be found in Appendix D.

Results analysis. Table 1 shows the evaluation results on CIFAR 10/100 datasets. The bit-shift
networks searched by AutoShiftNet achieve 95.58% and 76.35% accuracy on CIFAR10 and
CIFAR100, respectively. Compared to conventional manually designed CNNs, AutoShiftNet
models lead to a significant performance improvement in the bit-shift domain, where the prediction
accuracy increases (1.69∼8.07)% on CIFAR10 and (5.71∼18.09)% on CIFAR100. Moreover, the
parameter size of searched networks is also much smaller than most conventional CNNs. Hence,
in contrast to directly transferring those CNNs into bit-shift counterparts, AutoShiftNet is a more
efficient approach to generate high-quality bit-shift networks, with the improved accuracy, reduced
parameter size and automatic design process. We also compare AutoShiftNet with state-of-the-art
NAS techniques searched in the real domain, and the results show that our method can find out
architectures more compatible to the bit-shift domain. We will discuss more details in Section 5.3.

5.2 EVALUATION ON IMAGENET

Evaluation settings. Following previous works (Liu et al., 2018b; Dong & Yang, 2019), we construct
the network for ImageNet with the best cells searched from the CIFAR dataset. The evaluation
follows the ImageNet-mobile setting, in which the input size is 224×224. The network consists of 14
cells (12 normal cells and 2 reduction cells) with the initial channel size of 46. We train the network
in the bit-shift domain for 90 epochs with a batch size of 1024. The RAdam optimizer with an initial
learning rate of 0.01 (warming up in the first 5 epochs and cosine annealing to 0) is used. The training
accuracy curves can be found in Appendix D.

Results analysis. Table 2 shows the evaluation results on the ImageNet dataset. It can be found
that although some conventional CNNs (e.g., ResNet) still perform well when converted to the
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Architecture Acc. (%) Params Multi Add
Top-1 Top-5 (M) (M) (M)

ResNet18 62.25 83.79 11.7 0 987
ResNet50 69.04 88.61 25.8 0 2053
VGG16* 0.10 0.98 138.5 0 8241
GoogleNet 62.81 84.81 6.6 0 752
MobileNet-v2* 40.03 65.13 4.7 0 206
ShuffleNet-v2* 37.32 62.26 7.4 0 306
SqueezeNet1 0 29.08 51.96 3.8 0 412
NASNet 66.24 86.24 5.6 0 317
DARTS-v2 64.98 85.18 4.7 0 287
GDAS 65.87 85.95 5.3 0 291
DOTS 66.36 86.23 5.2 0 302
AutoShiftNet (Ours) 67.17 87.38 5.1 0 298

Table 2: Evaluation results on ImageNet. *: The
results are the highest accuracy in the training while
networks fail to converge.

Architecture Domain Acc. (%)
C10 Diff. C100 Diff.

ResNet18 R 94.45 - 72.53 -
BS 93.20 -1.25 69.11 -3.42

ResNet50 R 95.12 - 74.19 -
BS 93.89 -1.23 70.65 -3.54

DARTS(v2) R 96.48 - 78.78 -
BS 94.80 -1.68 75.17 -3.61

DARTS- R 95.61 - 76.02 -
BS 93.87 -1.74 70.85 -5.17

DOTS R 96.55 - 78.87 -
BS 95.13 -1.42 75.05 -3.82

AutoShiftNet
R 96.19 - 78.26 -

BS 95.58 -0.61 76.35 -1.91

Table 3: Accuracy of various architectures on
CIFAR10 (C10) and CIFAR100 (C100) in the
real (R) and bit-shift (BS) domains.

