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Abstract

Due to the rapid development of panorama cameras, the
task of estimating panorama depth has attracted significant
attention from the computer vision community, especially in
applications such as robot sensing and autonomous driv-
ing. However, existing methods relying on different projec-
tion formats often encounter challenges, either struggling
with distortion and discontinuity in the case of equirectan-
gular, cubemap, and tangent projections, or experiencing
a loss of texture details with the spherical projection. To
tackle these concerns, we present SphereFusion, an end-to-
end framework that combines the strengths of various pro-
jection methods. Specifically, SphereFusion initially em-
ploys 2D image convolution and mesh operations to ex-
tract two distinct types of features from the panorama im-
age in both equirectangular and spherical projection do-
mains. These features are then projected onto the spher-
ical domain, where a gate fusion module selects the most
reliable features for fusion. Finally, SphereFusion esti-
mates panorama depth within the spherical domain. Mean-
while, SphereFusion employs a cache strategy to improve
the efficiency of mesh operation. Extensive experiments on
three public panorama datasets demonstrate that Sphere-
Fusion achieves competitive results with other state-of-the-
art methods, while presenting the fastest inference speed at
only 17 ms on a 512×1024 panorama image.

1. Introduction
Depth estimation is an important task in computer vision
that helps to understand the 3D environment. In particu-
lar, the panorama image has a 360◦ field of view (FOV)
and can reconstruct the entire surrounding environment in
one shot [48, 59]. With the development of consumer-
level panorama cameras, such as Ricoh Theta, Samsung
Gear360, and Insta360 ONE, it becomes an intriguing
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Figure 1. Comparison with BiFuse [48], UniFuse [29], SliceNet
[37], PanoFormer [42], OminiFusion [34], SphereDepth [51], Ho-
hoNet [46] on Stanford2D3D [3] with resolution of 512 × 1024.
The horizontal axis is the FPS, and the vertical axis is δ(1.25)(%),
which counts the percentage of the absolute relative difference be-
tween the prediction and the ground truth that is less than 1.25.
The higher FPS and higher δ(1.25)(%) mean better.

task to estimate the depth map from the panorama image
[34, 37, 42, 46, 51], and many related datasets have been
generated to facilitate the research of panorama depth esti-
mation [1, 3, 6, 57, 59].

However, it is challenging to find a proper way to rep-
resent the panorama image. The most popular equirectan-
gular projection faces huge distortion around the poles and
poor discontinuity near the borders. The cubemap projec-
tion [44] and the tangent projection [17, 34, 42] project the
panorama image to several planes to avoid distortion but in-
troduce serious discontinuity problems and have to rely on
a well-designed fusion strategy to merge them. The spher-
ical projection [51] can deal with distortion and disconti-
nuity by approximating the sphere, but it is hard to capture
details of the panorama image and cannot directly handle
high-resolution panorama images.

Based on the characteristics of these projections, differ-
ent strategies are used to extract features from panorama



images. The equirectangular projection represents the
panorama image in one image plane and can directly utilize
2D image convolution to extract features. Nevertheless, the
equirectangular projection faces huge distortion and needs
specially designed 2D convolution kernels to extract reli-
able features [7, 47, 59]. Like the equirectangular projec-
tion, the cubemap projection and tangent projection employ
multiple planes to represent the panorama image and use
2D image convolution to extract features. However, they
require a suitable mechanism to fuse features from differ-
ent planes and maintain global consistency [8, 34, 36, 42].
[20, 23, 27, 51]. On the other hand, the spherical projec-
tion is an ideal way to represent the panorama image, and
utilizes mesh operation to extract features. Nonetheless, the
mesh operation struggles to capture details and exhibits in-
efficiency [20, 23, 27, 51]. Meanwhile, BiFuse [48] and
UniFuse [29] try to combine the strengths of different pro-
jections. Although they achieve better depth estimation re-
sults, they still suffer from distortion around the poles.

