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ABSTRACT

Deep learning (DL) plays a crucial role in tackling the complexity and heterogene-1

ity of cancer, particularly in predicting drug response. However, the effectiveness2

of these models is often hindered by inconsistent benchmarks and disparate data3

sources. To address the gaps in comparisons, we introduce CoMParison work-4

flow for Cross Validation (CMP-CV), an automated cross-validation framework5

that trains multiple models with user-specified parameters and evaluation met-6

rics. The effectiveness of DL models in predicting drug responses is closely tied7

to the methods used to represent drugs at the molecular level. In this contribu-8

tion, we benchmarked commonly leveraged drug representations (graph, molecu-9

lar descriptors, molecular fingerprints, and SMILES) to learn and understand the10

predictive capabilities of the models. We compare the ability of different drug11

representations to encode different structural properties of the drugs by using pre-12

diction errors made by models in different drug descriptor domains. We find that,13

in terms of the average prediction error over the entire test set, molecular descrip-14

tors and Morgan fingerprints perform slightly better than the others. However,15

we also observe that the rankings of the model performance vary in different16

regions over the descriptor space studied in this work, emphasizing the impor-17

tance of domain-based model comparison when selecting a model for a specific18

application. Our efforts are part of CANcer Distributed Learning Environment19

(CANDLE), enhancing the model comparison capabilities in cancer research and20

driving the development of more effective strategies for drug response prediction21

and optimization.22

1 INTRODUCTION23

Cancer research is currently exploring innovative techniques to enhance treatment outcomes through24

the use of analytical models called Drug Response Prediction (DRP) models Yancovitz et al. (2012);25

Fisher et al. (2013); Adam et al. (2020). These models utilize machine learning (ML) and deep26

learning (DL) algorithms to forecast tumor responses to various drug treatments without the need27

for specific biomarkers. However, accurately predicting drug responses using ML and DL models is28

a critical challenge Baptista et al. (2020); Adam et al. (2020); Zuo et al. (2021). Each study typically29

develops custom model implementation and validation strategies, making it difficult to assess model30

capabilities across drug representation methods, architectures, and datasets Partin et al. (2023). With31

the increasing complexity of models and the diversity of datasets, there is a pressing need for robust32

methodologies to compare these models Park et al. (2023). However, the current landscape lacks33

consistency and standardization in terms of model comparison techniques. Traditional approaches34

often rely on performance scores from original publications, which leads to incomparable and in-35

consistent results. This hinders elucidating the precise factors that drive predictive performance.36

Therefore, it is crucial to establish a standardized and comprehensive comparison workflow to ad-37

dress the urgent need to understand drug representation and its impact on drug response prediction38

error.39

In light of these challenges, we recently implemented the CoMParison workflow for Cross Vali-40

dation (CMP-CV) - an automated cross-validation framework that enables simultaneous training41

and evaluation of multiple DL models using standardized datasets, preprocessing, and performance42
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metrics. CMP-CV provides infrastructure for controlled experimentation by systematically varying43

model hyperparameters and architectures. It also has built-in support for custom analytical func-44

tions, which facilitates deeper analysis of model representations and uncertainties.45

When applying DRP models in real-world applications, such as predicting drug efficacy or identify-46

ing suitable cancer treatments, selecting the best model is crucial. While existing comparison meth-47

ods utilize metrics like R2 (coefficient of determination), RMSE (Root Mean Squared Error), and48

AUC (Area Under the ROC Curve) to assess overall model accuracy, they fail to reveal critical in-49

formation about each model’s unique strengths and weaknesses. For instance, certain models might50

excel in specific domains of the drug descriptor space but be less accurate in other regions. In this51

work we analyze model performance within distinct domains of the drug descriptor space to iden-52

tify the most effective models for specific drug candidates and determine if certain drug’s molecular53

representations are superior to others. This type of analysis enables more informed decision-making54

when selecting a model for practical applications.55

A significant challenge in drug response prediction is the lack of consensus on a suitable molecular56

representation, which is further complicated by the diversity of DRP models. Therefore, large-scale57

model comparison is necessary, and CMP-CV serves as a robust framework for this purpose. Its58

ability to accommodate user-defined Python functions to analyse model predictions allows for com-59

prehensive benchmarking of models to determine the impact of various molecular representations on60

prediction errors. The current application of CMP-CV focuses mainly on comparing Cancer Drug61

Response Prediction (CDRP) models across diverse molecular descriptor spaces. This comprehen-62

sive comparison not only provides a deeper understanding of drug representation and its impact on63

drug response prediction errors but also highlights the relative strengths of various models on drug64

properties in different domains.65

2 RESULTS AND DISCUSSION66

2.1 CMP-CV: DEEP LEARNING MODEL COMPARISON FRAMEWORK67

The CANDLE/Supervisor framework (Wozniak et al., 2018) is a workflow application system de-68

signed for HPC infrastructure. Supervisor consists of multiple exemplar workflows, including sim-69

ple sweeps, automated hyperparameter optimization, and other data analysis workloads. It is capable70

of calling into user-specified model codes via multiple techniques, including direct Python library in-71

vocation, shell command lines, and Linux container invocation. Supervisor coordinates these model72

executions via CANDLE “hyperparameters,” which extend the notion of model training hyperpa-73

rameters to include a range of other control variables. The hyperparameter set is standardized by the74

CANDLE Library (CANDLE Team, 2018).75

The CMP-CV employs the Supervisor framework, which facilitates the integration of the container-76

ized models described here along with their hyperparameters. Inside the workflow, depicted in77

Figure 1, a list of hyperparameter combinations is specified in an external file, encoded in a JSON78

format, and each training run is performed concurrently. In this manner, a very large HPC system79

can be efficiently used. Supervisor monitors training progress and keeps resources busy, almost80

eliminating the need for the workflow developer to consider concurrency. As each training run81

completes, a comparison function is invoked across the error metrics produced during training.82

