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ABSTRACT

Training learned image compression (LIC) models entails navigating a challeng-
ing optimization landscape defined by the fundamental trade-off between rate and
distortion. Standard first-order optimizers, such as SGD and Adam, struggle with
gradient conflicts arising from competing objectives, leading to slow convergence
and suboptimal rate–distortion performance. In this work, we demonstrate that a
simple switch to a second-order quasi-Newton optimizer, SOAP, dramatically im-
proves both training efficiency and final performance across diverse LIC architec-
tures. Our theoretical and empirical analyses reveal that SOAP’s Newton precon-
ditioning inherently resolves the intra-step and inter-step update conflicts intrinsic
to the R–D objective, facilitating faster, more stable convergence. Beyond accel-
eration, we uncover a critical deployability benefit: SOAP-trained (non-diagonal)
models exhibit significantly fewer activation and latent outliers. This improves
entropy modeling and substantially enhances robustness to post-training quantiza-
tion. Together, these results establish second-order optimization—achievable as a
seamless drop-in replacement of the imported optimizer—as a powerful, practical
tool for advancing the efficiency and real-world readiness of LICs. Code will be
publicly available.

1 INTRODUCTION

Learned image compression (LIC) methods have attracted significant attention due to their impres-
sive performance (He et al., 2022; Liu et al., 2023b; Li et al., 2024a; Feng et al., 2025; Jiang et al.,
2023; Lu et al., 2025). Despite substantial advances, the training dynamics of LICs remain underex-
plored. The prevailing practice is straightforward: design a model, then train it with a rate–distortion
(R–D) objective LR-D = Ex∼pdata

[− log2 P (ẑ) + λ d(x, x̂)] , using a first-order optimizer (typically
Adam (Kingma & Ba, 2014)). While this approach is generally effective, recent studies indicate that
advanced LIC models converge slowly (demanding substantial GPU hours) (Li et al., 2025; Zhang
et al., 2025b), and that the standard framework fails to address gradient conflicts between the rate
and distortion terms, leading to suboptimal performance (Zhang et al., 2025c).

Li et al. (2025) attribute the slow convergence to challenges in learning energy compaction, propos-
ing an auxiliary transform (AuxT) to facilitate feature decorrelation and energy compression, re-
ducing training time by 47% without sacrificing performance. However, this approach slightly adds
parameters and increases computational cost (GMACs), introducing additional development com-
plexity. Concurrently, Zhang et al. (2025b) explore the low-dimensional hypothesis in LIC (CMD-
LIC) by decomposing model parameters based on correlations. They progressively reduce trainable
parameters based on stable affine coefficients to accelerate training, yielding a 40% acceleration.
However, this approach requires tuning many hyperparameters, and poor choices can severely de-
grade performance. Additionally, Zhang et al. (2025c) explicitly address rate and distortion gradient
conflicts by formulating a saddle-point problem and adaptively reweighting each gradient compo-
nent (Balanced R-D), achieving a −2% BD-Rate improvement but incurs a substantial increase in
per-step training time and high sensitivity to hyperparameter settings for advanced LIC models.
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In summary, existing training strategies often: (i) increase model development complexity, (ii)
rely on fragile hyperparameter tuning, or (iii) introduce non-trivial modifications to the training
pipeline—limiting their practicality (a drop-in replacement is preferred).

This raises a natural question:

(Q) Can we accelerate LIC training and mitigate gradient conflicts without sophis-
ticated problem reformulation, training pipeline revision, additional architectural
changes, or added development overhead?

The answer is yes. In this work, we demonstrate that adopting a recent efficient second-order quasi-
Newton optimizer, SOAP (Vyas et al., 2024), addresses both challenges simultaneously via a seam-
less drop-in replacement of the imported optimizer in the standard training pipeline. Across four
top-performing LIC models—ELIC (He et al., 2022), TCM (Liu et al., 2023b), LALIC (Feng et al.,
2025), and DCAE (Lu et al., 2025)—SOAP delivers an average 70% reduction in training steps
and 57.7% reduction in wall-clock time to achieve the same performance as Adam. Furthermore,
when trained for an equal number of steps, SOAP-trained models achieve an average 3% BD-Rate
improvement over Adam baselines. Fig. 1 and 2 illustrate this accelerated and superior conver-
gence. Moreover, we uncover an additional benefit of second-order optimization (non-diagonal
optimizer) beyond fast convergence: SOAP-trained models exhibit fewer outliers in activation and
latent spaces, making them more amenable to post-training quantization (PTQ) and thus easier to
deploy on resource-constrained hardware.

Our contributions are summarized as follows:

• Accelerated training with superior R–D performance: We empirically demonstrate that
SOAP substantially reduces both training steps and wall-clock time required to achieve the
same performance, while simultaneously improving the final rate–distortion performance
compared to first-order optimizers when trained for the same number of steps. (Sec. 3)

• Gradient conflict resolution via Newton preconditioning: We provide theoretical and
empirical evidence that SOAP aligns gradients update from competing R–D loss terms and
from consecutive update steps, enabling more effective optimization trajectories. (Sec. 4)

• Practical deployability benefits: We demonstrate that SOAP-trained (non-diagonal opti-
mizer) models have significantly fewer feature outliers, which improves entropy modeling
and substantially enhances robustness to post-training quantization. (Sec. 5)

50 100 150 200 250 300
Epoch

0.78

0.80

0.82

0.84

0.86

R-
D 

lo
ss

76

Reduces steps by 74.6%

ELIC + Adam
ELIC + SOAP

(a) ELIC

50 100 150 200 250 300
Epoch

0.78

0.80

0.82

0.84

0.86

R-
D 

lo
ss

84

Reduces steps by 71.9%

TCM + Adam
TCM + SOAP

(b) TCM

50 100 150 200 250 300
Epoch

0.76

0.77

0.78

0.79

0.80

R-
D 

lo
ss

106

Reduces steps by 64.5%

LALIC + Adam
LALIC + SOAP

(c) LALIC

50 100 150 200 250 300
Epoch

0.75

0.76

0.77

0.78

0.79

R-
D 

lo
ss

94

Reduces steps by 68.6%

DCAE + Adam
DCAE + SOAP

(d) DCAE

Figure 1: Comparison of Testing Loss: Epochs vs. R-D Loss for Various LICs. First 10
epochs are omitted for better visualization. The SOAP optimizer demonstrates significantly faster
convergence compared to Adam across multiple LICs. Evaluation is performed on the Kodak dataset
with λ = 0.013; the R-D loss is computed as λ · 2552 ·MSE + Bpp.

2 PRELIMINARIES

2.1 RATE-DISTORTION IN LEARNED IMAGE COMPRESSION

Learned image compression seeks to efficiently encode an image x, sampled from a distribu-
tion pdata(x), into a compact bitstream while minimizing the error in the reconstructed image

2
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Figure 2: Comparison of Testing Loss: Wall-Time vs. R-D Loss for Various LICs. Training with
the SOAP optimizer leads to much faster and more stable convergence than Adam when comparing
wall-clock time. Results are measured on the Kodak dataset with λ = 0.013.

x̂. This requires balancing two competing objectives: minimizing the bit rate (R) and minimiz-
ing the distortion (D). The standard transform coding architecture for LIC (Goyal, 2002; Ballé
et al., 2018; Ballé et al., 2020) uses an encoder e(·), quantizer Q(·), and decoder r(·), such that
x → ẑ = Q(e(x)) → x̂ = r(ẑ). The discrete latent ẑ is compressed using entropy coding (Witten
et al., 1987; Moffat, 2019), with an expected bit cost approximated by − log2 P (ẑ).

Training LICs involves minimizing the rate-distortion (R-D) loss:

LR-D = Ex∼pdata

− log2 P (ẑ)︸ ︷︷ ︸
Rate

+λ d(x, x̂)︸ ︷︷ ︸
Distortion

 , (1)

where d(x, x̂) is a distortion metric (e.g., MSE, SSIM, LPIPS) and λ controls the trade-off. Because
the rate and distortion objectives often pull the model parameters in different directions, optimizing
the R-D loss often leads to challenging gradient interactions and complex optimization dynamics.

2.2 OPTIMIZATION STRATEGIES: FIRST-ORDER AND SECOND-ORDER METHODS

The choice of optimization algorithm profoundly impacts the efficiency and effectiveness of navi-
gating the complex R-D loss landscape.

First-Order Approaches. First-order optimizers, such as SGD (Robbins & Monro, 1951) and
Adam (Kingma & Ba, 2014), update parameters based on the gradient of the loss:

θt ← θt−1 − ηgt. (2)

While computationally efficient, these methods rely on local steepness and ignore the curvature
of the loss landscape. Consequently, as we will demonstrate, they often struggle to resolve the
competing gradients inherent in the R-D objective, leading to slow or unstable convergence.

Second-Order Approaches. In contrast, second-order optimization methods incorporate curvature
information, aiming to better adapt parameter updates to the local geometry of the loss landscape.
The classical Newton update (Boyd & Vandenberghe, 2004) is given by

θt ← θt−1 − ηH−1
t gt, (3)

with Ht denoting the Hessian matrix of second derivatives. In this paper, we demonstrate theoret-
ically and empirically that such updates can help address gradient conflicts between the rate and
distortion terms with effective descent directions.

Main bottleneck. The computational and memory demands of exact Newton steps are prohibitive
for large neural networks, as the Hessian is an n × n matrix requiring O(n2) storage and at least
O(n2) time to form, with inversion costing O(n3). To make second-order optimization tractable,
practical algorithms such as Shampoo (Gupta et al., 2018; Eschenhagen et al., 2025; Morwani et al.,
2024) approximate the Hessian inverse using structured preconditioners. SOAP (Vyas et al., 2024)
extends this framework by introducing adaptive scaling reminiscent of Adam, but in the precondi-
tioned space, resulting in an efficient quasi-Newton method suitable for deep models.
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Why Optimization Matters in LIC. As we will demonstrate, the optimizer’s ability to resolve the
intrinsic gradient conflicts of the rate-distortion objective is key to effectively training a compressor.
In particular, advanced second-order methods like SOAP can accelerate convergence, yield better
rate-distortion results, and produce more stable representations—directly addressing both training
efficiency and practical deployment challenges in LICs.

3 EMPIRICAL EVALUATION: ACCELERATING LIC TRAINING WITH
SECOND-ORDER OPTIMIZATION

To empirically demonstrate the benefits of second-order optimization compared to first-order meth-
ods, we train several representative LICs using both Adam (Kingma & Ba, 2014) and SOAP (Vyas
et al., 2024). A comparison with related training strategies, AuxT (Li et al., 2025), CMD-LIC (Zhang
et al., 2025b), and Balanced-RD (Zhang et al., 2025c), is further provided in Appendix A.3.

Evaluated Models. We benchmark the following advanced LICs: ELIC (He et al., 2022), which in-
corporates unevenly grouped space-channel context models and stacked residual blocks; TCM (Liu
et al., 2023b), which employs Transformer-CNN Mixture blocks to integrate both local and non-
local information; LALIC (Feng et al., 2025), which utilizes Bi-RWKV blocks with linear attention;
and DCAE (Lu et al., 2025), which adopts a dictionary-based cross-attention entropy model.

Training Protocol. All models are trained on the COCO 2017 dataset (Lin et al., 2014) us-
ing random 256 × 256 crops. Following CompressAI (Bégaint et al., 2020), we set λ to
{18, 35, 67, 130, 250, 483} × 10−4. EMA (Morales-Brotons et al., 2024) (decay=0.999) is enabled.

For both “+ Adam” and “+ SOAP” experiments, we use a batch size of 64 and an initial lr of 2×10−4

with a ReduceLROnPlateau scheduler (patience 10, factor 0.5). Weight decay is set to 0, as no
noticeable improvement is observed when it is applied (Sec. A.5). For SOAP, the preconditioner is
updated every 10 steps following the default implementation (Sec. A.6). All models are trained for
300 epochs to ensure full convergence. These choices (lr, scheduler, update frequency, and other
hyperparameters) follow standard defaults adopted in prior LIC and optimization studies (He et al.,
2022; Liu et al., 2023b; Feng et al., 2025; Lu et al., 2025; Vyas et al., 2024).

Evaluation Datasets. Performance is evaluated on three widely used benchmarks: Kodak1

(768×512), Tecnick2 (1200×1200), and CLIC 20223 (2048×1365).