To this end, this paper proposes SphereFusion, which
unites equirectangular and spherical projections. Sphere-
Fusion first represents the panorama image by equirectan-
gular and spherical projections, then extracts two types of
features, and finally fuses them through a fusion module
to estimate the panorama depth in the spherical projection.
To balance the accuracy and efficiency, SphereFusion im-
plements a lightweight encoder to extract features [24] and
utilizes a cache strategy to reduce the computation com-
plexity of the mesh operation. Fig. 1 compares the effi-
ciency and quality of the depth map with state-of-the-art
methods [29, 34, 37, 42, 46, 48, 51]. SphereFusion obtains
high-quality depth maps and achieves around 60 FPS dur-
ing inference on the panorama image with a resolution of
512× 1024. Our contributions are summarized as follows.

1. We propose a panorama depth estimation method,
SphereFusion, to estimate the depth map in the spherical
projection, which uses the features from the equirectan-
gular projection to improve the details.

2. We design a feature fusion module, GateFuse, which se-
lects reliable features from two projections to improve
the quality of the depth map.

3. Experiments demonstrate that SphereFusion achieves
competitive results on three public panorama datasets
and can produce point clouds with less noise and higher
completeness. Besides, SphereFusion achieves 60 FPS
of inference speed on an NVIDIA RTX 3090, outper-
forming existing methods.

2. Related Work

2.1. Perspective Depth Estimation

Over the past few decades, the perspective 2D image from
the classical pinhole camera model has attracted much in-

terest in inferring depth estimation for 3D sensing appli-
cations. The traditional methods, such as Make3D [41]
and Pop-up [25], leverage the prior depth distribution and
regress the pixel-wise depth via a Markov random field
(MRF). Due to the success of deep learning, researchers
have also utilized its capability of multi-level feature extrac-
tion to improve the depth quality. As the first trial, Eigen
[19] and Laina [32] design end-to-end convolutional neu-
ral networks to regress the depth map from an RGB image.
Furthermore, several recent studies [4, 54] take advantage
of the visual transformer (ViT) [14], which captures the
relationship between each pixel patch to regress the depth
map with a global context. To improve the model gener-
alization and depth consistency, Midas [38] focuses on the
training strategy of mixing different datasets and tuning the
loss function. Other studies, such as [2, 18, 35, 52], in-
troduce some constraints like the surface normal or the se-
mantic information to co-optimize the depth map. However,
a key challenge in training models for depth estimation is
the lack of high-quality depth labels, which motivates the
studies of unsupervised learning [5, 22, 50, 56, 58]. SfM-
Learner [58] leverages photometric consistency to estimate
the relative pose and depth simultaneously. MonoDepth2
[22] filters out the outliers that violate photometric consis-
tency to deal with occlusions. In addition, SfMLearner-SC
[5] explores the depth consistency between video frames to
restrict the depth of each pixel. Although depth estimation
for 2D perspective images has achieved considerable per-
formance, they cannot be directly applied to the panorama
image. The main reason is that the panorama image needs
a particular type of projection, which usually causes distor-
tion or discontinuity, where network for perspective vision
are hard to capture reliable features.

2.2. Panorama Depth Estimation

Unlike the perspective image, which only provides a limited
FOV, the panorama image has a 360◦ FOV. Compared to
the development of perspective depth estimation, panorama
depth estimation is still in its infancy stage. Most of the
recent studies [31, 42, 43, 46, 48, 59] rely on special pro-
jection methods to transform the panorama image to the 2D
perspective image and estimate the depth using the perspec-
tive neural network structures. The equirectangular projec-
tion is the most common projection, allowing all the sur-
rounding information to be observed from a single 2D im-
age. OmniDepth [59] proposes the first end-to-end network
based on the equirectangular projection for panorama depth
estimation along with a large synthetic dataset. SliceNet
[37] uses sliced feature maps to estimate the depth map
through LSTM. The cubemap projection transforms the
panorama image into six perspective images to estimate
depth maps and then fuse them through a specially designed
module [8, 48]. The tangent projection approximates the