The CMP-CV system’s unique integrated functionality offers a seamless process for analyzing pre-83

diction results, delivering comparable output metrics, and facilitating the integration of custom ana-84

lytical functions, thereby providing users with a tailored analytical experience. One key feature that85

sets CMP-CV apart is its ability to accommodate user-defined Python functions, enabling users to86

seamlessly integrate custom analytical functions into the workflow. We utilised this capability to87

obtain drug response prediction errors in different regions in a drugs’ molecular descriptor space.88

Our results highlight the importance of understanding where each model excels; this will enable us89

and the rest of the community to better leverage their predictive power in future applications.90
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Figure 1: Architecture of the CMP-CV. The ‘Error Comparisons’ functionality contains python
scripts to calculate the model errors corresponding to different regions in a drug’s molecular de-
scriptor space.

2.2 OVERVIEW OF DRUG FEATURES AND REPRESENTATIONS91

In the field of drug design and characterization, each drug is distinguished by a unique set of descrip-92

tors such as molecular structure, substructures, functionalities, physicochemical and biochemical93

properties, known targets, and clinical usage. These descriptors form the drug or molecular descrip-94

tor space. To apply machine learning techniques, it is necessary to create a numerical representation95

of these multifaceted descriptors. Investigating the effects of molecular representation on prediction96

accuracy provides valuable insights into current limitations of drug response modeling approaches.97

Our hypothesis is that the efficiency of a molecular representation depends on the model’s ability to98

predict outcomes across various domains of the molecular descriptor space.99

For instance, a molecular representation that includes fine details about ring structure can ensure100

good performance of the model, regardless of the number of rings in the drug molecule. It is im-101

portant to mention that the model’s performance variation for molecules with different numbers of102

rings is not solely due to its molecular representation strength. Other aspects of the molecule, such103

as molecular weight or number of atoms/hydrogen bonds can also change. However, if a model con-104

sistently fails to achieve good performance in a particular domain of the descriptor space, it indicates105

that the model’s molecular representation is weak in that region.106

2.3 CURATED EXISTING MACHINE LEARNING MODELS FOR COMPARISON AND107

BENCHMARKING108

In our effort to understand the relationship between molecular representations and drug response109

predictions, we conducted a thorough curation and analysis of existing CDRP models, such as110

GraphDRP, DeepTTC, and HiDRA Nguyen et al. (2022); Jiang et al. (2022); Jin & Nam (2021).111

By applying CMP-CV to a standardized CTRPv21 dataset, we were able to compare and cross-112

validate these models, yielding important metrics that highlight their relative performance across113

the molecular descriptor space. This approach to curation and comparison represents a significant114

step towards enhancing the field of drug response prediction models.115

Based on our literature survey on CDRP models Baptista et al. (2020); Partin et al. (2023), we116

identify that the models primarily use four categories of molecular representations: graph structures,117

SMILES encodings, Morgan fingerprints, and molecular descriptors. In Table 1, we list the CDRP118

models that leverage these distinct molecular representations. Our work focuses on comparing these119

four types of representations to understand their strengths and limitations.120

To ensure a fair comparison of different drug representations, we also developed a model with the121

ability to switch between different molecular representations while using the same cell line represen-122

tation. These models are hereafter referred to as Graph, SMILES, Morgan and Descriptor. More123

details about these models are given in the Appendix. Below is a brief description of the models124

from the literature.125

GraphDRP. Nguyen et al. (2022) GraphDRP encodes drug molecules using graph convolutional126

layers followed by fully connected layers to arrive at a vector representation of length 128. The cell127

lines are initially represented using one hot encoding (735 dimensions). 1D convolutional operations128

followed by fully connected layers are used to convert the one hot encoded representation to a vector129

1CSA Benchmark Datasets
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Table 1: Models categorized based on the kind of drug representation they use

Representation type Models

Graph structure SWnet (Zuo et al., 2021), DRPreter (Shin et al., 2022), GraphDRP Nguyen et al.
(2022), DrugGCN(Kim et al., 2021)

SMILES encoding DeepTTC Jiang et al. (2022), Paccmann Oskooei et al. (2019), tCNNS Liu et al.
(2019)

Morgan fingerprints DrugCell Kuenzi et al. (2020), HiDRA Jin & Nam (2021), DeepDSC Li et al.
(2021), PathDSP Tang & Gottlieb (2021)

Molecular descriptors CDRscan Chang et al. (2018), REFINED Bazgir et al. (2020), IGTD Zhu et al.
(2021)

of 128 elements. The drug and cell line representations are concatenated and fed through another130

fully connected neural network to arrive at the final prediction.131

DeepTTC. Jiang et al. (2022) In DeepTTC, the SMILES string is tokenized using Explainable Sub-132

structure Partition Fingerprints (ESPF) Huang et al. (2019). The SMILES string is decomposed into133

multiple substructures and each substructure is assigned a number based on a provided vocabulary134

of substructures. This sequence of numbers is converted to a one-hot encoded matrix, and then135

transformed using a weight matrix. To this representation, a positional encoding is added to create136

the initial representation of the drug. This representation is sent through transformer encoder layers137

that contain multihead attention to arrive at the final drug representation.138

HiDRA. Jin & Nam (2021) HiDRA is an attention-based model that aggregates gene expression139

data to drug fingerprint features to create a pathway-level network between the drug and cell line.140

The overall architecture is composed of four networks encompassing a drug, gene, and pathway141

level network followed by the response prediction network. Morgan fingerprints are used for drug142

representations and genes were grouped to pathways through the KEGG Pathway database to create143

the cell line feature. 4592 unique genes were used to create these features.144

ExtraTreesRegressor. Geurts et al. (2006); Pedregosa et al. (2011) For the comparison, we also use145

an ExtraTreesRegressor model. This model is based on an ensemble of decision trees and does not146

utilize DL techniques. The model takes a simple concatenation of drug features and gene expression147

values of the cell lines as input.148

Figure 2: Comparative analysis of model prediction errors based on AUCDR. Colors represent the
type of representation used in each model.

