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ABSTRACT

Estimating mutual information (MI) from data is a fundamental task in machine
learning and data science, yet it remains highly challenging even with state-of-
the-art estimators. This work proposes a new distribution-free MI estimator based
on reference distributions. Unlike existing works that only discern between the
joint distribution and the marginal distribution, which can easily overfit in high-
MI settings, our method compares them with extra reference distributions. These
artificial distributions share the same marginals as the original distributions but
have known dependence structures, providing additional signals for more accu-
rate dependency modelling. Experiments on synthetic tasks with non-Gaussian,
high-dimensional data and real-world applications including Bayesian experimen-
tal design and self-supervised learning demonstrate the potential of our approach.

1 INTRODUCTION

Mutual information (MI), defined as the Kullback-Leibler divergence between the joint probability
and the product of marginals, is a fundamental measure of the dependence between random vari-
ables. Unlike correlation, MI captures non-linear statistical dependencies between high-dimensional
variables, making it a robust measure of dependence in diverse cases [1]. Consequently, MI has been
widely applied across diverse fields, such as representation learning [2; 3; 4], Bayesian experimental
design [5; 6], information bottleneck [7; 8], domain generalization [9; 10], and causality [11; 12].

Despite its widespread applications, estimating MI in high-dimensional spaces from raw data is
highly challenging. Early methods work in a non-parametric fashion, utilizing techniques like bin-
ning or kernel density estimation [13; 14; 15; 16; 17]. As non-parameteric methods typically do not
scale well with sample size or data dimensionality [18], recent studies have focused on utilizing pow-
erful parametric models such as deep neural networks in MI estimation [19; 2; 20; 21; 22; 23; 24; 25].
In these estimators, a neural network (often known as the critic) is trained to discern or classify sam-
ples from the joint distribution and the marginal distribution. Upon convergence, it can be shown
that the learned network corresponds to an estimate of the density ratio between the joint distribu-
tion and the product of marginals [19; 2; 20; 21; 22], or that the loss function of these estimators
directly optimize a variational lower bound of MI [19; 2], thereby offering an estimate of MI. Com-
pared to non-parametric methods, estimating MI through neural network training not only handles
large sample sizes more effectively but also scales better with high-dimensional data. Thereby, it is
increasingly gaining popularity in both machine learning and statistics communities.

Although neural network-based MI estimators have achieved success in numerous tasks, they are
recently found to suffer from the so-called high-discrepancy issue, particularly when the underlying
mutual information is high or the data dimensionality is high. In such scenarios, distinguishing sam-
ples from the joint and the marginal distributions becomes considerably easier, leading the network
to easily overfit with limited data. This curse of high-discrepancy has been empirically observed in
multiple applications [26; 22; 27] and has also been formally analyzed in theoretical studies [28; 29].

In this work, we propose Mutual Information Multinomial Estimation (MIME), a novel approach
tailored for estimating mutual information accurately in high-discrepancy settings, drawing upon
recent advances in multi-classes ratio estimation [22] and vector copula theory [30]. Unlike many
existing methods that solely focus on discerning samples between the joint and the marginal distri-
butions, which can easily overfit in high-discrepancy scenarios, MIME further compares them with
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a set of reference distributions whose marginal distributions are the same as the original data distri-
bution but exhibit various joint dependency structures. These additional comparisons encourage the
network to learn a useful representation that captures the small differences in dependence structure,
thereby effectively alleviating overfitting. To sum up, our main contributions are as follows:

• We propose a new mutual information estimator tailored for high-MI cases, combining the
strengths of existing generative and distribution-free methods while avoiding their weaknesses;

• We systematically compare our estimator against state-of-the-art neural estimators on not only
high-dimensional, non-Gaussian synthetic dataset with known MI but also real-world applications.

2 BACKGROUND

The mutual information (MI) between variables X and Y is defined as the Kullback-Leibler (KL)
divergence between the joint distribution p(x, y) and the product of the marginal p(x)p(y)

I(X;Y ) = KL[p(x, y)∥p(x)p(y)] = E
[
log

p(x, y)

p(x)p(y)

]
. (1)

It is obvious that stronger dependence between X and Y leads to larger divergence between p(x, y)
and p(x)p(y). Thereby, MI can measure the dependence between two random variables. Given a
dataset D = {x(i), y(i)}ni=1 drawn from the joint distribution p(x, y), our goal in this work is to
estimate I(X;Y ) from the empirical samples D. Before delving into our approach, we first revisit
some existing MI estimators and their limitations.

Distribution-free MI estimator. Many methods have been developed to estimate (1) from D with-
out making any assumptions about the underlying probability distributions. One popular method is
to utilize the Donsker-Varadhan (DV) representation of KL divergence [31]:

I(X;Y ) ≥ sup
f∈F

Ep(x,y)[f(x, y)]− logEp(x)p(y)[e
f(x,y)] =: ÎDV(X;Y ), (2)

where F can be any class of function F : X → R satisfying the integrability constraints of the
theorem. A typical choice of F is the class of deep neural network. In such case, MI estimate reduces
to training a neural network f to maximize the objective (2). Similarly, the NWJ estimator [32]
makes use of the f -divergence lower bound to estimate MI: I(X;Y ) ≥ supf∈F Ep(x,y)[f(x, y)]−
Ep(x)p(y)[e

f(x,y)−1] =: ÎNWJ(X;Y ). Both DV and NWJ estimators leads to a lower bound of MI.
Note that the equalities in the two estimators hold if F is wide enough.

Alternatively, one can estimate MI by employing techniques from density ratio estimate [21; 33; 22]:

I(X;Y ) ≈ Ep(x,y)[log r̂(x, y)] =: Îratio(X;Y ) (3)

where r̂(x, y) ≈ p(x, y)/p(x)p(y) is the estimated density ratio. To learn r, one can adopt a process
similar to GAN training [34; 35], where a classifier is trained to distinguish samples from the joint
distribution p(x, y) and samples from the marginal distribution p(x)p(y). It can be shown that upon
convergence, the output of the classifier estimates the log density ratio. This type of estimator is
found more robust than the above DV-like estimators [3] and is widely used in information-theoretic
representation learning [3; 36]. However, the MI estimated in this way is not a lower bound.