Figure 2. Given a panorama image in the equirectangular projection and the spherical projection, SphereFusion simultaneously extracts
features by a 2D image encoder and a mesh encoder, which follows the ResNet structure [24], then fuses these features by the Gate Fusion
module in the spherical projection, and finally estimates the depth map through the mesh decoder.

sphere through more perspective images. OmniFusion [34],
PanoFormer [42], and 360MonoDepth [39] samples per-
spective images from the spherical surface [17] and applies
the existing convolutional or ViT models on each tangent
patch. Despite the success of these methods, the main prob-
lem of those projections is introducing distortion and dis-
continuity in certain areas of the panorama image. Although
several subsequent studies have attempted to improve the
depth quality of these regions, such as designing special
convolutional kernels [9, 13, 16, 45, 47, 49, 53], applying
the deformable convolution [7, 21], and multi-task learn-
ing [15, 30, 55], we argue that the influence of distortion
and discontinuity cannot be removed entirely. In addition
to changing the convolution kernel, BiFuse [48] and Uni-
Fuse [29] combine the equirectangular projection and the
cubemap projection.

To eliminate the drawbacks of the above two projec-
tion methods, some recent studies attempt to process the
panorama image in the spherical domain. SpherePHD
[33] uses the icosahedral spherical mesh to represent the
panorama image and extract semantic maps. SphereDepth
[51] modifies the mesh operation from the SubdivNet [27],
which is more efficient than MeshCNN [23] and MeshNet
[20]. In addition, S2CNN [12] uses the spheric harmonics
function to build networks but is unsuitable for dense esti-
mation. US2CNN [28] builds grids and manually assigns
weight to build the network.

3. Method

In this section, we describe the details of SphereFusion, as
shown in Fig. 2. We first describe how to represent the

panorama image in Section 3.1 and extract features in the
spherical projection in Section 3.2. Then, we show the
pipeline of our SphereFusion in Section 3.3. Finally, we
present the loss function in Section 3.4.

3.1. Panorama Representation

Finding a suitable way to represent the panorama image is
the key to high-quality panorama depth estimation. The
equirectangular projection [59] suffers from distortion on
the poles and discontinuity at the borders, but it can di-
rectly use 2D convolution to extract features from images.
The cubemap and tangent projection have small distortion
but need a special mechanism to fuse different patches
[34, 36, 42]. The spherical projection [51] is an ideal way
to represent the panorama image, but mesh convolution is
hard to extract texture features compared with 2D image
convolution. In light of these, we simultaneously employ
the equirectangular and spherical projections.

The equirectangular projection uses a 2D image plane to
represent the panorama image, as Fig. 3(b) shows, where
the image plane is built on the latitude and longitude of the
sphere surface. Given a pixel p = (u, v) on the image plane,
we can calculate its position on the sphere surface by Eq. 1,
where W is the image width and H is the image height.

{
longitude = (2u/W − 1)× π

latitude = (v/H − 0.5)× π
(1)

The spherical projection is based on the icosahedron
spherical mesh [17], which can approximate the sphere by
a higher mesh resolution (MR), where MR represents the



(a) Panorama Image (b) Equirectangular Projection (c) Spherical Projection

Figure 3. The ideal representation of a panorama image is the sphere, but it is impractical. The equirectangular projection is the most
popular method, but it suffers from distortion at the poles and discontinuity at the borders. The spherical mesh can approximate the sphere,
and their difference becomes smaller with higher MR.

(a) Mesh Convolution

(b) Mesh Pooling
Figure 4. Mesh Operations includes Mesh Convolution and the
Mesh Pooling/Unpooling [51], which relies on the relationship be-
tween triangles of the spherical mesh.

times of loop subdivision [27] is applied on the icosahedron
spherical mesh and determines the number of triangles in
the spherical mesh by 20× 4MR. One triangle in the spher-
ical mesh represents one pixel in equirectangular projection,
as Fig. 3(c) shows, Tangent [17] points out that a panorama
image in the equirectangular projection with higher image
resolution needs a spherical mesh with higher MR. In our
implementation, we use the triangle center (x, y, z) to rep-
resent the whole triangle and can calculate its position on
the sphere surface by Eq. 2.