2.4 MODEL COMPARISON149

The CDRP models mentioned earlier were trained using the CTRPv2 dataset, which measures gene150

expression values in transcripts per million (TPM). These values were obtained from the CCLE151

DepMap2 portal, while the response data were sourced from CTRP. As the dose-independent drug152

response metric, we use area under the dose response curve (AUCDR). This AUCDR is what the153

2https://depmap.org/portal/
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Figure 3: This figure presents a detailed analysis of AUCDR prediction errors in the domains of
important drug properties such as logS, molecular weight, LogP, and nHBDon.

CDRP models attempt to predict. Further details on the dataset and model training are given in the154

Methods section.155

The prediction accuracies for AUCDR are displayed in Figure 2. Based on the R2 results, it is156

observed that models utilizing molecular descriptors and Morgan fingerprints perform marginally157

better than the others. However, in this work, we aim to compare the performance of different158

models across various regions in the molecular descriptor space. To facilitate this comparison, we159

use Mordred Moriwaki et al. (2018) to generate molecular descriptors of the drugs. Descriptors160

that require three-dimensional coordinates were not taken into consideration. After obtaining the161

molecular descriptor values, they were divided into bins based on their ranges. These bins define162

the domains of the descriptors. Domain boundaries of continuous descriptors were found using163

NumPy3’s histogram function. Every unique value of a categorical descriptor was considered as a164

domain. A categorical descriptor is defined as one which consists of less than 20 unique integer165

values.166

For instance, if a molecular descriptor value ranges from 5 to 95, to evaluate the performance of167

each model, we can group the molecules into intervals of 10 descriptor value units, such as 5-15,168

15-25, and so on. This approach allows us to analyze a model’s predictions in different regions in the169

descriptor space. In Figure 3, we present the variations in the AUCDR prediction error in the domains170

of solubility (logS), molecular weight, LogP, and the number of hydrogen bond donors (nHBDon),171

which are crucial descriptors in drug design Di & Kerns (2016). The information presented in172

Figure 3 offers two main advantages: Firstly, it increases the awareness of the users of these models173

regarding the limitations of the models in terms of the properties of the drug molecules. Secondly,174

it provides model developers with valuable insights into the deficiencies of their models.175

2.4.1 EXPLORING DESCRIPTOR DOMAINS OF MODEL APPLICABILITY176

Drug response prediction errors in the domains of logS, molecular weight, LogP, and nHBDon can177

significantly impact the performance of drug response prediction models. By identifying the domain178

errors of different models, we can determine which molecular descriptors have not been adequately179

represented in the model. This information can be used to enhance the performance of models by180

improving their representation in these descriptor domains.181

Based on Figure 3, none of the ML models appear to perform well when the logS of the drugs is182

less than -7, and their errors decrease as the drug solubility increases. The Descriptor and Morgan183

models can be expected to perform best when predicting highly soluble drug candidates. These184

results facilitate the domain-wise representations comparison. For instance, in the high solubility185

regime (logS > 0), considering only the models with the same cell line representation, the goodness186

of the drug representation can be ranked as Morgan > Descriptor > Graph > SMILES.187

In fact, one can construct a table showing the error-based model rankings for each domain as shown188

in Table (a), Figure 4. This resource empowers the systematic evaluation and determination of the189

3NumPy
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most efficacious models for drugs, characterized by distinct molecular attribute. For example, if we190

need to determine the best model for drugs with solubility varying in a wide range, the Descriptor191

model is the clear winner, followed by the Morgan model. For nHBDon however, the Descriptor192

model is more suitable when 2 > nHBDon < 8 (see Appendix Table 3). For drugs with over 35193

hydrogen bond donors, DeepTTC is a superior model (Appendix Table 4) . These tables system-194

atically categorize models based on their error rates within specific molecular descriptor domains,195

aiding in the seamless identification of the most adept models for predicting drug responses for drug196

candidates with particular molecular properties. Such information is useful for the robustness and197

reliability of drug response predictions.198

Figure 4: Table (a) systematically categorizes models based on their error rates within specific logS
domains . Images (b) and (c) depict a web application that allows users to find model ranking based
on multiple distinct molecular descriptor values. Values of more than 700 molecular descriptors can
be changed (b) to obtain the corresponding model ranks (c).

We also designed a web application which allows a user to identify the models best suited for drug199

candidates described using multiple molecular descriptors. This interface allows the user to add as200

many as 786 molecular descriptors and adjust their values using the associated sliders. As shown in201

Figure 4 (b) and (c), once the descriptor values are chosen, a rank for each model is presented. These202

ranks are calculated by first looking up the model ranks corresponding to the chosen properties from203

tables similar to Figure 4, Table (a). If n property values are selected, we have n sets of model ranks.204

Each set contains ranks of m models considered in the comparison. Next, the average rank of each205

model is found which is considered as the final model rank. Models are ranked from 1 to m, where206

1 is the best rank and m is the worst rank.207

2.4.2 IDENTIFYING MODEL REPRESENTATION DEFICIENCIES208

When dealing with over 1000 molecular descriptors, it can be challenging to determine which ones209

are most important for understanding how drug representation affects model performance. A logical210

assumption is that if a particular descriptor has been accurately encoded by a representation, then211

domain errors associated with that descriptor will be minimal. Conversely, if a representation fails to212

capture the intricate details of a molecular descriptor, domain errors corresponding to that descriptor213

will be significant.214

We can determine the maximum error of a model for a specific domain. For instance, HiDRA has215

a maximum error of approximately 0.0525 at logS = -8 (Figure 3). These errors can be utilized to216

identify molecular descriptors that are not adequately encoded in the model’s representation. This217

particular insight into individual errors per model can act as a pivotal tool for discerning molecular218
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descriptors that remain inadequately encoded within the model’s architecture. Figure 5 displays the219

largest maximum and smallest minimum domain errors for each model, consisting of the top 5.220

Figure 5: Descriptors that made maximum and minimum domain errors. Veritcal axis is the number
of drug response values.