It is worth noting that these two lines of methods are closely related to each other. On one hand, it
can be shown that the optimal f in DV and NWJ estimators is, up to some constant, the log density
ratio log p(x, y)/p(x)p(y). Conversely, the estimated ratio r̂ in ratio-estimating method can in turn
be used in the DV representation to obtain a lower bound estimate of MI. Regarding the learning
process, ratio-estimating method can be seen as optimizing a lower bound of the Jensen-Shannon
divergence between p(x, y) and p(x)p(y), whereas DV and NWJ methods optimize KL divergence.

Curse of high discrepancy. Despite their conceptual advantages compared to non-parametric meth-
ods, distribution-free estimators often suffer from the so-called high-discrepancy issue in practical
use. High-discrepancy issue typically happens when the dimensionality of data is high and/or the
underlying MI is high, which results in a large KL between p(x, y) and p(x)p(y). However, it is
shown that asymptotically, any distribution-free estimator of the KL divergence between two distri-
butions p and q will inevitably suffer from an estimation variance that is exponential to the ground
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truth value [29; 28]:
V[K̂L[p∥q]] ≈ O(eKL[p∥q]) (4)

which implies that methods based on KL divergence estimation (e.g. DV, NWJ) will be impractical
if the underlying MI is large or the intrinsic dimensionality of the data is high, both of which can
lead to a large KL. The situation becomes even worse when we learn estimators with mini-batches.
This issue raises concerns about the reliability of DV- and NWJ-like estimators in high-MI settings.

We highlight that the impact of the high discrepancy issue is beyond KL divergence-based estima-
tors. Recent works have confirmed that high-discrepancy issue also exists in ratio-based estimator
(3), where the classifier in the estimator tends to overfit when samples x, y ∼ p(x, y) and samples
x, y ∼ p(x)p(y) are overly easy to discern [21; 37; 27; 22; 38]. One intuitive explanation is that
when the gap between p(x, y) and p(x)p(y) is large, there exist many classifiers that can achieve
almost perfect accuracy but have differently estimated ratios, leading to inaccurate estimate of MI.

3 METHOD

In this work, we propose a new MI estimator aiming to address the aforementioned high-discrepancy
issue in distribution-free MI estimation. The key idea is, unlike existing works that solely compare
the joint distribution p(x, y) with the product of the marginal distributions p(x)p(y), which easily
causes overfitting, we also compare them with specifically designed reference distributions. These
additional comparisons provide more fine-grained signals for accurately modelling the dependence
structures of p(x, y) and p(x)p(y), allowing us to better model the dependence between X and Y .

Reference-based MI estimation. The core of our method is to formulate MI estimation as a multi-
nomial classification problem, where we not only distinguish samples from p(x, y), p(x)p(y) but
also samples from specific-designed reference distributions. Specifically, consider classifying sam-
ples x, y from four distributions p1(x, y), p2(x, y), p3(x, y), p4(x, y) with a classifier h. This can be
done by training h with the following objective function:

max
h

L(h) = Ep(c)pc(x,y)

[
log

ehc(x,y)∑4
k=1 e

hk(x,y)

]
,

p1(x, y) = p(x, y), p2(x, y) = q(x, y), p3(x, y) = q(x)q(y), p4(x, y) = p(x)p(y).

(5)

where hc denotes the logit (i.e. the unnormalized class probability) computed for class c and q(x, y)
is some reference distribution with marginals q(x), q(y). This reference distribution is a generative
model learned from the data, which can be as simple as a Gaussian distribution that approximates
p(x, y) or can be as flexible as a diffusion model trained on the data [39]. A good choice of reference
should make use of the inductive bias about the problem (MI estimation), which is discussed later.

Upon convergence, it can be shown that when the prior p(c) is uniform, the optimal h satisfies [22]:

log
pi(x, y)

pj(x, y)
= hi(x, y)− hj(x, y), (6)

thus allowing the mutual information to be estimated as:

I(X;Y ) ≈ Îh(X;Y ) := Ep(x,y)

[
h1(x, y)− h4(x, y)

]
, (7)

where the expectation on the RHS can be readily approximated by Monte Carlo integration. Note
that this estimator is neither a lower or upper bound estimate1.

The whole procedure for our reference-based MI estimator therefore include two independent steps:

• Reference construction. In this first step, we learn the reference q(x, y) with data (x, y) ∼ p(x, y).

• Classifier training. This corresponds to training the classifier h using objective (5) given q(x, y).

1Alternatively, one can use the DV representation (2) to estimate MI by setting f(x, y) in (2) to be the
estimated ratio: f(x, y) = h1(x, y) − h4(x, y) ≈ log p(x, y)/p(x)p(y). This guarantees that the estimated
MI is a lower bound of I(X;Y ), however it needs to obtain samples from p(x)p(y), which is unneeded in (7).
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which is highly modular and can be implemented with any reference distributions and any classifiers.
In this procedure, the introduction of p2(x, y) and p3(x, y) does not affect the theoretical correctness
of the ratio estimator (6); instead, they function as implicit regularization to alleviate overfitting.

This estimation strategy can be seen as a new paradigm for combining discriminative (distribution-
free) methods [40; 21; 33; 22] and generative modelling [41; 30] for accurate MI estimation.

Choices of reference distributions. We next discuss the design of reference distributions. While
any distributions can be used in principle, we focus on those that are marginal preserving, i.e. the
marginals q(x) and q(y) of the reference distribution q(x, y) should closely approximate those of
the original distribution: q(x) ≈ p(x), q(y) ≈ p(y). This property is motivated by the fact that MI is
irrelevant to marginals, so a good reference should only differ from p(x, y) in dependence structure;
When asking the network h to distinguish among the various distributions in the above framework,
these marginal-preserving references enforce the network to learning a useful representation to dis-
tinguish the small changes in dependence structures, leading to accurate MI estimate.