{
longitude = atan(y, x)

latitude = atan(z,
√

x2 + y2)
(2)

According to Eq. 1 and Eq. 2, we define the E2S (
equirectangular projection to spherical projection ) and S2E
( spherical projection to equirectangular projection ).

3.2. Mesh Operations

As we utilize the spherical projection to represent the
panorama image, we need mesh convolution and the mesh
pooling/unpooling to extract features, which is inspired by
SubdivNet [27] and SphereDepth [51].

Mesh convolution relies on the FAF ( face adjacent face
), which describes the topological relationship between tri-
angles of the spherical mesh, as Fig. 4(a) shows. Each trian-
gle in the mesh has three neighbors and can extract features

by linear interpolation by Eq. 3, where wi(i = 0, 1, 2, 3)
are the weight parameters, b0 is the bias parameter, f0 is the
feature of the center triangle, f1, f2, f3 are the feature of
adjacent triangles, fn is the extracted features.

fn =

3∑
i=0

wifi + b0 (3)

The mesh pooling and unpooling are fundamental com-
ponents of constructing an encoder-decoder structure. Simi-
lar to the image pooling, mesh pooling merges four triangles
into one, as shown in Fig. 4(b) and calculates the feature of
the new fn triangle through features of f0, f1,f2, and f3 by
the mesh max pooling. The mesh unpooling is the oppo-
site of the mesh pooling, which splits one triangle into four
triangles by loop subdivision.

3.3. Our Framework

3.3.1 The Network Encoder

Given a panorama image, we represent it by the spherical
and equirectangular projection and employ the mesh en-
coder and image encoder to extract features, respectively.
The network structure of the mesh encoder follows the
ResNet [24]. Considering the extremely high computational
complexity of mesh operations [27, 51], the mesh encoder
uses the simplest ResNet18, and generates five scales of
spherical features Fsp, of which the channels are 64, 64,
128, 256, and 512. SphereFusion randomly initializes the
mesh encoder and trains it from scratch. The image encoder
directly uses the ResNet50 to extract image features Feq , of
which the channels are 64, 256, 512, 1024, and 2048. As
2D image convolution can not capture reliable features on
distorted regions [59], we add a lightweight image encoder
to extend the receptive field. Meanwhile, the image decoder
aligns the number of channels of Feq to Fsp to facilitate the
subsequent feature fusion. SphereFusion initializes the im-
age encoder by a pre-trained weight and randomly initial-
izes the image decoder.



Figure 5. We implement BiFuse [48], UniFuse [29], and our GateFuse to fuse features from spherical projection Fsp and equirectangular
projection Feq . Unlike BiFuse and UniFuse select features from Feq and fuse them to Fsp, GateFuse selects features from Fsp and Feq .

3.3.2 The Fusion Module

After extracting features from the spherical projection Fsp

and the equirectangular projection Feq , SphereFusion uses
the GateFuse module to fuse these features in the spheri-
cal domain. The core idea of the GateFuse module is to
enhance the Fsp by Feq through a reset gate and a forget
gate inspired by GRU [10]. For extracted features in each
scale, GateFuse first transforms Feq to the spherical projec-
tion through the E2S module, then concatenates these fea-
tures to estimate a reset gate value r and a forget gate value
z, where r selects features from Fsp and z selects features
from Feq . Finally, GateFuse adds these features to get fused
features Ffused. Compared with BiFuse [48] and UniFuse
[29], which use concatenate features to estimate a mask to
select reliable features from Feq , GateFuse simultaneously
selects reliable features from Fsp and Feq , instead of simply
trusting one type of features. To better compare different
fusion modules, we implement BiFuse, UniFuse, and our
GateFuse and visualize these modules in Fig. 5.