We notice that GATS1Z, C3SP3, SlogP_VSA4 and JGI2 are among the descriptors having the largest221

domain errors for most of the models. GATS1Z is the geary coefficient of lag 1 weighted by atomic222

number, C3SP3 is SP3 carbon bound to 3 other carbons, SlogP_VSA4 is a MOE type descriptor223

based on Wildman-Crippen LogP and surface area contribution, and JGI2 is the mean topological224

charge index of order 2 Moriwaki et al. (2018).225

Table 2: Drug response prediction errors associated with AUCDR < 0.75 and AUCDR >= 0.75 cell-
line – drug pairs.

MAE RMSE

AUCDR < 0.75 0.06 ± 0.003 0.082 ± 0.005
AUCDR >= 0.75 0.032 ± 0.001 0.044 ± 0.001

Figure 6 further demonstrates the error oscillations for the aforementioned descriptors, unfolding226

domains with the most significant errors: GATS1Z < 0.2, C3SP3 > 9, 50 > SlogP_VSA4 <227

55, and JGI2 < 0.04. Such intricate data prove invaluable in decoding the root causes of subpar228

model performance and paves the path for consequential model enhancements. In fact, we notice229

that the prediction errors associated with AUCDR<0.75 drugs are signicantly higher than those of230

AUCDR>=0.75 drugs (see Table 2). In the Appendix, we investigate whether the error from the231

above descriptors is due to a common molecular structure motif or a deficiency of the representa-232

tion.233

Investigating further, observing drug response values (AUCDR) in domains GATS1Z < 0.2 and234

GATS1Z > 1.5 (refer to Figure 7) reveals certain AUCDR values in the GATS1Z < 0.2 distribu-235

tion do not originate from a densely populated region in the complete distribution. This correlation236

highlights the association of GATS1Z < 0.2 drugs with diminished drug response values.237

In order to demonstrate how one can potentially use the information about domain errors to improve238

the model predictions, we pretrained the GraphDRP model to predict the molecular descriptors239

corresponding to largest error domains; GATS1Z, C3SP3, SlogP_VSA4, JGI2 and n5Ring. The240
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Figure 6: Visualization of error fluctuations within high-error descriptors domains. This plot is
crucial for identifying and understanding the underlying causes of model performance

Figure 7: Examination of AUCDR distributions in different GATS1Z regions in the dataset.

pretraining GraphDRP model was created by replacing the last linear layer with three layers; one241

with three outputs for GATS1Z, SlogP_VSA4 and JGI2, another two with 11 and 8 outputs for242

unique values of C3SP3 and n5Ring respectively. The model was trained for 100 epochs with243

early stopping. After training, the weights of this model were loaded to the original GraphDRP244

model and trained for 100 epochs. Using the predictions of this model we obtained the domain245

errors again. Comparison of the logS, Molecular Weight, logP and nHBDon domain errors before246

and after pretraining are shown in Figure 8. We see significant error reductions in logS and LogP247

domains. We also observe a test set R2 improvement from 0.812 to 0.838 due to pretraining.248

Figure 8: Reduction in GraphDRP error after pretraining.

8



Under review as a conference paper at ICLR 2024

3 METHODS249

3.1 DATA AND MODEL TRAINING250

The CTRPv2 dataset used in this work is from the CSA Benchmark Datasets curated as part of251

the IMPROVE4 project. Cell line response data of this dataset were extracted from the Cancer252

Therapeutics Response Portal version 2. After extracting multi-dose viability data, a unified dose253

response fitting pipeline was used to calculate the dose-independent response metric, area under the254

dose response curve (AUCDR). Drug data have been retrieved from PubChem (Kim et al., 2023).255

The CTRPv2 dataset has 720 cell lines and 494 unique drugs. The total number of drug response256

values is 286665.257

The full dataset was divided into ten random train, validation, and test folds using different random258

seeds. This ensured that every drug-cancer cell combination was predicted at least once. The models259

were trained using the train set, the validation set is used for saving the best models. Except for the260

HiDRA model, others were trained for 100 epochs. As it takes about 30 minutes for a HiDRA epoch261

to complete, it was trained for 20 epochs. The predictions made by each of the test sets are recorded.262

These predictions are used to find the mean and the standard deviation of the prediction errors across263

the ten runs.264

4 CONCLUSIONS265

Domain error is a significant factor that can impact the performance of drug response prediction266

models. By utilizing our recently implemented CMP-CV framework and understanding the domain267

errors of different CDRP models, we can identify the molecular descriptors that have not been en-268

coded with sufficient detail by the model’s representation. This knowledge can be used to guide the269

selection of models for specific applications. We also introduce a web application which enables270

users to find the CDRP models better suited for drugs having specific molecular properties. We271

found that the prediction accuracy for drugs with a low solubility, particularly below the threshold272

logS < -7, dramatically decreases regardless of molcular representation. Increased drug solubility273

notably improves prediction accuracy with two models based on molecular descriptors and Morgan274

fingerprints preforming substantially better than other representation across the entire range for sol-275

ubility. In addition, we can use the domain errors of models to improve the performance of models276

by focusing on improving their representation in these descriptor domains. Our analysis revealed277

that GATS1Z, C3SP3, SlogP_VSA4 and JGI2 are among the domains that might not be encoded278

with adequate detail by any of the molecular representations that could help improve the model pre-279

diction. By avoiding models with large errors in the domain of interest, we can obtain more reliable280

predictions from the models. We also show that using the descriptors corresponding to high-error281

domains as pretraining targets has a potential to improve model predictions.282

In conclusion, molecular representation and feature domain exploration lays a robust foundation283

for not only recognizing and comprehending the domains contributing to the largest errors but also284

offers an opportunity for substantial model improvement.285

4IMPROVE
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REPRODUCIBILITY STATEMENT286