To this end, we design the reference distributions to be vector Gaussian copula (VGC) models [30].
It can be seen as either a degenerated case of a standard flow model [41; 42] or a generalization
of the classic Gaussian copula model. Specifically, a VGC q(x, y) is implicitly defined by its data
generation process, where data x, y ∼ q(x, y) can be seen as generating from the following process:

x = f(ϵ≤d), y = g(ϵ>d)

ϵ ∼ N (ϵ; 0,Σ)
(8)

where f : Rd → R
d and g : Rd′ → R

d′
are two bijective functions and Σ ∈ R(d+d′)×(d+d′) is

a p.s.d matrix where Σii = 1,∀i. Here ϵ≤d and ϵ>d are the first d and the last d′ dimensions of ϵ.
Note that this model degenerates to a Gaussian copula when f and g are element-wise functions.

We implement the two bijective functions f and g by flow-based models e.g. [41; 42]. The parame-
ters {f, g,Σ} of VGC can then be learned by first training the flows f and g with data x ∼ p(x) and
y ∼ p(y) respectively, then learning Σ as Σ = E[ϵϵ⊤] where ϵ≤d = f−1(x) and ϵ>d = g−1(y).

We take the two reference distributions in (5) as two VGCs that approximates p(x, y) and p(x)p(y)
respectively. We highlight the following two useful properties of VGC as reference distributions:

(a) Reasonably close to p(x, y) or p(x)p(y). The marginal distributions of a well-trained VGC are
almost the same as those of p(x, y) and p(x)p(y), with its dependence structure a Gaussian ap-
proximation to that of p(x, y) or p(x)p(y), thereby is reasonably close to p(x, y) or p(x)p(y)2;

(b) Easy to sample. Sampling from a VGC can readily be done by (8). This allows us to generate
arbitrarily many samples from the reference distributions when learning the network with (5).

In the theoretical analysis below, we analyze how these two properties contribute to an accurate
estimate of MI. In the appendix, we further compare this reference with other choices of references.

4 THEORETIC ANALYSIS

In practice, we replace the expectation in (5) with N samples to learn our MIME estimator via: ĥ =

argmaxh LN (h). After training, we estimate I(X;Y ) via Monte Carlo estimation: ÎN
ĥ
(X;Y ) :=

1
N

∑N
i=1[ĥ1(xi, yi)− ĥ4(xi, yi)]. In Proposition 1, we prove that our MIME estimator is consistent.

Proposition 1 (Consistency of reference-based MI estimate). Assuming that the classifier hc : X ×
Y → R is uniformly bounded. For every ε > 0, there exists N(ε) ∈ N, such that∣∣∣ÎN

ĥ
(X;Y )− I(X;Y )

∣∣∣ < ε,∀N ≥ N(ε), a.s..

Proof. See Appendix A.

This confirms that the probability that the estimated MI of MIME becomes arbitrarily close to the
true MI converges to one, as the amount of data used in the proposed estimator approaches infinity.

2According to recent copula theory [30], the difference between two distributions p(x, y) and q(x, y) can
be factorized into the difference in the (multivariate) marginals and the difference in the dependence structure.
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Furthermore, we have the following formal result about the advantages of our proposed estimator.
Proposition 2 (Controlled error in reference-based MI estimate). Define log r̂i,j(x, y) := hi(x, y)−
hj(x, y) with h being the classifier defined as above. Upon convergence, we have that:∣∣∣ log r̂1,4(x, y)− log

p(x, y)

p(x)p(y)

∣∣∣ ≤ 3sup
i

∣∣∣ log r̂i,i+1(x, y)− log
pi(x, y)

pi+1(x, y)

∣∣∣,
Proof. See Appendix A.

Proposition 2 tells that if the ratios p(x, y)/q(x, y), p(x)p(y)/q(x)q(y) and q(x, y)/q(x)q(y) can all
be estimated accurately in h, then the ratio p(x, y)/p(x)p(y) estimated by the same network will also
be accurate. This is exactly the case in our method: the first two ratios can be estimated accurately
due to the reduced distributional discrepancies (see property (a)). For the ratio q(x, y)/q(x)q(y),
the discrepancy between these two reference distributions may be high, however we can generate
infinite samples from them in learning (see property (b)), so this ratio can also be learned accurately.

We note that other choice of reference distributions, such as those in [22], may not enjoy the same
benefit as our references. The fundamental reason is that it is difficult to find references that are
respectively close enough to p(x, y) and p(x)p(y), but are also close to each other. Our generative
references sidestep this challenge by not requiring the two references to have a small discrepancy.

5 RELATED WORKS

Alleviating high-discrepancy issue in statistical divergence estimation. Several methods have
been developed to address the high discrepancy issues in the estimation of statistical divergence the
estimation of density ratio. One method is to reduce the estimation variance by clipping the output
of the estimator [29], which can be seen as trading low variance with additional bias. Another line
of methods solves the problem by the divide-and-conquer principle [21; 43], where the statistical
divergence/density ratio between some intermediate distributions are first estimated, followed by an
aggregation step to recover the original statistical divergence/density ratio from these intermediate
estimations. Due to the reduced distributional discrepancy, each of these intermediate estimates
can be expected to be accurate. However, divide-and-conquer methods are found to suffer from the
distribution-shift issue during the aggregation step, which can lead to estimation inaccuracy. Unlike
these methods, our method does not incur extra estimation bias and is free from distribution shift.

Multi-classes ratio/MI estimate. Similar to our work, some recent works also utilize a set of refer-
ence distributions q to improve density ratio estimate [44; 22], and the use of reference distributions
in MI estimation have also been explored in [45; 46]. A crucial difference between our method
and these approaches is that the reference distributions in our method are marginal-preserving i.e.
their marginal distributions q(x) and q(y) are close to the original marginal distributions. As afore-
mentioned, such marginal-preserving property is important as it enforces the network to focus on
modelling the changes in dependence structures rather than modelling the marginal distributions,
which are irrelevant for MI estimation. This importance will be verified in the experiment section.

