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Abstract

Skeleton-based hand gesture recognition plays a crucial role in enabling intu-
itive human–computer interaction. Traditional methods have primarily relied on
hand-crafted features—such as distances between joints or positional changes
across frames—to alleviate issues from viewpoint variation or body proportion
differences. However, these hand-crafted features often fail to capture the full
spatio-temporal information in raw skeleton data, exhibit poor interpretability,
and depend heavily on dataset-specific preprocessing, limiting generalization. In
addition, normalization strategies in traditional methods, which rely on training
data, can introduce domain gaps between training and testing environments, further
hindering robustness in diverse real-world settings. To overcome these challenges,
we exclude traditional hand-crafted features and propose Skeleton Kinematics Ex-
traction Through Coordinated grapH (SKETCH), a novel framework that directly
utilizes raw four-dimensional (time, x, y, and z) skeleton sequences and transforms
them into intuitive visual graph representations. The proposed framework incorpo-
rates a novel learnable Dynamic Range Embedding (DRE) to preserve axis-wise
motion magnitudes lost during normalization and visual graph representations,
enabling richer and more discriminative feature learning. This approach produces a
graph image that richly captures the raw data’s inherent information and provides
interpretable visual attention cues. Furthermore, SKETCH applies independent
min–max normalization on fixed-length temporal windows in real time, mitigat-
ing degradation from absolute coordinate fluctuations caused by varying sensor
viewpoints or differences in individual body proportions. Through these designs,
our approach becomes inherently topology-agnostic, avoiding fragile dependencies
on dataset- or sensor-specific skeleton definitions. By leveraging pre-trained vi-
sion backbones, SKETCH achieves efficient convergence and superior recognition
accuracy. Experimental results on SHREC’19 and SHREC’22 benchmarks show
that it outperforms state-of-the-art methods in both robustness and generalization,
establishing a new paradigm for skeleton-based hand gesture recognition. The code
is available at https://github.com/capableofanything/SKETCH.
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Figure 1: The left shows an example of the conventional methods dependent on the training data.
The right shows the proposed feature extraction approach, which converts raw data into a visual
representation and performs normalization based on real-time input data, with Dynamic Range
Embedding.

1 Introduction

Hand gesture recognition using skeleton data has emerged as a key component in realizing sophisti-
cated human–computer interaction across various fields, including intelligent robotics, mixed reality
(MR), and human–robot interaction [21]. Hand gesture recognition via skeletal tracking contributes to
the implementation of intuitive interfaces in virtual reality/augmented reality (VR/AR) environments
and greatly assists robots in perceiving and interpreting human activities [7, 31]. In such environments,
various sensors—such as RGB cameras, depth sensors, and LiDAR—capture human motion and
the skeleton data extracted from these sensors (i.e., the 2D/3D coordinates of key joints) provides a
concise representation of human posture that is less affected by changes in illumination. Unlike RGB
video frames [15], skeleton data focuses on the structure of the body [19], offering higher processing
efficiency and robustness against variations in background and lighting conditions. However, directly
utilizing such raw skeleton data entails several inherent challenges for reliable gesture understanding
in real-world environments.

This challenge is further compounded by the “geometric shortcut” phenomenon, as identified in
Sonata [50], where directly inputting raw coordinate data can lead models to overfit to low-level spatial
patterns—such as simply memorizing hand-height values—rather than extracting high-level features,
ultimately resulting in representation collapse [6, 52]. Furthermore, raw skeletal coordinates are
highly sensitive to sensor viewpoint and subject position, leading to substantial variation in observed
sequences for identical actions. As a result, models trained under fixed-viewpoint assumptions may
suffer degraded recognition accuracy during testing due to discrepancies in absolute coordinates
caused by viewpoint shifts [23, 30]. In addition to these viewpoint-related issues [16], further
variations may arise from individual-specific factors, resulting in distribution shifts between training
and testing data. Such factors include differences in users’ physical proportions (e.g., hand size and
finger proportions) and individual variations in movement style and execution speed, all of which can
significantly affect the resulting skeleton data.

To address these issues, conventional skeleton-based action recognition approaches [32, 33] generally
do not primarily rely on using raw joint data directly (although there have been prior attempts to
do so, their generalization performance is limited by the geometric shortcut; see Appendix A for
details); instead, they focus on hand-crafted features designed to alleviate variations, which are
extracted via rule-based methods from the raw data. As shown in Fig. 1, representations such as joint
collection distances [8, 54], frame difference vectors [8, 60], joint adjacency matrices [60, 24], and
reference-joint difference vectors [60, 24] are used to encode skeletal motion in time series through
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rule-based processing, which directly extracts high-level features to mitigate geometric shortcuts and
avoid issues related to absolute coordinate variability caused by differing viewpoints. Among them,
adjacency matrices are employed to explicitly represent the structural relationships among joints for
topology modeling, and the reference-joint difference vectors encode each joint in a sequence as a
vector relative to a designated reference joint defined in the first frame.