3.3.3 The Network Decoder

With fused features, we construct a mesh decoder to esti-
mate the panorama depth. Following the network structure
of UNet [40], SphereFusion uses skip-connection to con-
catenate fused features Ffused with features from the mesh
encoder Fsp, and uses the mesh unpooling to reconstruct
a high-resolution panorama depth map. Specifically, the
mesh decoder has six layers, and the number of channels
in each layer are 1024, 512, 64, 32, 32, and 32, respectively.
Meanwhile, each layer contains one mesh unpooling layer
to gradually increase the MR of the spherical mesh from 2 to
7 for 360D and 3 to 8 for Matterport3D and Stanford2D3D.
The mesh decoder outputs multi-resolution panorama depth
maps to speed up the training procedure.

3.3.4 Inference Efficiency

Unlike 2D image convolution, which can directly find ad-
jacent pixels by coordinate, the mesh operation needs to
compute the FAF of each triangle to identify nearby tri-
angles in each layer, which will become more complex
with higher MR. However, as the mesh pooling/unpooling
changes the spherical mesh, mesh convolution layers be-
tween two mesh pooling/unpooling layers use a spherical
mesh with the same MR. Meanwhile, the mesh decoder and
the mesh encoder at the same scale use a spherical mesh
with the same MR. Based on these findings, SphereFu-
sion first identifies all active spherical meshes, then merges
these spherical meshes with the same MR, and then cal-
culates the corresponding FAF once. During training and
testing, SphereFusion stores these connectivity information
in cache memory without recalculating FAF for each layer,
which can significantly improve inference efficiency.

3.4. Loss Function

Following recent works [37, 48], we use the BerHu loss [32]
during training as Eq. 4 shows, where y is the ground truth
depth and ŷ is the predicted depth, and the threshold T is
set to 0.2 in all our experiments.

L(y, ŷ) =

{
|y − ŷ|, |y − ŷ| < T
(y−ŷ)2+T 2

2T , |y − ŷ| ≥ T
(4)

To accelerate the training, SphereFusion predicts depth
maps with multiple scales and extendsEq. 4 to multi-scale,
as Eq. 5 shows, where s is the scale, si is the weight, Vi is
the valid pixel, Ni is the number of the valid pixel.

Loss =
∑
i<s

si

∑
p∈Vi

L(y, ŷ)
Ni

(5)



4. Experiments
4.1. Datasets

360D [59] is a synthetic panorama dataset and contains
35977 panorama images with a resolution of 256× 512.
Matterport3D [6] is a large real-world dataset, which has
10800 panorama images. We resize all panorama images
and depth maps into 512×1024 during training and testing.
Stanford2D3D [3] is a real-world indoor dataset that con-
tains 1413 panoramas. We resize all panorama images and
depth maps into 512× 1024.

4.2. Implementation

We implement our method by Jittor [26]. On 360D, we
train the network with 30 epochs, setting the batch size to
4 and the initial learning rate to 0.0002. On Matterport3D
and Stanford2D3D, we train the network with 30 epochs,
setting the batch size to 2 and the initial learning rate to
0.0001. On all datasets, we train on one Nvidia Tesla V100
and halve the learning rate after every ten epochs. Since
Matterport3D and Stanford2D3D utilize the same sensors
to capture panorama images, and the size of Stanford2D3D
is relatively small, we combine their training data but test
each dataset separately.

4.3. Quantitative Evaluation

During the quantitative evaluation, we follow common eval-
uation metrics [48] and use MAE, MRE, RMSE, RMSE
(log), and δ and compare with state-of-the-art panorama
depth estimation methods [29, 34, 37, 42, 46, 48, 51]. To
deal with outliers, we ignore pixels whose depth is outside
of the range 0.1 ∼ 10 meters for 360D [59] and 0.1 ∼ 16
for Stanford2D3D [3] and Matterport3D [6]. Table 1 shows
evaluation results on three datasets, including the quality of
the depth map and the inference efficiency.