Generative methods for mutual information estimation. In addition to the above distribution-free
methods for MI estimate, there also exist a set of MI estimators [47; 28; 48; 49; 39] based on density
estimation or generative modelling. These methods work by learning a generative model (e.g. flow-
based model [41; 42]) from data rather than comparing between different densities, thereby are free
from the high-discrepancy issue. However, the performance of such estimators is dominated by
the quality of the learned generative models, and generative modelling as done by e.g. flow-based
model is well-known hard in high-dimensional cases [50; 51; 36; 42] and can suffer from model mis-
specification. Our method also uses generative models, but only as informed reference distributions,
which is less sensitive to model mis-specification and the quality of the learned generative models.

Vector Gaussian copula for MI estimate. We discuss a recent work [49] highly relevant to our
method. This work first Gaussianizes the two marginals via two distint flow models, then approx-
imates the joint distribution of the (marginally) Gaussianized data by a Gaussian distribution, from
which mutual information is calculated. This process can be seen as modelling the original data
distribution as a vector Gaussian copula model (8) and computing MI from this model. This way of
MI calculation is accurate if the underlying data distribution can be well-approximated by a vector
Gaussian copula, however it may be inaccurate in the case of model mis-specification. Our method
on the contrary only use vector Gaussian copula as the reference, which is a more robust strategy.
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(a) x, y (b) Atanh(x),Bey (c) Ax3,By3 (d) Student-t (e) Swiss Roll

Figure 1: Comparison of different MI estimators under different ρ in four representative synthetic
datasets. The dimensionalities of the data X,Y ∈ Rd in each case are 64, 32, 32, 32, 2 respectively.

(a) Atanh(x),Bey (b) Ax3,By3 (c) Student-t (d) MoG 1 (e) MoG 2

Figure 2: Comparison of different MI estimators under ρ = 0.7 and various data dimensionality d.

6 EXPERIMENT

Baselines. We compare our new reference distribution-based MI estimator with four representative
baselines in the field: MINE [19], InfoNCE [2], MRE [22], DoE [28] and MIENF [49]. Specifically:

• Mutual Information Neural Estimate (MINE). This method estimates MI by the Donsker-Varadhan
representation and a neural network f : I(X;Y ) = supf Ep(x,y)[f(x, y)]− logEp(x)p(y)[e

f(x,y)].

• InfoNCE. Let Y = {y1, . . . , yN−1} be N − 1 negative samples from a proposal distribu-
tion, InfoNCE estimates MI by learning a neural network f to minimize the loss function
L = −Ep(x,y)

[
log f(x,y)∑

yi∈Y ∪{y} f(x,yi)

]
, which is upper bounded by MI: I(X,Y ) ≥ log(N)− L.

• Multinomial Ratio Estimate (MRE). A state-of-the-art method for density ratio estimation which
also works by classifying samples from multiple distributions. The key difference between MRE
and our method is the reference distributions in MRE are not marginal-preserving and generative.

• Difference of Entropy (DoE). A generative method which works by first estimating the two en-
tropies H[Y ] and H[X|Y ] with density estimators q, then calculate MI as I(X;Y ) = H[Y ] −
H[X|Y ]. Here, we study an improved variant of DoE where q is realized as a flow model [41].
This flow model is the same as the flow model in our method, which allows controlled comparison.

• Mutual Information Estimate via Normalizing Flows (MIENF). A state-of-the-art generative
method for MI estimation which works by first Gaussianizing the two marginals with two
separately-trained flow models, then use a Gaussian distribution to approximate the (marginally)
Gaussianized data, from which MI is analytically available. As discussed in Section 4, this way of
MI estimation can be seen as assuming that the data distribution is a vector Gaussian copula (8).

Neural network architecture and optimizer. For fair comparison, we use the same network archi-
tecture for the critic f(x, y) in all the MI estimators considered. This network takes the form of a
MLP with 3 hidden layers, each of which has 500 neurons. A densenet architecture [52] is used for
the network, where we concatenate the input of the first layer (i.e., x and y) and the representation of
the penultimate layer before feeding them to the last layer. Leaky ReLU [53] is used as the activation
function for all hidden layers. We train all networks by Adam [54] with its default settings, where
the learning rate is set to be 5× 10−4 and the batch size is set to be 512. Early stopping and a slight
weight decay (1×10−6) are applied to avoid overfitting. No dropout or batch normalization is used.
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6.1 SYNTHETIC DATA

We first investigate the performance of our method on tractable simulated cases, where the mutual
information is either analytically known or can be computed numerically up to very high precision.

Setup. We consider estimating MI with data simulated from the following two classes of models.
These benchmarks are similar to those in state-of-the-art benchmarks [55; 56] and can be seen as an
instantiation of the so-called fine distributions [56] for principally evaluating MI estimators.

• Nonlinear transformation of multivariate Gaussian. The first model we consider is a generalized,
high-dimensional version of the cubic Gaussian tasks widely used in literature [40; 29; 48]. Data
X ∈ Rd, Y ∈ Rd in this task is generated as follows:

x = f(ϵ≤d), y = g(ϵ>d), ϵ ∼ N (ϵ;0,Σ),

where Σ is a sparse convariance matrix satisfying Σi,i+d = ρ,Σi,i = 1 and Σi,j = 0 for any other
j ̸= i + d, j ̸= i. f : Rd → R

d and g : Rd → R
d are some bijective functions. A difference

between f, g in this work and those in [40; 29; 48; 55] is we further introduce two invertible
matrices A,B to entangle the dimensions of X and Y . Here ρ controls the dependence between X
and Y . The ground truth MI in this model is given by I(X;Y ) = I(ϵ≤d; ϵ>d) = −d

2 log(1− ρ2).
• Mixture of multivariate Gaussians (MoG). The second case we consider is the mixture of M high-

dimensional Gaussian distributions whose likelihood function being is as follows:

p(x, y) =
1

M

M∑
k

N ([x, y];µk,Σk)

where Σ1...ΣM is a set of sparse covariance matrices that are the same as in the non-linear Gaus-
sian model. Note that the dependence factor ρk can be different for each Σk. Unlike the non-linear
Gaussian model, the MI of this model is not analytically known; however, we can approximate it
with Monte Carlo integration due to the availability of both the joint distribution p(x, y) and the
marginal distributions p(x), p(y). The variance of MC integration vanishes given sufficient data.