Evaluation Metrics. We compare Adam and SOAP using the following criteria: Steps-to-Adam
measures step efficiency—the ratio of training steps required by an optimizer to reach a target val-
idation loss, normalized by the number required by Adam. Values less than 1.0 indicate superior
step efficiency. Time-to-Adam assesses wall-clock efficiency—the ratio of training time to reach
a target validation loss, relative to Adam. Values less than 1.0 reflect faster training in practice,
accounting for per-step computational overhead. BD-Rate after Convergence reports the BD-
Rate (Bjøntegaard, 2001), which quantifies average bitrate savings at matched image quality be-
tween models after full convergence, using the corresponding Adam-trained model as the anchor—a
lower BD-Rate indicates better compression performance.

Please note that the additional VRAM overhead of SOAP relative to Adam is negligible (about a 1%
increase in our setting) and is therefore not reported separately.

Empirical Results. Across all evaluated LIC architectures, as shown in Table 1, SOAP substan-
tially accelerates convergence compared to Adam, both in terms of step efficiency and wall-clock
efficiency. For instance, ELIC trained with SOAP reaches the target validation loss in only 25% of
the steps and 35% of the time required by Adam, while TCM-S exhibits similar gains—requiring
28% of the steps and 39% of the time. These trends hold consistently for more complex and ad-
vanced LICs: LALIC and DCAE, where SOAP reduces training time by roughly 51–56% relative
to Adam. Although each SOAP step incurs a slightly longer time cost, the drastic reduction in the
number of steps leads to a net decrease in total training time. Figure A.2 illustrates and discusses
the R-D curves for all methods.

1https://r0k.us/graphics/kodak/
2https://tecnick.com/?aiocp%20dp=testimages
3http://compression.cc/
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Table 1: Computational Complexity and BD-Rate Compared to Adam

Method Steps-to-Adam ↓ Time-to-Adam ↓ BD-Rate (%) ↓
Kodak Tecnick CLIC2022 Avg.

ELIC
(He et al., 2022)

+ Adam 1 1 0% 0% 0% 0%
+ SOAP 0.25 0.35 -3.49% -3.52% -4.01% -3.67%

TCM-S
(Liu et al., 2023b)

+ Adam 1 1 0% 0% 0% 0%
+ SOAP 0.28 0.39 -2.86% -2.40% -3.01% -2.76%

LALIC
(Feng et al., 2025)

+ Adam 1 1 0% 0% 0% 0%
+ SOAP 0.35 0.49 -2.44% -3.31% -3.51% -3.09%

DCAE
(Lu et al., 2025)

+ Adam 1 1 0% 0% 0% 0%
+ SOAP 0.31 0.44 -2.26% -2.03% -2.06% -2.12%

Training Conditions: 1 × NVIDIA H100 GPU, 2 × Intel Xeon Platinum 8480+ CPU, 1TB RAM. Bold
indicates better performance. The “Avg.” is the mean BD-Rate across Kodak, Tecnick, and CLIC2022.

Crucially, SOAP also achieves better rate–distortion performance after full convergence. On aver-
age across Kodak, Tecnick, and CLIC2022, SOAP improves BD-Rate by -3.67% for ELIC, -2.76%
for TCM-S, -3.09% for LALIC, and -2.12% for DCAE relative to Adam. These improvements
are consistent across datasets. Notably, for DCAE—which already achieves around -18% BD-Rate
compared to VVC-intra—further improvement is especially meaningful. With SOAP, these gains are
obtained without affecting the inference stage. Similarly, for smaller models such as TCM/ELIC,
a 3% BD-Rate reduction is particularly impactful during development, further amplified by the en-
hanced robustness of SOAP-trained models to post-training quantization (see Section 5).

These results highlight a major advantage of SOAP: it can match Adam’s final quality in less than
half the training time across diverse LICs, while also delivering superior final R-D performance at
the same steps. The benefits even extend to top-performing models such as DCAE and LALIC—
where improving is notably challenging—suggesting that incorporating curvature information is
especially valuable for navigating the complex optimization landscapes of LIC models.

4 NEWTON PRECONDITIONING ALIGNS CONFLICTING GRADIENTS IN
RATE–DISTORTION OPTIMIZATION

We hypothesize that SOAP’s empirical success stems from its ability to mitigate the inherent gra-
dient conflicts in R-D optimization. First-order methods apply coordinate-wise rescaling to the
gradient, leading to an inefficient compromise between rate and distortion objectives. In contrast,
SOAP utilizes a second-order preconditioner that leverages curvature information to rotate and scale
the gradient, producing an update vector that more effectively navigates the loss landscape.

In this section, we provide a theoretical analysis demonstrating how SOAP’s Newton-like precondi-
tioning resolves conflicts in two critical ways: (i) by aligning the rate and distortion update vectors
within a single step (intra-step alignment), and (ii) by stabilizing the total update vector across con-
secutive steps (inter-step alignment). We then validate these theoretical insights empirically.

4.1 GRADIENT CONFLICT MEASUREMENT

Optimizing the R-D loss, LR-D = LR + λLD, is fundamentally a multi-objective problem (Zhang
et al., 2025c). Let gR = ∇LR and gD = ∇LD denote the raw gradients. Optimizers transform
these gradients into update vectors; we denote the preconditioned update vectors corresponding to
gR and gD as pR and pD, respectively, and the total update vector as p.

Following Yu et al. (2020); Sener & Koltun (2018), we quantify conflict via cosine similarity:

S(u, v) = ⟨u, v⟩
∥u∥ ∥v∥

∈ [−1, 1], (4)

for nonzero vectors u, v. We focus on two complementary metrics defined on the update vectors:

(a) Inter-step score: Stinter = S(pt−1, pt) measures the consistency of the total update direc-
tion across consecutive steps, reflecting the stability of the optimization trajectory.
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(b) Intra-step score: Stintra = S(ptR, ptD) measures the alignment between the rate and dis-
tortion update vectors within step t.

4.2 GEOMETRIC INTUITION: WHY HIGHER COSINE ACCELERATES OPTIMIZATION

Before detailing the specific mechanism behind SOAP, it is crucial to understand intuitively why
higher cosine similarity, both within a single update step and across consecutive steps, translates
directly to the training acceleration observed. While we provide formal proofs linking cosine align-
ment to convergence in Appendix A.13, here we offer a geometric perspective on how “destructive
interference” hampers standard optimizers and how “constructive alignment” resolves it.

Intra-step: Resolving the Tug-of-War. The total parameter update pt is effectively the vector sum
of the preconditioned rate update pR,t and distortion update pD,t. In first-order optimization (e.g.,
Adam), these vectors often point in divergent directions due to the competing nature of the R-D
objective, creating a geometric tug-of-war. When Stintra is low or negative, significant portions of
the gradient magnitudes are wasted as they cancel each other out; the optimizer burns computational
energy pulling parameters in opposing directions while the net movement toward the Pareto frontier
remains small. By identifying the curvature and rotating the optimization basis, SOAP aligns these
update vectors (Stintra ≈ 1) so that they point towards a common descent direction. Geometrically,
this ensures that the rate and distortion updates constructively interfere, effectively summing their
magnitudes to take a larger, more efficient step.

Inter-step: Straightening the Trajectory. The efficiency is also determined by the path taken
through the loss landscape. Complex rate-distortion landscapes are often characterized by narrow,
curving valleys (ill-conditioned curvature) (Ma et al., 2022). First-order optimizers, unable to ac-
count for parameter correlations, typically oscillate across the walls of these valleys. An unstable
inter-step cosine indicates this “zigzagging” behavior, where the update at step t+1 partially undoes
the progress of step t. This results in a long, winding path to traverse a short Euclidean distance.
In contrast, SOAP’s Newton-style preconditioning aims to jump directly to the bottom of the local
quadratic approximation. This linearizes the trajectory (Stinter ≈ 1), allowing the model to traverse
the landscape along a smooth path, thereby requiring significantly fewer steps to reach convergence.

4.3 HOW SOAP RESOLVES GRADIENT CONFLICTS

SOAP as a local Newton preconditioner. While exact Newton updates are intractable for large
models, SOAP efficiently approximates a quasi-Newton step (Vyas et al., 2024; Morwani et al.,
2024). By utilizing the Kronecker-factored structure of the Gauss-Newton matrix, SOAP applies
an Adam-style preconditioner within a rotated basis. As formally derived in Appendix A.7 (The-
orem 1), this operation is equivalent to performing a local Newton step in the original parameter
space:

p ≈ −H−1g (locally, under Assumptions (A1)–(A4)). (5)
This Newton-like behavior is key to resolving gradient conflicts.

Inter-step alignment (Stability). Newton preconditioning inherently stabilizes the optimization
trajectory by adapting to local curvature. Consider the Newton-like update pt = −H−1

t gt, where
Ht = ∇2L(θt) ≻ 0, and parameters evolve as θt+1 = θt + ηpt.
Lemma 1 (Inter-step alignment for Newton). If the Hessian varies smoothly (Lipschitz continuous),
then the Newton direction changes very slowly between steps. Specifically, we show in Appendix A.8
that for η sufficiently small,∣∣1− S(pt, pt+1)

∣∣ ≤ C1 η ∥pt∥ + C2 η
2 ∥pt∥2, (6)

for constants C1, C2. In particular, S(pt, pt+1)→ 1 as η → 0 (or ∥pt∥ → 0).

Lemma 1 guarantees that consecutive updates point in nearly the same direction, explaining the
smooth, non-oscillatory progress observed when using SOAP.

Intra-step alignment (Cooperation). Beyond stabilizing the trajectory, SOAP also aligns the com-
peting objectives within each step. Near a nondegenerate minimizer θ∗, the component gradients
linearize as gR ≈ HR(θ− θ∗) and gD ≈ HD(θ− θ∗) (Nocedal & Wright, 1999). Although the raw
gradients gR and gD may point in different directions, they share the underlying curvature of the

6
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model. If SOAP uses a shared preconditioner (due to combined loss) approximating the inverse of
the Hessian H , and the component Hessians (HR, HD) share sufficient structure with H (if they are
locally proportional or jointly diagonalizable), the preconditioner effectively rotates both gradients
toward the common solution θ∗. We detail this justification in Appendix A.9, leading to:

Proposition 1 (SOAP aligns component steps near the optimum). Under the structural conditions
described above (proof in Appendix A.9),

lim
θ→θ∗

S
(
pR, pD

)
= 1. (7)

Intuitively, the preconditioner ensures that both pR and pD point toward the optimum along
−(θ − θ∗) up to vanishing error, ensuring that R and D are optimized cooperatively rather than
adversarially.

Together, these results highlight a central reason for SOAP’s superiority: by aligning updates both
across steps and between objectives, SOAP ensures that progress made in one iteration is not undone
in the next, and that rate and distortion are optimized in a more cooperative rather than adversarial
manner. This dual alignment reduces optimization inefficiency, avoids oscillatory behavior common
in first-order methods, and leads to faster, more stable convergence with better final R-D tradeoffs.

Why Adam struggles. In contrast, Adam’s fundamental limitation is its diagonal constraint. As
we formalize in Appendix A.10 (Proposition 2), Adam locally approximates a diagonally precon-
ditioned step: p ∝ −diag(H)−1g. While this scales coordinates individually, it cannot utilize
off-diagonal curvature information to rotate the update vector. Because the conflict between rate
and distortion is rarely axis-aligned, diagonal scaling is insufficient to align the gradients. Our
analysis in Appendix A.11 demonstrates that at initialization, this can lead to orthogonal updates,
while Appendix A.12 shows that even near the optimum, Adam’s updates can remain misaligned or
adversarial (negative cosine similarity).

4.4 EMPIRICAL VALIDATION

To validate these theoretical predictions, we track the intra-step (Stintra) and inter-step (Stinter) scores
for the ELIC model trained with Adam and SOAP. We initialize from a pretrained model to observe
behavior near a local minimum, using a small learning rate (1e−5) and λ = 0.013.

The results, shown in Figure 3, strongly support our analysis:

• SOAP achieves high alignment: SOAP maintains consistently high positive alignment for
both metrics. The inter-step score remains near 1.0, indicating a highly stable trajectory,
while the intra-step score remains strongly positive, indicating cooperative optimization of
rate and distortion. This is consistent with the Newton-like behavior described in Lemma 1
and Proposition 1.

• Adam exhibits significant conflict: Adam shows low and highly oscillatory alignment.
The intra-step score frequently dips toward −1.0 (strong opposition between rate and dis-
tortion updates), while the inter-step score fluctuates wildly around zero, indicating an
unstable, inefficient trajectory. This confirms Adam’s inability to resolve the inherent con-
flicts of the R-D objective characterized in Appendix A.10, A.11, and A.12.

These empirical findings substantiate our central claim: SOAP’s performance gains arise from re-
solving both intra- and inter-step gradient conflicts in rate–distortion optimization.