We have provided the instructions to run the CMP-CV and the code to perform the data analysis287

shown in the paper in the code.zip file.288

REFERENCES289

George Adam, Ladislav Rampášek, Zhaleh Safikhani, Petr Smirnov, Benjamin Haibe-Kains,290

and Anna Goldenberg. Machine learning approaches to drug response prediction: chal-291

lenges and recent progress. npj Precision Oncology, 4(1):1–10, June 2020. ISSN 2397-292

768X. doi: 10.1038/s41698-020-0122-1. URL https://www.nature.com/articles/293

s41698-020-0122-1. Number: 1 Publisher: Nature Publishing Group.294

Timothy G. Armstrong, Justin M. Wozniak, Michael Wilde, and Ian T. Foster. Compiler techniques295

for massively scalable implicit task parallelism. In Proc. SC, 2014.296

Delora Baptista, Pedro G Ferreira, and Miguel Rocha. Deep learning for drug response prediction297

in cancer. Briefings in Bioinformatics, 22(1):360–379, 01 2020. ISSN 1477-4054. doi: 10.1093/298

bib/bbz171. URL https://doi.org/10.1093/bib/bbz171.299

Omid Bazgir, Ruibo Zhang, Saugato Rahman Dhruba, Raziur Rahman, Souparno Ghosh, and300

Ranadip Pal. Representation of features as images with neighborhood dependencies for com-301

patibility with convolutional neural networks. Nature Communications, 11(1):4391, September302

2020. ISSN 2041-1723. doi: 10.1038/s41467-020-18197-y. URL https://www.nature.303

com/articles/s41467-020-18197-y. Number: 1 Publisher: Nature Publishing Group.304

CANDLE Team. The candle_lib GitHub repository, 2018. https://github.com/ECP-305

CANDLE/candle_lib.306

Yoosup Chang, Hyejin Park, Hyun-Jin Yang, Seungju Lee, Kwee-Yum Lee, Tae Soon Kim, Jongsun307

Jung, and Jae-Min Shin. Cancer Drug Response Profile scan (CDRscan): A Deep Learning308

Model That Predicts Drug Effectiveness from Cancer Genomic Signature. Scientific Reports,309

8(1):8857, June 2018. ISSN 2045-2322. doi: 10.1038/s41598-018-27214-6. URL https:310

//doi.org/10.1038/s41598-018-27214-6.311

Li Di and Edward H. Kerns. Chapter 1 - introduction. In Li Di and Edward H.312

Kerns (eds.), Drug-Like Properties (Second Edition), pp. 1–3. Academic Press, Boston,313

second edition edition, 2016. ISBN 978-0-12-801076-1. doi: https://doi.org/10.1016/314

B978-0-12-801076-1.00001-0. URL https://www.sciencedirect.com/science/315

article/pii/B9780128010761000010.316

R. Fisher, L. Pusztai, and C. Swanton. Cancer heterogeneity: implications for targeted therapeutics.317

British Journal of Cancer, 108(3):479–485, February 2013. ISSN 1532-1827. doi: 10.1038/318

bjc.2012.581. URL https://www.nature.com/articles/bjc2012581. Number: 3319

Publisher: Nature Publishing Group.320

Message Passing Interface Forum. MPI: A message-passing interface standard, 1994. URL321

citeseer.ist.psu.edu/forum94mpi.html.322

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine Learning,323

63(1):3–42, April 2006. ISSN 1573-0565. doi: 10.1007/s10994-006-6226-1. URL https:324

//doi.org/10.1007/s10994-006-6226-1.325

Kexin Huang, Cao Xiao, Lucas Glass, and Jimeng Sun. Explainable substructure partition finger-326

print for protein, drug, and more. NeurIPS Learning Meaningful Representation of Life Workshop,327

2019.328

Likun Jiang, Changzhi Jiang, Xinyu Yu, Rao Fu, Shuting Jin, and Xiangrong Liu. DeepTTA: a329

transformer-based model for predicting cancer drug response. Briefings in Bioinformatics, 23(3):330

bbac100, May 2022. ISSN 1477-4054. doi: 10.1093/bib/bbac100.331

10

https://www.nature.com/articles/s41698-020-0122-1
https://www.nature.com/articles/s41698-020-0122-1
https://www.nature.com/articles/s41698-020-0122-1
https://doi.org/10.1093/bib/bbz171
https://www.nature.com/articles/s41467-020-18197-y
https://www.nature.com/articles/s41467-020-18197-y
https://www.nature.com/articles/s41467-020-18197-y
https://doi.org/10.1038/s41598-018-27214-6
https://doi.org/10.1038/s41598-018-27214-6
https://doi.org/10.1038/s41598-018-27214-6
https://www.sciencedirect.com/science/article/pii/B9780128010761000010
https://www.sciencedirect.com/science/article/pii/B9780128010761000010
https://www.sciencedirect.com/science/article/pii/B9780128010761000010
https://www.nature.com/articles/bjc2012581
citeseer.ist.psu.edu/forum94mpi.html
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1