We generate a total number of n = 104 data from each model and estimate MI from the generated
data. Results for smaller sample size (e.g. n = 2, 500 and n = 1, 250 are shown in Appendix B).
All experiment results are collected from 10 independent runs and we report their average values.

Varying the dependence level ρ. We first investigate whether our method can estimate MI accu-
rately when we vary the dependence level ρ. Figure 1 shows the results for the non-linear Gaussian
task with five typical choices of non-linear transformations f, g. These transformations are carefully
chosen to represent a wide range of data patterns: Gaussian (case a), data with both bounded and ex-
ponential values (case b), data with long tails (case c, case d) and data confined to a low-dimensional
manifold (case e); see Appendix B for more details. Estimators that plot closer to the ground truth
MI curve are deemed more accurate. Overall, we see that there is no single method to rule in all
cases. For example, while DoE performs well with Gaussian data (case a), it shows limitations in
non-Gaussian cases (case b,c and e). Similarly, the InfoNCE method is effective when the data is
low-dimensional (case e), yet it performs poorly in higher dimensional scenarios (case a,b,c,d). Un-
like these methods, the proposed estimator consistently ranks within the top two methods across all
scenarios, positioning it as a robust method that is widely applicable.

Varying the dimensionality d. In Figures 2, we further compare the performance of the various
MI estimators under different data dimensionality. In this task, a higher d leads to a higher MI and
thereby a more challenging task of MI estimation. From the figure, we see that the proposed MIME
method clearly scales better w.r.t d than most methods, suggesting that it can better estimate MI in
high MI settings. Although our method loses to DoE in one of the MoG task (case d), the margin is
indeed small, and the MoG method performs unsatisfactorily in case a and case b. The poor perfor-
mance of DoE may be due to the deficiency of the generative models used (i.e. the neural density
estimator), that they can not accurately learn high-dimensional distributions in some cases. On the
other hand, we also see that classic distribution-free methods like MINE and InfoNCE can not work
reliably when the true MI is beyond 4nats, possibly due to the aforementioned high-discrepancy
issue. Our method combines the strengths of both generative methods and distribution-free methods
by using generative models as only the reference distributions in distribution-free methods, exhibit-
ing as a strong method that are consistently reliable across diverse cases. Nonetheless, even with our
powerful method, estimating MI in high-dimensional cases (e.g. d = 64) still presents a challenge.
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(a) (b) (c)

Figure 3: Experiment results for BED. (a) Comparing the utility of the optimal design d∗ found by
different MI estimators. (b) Visualizing the contour of the underlying function between the utility
and the design d in the death process task. (c) Visualizing the optimal designs found in the PK task.
The results in (a) are collected from 5 independent runs and we report their average values.

6.2 BAYESIAN EXPERIMENTAL DESIGN

We next consider the application of our method in Bayesian experimental design (BED), an im-
portant task in science and engineering. In BED, we wish to design experiments so that the data
collected in the experiment will be maximally informative for understanding the underlying process
of the experiment. For example, we may wish to find out the best policy design d for epidemic
disease surveillance and intervention, so that we can infer the properties θ of the epidemic as ac-
curate as possible with minimal observed data X . Such a task can be mathematically described as
optimizing the conditional mutual information I(X; θ|d) between the experiment outcomes X (e.g.
the observed dynamics of the infectious people in the population) and the properties of interest θ
(e.g. the infectious rate of the epidemic) w.r.t the experiment design d (e.g. the intervention policy):

max
d

I(X; θ|d)

Setup. Many methods have been developed for finding the optimal design in BED [57; 6; 58; 5; 59;
60]. Here, we focus on the most general setup that the data generating process in the experiment
is a black-box i.e. we know nothing about the details of the underlying data generation process but
only the outcomes and the experiment design used. To find the optimal design d∗ in such case, we
use Bayesian optimization (BO) [61; 62] as in existing works to optimize I(X; θ|d) w.r.t the design
d. In this work, we use a total number of T = 30 BO steps to find the optimal design d∗, where in
each step we run n = 3000 experiments under design d to collect data D = {x(i), θ(i)}ni=1 from the
experiment. This data is then used to estimate I(X; θ|d) by a specific mutual information estimator.

We consider BED in two popular models that are widely used in epidemiology and medicine studies:

• Death process model. In this experiment, we model the dynamics of an epidemic in which healthy
individuals become infected at rate θ. The design problem here is to choose observations times
d ∈ R2 at which to observe the number of infected individuals in two consecutive experiments,
where in each experiment we observe the infection dynamics X of three independent populations.

• Pharmacokinetic model. In this experiment, we consider finding the optimal blood sampling time
d ∈ RM , 0 ≤ di ≤ 24 for a group of patients during a pharmacokinetic (PK) study. Each di
corresponds to the sample time of each patient in the group. We would like to infer the properties
of a specific drug demonstrated to the patients through the blood measurements. Here M = 12.

We are interested in seeing how the use of different MI estimators will affect the utility Î(X;θθθ|d∗)

of the found design d∗ as measured by MI. As the comparison on Î(X;θθθ|d∗) is only sensible when
all methods estimate a lower bound of MI, we use the Donsker-Varadhan representation (2) rather
than (7) to estimate MI in our method, where we set f(x, y) in (2) as the log density ratio estimated
by our method. This ensures that the MI estimated by our method is always a lower bound estimate.
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(a) (b) (c)

Figure 4: Experimental results for SSL. (a) Classification accuracy on test set as evaluated by a
linear classifier. (b) I(v1, v2) as estimated by our method. (c) I(v1, v2) as computed by InfoNCE.