5 SOAP SUPPRESSES LATENT AND ACTIVATION OUTLIERS

Beyond accelerating convergence and improving rate-distortion (R-D) performance, we observe a
second advantage: SOAP reduces extreme values (outliers) in both latents and intermediate activa-
tions. Outlier suppression tightens entropy models and improves robustness to post-training quan-
tization (PTQ), where large dynamic ranges are a primary failure mode (Bondarenko et al., 2021;
Dettmers et al., 2022; Xiao et al., 2023a; Ashkboos et al., 2024; Nrusimha et al., 2024).
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(b) Inter-step score

Figure 3: Evolution of intra-step and inter-step gradient scores for ELIC trained with Adam vs.
SOAP. SOAP achieves high intra-step and inter-step scores, while Adam exhibits negative intra-step
scores and oscillatory inter-step scores, highlighting SOAP’s ability to suppress gradient conflicts.

5.1 OUTLIER MEASUREMENT

Metrics. Following prior work on neural feature analysis (Bondarenko et al., 2021; Elhage et al.,
2023; He et al., 2024), we quantify outliers using two complementary, scale-invariant statistics.
Let X ∈ Rn×d denote latents or activations, rescaled such that the second moment m2(X) ≜
1
nd ∥X∥

2
F = 1. We define the root mean square (RMS) per channel as sj =

√
1
n

∑n
α=1 X

2
αj . We

use:

Kurt(X) =
1
d

∑d
j=1 s

4
j(

1
d

∑d
j=1 s

2
j

)2 and MaxMed(X) =
1

n

n∑
α=1

maxj |Xαj |
medianj |Xαj |

. (8)

Kurt(X) measures the tailedness (heavy-tailed distributions imply more outliers) of channel ener-
gies, while MaxMed(X) captures per-sample extreme values relative to typical magnitudes.

5.2 HOW SOAP SUPPRESSES OUTLIERS

The mechanism behind SOAP’s outlier suppression lies in how its Newton-like updates interact with
the underlying feature distributions during training.

Newton preconditioning redistributes update energy. SOAP applies a layerwise quasi-Newton
step (Gupta et al., 2018; Anil et al., 2020; Vyas et al., 2024)

∆W = −η H−1
W G, (9)

where G is the gradient and HW ≻ 0 is an SPD curvature proxy (Sec. A.7). In the eigenbasis
HW = UΛU⊤, SOAP scales principal directions by Λ−1 and rotates back via U , coupling channels
within a layer. This rotation+rescaling compresses per-direction step size dispersion compared to
diagonally preconditioned Adam/AdaFactor (Kingma & Ba, 2014; Shazeer & Stern, 2018), limiting
runaway growth along isolated high-variance directions that otherwise produce outliers.

A conserved-quantity view from signal propagation. We can further understand this phenomenon
through the lens of Signal Propagation theory (Schoenholz et al., 2016; Noci et al., 2022), which
studies the input-wise Gram matrix (ΣI = XX⊤) and how ΣI evolves in deep NNs. A key prop-
erty is that the total energy of the feature correlations is conserved under rotation. Specifically,
using the cyclicity of the trace (Tr(Σ2

F) = Tr(Σ2
I )) (Petersen et al., 2008), we derive an identity in

Appendix A.14 that links feature kurtosis to cross-channel correlations:

n2d · Kurt(X)︸ ︷︷ ︸
Diagonal (Kurtosis)

+
∑
i̸=j

(ΣF)
2
ij︸ ︷︷ ︸

Off-Diagonal (Cross-Channel)

=
∑
α,β

(ΣI)
2
αβ︸ ︷︷ ︸

Input Correlation Energy

. (10)

Intuition. The right-hand side, Tr(Σ2
I ), measures the total “input correlation energy.” When inputs

are highly correlated, ΣI develops large off-diagonal entries, and this energy increases. Because
the trace identity enforces conservation, the extra energy must manifest somewhere in the feature

8
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statistics. A diagonal optimizer like Adam is inefficient at moving energy into the off-diagonal terms
((ΣF)

2
ij). Consequently, it forces the energy into the diagonal term, inflating the kurtosis and creating

outliers. In contrast, SOAP rotates the basis, allowing it to redistribute this correlation energy into
the off-diagonal terms, thereby keeping the kurtosis (and outliers) low. In essence: Adam isolates
outlier items, while SOAP diffuses variance across directions.

Small-step bound. We can further quantify this by analyzing how the kurtosis grows during a single
update step. Kurtosis is driven by the fourth moment (L4 norm) of the parameter updates. Because
Adam scales coordinates individually, it tends to produce axis-aligned updates that maximize this
norm. SOAP, however, computes updates in a curvature-aligned eigenbasis and rotates them back,
effectively “diffusing” the update energy across multiple physical channels. In Appendix A.14, we
prove that the dominant second-order contribution to kurtosis growth for SOAP is upper-bounded:

E[∆Kurt(X)]SOAP ≤ E[∆Kurt(X)]Diag . (11)

This inequality (which holds up to negligible O(η3) terms) guarantees that diagonal optimizers rep-
resent the worst-case baseline for outlier generation. In non-diagonal landscapes, SOAP’s rotational
mixing ensures strictly lower growth.

5.3 EMPIRICAL VALIDATION

We measure Kurt(X) and MaxMed(X) for latents z, which is the feature after the last layer of the
encoder, and feature activations4 on Kodak, λ = 0.013. PTQ robustness is assessed via ∆BD-
Rate (%, lower is better) across all λ for W8A8 (int8 weights and activations) quantization, using
AdaRound (Nagel et al., 2020). Activation quantization is implemented as a non-learnable, dynamic
channel-wise quantization approach that is applied on-the-fly during inference following (Shi et al.,
2023). More specifically, for each channel independently, it computes the minimum and maximum
values from the current activation data, then uses these to define an asymmetric 8-bit uniform quanti-
zation range where the zero-point equals the channel minimum and the scale factor is determined by
the range divided by 255. The floating-point values are then quantized by subtracting the zero-point,
dividing by the scale, rounding to the nearest integer, clamping to the 0-255 range, and finally de-
quantizing back by multiplying by the scale and adding the zero-point. Critically, this entire process
is non-learnable as activation quantization serves as a fixed, statistical operation applied during each
forward pass.5 We also visualize the latent scaled deviation map (Xie et al., 2021; Feng et al., 2025)
for the ELIC model between ŷ and y (Fig. 4), defined as ε = |ŷ−y|∑

y , where lower values denote
fewer outliers.

Table 2: Outlier metrics and PTQ robustness: Adam vs. SOAP. Metrics averaged on Kodak (λ =
0.013). PTQ robustness reported as ∆BD-Rate (%); lower is better.

Model + Optimizer Latents Activations W8A8 PTQ
Kurt(X) ↓ MaxMed(X) ↓ Kurt(X)↓ MaxMed(X) ↓ ∆BD-Rate ↓

ELIC + Adam 151.76 194.65 64.96 48.34 7.67%
ELIC + SOAP 128.89 99.25 4.28 8.01 5.96%

TCM + Adam 127.99 182.32 12.26 18.27 7.75%
TCM + SOAP 93.07 89.45 1.10 4.36 5.66%

LALIC + Adam 142.25 221.10 108.47 94.31 8.06%
LALIC + SOAP 80.80 46.37 32.27 24.13 6.02%

DCAE + Adam 133.32 178.69 23.01 29.38 8.98%
DCAE + SOAP 101.9 90.70 1.57 5.25 6.98%

Table 2 reports outlier metrics and PTQ robustness across four representative architectures. SOAP
consistently yields substantially lower latent and activation kurtosis as well as reduced MaxMed(X)
values compared to Adam. For example, on ELIC, SOAP reduces latent kurtosis from 151.76
to 128.89 and activation kurtosis from 64.96 to 4.28, yielding a nearly 2% BD-Rate gain under

4Randomly selected as the fourth layer at the encoder.
5We use AdaRound for illustration, following implementation at https://github.com/Eric-qi/

RDO-PTQ; more advanced PTQ methods (Shi et al., 2023) are likely to yield even stronger results.
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W8A8 quantization. Similar improvements hold across TCM, LALIC, and DCAE, demonstrating
that SOAP’s outlier suppression effect is architecture-agnostic. In the challenging W8A8 setting,
quantization penalties consistently drop by about 2% BD-Rate across models.

Fig. 4 shows scaled deviation maps for the ELIC model. Under Adam, latents exhibit scattered ex-
treme deviations (bright orange patches), reflecting concentrated outliers in a few positions. SOAP-
trained latents, by contrast, display smoother and more uniform deviation maps with significantly
lower peak values, directly corroborating the statistical improvements.

These empirical findings support the theoretical perspective in Sec. 5: By coupling channels via
Newton-like scaling and rotations, SOAP redistributes variance across directions rather than concen-
trating it in a few, preventing outlier formation. This yields more regular feature statistics, improving
entropy modeling and stabilizing activations, with the downstream benefit of enhanced PTQ robust-
ness. Thus, SOAP not only accelerates training and improves R–D trade-offs but also produces
models that are substantially easier to deploy on constrained hardware.

(a) kodim01
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(b) Adam
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(f) SOAP

Figure 4: Scaled deviation maps for ELIC latent representations. Each row shows the input
image (left), latent scaled deviation with Adam (middle), and SOAP (right). SOAP consistently
suppresses extreme values and yields lower maximum scaled deviation. (Best viewed zoomed in.)

6 CONCLUSION AND FUTURE WORK

In this work, we demonstrated that a simple two-line code modification yields faster training, as
well as improved R-D performance across advanced LICs (ELIC, TCM, LALIC, and DCAE). Our
theoretical and empirical analyses reveal that SOAP’s Newton-style preconditioning effectively re-
solves the inherent gradient conflicts of the R-D objective by aligning updates both between the
competing terms (intra-step) and across iterations (inter-step). Furthermore, we uncovered a criti-
cal practical benefit: SOAP-trained models exhibit significantly fewer activation and latent outliers,
which enhances robustness to post-training quantization, making the models more deployable.

Looking forward, we identify several promising research directions: (i) developing hybrid optimiza-
tion strategies that combine second-order information with complementary techniques (e.g., energy
compression or feature decorrelation); (ii) extending second-order training to other domain com-
pression methods, such as videos (Li et al., 2024b; Jia et al., 2025) and 3d representations (Wang
et al., 2025a;b; Gao et al., 2025), where training costs (wall-time) are even higher; (iii) investigating
adaptive R-D Hessian decomposition strategies to explicitly model and exploit the specific curva-
ture interactions between rate and distortion terms; (iv) strengthening the theoretical foundations
by relaxing assumptions (e.g., joint-diagonalization), quantifying curvature drift, and formally con-
necting outlier suppression to PTQ error bounds. We hope these results encourage the community
to recognize optimization strategy as a critical pillar, alongside architecture and algorithm design,
for advancing practical learned compression.
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During the writing of this paper, we used GPT-5 to check and improve grammar and wording. No
substantive content, research ideas, analysis, or results were generated by the model. We, as the
authors, remain fully responsible for the accuracy and integrity of the work.
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We have made efforts to ensure reproducibility by providing detailed descriptions of training pro-
cedures, hyperparameters, and evaluation protocols in Sec. 3, 4, and 5 of the main paper, where
dataset sources are also documented. Complete proofs of theoretical results are provided in Appen-
dices A.7, A.8, A.9, A.10, A.11, A.12, and A.14 . To further support reproducibility, we will release
the full implementation, including training and evaluation scripts, in an open-source repository upon
acceptance of the paper.
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A APPENDIX

This appendix provides additional details regarding our methods, discussions, and comparisons.

A.1 RELATED WORK

Learned image compression (LIC) methods are typically developed within the nonlinear transform
coding framework (Ballé et al., 2020; Goyal, 2002), aiming to balance the compressed bit rate (R)
and the reconstruction error (D).

Advances in Transform Modules. A wide variety of architectures have been explored to enhance
the expressive power of encoder–decoder transforms. Examples include residual networks (He et al.,
2022; Cheng et al., 2020), deformable convolutions (Fu et al., 2024a), designs based on frequency
decomposition (Fu et al., 2024b; Ma et al., 2020), invertible neural networks (Xie et al., 2021; Cai
et al., 2024), and contextual clustering (Qi et al.). Recently, transformers and Mamba architectures
have gained traction, offering strong performance gains (Liu et al., 2023b; Zhu et al., 2022b; Zou
et al., 2022; Koyuncu et al., 2022; Qian et al., 2022; Li et al., 2024a; Qin et al., 2024; Wu et al.,
2025; Zeng et al., 2025; Feng et al., 2025; Lu et al., 2025).