Under review as a conference paper at ICLR 2024

Iljung Jin and Hojung Nam. Hidra: Hierarchical network for drug response prediction with attention.332

Journal of Chemical Information and Modeling, 61(8):3858–3867, 2021. doi: 10.1021/acs.jcim.333

1c00706. URL https://doi.org/10.1021/acs.jcim.1c00706. PMID: 34342985.334

Seonghun Kim, Seockhun Bae, Yinhua Piao, and Kyuri Jo. Graph convolutional network for drug335

response prediction using gene expression data. Mathematics, 9(7):1–17, 2021. ISSN 22277390.336

doi: 10.3390/math9070772.337

Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang Li, Ben-338

jamin A Shoemaker, Paul A Thiessen, Bo Yu, Leonid Zaslavsky, Jian Zhang, and Evan E Bolton.339

PubChem 2023 update. Nucleic Acids Research, 51(D1):D1373–D1380, jan 2023. ISSN 0305-340

1048. doi: 10.1093/nar/gkac956. URL https://academic.oup.com/nar/article/341

51/D1/D1373/6777787.342

Brent M. Kuenzi, Jisoo Park, Samson H. Fong, Kyle S. Sanchez, John Lee, Jason F. Kreisberg,343

Jianzhu Ma, and Trey Ideker. Predicting drug response and synergy using a deep learning model344

of human cancer cells. Cancer Cell, 38(5):672–684.e6, 2020. ISSN 1535-6108. doi: https://doi.345

org/10.1016/j.ccell.2020.09.014. URL https://www.sciencedirect.com/science/346

article/pii/S1535610820304888.347

Min Li, Yake Wang, Ruiqing Zheng, Xinghua Shi, Yaohang Li, Fang-Xiang Wu, and Jianxin Wang.348

Deepdsc: A deep learning method to predict drug sensitivity of cancer cell lines. IEEE/ACM349

Transactions on Computational Biology and Bioinformatics, 18(2):575–582, 2021. doi: 10.1109/350

TCBB.2019.2919581.351

Pengfei Liu, Hongjian Li, Shuai Li, and Kwong-Sak Leung. Improving prediction of phenotypic352

drug response on cancer cell lines using deep convolutional network. BMC Bioinformatics, 20353

(1):408, July 2019. ISSN 1471-2105. doi: 10.1186/s12859-019-2910-6. URL https://doi.354

org/10.1186/s12859-019-2910-6.355

Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approximation and356

Projection for Dimension Reduction. feb 2018. URL http://arxiv.org/abs/1802.357

03426.358

Hirotomo Moriwaki, Yu-Shi Tian, Norihito Kawashita, and Tatsuya Takagi. Mordred: a molec-359

ular descriptor calculator. Journal of Cheminformatics, 10(1):4, February 2018. ISSN360

1758-2946. doi: 10.1186/s13321-018-0258-y. URL https://doi.org/10.1186/361

s13321-018-0258-y.362

Tuan Nguyen, Giang T. T. Nguyen, Thin Nguyen, and Duc-Hau Le. Graph Convolutional Networks363

for Drug Response Prediction. IEEE/ACM transactions on computational biology and bioinfor-364

matics, 19(1):146–154, 2022. ISSN 1557-9964. doi: 10.1109/TCBB.2021.3060430.365

Ali Oskooei, Jannis Born, Matteo Manica, Vigneshwari Subramanian, Julio Sáez-Rodríguez, and366

María Rodríguez Martínez. Paccmann: Prediction of anticancer compound sensitivity with multi-367

modal attention-based neural networks, 2019.368

Gihan Panapitiya, Michael Girard, Aaron Hollas, Jonathan Sepulveda, Vijayakumar Murugesan,369

Wei Wang, and Emily Saldanha. Evaluation of deep learning architectures for aqueous solubility370

prediction. ACS Omega, 7(18):15695–15710, 2022. doi: 10.1021/acsomega.2c00642. URL371

https://doi.org/10.1021/acsomega.2c00642.372

Aron Park, Yeeun Lee, and Seungyoon Nam. A performance evaluation of drug response prediction373

models for individual drugs. Scientific Reports, 13:11911, July 2023. ISSN 2045-2322. doi: 10.374

1038/s41598-023-39179-2. URL https://www.ncbi.nlm.nih.gov/pmc/articles/375

PMC10366128/.376

Alexander Partin, Thomas S. Brettin, Yitan Zhu, Oleksandr Narykov, Austin Clyde, Jamie Over-377

beek, and Rick L. Stevens. Deep learning methods for drug response prediction in cancer: Pre-378

dominant and emerging trends. Frontiers in Medicine, 10:1086097, February 2023. ISSN 2296-379

858X. doi: 10.3389/fmed.2023.1086097. URL https://www.ncbi.nlm.nih.gov/pmc/380

articles/PMC9975164/.381

11

https://doi.org/10.1021/acs.jcim.1c00706
https://academic.oup.com/nar/article/51/D1/D1373/6777787
https://academic.oup.com/nar/article/51/D1/D1373/6777787
https://academic.oup.com/nar/article/51/D1/D1373/6777787
https://www.sciencedirect.com/science/article/pii/S1535610820304888
https://www.sciencedirect.com/science/article/pii/S1535610820304888
https://www.sciencedirect.com/science/article/pii/S1535610820304888
https://doi.org/10.1186/s12859-019-2910-6
https://doi.org/10.1186/s12859-019-2910-6
https://doi.org/10.1186/s12859-019-2910-6
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1021/acsomega.2c00642
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366128/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366128/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366128/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975164/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975164/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975164/


Under review as a conference paper at ICLR 2024

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-382

hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and383

E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,384

12:2825–2830, 2011.385

Jihye Shin, Yinhua Piao, Dongmin Bang, Sun Kim, and Kyuri Jo. DRPreter: Interpretable Anti-386

cancer Drug Response Prediction Using Knowledge-Guided Graph Neural Networks and Trans-387

former. International Journal of Molecular Sciences, 23(22):13919, nov 2022. ISSN 1422-388