On 360D [59], our method achieves the best results on
MRE and MAE and ranks second on RMSE(log), δ1, δ2,
and δ3. On Matterport3D [6], our method ranks second
on MRE, MAE, and RMSE(log). As for Stanford2D3D
[3], our method achieves the lowest MRE, MRE, and
RMSE(log) values while ranking second in RMSE and δ1.
Overall, our method achieves competitive performance with
the state-of-the-art methods. Notably, compared to Sphere-
Depth [51], which only utilizes the mesh operation, Sphere-
Fusion significantly improves the quality of the depth map
by the fusion strategy. Moreover, SphereFusion achieves
comparable results with only a simple ResNet structure
compared to OmniFusion [34] and PanoFormer [42], which
use the ViT as the encoder, demonstrating the importance
of choosing the proper projection.

In addition to the quality of panorama depth maps, we
also compare the inference efficiency of different methods.
We average the inference time by predicting the depth map

RGB GT SphereDepth UniFuse ours

GT SphereDepth UniFuse ours
Figure 6. We select two scenes from 360D [59] and visualize depth
maps and point clouds.

RGB GT SliceNet PanoFormer ours

GT SliceNet PanoFormer ours
Figure 7. We select two scenes from Matterport3D [6] and es-
timate depth maps by SliceNet [37], PanoFormer [42], and our
method SphereFusion.

RGB GT OmniFusion PanoFormer ours

GT OmniFusion PanoFormer ours
Figure 8. We select two scenes from Stanford2D3D [3] and show
depth maps and corresponding point clouds.

of 100 panorama images with a resolution of 512 × 1024
on a single RTX 3090 to obtain a reliable inference time.
SphereFusion is the most efficient method, requiring only
0.0174 seconds per image during inference. Compared with
SphereDepth [51], our method achieves higher efficiency by
using a lighter mesh network and the cache strategy to store
the FAF during inference. Although OmniFusion [34] and
PanoFormer [42] achieve higher depth map quality, they re-
quire longer inference time.

In summary, SphereFusion benefits from choosing the
suitable projection and can obtain comparable reconstruc-



Table 1. Quantitative evaluation results of depth maps, where ‘S2D3D’ is the short for Standard2D3D and ‘M3D’ is the short for Matter-
port3D. ‘—’ means no data is available from the original paper. We mark out top three methods for better comparison.

Dataset Method MRE↓ MAE↓ RMSE↓ RMSE(log)↓ δ1 ↑ δ2 ↑ δ3 ↑ Time(s)↓

S2D3D

FCRN [32] 0.1837 0.3428 0.5774 0.1100 0.7230 0.9207 0.9731 —
OmniDepth [59] 0.1996 0.3743 0.6152 0.1212 0.6877 0.8891 0.9578 —
BiFuse [48] 0.1209 0.2343 0.4142 0.0787 0.8660 0.9580 0.9860 0.7825
SliceNet∗ [37] 0.09983 0.17372 0.3728 0.0765 0.9038 0.9623 0.9843 0.0668
UniFuse [29] 0.1114 0.2082 0.3691 0.07213 0.8711 0.9664 0.9882 0.02472

HohoNet [46] 0.1014 0.20273 0.3834 0.06682 0.90543 0.9693 0.9771 0.04003

PanoFormer [42] — — 0.30831 — 0.93941 0.98381 0.99411 0.1253
OmniFusion [34] 0.09502 — 0.34743 0.1599 0.8988 0.97692 0.99242 1.5885
SphereDepth [51] 0.1158 0.2323 0.4512 0.0754 0.8666 0.9642 0.9863 0.0612
SphereFusion 0.08991 0.16541 0.31942 0.06111 0.92572 0.97553 0.99043 0.01741