Entropy Modeling Improvements. On the probabilistic side, research has sought to design more
accurate entropy models for the latent space. This includes hierarchical priors (Ballé et al., 2018;
Hu et al., 2020; Duan et al., 2023), autoregressive models operating over spatial (Minnen et al.,
2018) or channel dimensions (Minnen & Singh, 2020), as well as hybrid models that capture joint
spatial–channel dependencies (Jiang et al., 2023; Ma et al., 2021). Further refinements make use of
checkerboard-based decoding (He et al., 2021), codebooks (Zhu et al., 2022a), and (lattice) vector
quantization techniques (Zhang & Wu, 2023; Feng et al., 2023; Lei et al., 2024; Xu et al., 2025).

Efficiency-Oriented Methods. Another body of work seeks to reduce training and inference cost
while maintaining compression quality. Notable examples include slimmable sub-networks (Tao
et al., 2023), variable-bit-rate codecs (Guo-Hua et al., 2023; Kamisli et al., 2024), and knowledge
distillation strategies (Fu et al., 2024a). Lightweight decoding has been pursued through shallow
or linear decoders (Yang & Mandt, 2023), while new loss formulations such as causal context (Han
et al., 2024) or latent decorrelation penalties (Ali et al., 2023) have also been proposed. Recent
studies further introduce rate–distortion–complexity analysis (Minnen & Johnston, 2023; Gao et al.,
2024), explicitly incorporating computational cost into the optimization objective.

From Rate–Distortion to Multi-Objective Optimization. Although rate–distortion training is
often cast as minimizing a scalarized loss R + λD, it is fundamentally a multi-objective prob-
lem: decreasing rate typically worsens distortion, and vice versa. This observation motivates the
adoption of multi-objective optimization (MOO) techniques, which are designed to handle multi-
ple conflicting criteria. One influential MOO approach is the Multiple Gradient Descent Algorithm
(MGDA) (Désidéri, 2012; Sener & Koltun, 2018; Fliege et al., 2019). MGDA determines an update
direction by combining gradients from different objectives with non-negative weights that minimize
the squared norm of their sum, subject to a simplex constraint. The resulting direction guarantees
improvement for all objectives simultaneously. MOO methods have seen wide adoption in multi-
task learning (Yu et al., 2020; Liu et al., 2021; Momma et al., 2022; Navon et al., 2022; Zhou et al.,
2022; Senushkin et al., 2023; Fernando et al., 2023; Liu et al., 2023a; Chen et al., 2023; Xiao et al.,
2023b; Hu et al., 2024), where they are used to balance competing gradients across tasks and miti-
gate conflicts during training.

Training Dynamics Approaches for LIC. Building on these insights, recent studies in LIC have
begun to focus on R-D optimization dynamics. Zhang et al. (2025c) introduced the Balanced-RD
framework, which explicitly regularizes the interaction between rate and distortion gradients. Other
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approaches, such as CMD-LIC (Zhang et al., 2025b) and Auxiliary Transform (AuxT) methods (Li
et al., 2025), also reformulate training to accelerate convergence or stabilize optimization. Together,
these works highlight optimization strategy as another pillar of LIC research, alongside architectural
and entropy modeling advances.

Our Perspective. Our work aligns with this emerging line of training-dynamics-based methods
and is closely related to Balanced-RD, CMD-LIC, and AuxT. Balanced-RD explicitly regulates
the interaction between rate and distortion gradients to promote stable convergence in the R–D
trade-off. CMD-LIC accelerates optimization by reducing training space dimensions. AuxT, on the
other hand, introduces architectural constraints on energy compaction and feature decorrelation to
improve convergence behavior. Distinct from these approaches, our study focuses on second-order
optimization—specifically the SOAP method—which leverages curvature information (Newton-like
update) to jointly accelerate convergence and reduce gradient conflicts. Beyond faster optimization,
SOAP also suppresses activation and latent outliers, tightening entropy modeling and improving
PTQ robustness, thereby enhancing both the stability and deployability of learned compressors.

A.2 R-D FIGURES

Fig. 5 illustrates the R-D curves of all methods. The SOAP-trained models consistently outperform
their Adam-trained counterparts, with the performance gap particularly pronounced in the challeng-
ing high-bpp regime.
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Figure 5: R-D curves of various methods. Please zoom in for more details.

A.3 COMPARISON WITH OTHER METHODS

As discussed in Sec. 1 and A.1, SOAP can be compared against (i) acceleration methods, such as
Auxiliary Transform (AuxT) (Li et al., 2025) and CMD-LIC (Zhang et al., 2025b); and (ii) gradient-
conflict mitigation methods, such as Balanced-RD (Zhang et al., 2025c). Since the released Auxiliary
Transform code6 is implemented for TCM, we adopt the TCM model for fair comparison. Balanced-
RD results are reproduced following the official implementation7 (γ values for Balanced-RD are
swept to find the best results.), while CMD-LIC results are obtained from the authors of CMD-LIC.
Additionally, to verify the additiveness of SOAP to other acceleration techniques, we further applied
the SOAP to AuxT, termed as AuxT + SOAP. All the experiments follow the protocol in Sec. 3.

Table 3 and Fig. 6 reveal a clear trend: while existing acceleration methods (AuxT, CMD-LIC)
and gradient-conflict mitigation (Balanced-RD) provide modest gains, SOAP consistently delivers
stronger improvements in both convergence speed and final R-D performance. On TCM-S, SOAP
alone reduces the number of steps and wall-clock time to reach Adam’s performance by about 72%
and 61%, respectively, compared to 51–57% step reductions for AuxT and CMD-LIC and even
slower convergence for Balanced-RD. SOAP also outperforms Balanced-RD by more than 1% BD-
Rate on average across Kodak, Tecnick, and CLIC2022. Moreover, combining SOAP with AuxT

6https://github.com/qingshi9974/AuxT
7https://gitlab.com/viper-purdue/balanced-rd
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Table 3: Computational Complexity and BD-Rate Comparison on TCM-S
Method Steps-to-Adam ↓ Time-to-Adam ↓ BD-Rate (%) ↓

Kodak Tecnick CLIC2022 Avg.

TCM-S
(Liu et al., 2023b)

+ Adam 1 1 0% 0% 0% 0%
+ AuxT (Li et al., 2025) 0.43 0.46 -1.11% -1.24% -1.66% -1.34%

+ CMD-LIC (Zhang et al., 2025b) 0.49 0.50 -0.47% -0.55% -0.68% -0.57%
+ Balanced-RD (Zhang et al., 2025c) 0.67 0.81 -1.37% -1.91% -1.87% -1.71%

+ SOAP 0.28 0.39 -2.86% -2.40% -3.01% -2.76%
+ AuxT + SOAP 0.23 0.35 -2.97% -2.53% -3.22% -2.91%

Training Conditions: 1 × NVIDIA H100 GPU, 2 × Intel Xeon Platinum 8480+ CPU, 1TB RAM. Bold
indicates the best performance. The “Avg.” column reports the mean BD-Rate across Kodak, Tecnick, and
CLIC2022.
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Figure 6: Comparison of Testing Loss: Epochs/Wall-time vs. R-D Loss for Various LIC Meth-
ods. (Best viewed zoomed in.) The first 10 epochs are omitted for better visualization. The SOAP
optimizer demonstrates significantly faster convergence compared to Adam, AuxT, CMD-LIC, and
Balanced-RD, and the AuxT + SOAP combination further accelerates convergence. SOAP not only
accelerates training but also achieves a lower final R-D loss. Evaluation is performed on the Kodak
dataset with λ = 0.013; the R-D loss is computed as λ · 2552 ·MSE + Bpp.

(AuxT + SOAP) yields the best overall performance, further reducing the steps- and time-to-Adam
ratios to 0.23 and 0.35, and improving the average BD-Rate to −2.91%. These results indicate that
SOAP is not only effective on its own but also complementary to existing acceleration techniques.
Unlike prior approaches, SOAP requires no auxiliary networks, progressive parameter freezing, loss
reweighting, or extensive hyperparameter tuning, making it easy to integrate into existing training
pipelines. Overall, the empirical evidence supports that incorporating second-order curvature infor-
mation is a direct and effective way to accelerate training and mitigate gradient conflicts in learned
image compression.

A.4 A PRELIMINARY EXPLORATION FOR LEARNED VIDEO COMPRESSION

Since our analysis is not closely constrained by image sources, we believe it is generally applicable
to R-D problems, such as video compression. To further demonstrate the effectiveness and the
generalization of SOAP and our analysis, we also performed a preliminary exploration on DCVC (Li
et al., 2021).

A.4.1 DCVC

Since the DCVC training code is not open-sourced, we use an online reproduced version available
at https://gitlab.com/viper-purdue/opendcvcs.
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Training Data: We use the training partition of the Vimeo-90k septuplet dataset (Xue et al., 2019)
as the source of training samples. During training, video sequences are randomly cropped into
256× 256 patches.

Testing Data: For testing, we evaluate our models on benchmark datasets widely used in the video
compression literature: HEVC Class B (Boyce et al., 2018); UVG (uvg, 2021); MCL-JCV (Wang
et al., 2016).

Test Conditions: We test 96 frames for each video, and the intra period is set as 32. The low
delay encoding setting is used. During both training and testing, all the frames are converted to
the YUV444 color space by the ITU-R BT.709 transform matrix, and distortion loss is a weighted
version in both RGB and YUV420 color spaces (Jia et al., 2025). We follow the progressive training
strategy (Li et al., 2021). For illustration purposes, we only train λ = 256 models.

Results:
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Figure 7: Training dynamics across stages. Top row: Loss vs Epochs for Stage 1, Stage 2, Stage
3, and Stage 4. Bottom row: Loss vs Wall time for Stage 1, Stage 2, Stage 3, and Stage 4. SOAP
consistently converges faster and more stably than Adam across all stages.

As shown in Fig. 7, SOAP achieves faster convergence and more stable training dynamics than
Adam across all stages of DCVC. The improvement holds whether progress is measured in terms of
epochs or wall-clock time, indicating that the added per-step overhead of SOAP is easily offset by
the substantial reduction in total steps required for convergence.

Importantly, the benefits of SOAP extend beyond acceleration. The final rate–distortion performance
(R-D loss) achieved by SOAP is consistently stronger, suggesting that curvature-aware optimization
is particularly valuable in the highly complex setting of video compression, where gradient conflicts
are even more pronounced. This corroborates our central claim: by resolving intra- and inter-step
conflicts, SOAP not only speeds up training but also yields higher-quality solutions.

These preliminary findings suggest that second-order optimization via SOAP generalizes effectively
from LIC to learned video compression. While additional large-scale experiments are warranted,
the results highlight SOAP as a promising optimizer for future research in video and other high-
dimensional compression domains.

A.5 WILL WEIGHT DECAY MAKE ADAM/ADAMW DIFFERENT?

To investigate whether weight decay is beneficial for LICs, we use the ELIC model (He et al., 2022)
as a baseline and follow the same training and evaluation protocol described in Sec. 3. For illustrative
purposes, we use λ = 0.013. We compare two optimizers: Adam (Kingma & Ba, 2014) and AdamW
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(Adam with decoupled weight decay) (Loshchilov & Hutter, 2017)8. Weight decay values of {0.01,
0.001, 0.0001} are tested. Note that weight decay introduces no noticeable wall-time overhead.
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(a) Steps

Figure 8: Comparison of Testing Loss: Epochs vs. R-D Loss under Different Weight Decay
Settings. (Best viewed zoomed in.) The first 10 epochs are omitted for clarity. Evaluation is con-
ducted on the Kodak dataset with λ = 0.013. The R-D loss is computed as λ · 2552 ·MSE + Bpp.

From Fig. 8, we observe that training with Adam or AdamW without weight decay yields the most
stable optimization and best final convergence. When weight decay is applied, Adam fails to con-
verge properly:

• Adam + WD = 0.01 stalls at R-D loss ≈ 4.7

• Adam + WD = 0.001 stalls at ≈ 2.5

• Adam + WD = 0.0001 stalls at ≈ 1.0

All of these results are significantly worse than the converged value of ≈ 0.795. We exclude these
curves from Fig. 8 for better visualization.

For AdamW, using weight decay produces results that are either similar to or slightly worse or more
unstable than training without weight decay. Given that neither Adam nor AdamW benefits from
weight decay in this setting, we choose not to apply weight decay in any of our experiments.

A.6 WHAT IS THE IMPACT OF PRECONDITIONER UPDATE FREQUENCY?