0067. doi: 10.3390/ijms232213919. URL https://www.mdpi.com/1422-0067/23/389

22/13919.390

Yi-Ching Tang and Assaf Gottlieb. Explainable drug sensitivity prediction through can-391

cer pathway enrichment. Scientific Reports, 11(1):3128, February 2021. ISSN 2045-392

2322. doi: 10.1038/s41598-021-82612-7. URL https://www.nature.com/articles/393

s41598-021-82612-7. Number: 1 Publisher: Nature Publishing Group.394

Justin M. Wozniak, Timothy G. Armstrong, Michael Wilde, Daniel S. Katz, Ewing Lusk, and Ian T.395

Foster. Swift/T: Scalable data flow programming for distributed-memory task-parallel applica-396

tions. In Proc. CCGrid, 2013.397

Justin M. Wozniak, Timothy G. Armstrong, Ketan C. Maheshwari, Daniel S. Katz, Michael Wilde,398

and Ian T. Foster. Interlanguage parallel scripting for distributed-memory scientific computing.399

In Proc. WORKS @ SC, 2015.400

Justin M. Wozniak, Rajeev Jain, Prasanna Balaprakash, Jonathan Ozik, Nicholson Collier, John401

Bauer, Fangfang Xia, Thomas Brettin, Rick Stevens, Jamaludin Mohd-Yusof, Cristina Garcia402

Cardona, Brian Van Essen, and Matthew Baughman. CANDLE/Supervisor: A workflow frame-403

work for machine learning applied to cancer research. BMC Bioinformatics, 19(18):491, 2018.404

ISSN 1471-2105. doi: 10.1186/s12859-018-2508-4. URL https://doi.org/10.1186/405

s12859-018-2508-4.406

Molly Yancovitz, Adam Litterman, Joanne Yoon, Elise Ng, Richard L. Shapiro, Russell S.407

Berman, Anna C. Pavlick, Farbod Darvishian, Paul Christos, Madhu Mazumdar, Iman Os-408

man, and David Polsky. Intra- and Inter-Tumor Heterogeneity of BRAFV600EMutations in409

Primary and Metastatic Melanoma. PLoS ONE, 7(1):e29336, January 2012. ISSN 1932-410

6203. doi: 10.1371/journal.pone.0029336. URL https://www.ncbi.nlm.nih.gov/411

pmc/articles/PMC3250426/.412

Yitan Zhu, Thomas Brettin, Fangfang Xia, Alexander Partin, Maulik Shukla, Hyunseung Yoo,413

Yvonne A. Evrard, James H. Doroshow, and Rick L. Stevens. Converting tabular data into im-414

ages for deep learning with convolutional neural networks. Scientific Reports, 11(1):11325, May415

2021. ISSN 2045-2322. doi: 10.1038/s41598-021-90923-y. URL https://www.nature.416

com/articles/s41598-021-90923-y. Number: 1 Publisher: Nature Publishing Group.417

Zhaorui Zuo, Penglei Wang, Xiaowei Chen, Li Tian, Hui Ge, and Dahong Qian. SWnet:418

a deep learning model for drug response prediction from cancer genomic signatures and419

compound chemical structures. BMC Bioinformatics, 22(1):434, September 2021. ISSN420

1471-2105. doi: 10.1186/s12859-021-04352-9. URL https://doi.org/10.1186/421

s12859-021-04352-9.422

A APPENDIX423

A.1 MODEL RANKINGD FOR NHBDON DOMAIN.424

How the model rankings change at different domains of nHBDon (number of hydrogen bond donors)425

space.426

12

https://www.mdpi.com/1422-0067/23/22/13919
https://www.mdpi.com/1422-0067/23/22/13919
https://www.mdpi.com/1422-0067/23/22/13919
https://www.nature.com/articles/s41598-021-82612-7
https://www.nature.com/articles/s41598-021-82612-7
https://www.nature.com/articles/s41598-021-82612-7
https://doi.org/10.1186/s12859-018-2508-4
https://doi.org/10.1186/s12859-018-2508-4
https://doi.org/10.1186/s12859-018-2508-4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250426/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250426/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250426/
https://www.nature.com/articles/s41598-021-90923-y
https://www.nature.com/articles/s41598-021-90923-y
https://www.nature.com/articles/s41598-021-90923-y
https://doi.org/10.1186/s12859-021-04352-9
https://doi.org/10.1186/s12859-021-04352-9
https://doi.org/10.1186/s12859-021-04352-9


Under review as a conference paper at ICLR 2024

Table 3: Rankings of models for each nHBDon descriptor domain.

nHBDon 1 2 3 4 5 6 7 8

2.350000 Descriptor Morgan DeepTTC SMILES Graph HiDRA GraphDRP ExtraTrees
7.050000 Descriptor Morgan Graph SMILES DeepTTC GraphDRP HiDRA ExtraTrees

11.750000 GraphDRP Graph HiDRA Morgan DeepTTC SMILES ExtraTrees Descriptor
16.450000 GraphDRP Graph HiDRA Morgan DeepTTC SMILES ExtraTrees Descriptor
21.150000 Descriptor Morgan SMILES Graph DeepTTC HiDRA GraphDRP ExtraTrees
25.850000 Descriptor Morgan SMILES Graph ExtraTrees GraphDRP HiDRA DeepTTC
30.550000 DeepTTC ExtraTrees Morgan Descriptor SMILES Graph HiDRA GraphDRP
35.250000 ExtraTrees DeepTTC Morgan SMILES Descriptor Graph HiDRA GraphDRP
39.950000 DeepTTC ExtraTrees Morgan Descriptor GraphDRP SMILES Graph HiDRA
44.650000 DeepTTC Morgan SMILES ExtraTrees Descriptor Graph HiDRA GraphDRP