bit-shift domain, there are many more state-of-the-art CNNs giving much lower prediction accuracy
or even failing to converge, including VGG16, MobileNet-v2 and ShuffleNet-v2, whose final top-1
accuracy drops to 0.09%, 1.18% and 9.27%, respectively. In contrast, AutoShiftNet can converge
robustly and achieve 67.17% top-1 accuracy, which is (4.36∼67.07)% higher than conventional
CNNs except ResNet50. Note that the high accuracy of ResNet50 is obtained at the price of much
larger parameter size (5×) and more operations (7×). Hence, compared to conventional CNNs,
bit-shift networks searched by AutoShiftNet perform better with fewer parameters and operations.
The comparison with previous NAS techniques also shows that AutoShiftNet can generate more
compatible architectures for bit-shift networks. Given all multiplications in networks are replaced
with bit shifts, the number of multi-operations would be 0, which greatly reduces the resource cost
and speeds up the model inference.

5.3 REAL-VALUED AND BIT-SHIFT NETWORK COMPARISONS

We compare the accuracy of the same network trained in the real and bit-shift domains, aiming
to investigate the accuracy drop of conventional CNNs and NAS models caused by the bit-shift
quantization. Table 3 shows the results of some representative networks on the CIFAR datasets.
Comparison on ImageNet can be found in Appendix E. We can observe that AutoShiftNet not
only achieves the highest accuracy of bit-shift networks, but also leads to the smallest accuracy drop
(-0.61% and -1.91%) when the network is quantized from the real to bit-shift domains. In comparison,
conventional CNNs have lower accuracy in the real domain, and the accuracy drops more significantly
during the bit-shift quantization.

We further compare AutoShiftNet with previous NAS techniques. From Table 3, AutoShiftNet
is able to obtain network architectures with better performance in the bit-shift domain, even their
accuracy in the real domain is slightly lower. It indicates that transferring existing NAS models
directly to the corresponding bit-shift networks normally just achieves sub-optimal solutions. The
networks searched by AutoShiftNet are more compatible to the bit-shift quantization.

5.4 ABLATION STUDY

Impact of the shift-oriented search space. The superiority of AutoShiftNet in the bit-shift
domain actually has indicated the effectiveness of the shift-oriented search space, which avoids
converging to sub-optimal solutions for searching bit-shift network architectures. To further validate
the importance of this new search space, we replace the search space with the classical real-valued
one in AutoShiftNet, and then check the performance of the searched results. Four experiments
are run individually with random seeds, where the searched architectures achieve average accuracy
of 94.97% on CIFAR10 and 75.03% on CIFAR100. It drops 0.63% and 1.32% from that with the
shift-oriented search space. Besides, as a by-product, the shift-oriented search space significantly
reduces the resource cost in the search process, as it replaces dense multiplications with much cheaper
bit shifts. Hence, AutoShiftNet can generate better bit-shift networks automatically with much less
resource budget.

Impact of the topology-related search strategy. We take DARTS as the baseline strategy to derive
cell structures from the shift-oriented search space. The result is shown in Figure 3a. It can be seen
that the searched cell is dominated by the skip connections and only achieves 69.58% accuracy on
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Figure 3: Normal cells searched from the bit-shift domain Figure 4: Search accuracy on CIFAR10

CIFAR100. This is because the drawback of the traditional gradient-based search strategy is amplified
in the bit-shift domain. By integrating our topology-related search strategy, this drawback can be
effectively mitigated and the searched result is shown in Figure 3b. Since the edge connections are
further inspected, the topology-related search strategy can generate more stable architectures and
achieve 76.21% accuracy, which is 6.63% improvement over DARTS.

ID Scheme Acc. (%)
L2R LRR C10 Diff. C100 Diff.

1 ! ! 95.58 - 76.35 -
2 ! % 95.17 -0.41 73.86 -2.49
3 % ! 95.43 -0.15 74.93 -1.42
4 % % 94.91 -0.67 73.04 -3.31

Table 4: Accuracy of various schemes.