A key hyperparameter of the SOAP optimizer (Vyas et al., 2024) is the preconditioner update fre-
quency, which controls the trade-off between computational efficiency and preconditioner accuracy.
A smaller frequency value updates the preconditioner more frequently, improving its accuracy but
increasing computational overhead. Conversely, a larger frequency reduces the update cost, poten-
tially speeding up training, but risks using a stale preconditioner that may slow convergence.

To empirically study this trade-off, we use the ELIC model (He et al., 2022) as a baseline and follow
the same training and evaluation protocol described in Sec. 3. For illustrative purposes, we fix
λ = 0.013 and test update frequencies of {5, 10, 20, 50}. The default implementation is 10.

As shown in Fig. 9, varying the preconditioner update frequency does not significantly affect either
step efficiency or wall-clock efficiency. The differences between frequencies are marginal, and thus
we adopt the default setting of 10 throughout all experiments.

8When no weight decay is applied, Adam and AdamW are mathematically equivalent, as their difference
lies solely in how weight decay is implemented.
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Figure 9: Comparison of Testing Loss: Epochs/Wall-time vs. R-D Loss for Various Update
Frequencies. (Best viewed zoomed in.) The first 10 epochs are omitted for clarity. Evaluation is
performed on the Kodak dataset with λ = 0.013; the R-D loss is computed as λ · 2552 ·MSE+Bpp.

While Fig. 9 (and the main results across all four LICs considered in this work) indicate that update
frequencies in the range {5, 10, 20, 50} are both numerically stable and nearly indistinguishable in
terms of convergence speed in our setting, practitioners may in principle encounter numerical issues
(e.g., exploding activations or NaN/Inf values) when using very frequent preconditioner updates
in marginal situations. From an optimization perspective, more frequent updates are generally de-
sirable: they allow the preconditioner to track changes in the local curvature more closely, making
the quasi-Newton step more faithful to the current Hessian and potentially improving convergence
in highly non-stationary regimes. However, in architectures where gradient statistics are particularly
noisy, this increased reactivity can also make the preconditioner more sensitive to transient spikes.
In such cases, a simple mitigation is to increase the update interval (e.g., from 10 to 100 or even
1000), so that each preconditioner refresh aggregates curvature information over more optimization
steps. This yields smoother Kronecker-factored curvature estimates and makes their (approximate)
inverse less sensitive to transient gradient spikes, thereby acting as a more conservative and stable
preconditioner.

A.7 SOAP AS AN APPROXIMATION TO NEWTON’S METHOD

We argue that the SOAP update can behave like a Newton step locally and under specific modeling
assumptions, i.e., p ≈ −H−1g. The derivation proceeds through standard curvature approximations
and a rotated-basis view in which SOAP applies an Adam-style preconditioner.

Under standard assumptions:

(A1) Gauss–Newton (GN) surrogate. The Hessian is well-approximated by its GN compo-
nent (Bishop & Nasrabadi, 2006; Martens & Grosse, 2015; Martens et al., 2010; Morwani
et al., 2024; Zhang et al., 2025a; Schraudolph et al., 2007):

H ≈ HGN (GN approximation). (12)

(A2) Layerwise Kronecker structure. For a single layer with weight matrix W (vectorized as
vec(W )), the GN is well-approximated by a Kronecker product of second-moment factors
built from forward activations at and backpropagated sensitivities δt (Grosse & Martens, 2016;
Martens & Grosse, 2015; Li, 2017; Martens, 2020; Morwani et al., 2024; Gupta et al., 2018;
Vyas et al., 2024):

HGN ≈ Rt ⊗ Lt, Lt = E[δtδ⊤t ], Rt = E[ata⊤t ]. (13)

(An L⊗R parameterization is equivalent; only the rotation/diagonalization matters.)
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(A3) Rotated-basis diagonalization. With eigendecompositions Lt = QLΛLQ
⊤
L and Rt =

QRΛRQ
⊤
R, the (QL⊗QR) rotation makes the GN surrogate (nearly) diagonal:

H̃GN = (QL⊗QR)
⊤HGN(QL⊗QR) ≈ ΛR⊗ΛL, (14)

which is diagonal because it is the Kronecker product of diagonal matrices.
(A4) Adam-as-diagonal preconditioner (local). In the rotated basis and sufficiently close to a

(nondegenerate) local minimum, the Adam/Adafactor-style update acts like preconditioning
by the diagonal curvature (Kingma & Ba, 2014; Reddi et al., 2019; Vyas et al., 2024):

p̃ ≈ − diag(H̃GN)
−1g̃, (15)

up to standard damping (εI), EMAs, and step-size factors.

Rotated-space argument. Under (A1)–(A3), H̃GN is diagonal, so diag(H̃GN)
−1 = H̃−1

GN. By
(A4),

p̃ ≈ − H̃−1
GNg̃. (16)

Because (QL⊗QR) is orthogonal, applying a preconditioned step in the rotated space is equivalent
to applying the corresponding step in the original coordinates:

p = (QL⊗QR) p̃ ≈ − (QL⊗QR) H̃
−1
GN(QL⊗QR)

⊤g. (17)

Finally, by (A1),
(QL⊗QR) H̃

−1
GN(QL⊗QR)

⊤ ≈ H−1, (18)
yielding the claimed local Newton approximation.
Theorem 1 (Conditional Newton approximation for SOAP). Under (A1)–(A4) and with standard
damping and stable moment estimates, the SOAP layer update is a local approximation to the New-
ton update:

p ≈ −H−1g. (19)

Remarks and limitations. (i) The Adam preconditioner tracks (diagonal) second moments of gra-
dients (Fisher-like), not the exact Hessian diagonal; the identification in equation 15 is a local ap-
proximation strongest when diag(HGN) ≈ diag(H) near the optimum. (ii) Finite-sample EMAs,
infrequent preconditioner updates, and regularization (+εI) introduce additional approximation er-
ror. (iii) The argument is layerwise and ignores inter-layer curvature; nonetheless, in practice, the
rotated-space diagonalization substantially improves conditioning compared to first-order methods.
(iv) For common losses (e.g., MSE, cross-entropy, typical distortion, and rate losses), the Fisher
information matrix and GN coincide and provide a PSD approximation to the true Newton matrix
under standard assumptions, which are widely used in practice as stable surrogates for second-order
optimization.

A.8 PROOF OF LEMMA 1

Assume f has an LH -Lipschitz Hessian in a neighborhood of θt, and Ht = ∇2f(θt) is SPD with
∥H−1

t ∥ ≤ κ. For the Newton update

pt = −H−1
t gt, θt+1 = θt + ηpt, 0 < η < 1, (20)

there exist constants C1, C2 (depending on LH and uniform bounds on ∥Ht∥, ∥H−1
t ∥) such that,

whenever ∥gt∥ is sufficiently small,∣∣1− S(pt, pt+1)
∣∣ ≤ C1 η ∥pt∥ + C2 η

2 ∥pt∥2. (21)

In particular, as ∥pt∥ → 0 (or as η → 0), S(pt, pt+1)→ 1.

Proof. By the Lipschitz continuity of the Hessian (Taylor expansion),

gt+1 = g(θt+1) = gt +Ht(θt+1 − θt) + rt, ∥rt∥ ≤ LH

2 ∥θt+1 − θt∥2. (22)

Since θt+1 − θt = ηpt = −ηH−1
t gt and ∥H−1

t ∥ ≤ κ,

gt+1 = (1− η)gt + rt, ∥rt∥ ≤ LH

2 κ2 η2∥gt∥2. (23)
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Now the next Newton update is
pt+1 = −H−1

t+1gt+1. (24)
Add and subtract H−1

t :

pt+1 = −H−1
t gt+1 − (H−1

t+1 −H−1
t )gt+1. (25)

Using gt+1 = (1− η)gt + rt and pt = −H−1
t gt, we get

pt+1 = (1− η)pt −H−1
t rt − (H−1

t+1 −H−1
t )gt+1. (26)

Lipschitzness implies ∥Ht+1 −Ht∥ ≤ LH∥θt+1 − θt∥ = LHη∥pt∥, hence

∥H−1
t+1 −H−1

t ∥ ≤ ∥H−1
t ∥ ∥Ht+1 −Ht∥ ∥H−1

t+1∥ ≤ C η∥pt∥ (27)

for C = κ2LH (assuming ∥H−1
t+1∥ remains bounded) in a small neighborhood. Combining these

bounds yields
pt+1 = (1− η)pt + et, ∥et∥ ≤ C ′

1 η ∥pt∥2 + C ′
2 η

2 ∥pt∥3. (28)
Writing u = pt/∥pt∥ and pt+1 = (1− η)∥pt∥u+ et, a standard cosine perturbation bound gives∣∣1− S(pt, pt+1)

∣∣ ≤ C1 η ∥pt∥ + C2 η
2 ∥pt∥2, (29)

as claimed.

A.9 PROOF OF PROPOSITION 1

Let θ∗ be a nondegenerate local minimizer with Hessian H ≻ 0. Assume that, in a neighborhood
of θ∗, the component gradients admit quadratic models (Nocedal & Wright, 1999; Boyd & Vanden-
berghe, 2004):

gR(θ) ≈ HR(θ − θ∗), gD(θ) ≈ HD(θ − θ∗), (30)
and that SOAP uses a single (shared) preconditioner that locally approximates H−1, i.e.,

p ≈ −H−1g (cf. Sec. A.7). (31)

Suppose, moreover, that the component Hessians are locally proportional to H:
HR(θ) = αR(θ)H(θ) + ER(θ), HD(θ) = αD(θ)H(θ) + ED(θ), (32)

where αR, αD > 0 are continuous near θ∗ and ∥ER(θ)∥, ∥ED(θ)∥ = o(1) as θ → θ∗. Then
lim
θ→θ∗

S(pR(θ), pD(θ)) = 1, (33)

where pR ≈ −H−1gR and pD ≈ −H−1gD are the SOAP update vectors corresponding to the rate
and distortion gradients.

Proof. Using the shared preconditioner and the quadratic models,
pR ≈ −H−1HR(θ − θ∗) = −αR(θ) (θ − θ∗) + −H−1ER(θ) (θ − θ∗). (34)

Because ∥ER(θ)∥ = o(1) and ∥H−1∥ is bounded near θ∗, we have

∥H−1ER(θ)(θ − θ∗)∥ = o(∥θ − θ∗∥). (35)
An identical argument yields

pD ≈ −αD(θ) (θ − θ∗) + o(∥θ − θ∗∥). (36)
Thus both update vectors pR and pD are colinear with −(θ − θ∗) up to a vanishing error. Hence
their cosine similarity converges to 1 as θ → θ∗.

Remark. Without proportionality, the update vectors pR = −H−1HR(θ − θ∗) and pD =
−H−1HD(θ − θ∗) need not be parallel. A weaker (sufficient) condition is that H,HR, HD are
jointly diagonalizable near θ∗ and that the ratios λi

R/λ
i and λi

D/λi are constant on the (active)
eigenspaces visited by (θ − θ∗), which again renders the two vectors colinear. However, these as-
sumptions serve as sufficient conditions that provide essential theoretical intuition for why second-
order preconditioning aids alignment. In the context of R-D optimization, it is plausible that rate
and distortion objectives share significant curvature structure, as both depend on the capacity and
fidelity of the underlying transform. The strong empirical alignment observed in practice (Fig. 3a)
suggests that the R-D optimization landscape possesses enough shared structure for SOAP to effec-
tively exploit, even if these idealized conditions are not perfectly met. The Newton preconditioner
inherently seeks a shared descent direction by accounting for how the objectives interact locally.
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A.10 LIMITATIONS OF ADAM FOR GRADIENT ALIGNMENT

Adam is powerful and widely used, but its effectiveness is inherently limited by its diagonal precon-
ditioner. Because it scales coordinates independently, it cannot exploit off–diagonal curvature that
encodes interactions among parameters—precisely what is needed to resolve non–axis-aligned gra-
dient conflicts in multi-objective settings such as rate–distortion (R–D) optimization. The following
proposition formalizes a standard local approximation behind this limitation, following Molybog
et al. (2023); Martens & Grosse (2015).
Proposition 2 (Local diagonal-preconditioner approximation). In a neighborhood of a nondegen-
erate local minimum θ∗ where the loss is well-approximated by a quadratic and the Hessian H ≻ 0
is close to diagonal (diagonally dominant), the Adam update vector is approximately a diagonally
preconditioned gradient step:

pAdam(g) = c diag(H)−1g + o(∥g∥), (37)
for some scalar c > 0 that absorbs stepsize, bias-correction, and damping factors.