However, existing hand-crafted feature extraction methods share common drawbacks: they are heavily
dependent on domain expert knowledge, often lack interpretability, and struggle to fully capture the
rich spatio-temporal information contained in raw skeleton data. Among them, methods based on
reference-joint difference vectors suffer from additional inherent limitations. Their performance is
highly sensitive to the choice of reference joint, requiring prior topology information. In practice, the
same anatomical joint may be indexed differently across datasets, or may not be defined at all, leading
to reliance on dataset- or sensor-specific topology definitions and limiting broader applicability.
Furthermore, even with an optimal reference joint, these approaches remain fragile, as missing
or noisy joints in real-world scenarios can severely degrade generalization performance, resulting
in strong reference-joint dependency. Beyond these limitations, subject-specific variations such as
differences in body proportions or motion styles remain unresolved. Due to the inherent coordinate
variations caused by differences in subjects’ physical proportions, the hand-crafted features extracted
from raw data inevitably retain these variations. This necessitates normalization based on global
statistics computed from the entire training dataset to reduce distribution shifts arising from subject-
specific body scales. Notably, window-wise (i.e., fixed-length segments-wise), per-axis normalization
is generally avoided in this context, as it may distort the extracted features and undermine the intended
viewpoint-invariance mitigation of the representation. However global normalization can suppress
fine-grained differences in joint movements due to the influence of joint coordinates with large
variance, and it inherently assumes that the test data distribution will closely resemble that of the
training set—an assumption often violated in real-world scenarios, potentially degrading model
performance at inference time.

To overcome these limitations, this study—drawing inspiration from ViTST [22]—proposes a novel
hand gesture recognition framework termed Skeleton Kinematics Extraction Through Coordinated
grapH (SKETCH). Unlike conventional hand-crafted approaches, as shown in Fig. 1, the proposed
SKETCH directly utilizes four-dimensional skeleton coordinate data, thereby eliminating the re-
liance on domain expert knowledge, enhancing interpretability, and preserving the rich information
inherent in the raw data. To further address the domain gap between training and testing data caused
by differences in subject-specific variations—issues that even hand-crafted features struggle to
mitigate—SKETCH employs a window-based axis-wise min–max normalization strategy (see Ap-
pendix E.4 for ablation analysis). However, normalization alone is insufficient to resolve the inherent
limitations of raw coordinate inputs, particularly the “geometric shortcut” phenomenon (as further
detailed in Appendix A). To tackle this, we leverage a plotting technique as an intermediate medium
to transform normalized coordinates into a graph image representation that alleviates viewpoint and
subject variations, enabling more robust and semantically meaningful feature learning. Beyond its
role in feature extraction, this design is inherently topology-agnostic, allowing the proposed SKETCH
method to generalize across diverse skeleton structures and remain resilient to pose estimation errors
(see Appendix E.6). The resulting visual graph also enhances interpretability by making it possible to
analyze which spatiotemporal patterns or movement cues the model focuses on. This image-based rep-
resentation further enables the use of backbones—pretrained on image classification datasets such as
ImageNet-1k [37] and -22k [10]—to extract high-level features. By leveraging a pretrained backbone,
our approach converges in fewer epochs for training than existing methods and achieves higher hand
gesture classification accuracy. While the proposed window-based axis-wise min–max normalization
effectively reduces domain shifts, it inevitably normalizes all coordinate axes to the same [0, 1] range,
resulting in the loss of relative movement scale across axes. To address this issue, we introduce
Dynamic Range Embedding (DRE), which compressively encodes the movement range or variability
of each axis into a scalar and injects it into the corresponding partition of the image. Consequently,
the SKETCH framework—combining visual representation construction, window-based axis-wise
normalization, and axis-wise DRE—enables robust recognition even under varying absolute scales or
sensor viewpoints [23]. Furthermore, since each windowed input unit is processed independently, the
model exhibits strong adaptation to environmental variability. This design is particularly well-suited
for online (streaming) methods that process data on a per-frame basis for action recognition.

The main contributions of this study are as follows:

3



• Direct utilization of raw data: Uses raw joint coordinates without complex preprocessing,
preventing information loss due to hand-crafted feature extraction and simplifying the data
pre-processing pipeline.