M3D

FCRN [32] 0.2409 0.4008 0.6704 0.1244 0.7703 0.9174 0.9617 —
OmniDepth [59] 0.2901 0.4838 0.7643 0.1450 0.6830 0.8794 0.9429 —
BiFuse [48] 0.2048 0.3470 0.6259 0.1134 0.8452 0.9319 0.9632 0.7825
SliceNet [37] 0.1764 0.3296 0.6133 0.1045 0.8716 0.9483 0.9716 0.0668
UniFuse [29] 0.10632 0.2814 0.4941 0.0701 0.88973 0.96233 0.9831 0.02472

HohoNet [46] 0.1488 0.28623 0.5138 0.0871 0.8786 0.9519 0.9771 0.04003

PanoFormer [42] — — 0.36351 — 0.91842 0.98041 0.99162 0.1253
OmniFusion [34] 0.09001 — 0.42612 0.1483 0.91891 0.97972 0.99311 1.5885
SphereDepth [51] 0.1205 0.3311 0.5922 0.08063 0.8620 0.9519 0.9770 0.0612
SphereFusion 0.11453 0.28522 0.48853 0.07332 0.8701 0.9613 0.98383 0.01741

360D

FCRN [32] 0.0699 0.1381 0.2833 0.0473 0.9532 0.9905 0.9966 —
OmniDepth [59] 0.0931 0.1706 0.3171 0.0725 0.9092 0.9702 0.9851 —
BiFuse [48] 0.0615 0.1143 0.2440 0.0428 0.9699 0.9927 0.9969 0.6971
SliceNet [37] 0.0467 0.11343 0.13231 0.02121 0.9788 0.9952 0.9969 0.0595
UniFuse [29] 0.04663 0.09962 0.1968 0.03153 0.9835 0.9965 0.9987 0.02212

PanoFormer [42] — — 0.14292 — 0.98761 0.99751 0.99911 0.1116
OmniFusion [34] 0.04302 — 0.18083 0.0735 0.98593 0.99693 0.99893 1.4151
SphereDepth [51] 0.0550 0.1145 0.2364 0.0369 0.9743 0.9944 0.9978 0.05453

SphereFusion 0.04171 0.08941 0.1813 0.02862 0.98692 0.99702 0.99892 0.01551

∗We recalculate all metrics using open-source models.

tion results with more efficient inference efficiency using
only a lightweight network model.

4.4. Qualitative Evaluation

For the qualitative evaluation, we visualize depth maps of
different methods in Fig. 6, Fig. 7, and Fig. 8. Furthermore,
we convert them to point clouds to compare different meth-
ods in the 3D space and visualize point clouds by Meshlab
[11] with the same rendering settings.

On 360D [59], we compare our method with Sphere-
Depth [51] and UniFuse [29], and visualize depth maps and
corresponding point clouds in Fig. 6. UniFuse has better re-
construction results in the middle areas but struggles around
the polar regions, such as the lights on the ceiling. Sphere-
Depth reconstructs the ceiling region but suffers from losing
details, such as edges of the door and the wall. SphereFu-

sion combines the strengths of two projections and can re-
construct details and polar regions at the same time.

On Matterport3D [6], we compare our method with
SliceNet [37] and PanoFormer [42], and Fig. 7 shows
results. SliceNet suffers from poles, as it only uses the
equirectangular projection and extracts features by the 2D
image encoder. PanoFormer and SphereFusion achieve bet-
ter results using the tangent and spherical projections.

On Stanford2D3D [3], we compare our method with
OmniFusion [51] and PanoFormer [29]. Fig. 8 shows
depth maps and corresponding point clouds. OmniFusion
and PanoFormer use the tangent projection and attempt to
reduce discontinuities using more complex feature fusion
mechanisms. However, OmniFusion fails to merge different
tangent patches and has noticeable gaps in the point cloud,
while PanoFormer is smoother and loses some details. Al-



Table 2. Ablation studies on network encoder and different fusion strategies.