Results. From Figure 3.(a), it is evident that our method consistently finds a better design d∗ for both
models, especially for the PK model where the underlying MI is high. In Figure 3.(b), we further
visualize the underlying function between the utility and the design in the death process model.
This function is modelled by a GP trained with 300 data. As one can see, the designs found by other
methods are indeed suboptimal, being away from the optimum. In Figure 3.(c), we manually inspect
the design strategies reported by different methods in the PK model. Compared to other methods,
the blood sampling times suggested by our method is more uniformly distributed, which is sensible
as a more diverse blood sampling time will allow us to collect richer information about the drug.

6.3 SELF-SUPERVISED LEARNING

The third task we consider is the application of our MI estimator in self-supervised representation
learning (SSL). SSL has been shown to be closely connected to infomax learning [63; 64; 65; 3;
4; 66]. For instance, [3; 4] showcase that maximizing the mutual information between different
“views” of an image enables the acquisition of meaningful representations for downstream tasks.
In this experiment, we aim to re-analyze SSL with our empowered estimator, investigating (a) how
good can existing methods in SSL e.g. SimCLR [4] maximize the MI between different views of
data; and (b) whether higher MI between views consistently results in better representations in SSL.

Setup. We focus on analyzing SimCLR, a classic method for SSL [4]. SimCLR learns representation
by maximising the MI among various views of the same image by the InfoNCE loss [4; 2]

max
f,h

IInfoNCE(h(f(v1)), h(f(v2)))

where f is an encoder (implemented as a ResNet-50 model [67]) used to compute the representa-
tion of an image. h is some projection function (often known as the projection head). Here the
dimensionality of the representation is set to be D = 1024 and the batch size is set to be B = 256.

In addition to standard SimCLR where the estimate of MI is limited by the log batch size [68], we
also consider a variant of SimCLR, SimCLR+, which can potentially attain a higher MI:

max
f,h

β · IMIME(f(v1), f(v2)) + (1− β) · IInfoNCE(h(f(v1)), h(f(v2)))

Here, we use the DV representation (2) to estimate MI in our method, where we set f(x, y) in (2) as
the log density ratio (3) estimated in our method. This ensures that our estimate is a lower bound.
We adopt the common linear evaluation protocol to assess the quality of the learned representation.

High MI does not imply good representation. In Figure 4, we respectively plot (a) the test set ac-
curacy; (b) the mutual information (MI) between different views of data as estimated by our method;
(c) the MI estimated by InfoNCE. These figures are collected from a typical run on CIFAR10. By
comparing SimCLR and SimCLR+ with β = 0.9, we see that a high MI may not necessarily be a
good sign of better representation: SimCLR+ clearly attains a higher MI but has a significantly lower
test accuracy. The weak correlation between high MI and representation quality is also evidenced by
the trends of the curves in Figure 4.(a) and Figure 4.(b), where the test accuracy continues to grow
even when there is no increase on MI. The results echo with previous studies [63] which stated that
the success of SSL may only loosely relate to MI maximization under the linear evaluation protocol.
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MINE InfoNCE MRE MIENF MIME

Î(K;T ) 0.0 ± 0.0 0.1 ± 0.0 0.6 ± 0.1 0.3 ± 0.1 0.8 ± 0.1

Îshuff(K;T ) 0.1 ± 0.1 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

(a) kinase-target interaction

MINE InfoNCE MRE MIENF MIME

Î(L;R) 1.3 ± 0.2 1.6 ± 0.2 1.9 ± 0.2 1.3 ± 0.1 2.8 ± 0.1

Îshuff(L;R) 0.0 ± 0.1 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

(b) ligand-receptor interaction

Table 1: Quantifying dependence between participants of protein interactions. ‘shuff’ corresponds
to cases where the data is shuffled to break dependence. Results obtained from 5 independent runs.

InfoNCE is useful for MI maximization despite underestimation. Another interesting result is
seen by comparing Figure 4.(b) and Figure 4.(c), where we observe a significant gap between the
MI estimated by our method and that by InfoNCE. As our estimate here is a lower bound of the
true MI, this suggests that InfoNCE actually largely underestimates the true MI between different
views of data3. Interestingly, despite InfoNCE largely underestimates MI, optimizing InfoNCE loss
does lead to an effective maximization of the true MI (at least at the early stage of learning). This
suggests that to maximize MI, an accurate estimation of its exact value is indeed unnecessary.

6.4 PROTEIN SEQUENCE ANALYSIS

Our last task involves quantifying dependence in protein language model (PLM) embeddings [69].
The goal is to investigate to what extent do the PLM embeddings contain information about protein-
protein interactions, which are essential for the study of their functional property. This information
is quantified by the mutual information between the embeddings of different protein sequences.

Setup. Following the setups in [70], we consider two types of protein-protein interactions: kinase-
target and ligand-receptor interactions, using annotated data from the OmniPath database [36]. For
kinase-target interaction, we consider kinase and target sequence embeddings as random variables
K ∈ R1024, T ∈ R1024 with joint distribution p(K,T ), and are interested in evaluating I(K;T ).
Similarly, we are interested in evaluating I(L;R) for ligand-receptor interactions. All data are
preprocessed using the auto-encoder approach in [70] to reduce their dimensionality to 32 before MI
estimation. As in previous experiments, we ensure that all MI estimates are lower bound estimates.
If PLM embeddings capture interaction information, MI between interaction partners should be
significantly above 0 nats, and we investigate whether existing estimators can detect this information.