Proof. Adam (Kingma & Ba, 2014) maintains
mt = β1mt−1 + (1− β1)gt,

vt = β2vt−1 + (1− β2)(gt ⊙ gt),

θt+1 = θt − η
m̂t√
v̂t + ϵ

,

with bias-corrected m̂t, v̂t and elementwise operations. For local conditioning it suffices to (i) lin-
earize gt ≈ H(θt − θ∗) and (ii) use mt ≈ gt to expose the preconditioner. Under small, approxi-
mately isotropic perturbations near θ∗, E[(θt − θ∗)(θt − θ∗)⊤] ≈ σ2I , giving

E[gtg⊤t ] ≈ σ2HH⊤. (38)
Hence

vt ≈ diag(σ2HH⊤),
√
vt ≈

√
σ2 diag(HH⊤). (39)

Diagonal dominance implies diag(HH⊤)ii =
∑

k H
2
ik ≈ H2

ii, so
√
vt ≈ σ diag(H), (40)

(using H ≻ 0). Therefore the Adam update vector is

pAdam(gt) ≈
gt

σ diag(H)
= c diag(H)−1gt, (41)

with c = 1/σ, as claimed.

Why a diagonal preconditioner fails. The core limitation of Adam in this context is structural. For
multi-objective problems (e.g., R-D), parameter couplings are encoded in the off-diagonal entries of
H (Das et al., 2024). A diagonal preconditioner cannot mix coordinates and therefore cannot rotate
the update direction pAdam toward a descent direction that resolves conflicting objectives. This
remains true regardless of how accurately Adam’s second-moment estimate vt approximates the
true Hessian diagonal (which itself relies on strong assumptions like diagonal dominance used in the
proof above). This inability to rotate the update leads to inherent intra-step conflicts and poor inter-
step alignment, often manifesting as oscillatory trajectories in practice. In contrast, SOAP’s block-
diagonal curvature approximation preserves within-block off-diagonal structure, enabling within-
layer rotations that align conflicting updates and accelerate convergence.

A.11 ADAM’S GRADIENT CONFLICT IN A SIMPLIFIED R-D SETTING AT INITIALIZATION

We now make the above limitation concrete in a toy R-D problem. Consider a linear autoen-
coder (Saxe et al., 2013) with encoder e and decoder d. For a scalar input x, the latent is z = Wex
and the reconstruction is x̂ = Wdz, where We ∈ RM×1 and Wd ∈ R1×M . Let θ = (we,wd)
denote the vectorized parameters. The R-D loss balances distortion and rate,

L(θ) = Ex∼U [−1,1][(x̂− x)2]︸ ︷︷ ︸
LD(θ)

+ λ Ex∼U [−1,1][∥z∥2]︸ ︷︷ ︸
LR(θ)

. (42)

Write C = E[x2] = 1/3.
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Assumption 1. Small random initialization. Entries of we,wd are i.i.d. N (0, ϵ2) with ϵ = o(1),
and w̄e = ϵ−1we, w̄d = ϵ−1wd.
Proposition 3. Under Assumption 1, let pR = Adam(∇LR) and pD = Adam(∇LD) denote
Adam’s update vectors at initialization. In the wide-latent limit M → ∞ (Jacot et al., 2018; Yang
& Hu, 2020),

S(pR, pD)
a.s.−−−−→

M→∞
0. (43)

Thus, Adam updates rate and distortion in asymptotically orthogonal directions, inducing an ineffi-
cient trajectory.

Proof. Leading-order gradients. The rate term is

LR = E∥Wex∥2 = E[x2] ∥we∥2 = C∥we∥2, (44)

so∇weLR = 2Cwe = 2Cϵ w̄e and∇wd
LR = 0. The distortion term is

LD = E[(WdWex− x)2] = C (wd ·we − 1)2. (45)

Because wd ·we = ϵ2(w̄d ·w̄e) = O(ϵ2), we obtain

∇we
LD = −2Cϵ w̄d +O(ϵ3),

∇wd
LD = −2Cϵ w̄e +O(ϵ3).

Collecting terms for θ = (we,wd),

∇θLR ≈ (2Cϵ w̄e, 0), ∇θLD ≈ (−2Cϵ w̄d, −2Cϵ w̄e). (46)

Adam’s initial updates. Early in training, Adam’s elementwise scaling makes the update direction
close to sign(g) (Balles & Hennig, 2018). Thus,

pR ∝ (sign(w̄e), 0), pD ∝ (− sign(w̄d), − sign(w̄e)). (47)

Alignment. Let uR = (sign(w̄e), 0) and uD = (− sign(w̄d), − sign(w̄e)). Then

⟨uR, uD⟩ = −
M∑
i=1

sign(w̄e,i) sign(w̄d,i), (48)

∥uR∥2 = M, ∥uD∥2 = 2M. (49)

Hence

S(uR, uD) = − 1

M
√
2

M∑
i=1

sign(w̄e,iw̄d,i). (50)

Under Assumption 1, the signs are i.i.d. Rademacher variables with mean zero, so the average
converges a.s. to 0 as M →∞ by the strong law of large numbers, proving the claim.

Takeaway. In this stylized R-D setting, Adam’s diagonal preconditioning makes the rate and dis-
tortion updates nearly orthogonal at initialization, degrading joint progress. Methods that capture
within-layer off-diagonal curvature (e.g., SOAP’s block-diagonal preconditioner) can rotate updates
to better align competing objectives, yielding more direct descent paths (Martens et al., 2010; Balles
& Hennig, 2018; Wang et al., 2025c).

Note (positive per–coordinate scalings). The orthogonality conclusion in Proposition 3 is un-
changed if Adam’s elementwise normalization introduces arbitrary positive scalings that are inde-
pendent of the signs of the initialized weights. Concretely, let

uR =
(
ai sign(w̄e,i)

)M
i=1
⊕ 0, uD =

(
− bi sign(w̄d,i)

)M
i=1
⊕
(
− ci sign(w̄e,i)

)M
i=1

, (51)

where ai, bi, ci > 0 are any (possibly random) scalings produced by Adam’s second-moment terms
and damping, assumed independent of sign(w̄e,i), sign(w̄d,i). Then

S(uR, uD) = −
1
M

∑M
i=1 aibi sign(w̄e,iw̄d,i)√(

1
M

∑M
i=1 a

2
i

)(
1
M

∑M
i=1(b

2
i + c2i )

) . (52)
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If the empirical second moments converge, i.e.,
1

M

∑
i

a2i → ā2 > 0 and
1

M

∑
i

(b2i + c2i )→ b̄2 + c̄2 > 0, (53)

and the Rademacher variables sign(w̄e,iw̄d,i) are i.i.d. with mean 0 (and independent of ai, bi), then
by the strong law of large numbers

1

M

M∑
i=1

aibi sign(w̄e,iw̄d,i)
a.s.−−→ 0, (54)

while the denominator converges almost surely to
√

ā2(b̄2 + c̄2). Hence

S(uR, uD)
a.s.−−→ 0. (55)

Thus, the asymptotic orthogonality persists under any positive, sign-independent coordinate scalings
induced by Adam.

A.12 ADAM’S ALIGNMENT BEHAVIOUR NEAR A NONDEGENERATE OPTIMUM

We complement Secs. A.10 and A.11 by formally characterizing Adam’s (i) inter-step alignment
S(pt, pt+1) and (ii) intra-step alignment limθ→θ∗ S(pR, pD) in a neighborhood of a nondegenerate
optimum.

Standing assumptions. Throughout we adopt the standard local model used for diagonal adaptive
methods:

(B1) Quadratic model near θ∗. Writing et = θt − θ∗, the total loss satisfies gt = ∇L(θt) = Het
with H ≻ 0 constant locally (Nocedal & Wright, 1999).

(B2) Frozen second moments. Adam’s second–moment accumulator and damping are (locally)
stationary, yielding a fixed positive diagonal matrix D ≻ 0 and a scalar c > 0 (absorbing step-
size, bias correction, ε). Hence the Adam update is the diagonally preconditioned step (Kingma
& Ba, 2014; Reddi et al., 2019; Zaheer et al., 2018)

pt = − cD−1gt = −Aet, A := cD−1H. (56)

(B3) Small step regime. Parameters evolve by θt+1 = θt + ηpt with 0 < η < 1 so that the
linearization remains valid.

A symmetric reparameterization. To analyze the dynamics, we introduce a reparameterization
using the fixed diagonal preconditioner D. Let

B := cD−1/2HD−1/2 ≻ 0, qt := D1/2pt, yt := D1/2et.

Here, B represents the Hessian in the D-whitened coordinate space. Then the local dynamics (equa-
tion 56) implies

qt = −B yt, yt+1 =
(
I − ηB

)
yt, qt+1 =

(
I − ηB

)
qt. (57)

Since B is symmetric positive definite, inter-step cosines in the q–space admit closed forms; cosines
in the original coordinates are equivalent up to constants depending only on κ(D) (the condition
number of D) (Petersen et al., 2008).

A.12.1 INTER-STEP COSINE FOR ADAM

Lemma 2 (Local inter-step cosine for diagonal preconditioning). Under (B1)–(B3), with ut =
qt/∥qt∥ and Rayleigh statistics

µ1(ut) := u⊤
t B ut, µ2(ut) := u⊤

t B
2ut,

the exact inter-step cosine in the q–space is

Sq(qt, qt+1) =
1− η µ1(ut)√

1− 2η µ1(ut) + η2 µ2(ut)
. (58)

In particular, for small η,

Sq(qt, qt+1) = 1 − 1
2 η

2
(
µ2(ut)− µ1(ut)

2
)
+ O(η3) = 1 − 1

2 η
2 Varut(B) + O(η3). (59)
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Proof. From equation 57, qt+1 = (I − ηB)qt. Therefore

Sq(qt, qt+1) =
⟨qt, (I − ηB)qt⟩
∥qt∥ ∥(I − ηB)qt∥

=
1− η u⊤

t But√
1− 2η u⊤

t But + η2 u⊤
t B

2ut

,

yielding equation 58. A Taylor expansion of the denominator gives equation 59. The term Varut(B)
represents the variance of the eigenvalues of B (the whitened Hessian) with respect to the direction
ut.

Consequences.

• No automatic alignment as ∥pt∥→0. Unlike Newton (Lemma 1), the deviation 1−Sq is second
order in η and controlled by curvature anisotropy Varut

(B), not by ∥pt∥. Thus S(pt, pt+1) need
not approach 1 near the optimum unless B is a scalar multiple of I or ut is an eigenvector of B.

• Oscillation threshold. If η µ1(ut) > 1, the numerator in equation 58 is negative and Sq < 0.
Hence whenever η λmax(B) > 1, there exist directions with negative inter-step cosine (flip–flop
behaviour).

• Back to original coordinates. Since qt = D1/2pt and D ≻ 0 is fixed locally, Euclidean cosines
of (pt, pt+1) and (qt, qt+1) are equivalent up to constants depending on κ(D); all qualitative
conclusions transfer to S(pt, pt+1).

Intuition. In the R-D setting, Adam’s diagonal preconditioning cannot remove curvature anisotropy:
the inter-step cosine is governed by the variance of eigenvalues rather than by step size alone. As
a result, update directions often fail to align even near convergence. In practice, this manifests
as oscillatory trajectories—updates pulling in different directions—rather than the smooth progress
observed under Newton-like SOAP. In other words, Adam has no guarantee of alignment, while
SOAP actively suppresses this oscillation behaviour.

A.12.2 INTRA-STEP COSINE FOR ADAM NEAR THE OPTIMUM

Near θ∗, the component gradients linearize (Nocedal & Wright, 1999) as

gR ≈ HR(θ − θ∗), gD ≈ HD(θ − θ∗),

with HR, HD ⪰ 0. Under (B2), the shared Adam preconditioner D is (locally) fixed, so

pR(θ) ≈ − cD−1HR(θ − θ∗), pD(θ) ≈ − cD−1HD(θ − θ∗).

Let e = θ − θ∗ and u = e/∥e∥.
Proposition 4 (Exact intra-step limit for Adam). Fix any sequence θk → θ∗ such that uk = (θk −
θ∗)/∥θk − θ∗∥ → u with ∥u∥ = 1. Under (B2),

lim
k→∞

S
(
pR(θk), pD(θk)

)
=
⟨D−1HRu, D

−1HDu⟩∥∥D−1HRu
∥∥ ∥∥D−1HDu

∥∥ =: ρAdam(u). (60)

Moreover:

(i) ρAdam(u) = 1 iff D−1HRu and D−1HDu are colinear, i.e., D−1HRu = αD−1HDu for
some α > 0. A sufficient condition is that HR and HD are locally proportional on the
D-whitened direction D1/2u.