Impact of regularization and stabilization. To evaluate
the effectiveness of our modified L2 regularization (L2R)
and learning rate reset (LRR) schemes, we compare the
performance of networks searched with various scheme
combinations (Table 4). We find that while both schemes
increase the accuracy of the searched architecture, LRR
contributes more than L2R. Figure 4 shows the accuracy
curves of the search process on CIFAR10 with or without
LRR. It shows that LRR scheme significantly improves the model accuracy from 74.58% to 84.68%,
which makes it more possible to search for better bit-shift networks. Note that at the start of topology
search (the 30th epoch), the model gets pruned and retrained, so the accuracy has a sharp drop.

5.5 EFFICIENCY ANALYSIS

Given that modern computer architectures use the binary format to store and calculate data, bitwise
operations like bit shift and addition are the atomic units for performing complex computations,
including the multiplication. According to (Agner Fog), the floating-point multiplication takes at
least 5× of clock cycles than the bit shift. Besides, compared to the hardware implementation of
bit shift on the circuit, the multiplier takes at least 9.7× of average power, 1.45× of area and 4.32×
of transistors (Asati, 2009). Hence, by replacing floating-point weights with bit shift and sign flip
operations, the efficiency of architecture search can be significantly improved over previous NAS
techniques that search in the real domain. While our software emulation of AutoShiftNet just
takes 5.5 hours, where the bit shift is simulated by multiplying the power of 2, the actual search
cost on the dedicated hardware platforms (e.g., FPGA accelerators) would be largely decreased. We
deem that accelerating the NAS process with bit shift on the FPGA board is a promising research
direction. Besides, since the searched architectures are trained as bit-shift networks, it also reduces
the resource cost and time of model training and inference. AutoShiftNet also greatly compresses
the storage size of searched networks, as it represents model weights with fewer bits (i.e., 5 bits).
This promotes the applications of NAS models on the edge devices, where the memory storage and
energy consumption are the main constraints.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose to automatically generate advanced bit-shift networks with a dedicated
NAS method AutoShiftNet. We overcome the challenges of applying existing NAS techniques
in the bit-shift domain with three innovations: shift-oriented search space, topology-related search
strategy and search regularization and stabilization. Experimental results show that AutoShiftNet
can search for architectures with higher compatibility for bit-shift operations, and better performance
than state-of-the-art CNNs and NAS models.

While replacing model multiplications with bit shifts can efficiently reduce the running cost, it is
essentially a coarse-grained representation of model weights, which naturally results in the non-trivial
drop of prediction accuracy. To address this, we can further introduce additions into the search space
of AutoShiftNet, which are also efficient substitutes of multiplications (Chen et al., 2020) and more
importantly, can achieve finer-grained weight manipulation (You et al., 2020). Since current CUDA
kernels lack optimization of intensive additions, we leave it as future work.
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A ARCHITECTURE SEARCH DETAILS

For the operation search, the official CIFAR training dataset is divided into two halves: training set
DT and validation set DV , which are used to optimize network weights w and operation weights α,
respectively. The topology search directly uses the whole official training set to optimize the topology
weight β with one-level optimization, where the initial temperature T0 is set as 10 and decay to 0.02.
We adopt Rectified Adam (RAdam) optimizer with initial learning rate of 0.01 and weight decay of
3e-4 to optimize model weight w and Adam optimizer with initial learning rate of 3e-4 and weight
decay of 1e-3 to optimize operation weight α and topology weight β. The learning rate is scheduled
with cosine scheduler following our proposed learning rate reset scheme. The search process consists
of 70 epochs with the batch size of 128, including 30 epochs for operation search and 40 epochs for
topology search.

B ARCHITECTURE EVALUATION DETAILS

Training on CIFAR. We train the evaluation network for 200 epochs with the batch size of 128. The
network is optimized by RAdam optimizer with initial learning rate of 0.01 and weight decay of 3e-4.
The learning rate is scheduled by a cosine annealing scheduler to 0. Cutout and drop-path with a rate
of 0.2 are used for preventing overfitting.