Results. For this task, our method estimates I(K;T ) ≈ 0.8nats and I(L;R) ≈ 2.8nats. These
results indicate that protein sequences as encoded by the PLM embeddings contain information
about both interactions, with the information about ligand-receptor interactions much higher than
kinase-target interactions — a result consistent with recent studies [70]. Methods like MINE largely
underestimate this information and wrongly suggest independence for kinase-target interaction.

7 CONCLUSION

In this paper, we propose a new method for mutual information (MI) estimation in high-MI settings.
A main challenge in this task is the high-discrepancy issue, which causes direct comparison between
the joint distribution and the marginal distribution inaccurate. We address this issue by addition-
ally comparing these distributions with their vector copula approximations, which share the same
marginal distributions as the original data distribution and have Gaussian dependence structures.
Experiments on diverse tasks demonstrate that such additional comparisons provide fine-grained
signals for accurately modelling the true dependence in data, which leads to better MI estimate.

Despite our powerful method, we note that MI estimate is still challenging with high-dimensional
non-Gaussian data, as can be seen from the simulation studies in Section 6.1. Furthermore, we
find that to maximize MI, an accurate estimate of its value may indeed be unnecessary — a lesson
learned from the SSL task. Together, these results highlight the values of developing proxies of MI
for information-theoretic representation learning such as sliced mutual information [71; 72; 27; 73].

For future work, we consider exploring other choices of generative models, such as those in [19], as
more powerful references, as well as extending our analysis on image benchmarks analysis [74; 75].

3We have included the constant logB when we compute the MI in InfoNCE (here B is the batch size).
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A THEORETICAL PROOFS

In this section, we are going to prove Proposition 1 and Proposition 2. Before delving into that,
we first revisit the proposed MIME estimator. Specifically, MIME proposes to estimate the mutual
information by learning a multinomial classifier h with a set of delicate reference distributions. To
train the classifier h, we approximate the learning objective by using N samples

ĥ = argmax
h

LN (h) :=
1

N

N∑
i=1

log
ehc(xi,yi)∑K
k=1 e

hk(xi,yi)
, xi, yi ∼ p(c)pc(x, y),

where we use a four-ways classifier (i.e., K = 4) with p1(x, y) = p(x, y) and p4(x, y) = p(x)p(y).
After training, we approximate the true mutual information I(X;Y ) using

ÎN
ĥ
(X;Y ) :=

1

N

N∑
i=1

ĥ1(xi, yi)− ĥ4(xi, yi),

For brevity, we denote r̂(x, y) := ĥ1(x, y)−ĥ4(x, y) as the estimated ratio with the learned classifier
ĥ and r∗(x, y) := log p(x,y)

p(x)p(y) as the ground truth ratio. Now, we are ready to prove the consistency
of the proposed MIME estimator.

A.1 PROOF OF PROPOSITION 1

Proposition 1 (Consistency of reference-based MI estimate). Assuming that the classifier hc : X ×
Y → R is uniformly bounded. For every ε > 0, there exists N(ε) ∈ N, such that∣∣∣ÎN

ĥ
(X;Y )− I(X;Y )

∣∣∣ < ε,∀N ≥ N(ε), a.s..

Proof. Firstly, we rewrite the LHS according to our definition of ÎN
ĥ
(X;Y ):

∣∣∣ÎN
ĥ
(X;Y )− I(X;Y )

∣∣∣ = ∣∣∣∣∣ 1N
N∑
i=1

r̂(xi, yi)− I(X;Y )

∣∣∣∣∣ .
Then, by applying the triangle inequality, we have∣∣∣∣∣ 1N

N∑
i=1

r̂(xi, yi)−I(X;Y )

∣∣∣∣∣≤
∣∣∣∣∣ 1N

N∑
i=1

r̂(xi, yi)−
1

N

N∑
i=1

r∗(xi, yi)

∣∣∣∣∣+
∣∣∣∣∣ 1N

N∑
i=1

r∗(xi, yi)−I(X;Y )

∣∣∣∣∣ .
Obviously, the second term in the RHS can be bounded by a sequence εN

a.s.−−→ 0 due to the normal
strong law of large numbers under mild conditions. To bound the first term, we employ the result in
[22, Appendix A], which proves that the multinomial ratio estimator is consistent. Specifically, let
ĥ = argmaxh LN (h) and r̂ = ĥ1 − ĥ4. Then for every ε > 0, there exists N ∈ N, such that

|r̂(x, y)− r∗(x, y)| < ε,∀x, y, a.s..

Thereby, there exists a sequence εi
a.s.−−→ 0 for each i = 1, 2, . . . , N such that∣∣∣∣∣ 1N

N∑
i=1

r̂(xi, yi)−
1

N

N∑
i=1

r∗(xi, yi)

∣∣∣∣∣ ≤ 1

N

N∑
i=1

|r̂(xi, yi)− r∗(x, y)|

≤ 1

N

N∑
i=1

εi ≤ max(ε1, . . . , εN ),

where the first inequality holds due to the triangle inequality. Hence, for each ϵ > 0, there exist an
N(ε) ∈ N, such that

∣∣∣ÎN
ĥ
(X;Y )− I(X;Y )

∣∣∣ < ε, almost surely.
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A.2 PROOF OF PROPOSITION 2

Proposition 2 (Controlled error in reference-based MI estimate). Define log r̂i,j(x, y) := hi(x, y)−
hj(x, y) with h being the classifier defined as above. Upon convergence, we have that:∣∣∣ log r̂1,4(x, y)− log

p(x, y)

p(x)p(y)

∣∣∣ ≤ 3sup
i

∣∣∣ log r̂i,i+1(x, y)− log
pi(x, y)

pi+1(x, y)

∣∣∣,
Proof. The key of the proof is the following identify in the learned network h:

h1 − h4 =

3∑
i=1

(hi − hi+1)

which, by definition,

log r̂1,4(x, y) =

3∑
i=1

log r̂i,i+1(x, y)

Let ri,j(x, y) =
pi(x,y)
pj(x,y)

be the true density ratio between pi(x, y) and pj(x, y). We have the follow-
ing important observation:

log r1,4(x, y) =

3∑
i=1

log ri,i+1(x, y)

which is due to the fact p1(x,y)
p4(x,y)