(ii) If HR, HD, D are jointly diagonalizable, then ρAdam(u) ∈ [0, 1] for all u, and ρAdam(u) =
1 iff the per-coordinate ratios are constant on the support of u (the same condition that
yields SOAP’s alignment in Prop. 1).

(iii) In general (non-commuting case), ρAdam(u) can take any value in (−1, 1). In particular,
there exist SPD triples (HR, HD, D) and u such that ρAdam(u) ≤ 0.

Proof. Substitute the linearizations

pR(θ) ≈ −cD−1HRe, pD(θ) ≈ −cD−1HDe, e = θ − θ∗,
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and cancel the common positive factor c/∥e∥. This yields the expression in equation 60. Continuity
then guarantees the limit along any sequence θk → θ∗ with normalized directions uk → u.

Case (i). If D−1HRu and D−1HDu are colinear with positive scalar α, then the cosine is exactly 1.
Conversely, if the cosine is 1, the two vectors must be positively colinear by definition.

Case (ii). If HR, HD, D are jointly diagonalizable, choose the common eigenbasis. In this ba-
sis, D−1HR and D−1HD are diagonal with positive entries. For any u, the inner product is non-
negative, so ρAdam(u) ∈ [0, 1]. Equality ρAdam(u) = 1 requires that the coordinatewise ratios
(HR)jj/(HD)jj be constant on the support of u, ensuring proportionality of the two preconditioned
vectors.

Case (iii). In the general non-commuting case, D−1HR and D−1HD need not share eigenvectors,
and their images of u can point in very different directions. To see that negative cosines are possible,
set D = I in R2 and take

HR =

[
10 0
0 1

]
, HD = R(ϑ)

[
10 0
0 1

]
R(ϑ)⊤,

with R(ϑ) a rotation by ϑ ≃ 57◦. For u = 2−1/2(1,−1), a direct calculation gives ⟨HRu, HDu⟩ <
0, so ρAdam(u) < 0 even though HR, HD are SPD.

Empirical note. In practice, we find that Adam’s intra-step cosine rarely falls in [0, 1] as in the
commutative case, but instead is often strongly negative. Around local minima of the ELIC model,
the measured Stintra values concentrate near −1 (see Fig. 3(a)), confirming that Adam is unable to
align the updates of rate and distortion objectives. This behaviour is consistent with Proposition 4
(case (iii)) and explains the inefficient dynamics observed empirically.

Remarks Nonzero momentum (β1 > 0) produces a linear two-term recurrence in the q–space; all
qualitative conclusions above persist with B replaced by an O(1) affine function of B. If D evolves
slowly rather than remaining fixed, equation 58–equation 60 apply between preconditioner refreshes
with the current Dt.

Takeaways vs. SOAP. Near θ∗, Adam’s inter-step misalignment is governed by curvature anisotropy
via Varut

(B) and does not vanish with ∥pt∥ (Lemma 2), whereas the Newton-like SOAP bound
(Lemma 1) decays as O(η∥pt∥). For the intra-step metric, SOAP yields S(pR, pD)→ 1 under mild
proportionality/diagonalization conditions (Prop. 1), while Adam’s limit ρAdam(u) in equation 60
generally depends on the approach direction u and can be ≤ 0 unless the component Hessians align
in the D-whitened geometry.

A.13 WHY HIGH COSINE ACCELERATES OPTIMIZATION

A natural question arises regarding the optimization of the rate-distortion objective: given that rate
(LR) and distortion (LD) are intrinsically conflicting objectives, one might expect the cosine simi-
larity between their update directions to be small or negative (Yu et al., 2020). While raw gradient
conflict is indeed a characteristic of the problem, we formally show here that a larger cosine simi-
larity between the preconditioned update vectors (pR and pD) is strictly beneficial for convergence
speed.

We demonstrate that the lower bound of the loss reduction at each step depends monotonically on
the intra-step cosine. Consequently, an optimizer (like SOAP) that induces high cosine effectively
resolves the “destructive interference” between competing gradients, maximizing the effective step
size for a given gradient magnitude.

Proposition 5 (Alignment Maximizes Descent Efficiency). Let the total loss function L(θ) =
LR(θ) + λLD(θ) be L-smooth. Consider the update θt+1 = θt + ηpt, where the total up-
date pt = pR,t + pD,t is composed of preconditioned rate and distortion components (pk,t =
−Pt∇Lk(θt)). Assume the preconditioner Pt is positive definite with eigenvalues bounded by
0 < µ ≤ λi(Pt) ≤M .

For a learning rate η < 2
LM , the reduction in loss ∆t = L(θt)− L(θt+1) is lower-bounded by:

∆t ≥ C(η) ·
(
∥pR,t∥2 + ∥pD,t∥2 + 2∥pR,t∥∥pD,t∥ · Stintra

)
, (61)
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where C(η) = η
M −

Lη2

2 > 0. Thus, strictly increasing Stintra strictly increases the guaranteed loss
reduction.

Proof. Step 1: Quadratic Upper Bound. By the L-smoothness of L, the Descent Lemma guaran-
tees (Boyd & Vandenberghe, 2004):

L(θt+1)− L(θt) ≤ ⟨∇L(θt), ηpt⟩+
L

2
∥ηpt∥2. (62)

Step 2: Linking Gradient to Update Norm. Let gt = ∇L(θt). Since pt = −Ptgt, we have
gt = −P−1

t pt. The linear term becomes:

⟨gt, pt⟩ = −p⊤t P−1
t pt. (63)

Using the eigenvalue bounds of Pt, the eigenvalues of P−1
t are at least 1/M . Therefore, p⊤t P

−1
t pt ≥

1
M ∥pt∥

2. Substituting this into the inequality:

L(θt+1)− L(θt) ≤ −η
1

M
∥pt∥2 +

Lη2

2
∥pt∥2 = −

(
η

M
− Lη2

2

)
∥pt∥2. (64)

Step 3: Geometric Decomposition. Let ∆t = L(θt)−L(θt+1). Provided η < 2
LM , the coefficient

C(η) = η
M −

Lη2

2 is positive. Thus:

∆t ≥ C(η)∥pt∥2 = C(η)∥pR,t + pD,t∥2. (65)

Expanding the squared norm using the cosine definition ⟨a, b⟩ = ∥a∥∥b∥S(a, b) yields the final
bound:

∆t ≥ C(η)
(
∥pR,t∥2 + ∥pD,t∥2 + 2∥pR,t∥∥pD,t∥Stintra

)
. (66)

Interpretation. The proposition highlights that optimization efficiency depends not just on gradient
magnitudes, but critically on their vector alignment.

• Destructive Interference (Stintra < 0): When update vectors conflict, the cross-term be-
comes negative. The optimizer expends the magnitude of the individual updates (“energy”)
merely to cancel each other out, resulting in a small effective step ∥pt∥ and minimal loss
reduction. This corresponds to the ”zigzagging” often seen with Adam.

• Constructive Synergy (Stintra → 1): When SOAP aligns the updates via curvature cor-
rection, the cross-term is maximized. The rate and distortion updates effectively sum up,
producing the largest possible descent step for the given gradient magnitudes.

Thus, while the objectives (LR,LD) are conflicting, an optimal preconditioner must rotate the space
such that the updates are cooperative. The high intra-step cosine observed with SOAP (Fig. 3)
confirms it successfully achieves this constructive synergy.

We now show that alignment between consecutive updates (inter-step) is equally critical for maxi-
mizing the effective displacement along the descent path.

Proposition 6 (Trajectory Coherence Maximizes Descent). Consider the cumulative loss reduc-
tion over two consecutive steps, ∆2,t = L(θt−1) − L(θt+1). Adopting the same assumptions as
Proposition 5 (L-smoothness and spectral bound M ), further assume the preconditioner P is lo-
cally isotropic (P−1 ≈ 1

σ I) for the cross-term approximation. For a learning rate η < 1
Lσ , the

cumulative reduction is lower-bounded by:

∆2,t ≥ C1(η)
(
∥pt−1∥2 + ∥pt∥2

)
+ C2(η)∥pt−1∥∥pt∥Stinter, (67)

where C2(η) > 0. Thus, maximizing the inter-step cosine Stinter strictly increases the guaranteed
loss reduction by preventing trajectory cancellation.
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Proof. Step 1: Two-step Descent Lemma. By L-smoothness, the loss reduction over the total
displacement ∆θ = θt+1 − θt−1 = η(pt−1 + pt) is bounded by:

L(θt+1) ≤ L(θt−1) + ⟨∇L(θt−1),∆θ⟩+ L

2
∥∆θ∥2. (68)

Let gt−1 = ∇L(θt−1) and ∆2,t = L(θt−1)− L(θt+1). Rearranging yields:

∆2,t ≥ −η⟨gt−1, pt−1 + pt⟩︸ ︷︷ ︸
Linear Gain

− Lη2

2
∥pt−1 + pt∥2︸ ︷︷ ︸

Quadratic Penalty

. (69)

Step 2: Bounding the Linear Term. Recall pt−1 = −Pt−1gt−1, so gt−1 = −P−1
t−1pt−1. The linear

term splits into:

−η⟨gt−1, pt−1 + pt⟩ = η
(
p⊤t−1P

−1
t−1pt−1 + p⊤t−1P

−1
t−1pt

)
. (70)

Using the spectral lower bound (consistent with Proposition 5), p⊤t−1P
−1
t−1pt−1 ≥ 1

M ∥pt−1∥2. For
the cross-term, under the local isotropy assumption (P−1

t−1 ≈ 1
σ I), we approximate:

p⊤t−1P
−1
t−1pt ≈

1

σ
p⊤t−1pt =

1

σ
∥pt−1∥∥pt∥Stinter. (71)

Step 3: Combining with Quadratic Penalty. We expand the quadratic penalty norm ∥pt−1 + pt∥2
using the cosine law. Substituting back:

∆2,t ≥
[ η

M
∥pt−1∥2 +

η

σ
∥pt−1∥∥pt∥Stinter

]
− Lη2

2

[
∥pt−1∥2 + ∥pt∥2 + 2∥pt−1∥∥pt∥Stinter

]
. (72)

Step 4: Grouping by Cosine. Collecting the terms multiplied by Stinter:

∆2,t ≥ Cmag +
( η

σ
− Lη2

)
︸ ︷︷ ︸

C2(η)

∥pt−1∥∥pt∥Stinter. (73)

For the alignment coefficient C2(η) to be positive, we require η < 1
Lσ . Under this condition, a higher

inter-step cosine Stinter strictly increases the lower bound of the cumulative loss reduction.

A.14 NEWTON PRECONDITIONING AND OUTLIER SUPPRESSION

We detail the derivations supporting Sec. 5 and make explicit the assumptions under which SOAP
(quasi-Newton) limits kurtosis growth relative to diagonal methods.

Setup and identity. Let X ∈ Rn×d with m2(X) = 1, and define ΣF = X⊤X, ΣI = XX⊤. By trace
cyclicity, Tr(Σ2

F) = Tr(Σ2
I ). Writing ΣF’s diagonal in terms of per-channel RMS s2j = 1

n

∑
α X2

αj ,

d∑
j=1

(ΣF)
2
jj =

d∑
j=1

( n∑
α=1

X2
αj

)2

= n2
d∑

j=1

s4j = n2d · Kurt(X), (74)

since 1
d

∑
j s

2
j = m2(X) = 1. Hence equation 10 follows:

n2d · Kurt(X) +
∑
i̸=j

(ΣF)
2
ij =

∑
α,β

(ΣI)
2
αβ . (75)

This identity holds for any X (not only at initialization), so it ties feature-wise kurtosis to input-wise
correlation energy throughout training.

Small-step bound. Consider a linearized local map X = HW at a given layer (holding the upstream
activation H fixed during the step). A SOAP update gives ∆W = −η H−1

W G; thus ∆X = H∆W .
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Expanding ∥X + ∆X∥4F to second order in η and taking expectations over minibatches yields the
O(η2) contribution

u4,2 ≤ C nd η2 ∥H∥22 ∥H−1
W ∥

2
2 ∥G∥2F , (76)

for a constant C independent of η (the precise value depends only on fourth-moment combinatorics).
Replacing H−1

W by a diagonal preconditioner’s effective scaling D−1/2 yields the analogous diag-
onal bound. Therefore, with identical η and damping chosen so that ∥H−1

W ∥2 ≤ ∥D−1/2∥2 and
then,

E[∆Kurt(X)]SOAP ≤ E[∆Kurt(X)]Diag (77)

holds up to negligible O(η3) terms. Intuitively, Newton preconditioning narrows the spread of per-
direction step sizes by working in (and rotating back from) the curvature eigenbasis (Martens &
Grosse, 2015; Gupta et al., 2018; Anil et al., 2020; Vyas et al., 2024). This curbs single-direction
amplification and suppresses outliers, in line with our empirical findings.