Table 4: Average RMSE values for DeepTTC and Descriptor models in two regions in the nHBDon
space.

nHBDon DeepTTC Descriptor

< 8 0.0587 ± 0.0004 0.0513 ± 0.0015

> 35 0.0336 ± 0.0044 0.0385 ± 0.0006

A.2 SUPERVIOSOR FRAMEWORK427

SUPERVISOR FRAMEWORK SCALABILITY428

Supervisor was designed as an Exascale Computing Project application, meaning it was designed429

from the beginnning for exascale computers. Supervisor is built around the Swift/T Wozniak et al.430

(2013); Armstrong et al. (2014) workflow language and runtime. Swift/T is an MPI-based work-431

flow system, so communication for task distribution and monitoring is performed over MPI Forum432

(1994), the messaging layer provided by machine vendors for efficient use of large-scale computers.433

Swift/T is scalable through two architectural innovations. First, the task distribution is coordinated434

by a network of multiple task servers, which use an efficient work-stealing algorithm to distribute435

work. Secondly, the control logic itself generated from the user workflow script is evaluated over436

this distributed fabric, meaning that the workflow evaluation itself is also scalable.437

SUPERVISOR USABILITY FOR DEEP LEARNING WORKFLOWS438

Supervisor has many usability features for deep learning applications. These are based on features439

of the Swift/T language and the Supervisor scripts that wrap the core workflow features with easier440

to use scripts for launching workflows. For example, Swift/T contains multiple mechanisms for441

calling back into user code through Python interfaces, command lines, and other languages like Tcl442

and R Wozniak et al. (2015). Supervisor is launched with the supervisor tool, which accepts443

a workflow name, site specification, and configuration file. The workflow name is essentially a444

label to the workflow, such as “CMP-CV” for the present case. The site specification contains445

settings for the computing system in question, such as program locations for Swift/T, Python, etc.446

The configuration file contains any additional settings, such as scheduler items including walltime,447

resources to allocate, parameters for a workflow control algorithm in use, etc.448

Internally, Supervisor contains scripts to glue the workflow system to user models through the449

“model shell.” For the CMP-CV case, this script sets up the container for execution, handles the450

hyperparameters, finds and runs the container with its standard command line, and collects results.451

Everything here is logged into a per-model log for human examination and possible debugging later.452

A.3 GRAPH, SMILES, MORGAN AND DESCRIPTOR MODELS453

This section contains details on the Graph, SMILES, Morgan and Descriptor models introduced454

in the Section 2.3. These four models use the same cell-line representation but different drug rep-455

resentations. The cell-line representation is created by feeding the 1007 gene expression values to456

a fully connected neural network. The drug representation of the Graph model is created using a457
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graph neural network Panapitiya et al. (2022) consisting of graph convolutional layers. In the Mor-458

gan model, a drug molecule is represented using a Morgan fingerprint in the form of a bit vector of459

size 1024. RDKit5 is used for this fingerprint generation. The drug representation of the SMILES460

model is created as it is done in the DeepTTC6Jiang et al. (2022) model. The drug representation461

of the Descriptor model is initialized using 783 molecular descriptors generated using the Mordred462

package Moriwaki et al. (2018). These descriptors are fed into a fully connected neural network to463

create the final drug representation.464

A.4 UNRAVELING THE ROLE OF MOLECULAR STRUCTURE IN DRUG ERROR465

By learning from the feature domain, we explored the potential relationships between the drug466

structures and their corresponding features. In Figure 9, a visualization technique is employed to467

embed the circular Morgan fingerprint representations of the drugs, utilizing UMAP (McInnes et al.,468

2018). This method allows for the reduction of high-dimensional (2048-bit) fingerprint vectors into469

an accessible two-dimensional representation. Subsequently, the desired descriptor values were470

overlaid utilizing a color spectrum.471

Upon close scrutiny of the four plotted graphs covering GATS1Z, SlogP_VSA4, C3SP3, and JGI2,472

an identification of the regions of chemical space encompassed by the data is unveiled. This visu-473

alization serves as a tool, highlighting the specific regions of space each descriptor predominantly474

occupies, offering an insightful glance into the diverse chemical territories. From this figure we see475

that there is close clustering for the 50 < S logP_VSA4 < 55 and JGI2 < 0.04 molecules, high-476

lighted with red X’s. This infers that the high error drugs in these descriptor domains exhibit similar477

structural motifs that possibly contribute to the error. The opposite is also true where the descriptors478

GATS1Z < 0.2 and C3SP3 > 9 show sparser data points. This points to these descriptors being less479

correlated with certain similar structural motifs. This embedding offers yet another way to utilize480

the results gathered above to draw conclusions about a model’s weaknesses and strengths. A closer481

look at examples of these structures can be found in Figure 10 and Figure 11.482

5RDKit
6DeepTTC
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Figure 9: UMAP embeding of molecular fingerprints with overlay of molecular features of interest:
GATS1Z, C3SP3, SlogP_VSA4, and JGI2. The color of each point corresponds with it’s associated
value and the red X’s highlight the molecules identified as having the highest error from Figure 5.

Figure 10: Distributions of drug like properties over the used dataset. Covers solubility (logS),
Molecular Weight, the partition coefficient (LogP), and number of Hydrogen donors (nHBDon).
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(a) GATS1Z<0.2 (b) C3SP3>9

(c) SlogP_VSA4 > 50 and SlogP_VSA4 < 55 (d) JGI2<0.04

Figure 11: Example drug molecules in GATS1Z, C3SP3, SlogP_VSA4 and JGI2 domains.
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