= p1(x,y)
p2(x,y)

· p2(x,y)
p3(x,y)

· p3(x,y)
p4(x,y)

. By triangular inequality

∣∣∣ 3∑
i=1

log r̂i,i+1(x, y)−
3∑

i=1

log ri,i+1(x, y)
∣∣∣ ≤ 3∑

i=1

∣∣∣ log r̂i,i+1(x, y)− log ri,i+1(x, y)
∣∣∣

which leads to∣∣∣ log r̂1,4(x, y)− log r1,4(x, y)
∣∣∣ ≤ 3 sup

i

∣∣∣ log r̂i,i+1(x, y)− log ri,i+1(x, y)
∣∣∣

substituting r1(x, y) =
p(x,y)

p(x)p(y) and setting λ = 3, we have∣∣∣ log r̂1,4(x, y)− log
p(x, y)

p(x)p(y)

∣∣∣ ≤ λ
∣∣∣ log r̂i,i+1(x, y)− log ri,i+1(x, y)

∣∣∣,∀i
which completes the proof. Note that the constant λ is typically smaller than 3 in practice.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

B.1 DETAILS OF THE MODELS IN SYNTHETIC TASKS

We provide details of the Swiss Roll model, MoG 1 model and MoG 2 model in the synthetic task.

• Swiss Roll. In this model, data x ∈ R2, y ∈ R is generated by the following data generating
process:

x1 =
t cos(t)

21
, x2 =

t sin(t)

21
, y = v,

where
t =

3π

2
(1 + 2Φ(ϵx)), v = Φ(ϵy)[

ϵx
ϵy

]
∼ N

([
ϵx
ϵy

]
,0,

[
1 ρ
ρ 1

])
, where Φ(·) is the cumulative distribution function (CDF) of standard normal distribution. It is
easy to show that this model is still in the class of non-linear transformation of Gaussian.

• MoG 1. This model consists of 5 equally-weighted mixture of multivariate Gaussian where the
mean for the kth component is µk = mk1 and the dependence coefficient in the kth covariance
matrix is ρk. Here m1, ...m5 = [−0.4,−0.1, 0, 0.1, 0.4] and ρ1, ...ρ5 = [0.5, 0.6, 0.7, 0.8, 0.9].

• MoG 2. This model consists of 5 equally-weighted mixture of multivariate Gaussian where the
mean for the kth component is µk = mk1 and the dependence coefficient in the kth covariance
matrix is ρk. Here m1, ...m5 = [−0.2,−0.1, 0, 0.3, 0.4] and ρ1, ...ρ5 = [−0.2,−0.1, 0, 0.3, 0.4].

B.2 IMPLEMENTATION OF THE MAPPING f, g IN VECTOR GAUSSIAN COPULA

The detailed implementation of the bijective mappings f and g are task-dependent. Specifically,

• Non-representation learning tasks. For this type of tasks, we implement the two mappings f, g
by a continuous flow model trained by flow matching [42]. This flow model is implemented as a 4
layer MLP with 1024 hidden units per each layer and softplus non-linearity. This MLP is trained
by Adam [54] with a learning rate of 5×10−4 and early stopping. We use this implementation for
all the experiments in Section 6.1 (synthetic data) and Section 6.2 (Bayesian experiment design).

• Representation learning tasks. For this type of tasks, we implement f, g as element-wise func-
tions. In such case, the model degenerates to a Gaussian copula model. Sampling in Gaussian
copula can be done by first sampling ϵ ∼ N (ϵ; 0,Σ), then computing the rank of ϵd in the popu-
lation: rd = ⌈nΦ(ϵd)⌉. Here Φ(·) is the CDF of standard normal distribution and n is the sample
size of population. After that, we set xd as the rd-th smallest element in the population of Xd. The
estimation of Σ can be done by inverting this process, which takes ≤ 30ms when n = 10, 000.

B.3 COMPUTATION TIME COMPARISONS

Table 2: Running time of a typical run of different MI estimators on the MoG task.

Method InfoNCE MINE MRE DoE MIME

time (s) 390.24 140.71 40.28 321.45 160.21

B.4 COMPARING DIFFERENT CHOICE OF REFERENCE DISTRIBUTIONS

We conducted experiments with different choices of reference distributions q(x, y). The results are
shown in Figure 1. Here MIME (vgc) is our original method where q(x, y) is modeled by a vector
Gaussian copula and hence is marginal-preserving. MIME (gc) is the case where q(x, y) is modeled
by a Gaussian copula, which is fast to learn from data but is less marginal-preserving. MIME (single
flow) is the case where q(x, y) is modelled by a single flow model. This flow is the same as in MIME
(vgc). Note that this flow is likely to be more difficult to learn than the two flows q(x) and q(y) in
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(a) Atanh(x), Bey (b) Ax3, By3 (c) MoG 1 (d) MoG 2

Figure 5: Comparison of different choice of reference distribution q. The number of training data is
N = 10, 000.

VGC due to the increased dimensionality. MRE is a baseline where q(x, y) is an implicit distribution
that is not marginal-preserving. It is clear that MIME (vgc) achieves the best performance.

B.5 EXPERIMENTS ON SMALL-DATA REGIME

we conducted experiments in small data regime with sample sizes N = 2, 500 and N = 1, 250
respectively. As shown in Figure 6 and Figure 7, the proposed estimator still demonstrates superior
performance compared to the baselines in these small data regimes, particularly in high-dimensional
settings.

(a) Atanh(x), Bey (b) Ax3, By3 (c) MoG 1 (d) MoG 2

Figure 6: Comparison of different MI estimators when trained on N = 2, 500 data.

(a) Atanh(x), Bey (b) Ax3, By3 (c) MoG 1 (d) MoG 2

Figure 7: Comparison of different MI estimators when trained on N = 1, 250 data.
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