A.15 COMPARISON WITH OTHER OPTIMIZATION PARADIGMS

To contextualize the performance of SOAP, we evaluate it against a broader spectrum of optimization
strategies, ranging from basic first-order methods to other advanced second-order approximations.
The results are visualized in Fig. 10. Please note that for the compared optimizers, the hyperparam-
eters (lr, momentum, and update frequency) are swept to get the best possible results.

50 100 150 200 250 300
Epoch

0.800

0.825

0.850

0.875

R-
D 

lo
ss

ELIC + Adagrad
ELIC + SGD
ELIC + Shampoo
ELIC + SPlus
ELIC + Adam
ELIC + SOAP

(a) Epochs vs. R-D Loss

Figure 10: Comparison of Testing Loss for Various Optimizers. (Best viewed zoomed in.) We
compare SOAP against SGD (First-Order), Adagrad (Diagonal Root-Inverse), Shampoo (Structured
Root-Inverse), and Adam. The first 10 epochs are omitted for clarity. Evaluation is conducted on
the Kodak dataset with λ = 0.013.

First-Order Methods (SGD). SGD represents the baseline with no curvature information and no
additional information estimation. Without the ability to rescale or rotate gradients based on the loss
landscape geometry, it is theoretically unable to mitigate the gradient conflicts inherent in the R-D
objective. Empirically, as expected, we observe that SGD performs worse than Adam and fails to
reach a competitive rate-distortion performance within the same training period 9.

Root-Inverse Methods (H−1/2). A distinct class of adaptive optimizers approximates the inverse
square root of the Hessian (H−1/2) rather than the full inverse (H−1) used by Newton-like methods
(SOAP). Theoretically, the full inverse is required to completely “whiten” the local landscape into a
spherical shape where gradient alignment is maximized (see Sec. A.7). The square root inverse only
partially corrects the curvature, which limits its ability to fully resolve intra-step conflicts.

9It is widely known that SGD requires much more steps to converge
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• Adagrad: Adagrad (Duchi et al., 2011) approximates a diagonal H−1/2 using the sum
of squares of gradients. While it provides adaptive scaling, its diagonal formulation lacks
the off-diagonal information to rotate updates and the full-inverse scaling to whiten them.
Empirically, we found its performance consistently outperformed by Adam and SOAP,
which is as expected due to the simple design mechanism of Adagrad.

• Shampoo/SPlus: Shampoo (Gupta et al., 2018) and SPlus (Frans et al., 2025) utilize Kro-
necker products to approximate a structured H−1/2. While they capture more correlations
than Adagrad, the root-inverse formulation still falls short of the perfect alignment offered
by the full inverse. In our experiments, Shampoo/SPlus achieved slightly faster conver-
gence than Adam but remained slower and less effective than SOAP. Furthermore, we
observed the known instability issues (Anil et al., 2020); these methods required careful
tuning and gradient crafting to avoid divergence, whereas SOAP served as a stable drop-in
replacement.

Muon (Momentum Orthogonal Optimizer). Muon is an emerging optimizer designed for trans-
port in LLMs that also conceptually approximates an orthogonalizing H−1/2 update10. However, it
faces specific structural challenges in LIC:

1. Dimensionality Mismatch: Muon is defined for 2D parameters (matrices). For 1D pa-
rameters (e.g., biases), it falls back to AdamW. Crucially, LIC models rely heavily on 4D
Convolutional kernels (Cout×Cin×K×K). To apply Muon, these must be flattened into
2D matrices (e.g., Cout × (Cin ·K ·K)), potentially disrupting the spatial inductive bias.

2. Divergence: Despite extensive hyperparameter tuning (learning rates, momentum, and flat-
tening strategies), we were unable to achieve stable convergence with Muon in the setting
of learned image compression. We hypothesize that Muon’s specific orthogonalization con-
straints may conflict with the initialization or dynamic range requirements of LIC modules.
Future research is needed to adapt such constraints to convolutional architectures.

A.16 WILL A LONGER TRAINING PERIOD MAKE ANY DIFFERENCE?

To ensure that the superior performance of SOAP is not simply due to the optimizer requiring more
training steps to converge, we conducted ablation studies with extended training durations (up to
1000 epochs) using the ELIC model. The results are summarized in Table 4.

First, we observed that extending training beyond 300 epochs yields negligible improvements. This
is because the ReduceLROnPlateau scheduler monitors the validation loss; by epoch 300, the
learning rate has typically decayed to values less than 5×10−6. At this magnitude, the optimization
updates become small, and the model has effectively reached a stationary point. Consequently,
training for 1000 epochs results in a statistically insignificant BD-Rate improvement compared to
the 300-epoch baseline.

Second, to investigate if the specific choice of scheduler limited the baseline’s convergence, we
implemented a “Half Constant + Cosine” scheduler over 300 and 500 epochs. In this setting, the
learning rate is held constant at the initial value for 150 or 250 epochs before undergoing cosine
decay. Even with this prolonged period of high learning rate, the final converged rate-distortion
performance did not show significant differences compared to the standard setting. These results
confirm that the performance gap between SOAP and Adam is fundamental to how they navigate
the optimization landscape—specifically SOAP’s ability to resolve gradient conflicts—rather than a
result of insufficient training time for the baseline.

A.17 HOW DO ADAM AND SOAP INTERACT WITH TRAINING STABILIZERS?

Training models often rely on a suite of heuristic stabilizers to prevent divergence and ensure smooth
convergence. Here, we investigate the sensitivity of Adam and SOAP to three common techniques:
gradient clipping, learning rate warmup, and Exponential Moving Average (EMA). We use the ELIC
model on the Kodak dataset (λ = 0.013) as the testbed.

10https://kellerjordan.github.io/posts/muon/
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Table 4: Comparisons of ELIC performance trained with different durations and schedulers. Evalu-
ated on Kodak.

Optimizer Epochs Scheduler BD-Rate vs. Baseline

Adam (Baseline) 300 ReduceOnPlateau 0.00%
Adam 1000 ReduceOnPlateau -0.02%
Adam 300 Half Constant + Cosine -0.05%
Adam 500 Half Constant + Cosine -0.10%

SOAP 300 ReduceOnPlateau -3.49%
SOAP 1000 ReduceOnPlateau -3.51%

A.17.1 GRADIENT CLIPPING

Gradient clipping is standard practice in LIC training to prevent exploding gradients. We train
models with gradient clipping thresholds of {1.0, 5.0,∞ (no clipping)}, where 1.0 is the default
value following CompressAI (Bégaint et al., 2020).
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Figure 11: Comparison of Testing Loss: Epochs vs. R-D Loss under Different Gradient
Clipping. (Best viewed zoomed in.) The first 10 epochs are omitted for clarity. Evaluation is
conducted on the Kodak dataset with λ = 0.013. The R-D loss is computed as λ ·2552 ·MSE+Bpp.

Observation: We observe distinct behaviors regarding sensitivity to gradient clipping. For Adam
(Fig. 11(a)), the optimizer is more sensitive: removing clipping leads to immediate worse con-
vergence results, and even relaxing the threshold to 5.0 results in noticeable training instability
(loss spikes) and slightly suboptimal convergence. In contrast, SOAP (Fig. 11(b)) exhibits greater
structural stability; it does not diverge even without explicit clipping, supporting the intuition that
second-order preconditioning acts as an intrinsic normalization against curvature-induced explo-
sions. However, while SOAP survives without clipping, its final R-D performance is slightly de-
graded compared to the clipped versions. Consequently, we find that the standard clipping threshold
of 1.0 yields the best results for both optimizers, ensuring both stability and great convergence.

A.17.2 LEARNING RATE WARMUP

Warmup strategies are typically employed to stabilize the variance of adaptive learning rates during
the initial training phase. Interesting, it is not a widely used strategy in learned compressor training.
We hypothesis it is because Adam is not sensitive to lr warmup as it adaptively scales the lr (Kingma
& Ba, 2014). We evaluate performance by comparing training with no warmup (default) versus a
linear warmup over the first 3 epochs.
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Figure 12: Comparison of Testing Loss: Epochs vs. R-D Loss under Different Warmup. (Best
viewed zoomed in.) The first 10 epochs are omitted for clarity. Evaluation is conducted on the Kodak
dataset with λ = 0.013. The R-D loss is computed as λ · 2552 ·MSE + Bpp.

Observation: In our experiments, we observe that both Adam and SOAP are insensitive to the
learning rate warmup strategy in this setting, as illustrated in Fig. 12. Neither optimizer exhib-
ited significant differences in convergence or final rate-distortion performance when warmup was
removed or applied. This suggests that the initial optimization dynamics are sufficiently stable to
allow immediate training at the base learning rate without necessitating a gradual ramp-up.

A.17.3 EXPONENTIAL MOVING AVERAGE (EMA)

EMA maintains a shadow copy of the model parameters with a decay factor (typically 0.999) to
smooth out optimization noise and improve generalization. The dynamics and benefits of EMA
have been extensively characterized by Morales-Brotons et al. (2024), who highlight its ability to
stabilize training and improve final convergence even when the underlying optimization trajectory
is noisy.

Observation: As shown in Fig. 13, applying EMA proves beneficial for both Adam and SOAP,
though their underlying dynamics differ. For Adam, the raw training trajectory is highly oscillatory
due to the destructive interference of gradients (as discussed in Sec. 4); consequently, EMA is critical
to filtering this noise and revealing the true performance of the model. For SOAP, the raw optimiza-
tion trajectory is significantly smoother, validating our theoretical findings on inter-step alignment,
yet EMA still provides a consistent improvement in the final R-D performance. This suggests that
while SOAP effectively resolves optimization conflicts, the regularization effect of EMA remains
valuable for maximizing generalization performance.

Finally, regarding computational cost, we find that maintaining EMA shadow weights introduces
negligible overhead. For example, one epoch of training takes approximately 7 minutes 20 seconds
without EMA compared to 7 minutes 30 seconds with EMA for ELIC model with our setting, an in-
crease of roughly 2% time. Given this minimal negligible cost relative to the universal performance
gains observed, we employ EMA by default for all experiments in this work.

A.18 EVOLUTION OF FEATURE OUTLIERS DURING TRAINING

To gain deeper insight into the genesis of the outlier features discussed in Sec. 5, we track the Kurto-
sis and MaxMed statistics of the latent representation z throughout the entire training process. While
Table 2 reports the final converged metrics, analyzing their trajectories reveals distinct differences
in how Adam and SOAP manage feature dynamic ranges during the critical initial learning phases.
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Figure 13: Comparison of Testing Loss: Epochs vs. R-D Loss under Different EMA. (Best
viewed zoomed in.) The first 10 epochs are omitted for clarity. Evaluation is conducted on the
Kodak dataset with λ = 0.013. The R-D loss is computed as λ · 2552 ·MSE + Bpp.
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Figure 14: Evolution of Latent Outlier Metrics during Training (ELIC). We track (a) Kurtosis
and (b) MaxMed of the latent representation z over 300 epochs. Both metrics rise during the initial
feature learning phase (epochs 0–20). However, Adam (Blue) allows these metrics to spike to
extreme levels and plateau there, indicating the permanent formation of high-magnitude outliers.
SOAP (Green) significantly suppresses this growth, stabilizing at a much lower plateau—especially
in MaxMed, where the peak deviation is nearly halved.
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Observation: As illustrated in Figure 14, the training dynamics of the two optimizers diverge im-
mediately during the early epochs:

• Adam (Unchecked Growth): Training with Adam leads to a rapid accumulation of outlier
features within the first 20 epochs. Because Adam restricts preconditioning to coordinate-
wise scaling, it cannot rotate the optimization basis to redistribute large gradients. Con-
sequently, specific channels absorb excessive update energy, causing Kurtosis to spike to
≈ 160 and MaxMed to exceed 200. Once these outliers are established, the model settles
into a high-magnitude plateau, locking in the heavy-tailed distribution for the remainder of
training.

• SOAP (Active Suppression): While SOAP also exhibits an initial rise as features are
learned, it strictly bounds the magnitude of these outliers. The curvature-aware precon-
ditioning effectively ”diffuses” the update energy across coupled channels (as derived in
Sec. 5.2). This results in a consistently lower plateau. The effect is most pronounced in the
MaxMed metric (Fig. 14(b)), where SOAP reduces the peak outlier magnitude by approxi-
mately 50% compared to Adam (≈ 100 vs. ≈ 200). This confirms that SOAP’s robustness
to quantization is rooted in its ability to prevent extreme outliers from forming during the
early optimization trajectory.
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