2D Encoder Mesh Encoder Fusion Module MRE↓ MAE↓ RMSE↓ RMSE(log)↓ δ1 ↑ δ2 ↑ δ3 ↑

✓ × × 0.0461 0.0969 0.2081 0.0315 0.9833 0.9964 0.9986
× ✓ × 0.0572 0.1180 0.2372 0.0374 0.9755 0.9956 0.9985
✓ ✓ BiFuse [48] 0.0415 0.0888 0.1824 0.0288 0.9861 0.9969 0.9988
✓ ✓ UniFuse [29] 0.0427 0.0915 0.1837 0.0290 0.9868 0.9969 0.9988
✓ ✓ GateFuse (ours) 0.0417 0.0894 0.1813 0.0286 0.9869 0.9970 0.9989

though OmniFusion and PanoFormer achieve better recon-
struction results than SphereFusion, our method only uses a
simple encoder based on ResNet, demonstrating the impor-
tance of choosing the proper projection.

Overall, SphereFusion utilizes the spherical projection to
avoid distortion and discontinuities and the equirectangular
projection to extract visual features, achieving comparable
results with state-of-the-art methods with a lighter network
and higher inference efficiency.

4.5. Ablation Studies

We conduct several ablation studies to study the influence
of different components of the SphereFusion. We first com-
pare the network encoder to show the importance of using
two encoders to extract features from the panorama image.
We then study how to fuse features from the spherical and
equirectangular projection. Throughout all ablation experi-
ments, we use the 360D dataset.

4.5.1 Network Encoder

To evaluate the contribution of each encoder, we build two
networks to estimate panorama depth, where each network
only uses one type of encoder. Table 2 shows the per-
formance of different network structures. The network
that only uses the mesh encoder obtains the worst results,
which cannot reconstruct details of the panorama image
only through the mesh operation, as SphereDepth [51] does.
The network that only uses the 2D image encoder ranks sec-
ond in Table 2, which can achieve higher performance but
cannot deal with distortion and discontinuity. SphereFusion
outperforms others and achieves the best results, proving
that combining the 2D image encoder and the mesh encoder
can obtain higher-quality depth maps.

4.5.2 Fusion Strategy

The fusion strategy fuses features from different panorama
projections. To compare different fusion strategies, we im-
plement BiFuse [48], UniFuse [29], and our GateFuse to
fuse features in the spherical projection. Table 2 shows
the results of different fusion strategies. UniFuse obtains
the worst results, and BiFuse ranks second. Our GateFuse
achieves the best results on RMSE, RMSE(log), δ, and
ranks second on MAE and MRE. We visualize depth maps

from different fusion strategies for better comparison in Fig.
9, where BiFuse and UniFuse fail to reconstruct details.

RGB GT BiFuse UniFuse ours
Figure 9. We select two scenes from 360D [59] and compare depth
maps from different fusion strategies. Our GateFuse can recon-
struct more details, and we mark out these regions with red boxes.

4.6. Limitations

We propose SphereFuion for panorama depth estimation
by using the 2D image convolution and the mesh convolu-
tion, which achieves competitive results with a lighter net-
work and the highest inference efficiency. However, the
cache strategy requires additional GPU memory to store
FAF information during training and testing. Furthermore,
SphereFusion requires huge GPU memory during training
and does not support ultra-high resolution panorama im-
ages, such as 1024×2048 [39]. We still need more in-depth
research to improve the mesh operation and the quality of
panorama depth estimation.

5. Conclusion
This paper introduces a novel panorama depth estimation
method, SphereFusion, which combines the strengths of
equirectangular and spherical projection. SphereFusion
uses 2D image convolution to complement mesh convolu-
tion by using a gate fusion module to select reliable fea-
tures from two encoders and estimates the panorama depth
map in the spherical domain to avoid distortion and discon-
tinuity. Meanwhile, SphereFusion utilizes a lighter network
and a cache strategy to improve the inference efficiency.
Experiments conducted on three popular datasets indicate
that SphereFusion achieves competitive results and main-
tains an impressive inference efficiency of up to 60 FPS for
512× 1024 panorama images on one NVIDIA RTX3090.
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