Training on ImageNet. The network is trained by 90 epochs with the batch size of 1024. The
RAdam optimizer is adopted, whose initial learning rate is set as 0.01 and weight decay is set as 3e-4.
The learning rate is cosine annealed to 0. Label smoothing and an auxiliary loss tower is used to
enhance model training.

Dataset Cell Node Genotype

CIFAR10

Normal
Cell

1 (’skip connect’, 0), (’skip connect’, 1)
2 (’sep conv 3x3’, 0), (’sep conv 3x3’, 1)
3 (’sep conv 3x3’, 0), (’sep conv 3x3’, 1)
4 (’sep conv 3x3’, 0), (’dil conv 5x5’, 4)

Reduction
Cell

1 (’skip connect’, 0), (’skip connect’, 1)
2 (’sep conv 3x3’, 0), (’max pool 3x3’, 1)
3 (’sep conv 3x3’, 0), (’sep conv 5x5’, 1)
4 (’skip connect’, 0), (’dil conv 5x5’, 2)

Table 5: Genotype of Best Archtiecture on CIFAR10

Dataset Cell Node Genotype

CIFAR100

Normal
Cell

1 (’sep conv 3x3’, 0), (’skip connect’, 1)
2 (’skip connect’, 0), (’sep conv 3x3’, 1)
3 (’sep conv 3x3’, 0), (’sep conv 3x3’, 1)
4 (’sep conv 3x3’, 0), (’sep conv 5x5’, 4)

Reduction
Cell

1 (’max pool 3x3’, 0), (’skip connect’, 1)
2 (’sep conv 5x5’, 0), (’sep conv 5x5’, 1)
3 (’max pool 3x3’, 0), (’dil conv 5x5’, 3)
4 (’sep conv 5x5’, 0), (’sep conv 3x3’, 3)

Table 6: Genotype of Best Archtiecture on CIFAR100

C BEST SEARCHED CELL STRUCTURES

Table 5 and 6 show the best searched architectures for CIFAR10 and CIFAR100. The evaluation on
ImageNet adopts cells searched from CIFAR10 (Table 5).
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D TRAINING RESULTS

Figure 5 shows the accuracy traces of training on CIFAR10 and CIFAR100. Figure 6 shows the
accuracy traces of training on ImageNet, where (a) takes batch size of 1024 and (b) takes 256. It can
be seen that training with batch size of 256 converges earlier and is also more stable, where the final
top-1 accuracy is slightly higher (68.67% vs. 67.17%).

(a) CIFAR10

(b) CIFAR100

Figure 5: Training result on CIFAR

(a) Batch size = 1024

(b) Batch size = 256

Figure 6: Training result on ImageNet
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E COMPARISON WITH REAL-VALUED COUNTERPARTS ON IMAGENET

Due to the limitation of resource and time, we just select each a model from conventional CNNs
(i.e., ResNet18) and previous NAS methods (i.e., DOTS) to compare the accuracy drop from the
real-valued counterparts on the ImageNet with our proposed AutoShiftNet. Table 7 shows the
results. It can be found that the architecture searched by AutoShiftNet achieves the highest accuracy
as a bit-shift network, and also has the lowest accuracy drop from the counterpart training in the real
domain. Compared to other conventional CNNs and even most state-of-the-art NAS models, ResNet
have more robust performance even training with bit-shift weights. However, it is still worse than our
proposed AutoShiftNet, and more importantly, ResNets are much more heavy than NAS searched
models.

Architecture Domain Acc. (%) on ImageNet
Top-1 Diff. Top-5 Diff.

ResNet18 R 68.14 - 88.67 -
BS 62.25 -5.89 83.79 -4.88

DOTS R 72.75 - 90.96 -
BS 66.36 -6.39 86.23 -4.73

AutoShiftNet
R 72.18 - 90.61 -

BS 67.17 -5.01 87.38 -3.23

Table 7: Model accuracy on ImageNet of various architectures in the real (R) and bit-shift (BS)
domains, and their differences (Diff.).
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