• A simple and intuitive image graphing method—Skeleton Kinematics Extraction
Through Coordinated grapH (SKETCH): SKETCH is a novel plotting technique that
converts time-series skeleton data into images, effectively mitigating the geometric short-
cut problem [50], where models tend to overfit to low-level spatial cues when using raw
coordinates. By applying window-wise per-axis min–max normalization and incorporating
Dynamic Range Embedding (DRE) to encode each axis’s movement range and variability,
the method achieves stable real-time recognition despite variations in viewpoint, scale, user
body proportions, and domain gaps between training and testing data. It is also inherently
topology-agnostic, enabling robust generalization across diverse skeleton structures and
real-world conditions.

• Integration with vision models and interpretable image features: By combining with
powerful vision models such as ViT [11] and Swin Transformer [27], the proposed approach
attains superior classification and detection accuracy compared to conventional methods and
introduces a new paradigm—distinct from existing approaches—as an interpretable feature
in the field of skeleton-based hand gesture recognition.

2 Related Work

Skeleton-based hand gesture recognition techniques primarily utilize sequence data composed of
coordinates and frames. Depending on the characteristics of the dataset, existing methods can be
broadly categorized into offline approaches [9] and online approaches [2, 4, 12].

2.1 Offline Classification Methods

As shown in Fig. 10(a), offline datasets are annotated such that each sequence corresponds to a single
gesture class. Offline hand gesture recognition methods can be broadly divided into two approaches.
First, CNN and LSTM-based methods [1, 25, 46, 47] utilize the current frame along with adjacent
frame information to recognize gestures. This approach is effective for data with short sequence
lengths but struggles to fully exploit information from frames that are temporally distant. Second, to
simultaneously consider fine-grained gesture details and temporal information beyond what the first
approach offers, recent studies have actively investigated architecture incorporating structures such as
GCN [17] and Transformer [45].

CNN-based methods in [25, 46, 47] voxelize the joints and then apply a 3D CNN to simultaneously
learn spatial and temporal information. DDNet [54] extracts joint collection distances (JCD) and
employs a 1D CNN architecture to incorporate temporal information between frames for gesture
classification. However, these CNN-based techniques [25, 54] do not define the relationships between
joints, making it difficult to fully capture the geometric characteristics of joint configurations. Due to
the issue of not defining the relationships between joints, GCN-based methods [17, 43, 53, 60] that
consider joint connectivity have recently been actively studied. Notably, methods such as ST-GCN [53]
and MS-ISTGCN [43] reflect the structural characteristics of the skeleton in a graph, modeling the
interactions between adjacent joints using techniques like an adjacency matrix. However, since
GCN-based approaches rely on connected adjacent information, they struggle to capture correlations
between frames that are temporally distant. To address this, methodologies applying Transformer
architectures—which can leverage long sequence time-series data—have also been proposed [13, 57].
Nevertheless, applying Transformer architecture requires a large amount of training data and extensive
training [48, 49, 57, 58].

Offline recognition methods achieve high classification accuracy by generating a single prediction
for an entire sequence labeled with one gesture class. However, they are unsuitable for real-world
applications requiring frame-wise recognition in continuous input streams.

2.2 Continuous (Online) Classification

In real-world environments, hand gesture recognition is implemented using online hand gesture
recognition methods as shown in Fig. 10(b). A segment is defined as a unit consisting of consecutive
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frames that share the same label. In practical settings, gesture recognition results must be predicted
at every frame from a streaming data sequence. Moreover, the input sequence contains multiple
types of gestures, with the gesture’s start and end points as well as intervening non-gesture segments.
Therefore, online classification techniques must simultaneously perform the following two tasks: (1)
determining the type of gesture at each frame, and (2) detecting the start and end points of gestures.
Online recognition methods [18, 43, 57] can be broadly categorized into two approaches: two-stage
and one-stage methods. Two-stage methods [18] first determine whether a gesture is present within a
segment and then decide the gesture class for that segment. This approach has the drawback that its
overall performance heavily depends on the effectiveness of the gesture presence detector. On the
other hand, one-stage methods receive real-time input data and simultaneously predict the gesture’s
start frame and end frame as well as the gesture class. RNN-based models [20, 30] tend to forget
past frames when the sequence length becomes long; to mitigate this, LSTM-based models [5, 36]
have been proposed. However, since these methods classify frames based on sequential processing,
parallel processing is challenging and training speeds are slow. Transformer-based models [57] enable
parallel processing, but they face difficulties in achieving high performance when there is insufficient
training data.

To overcome these issues, OO-dMVMT [8], which utilizes a sliding window technique, has been pro-
posed and provides state-of-the-art (SOTA) performance. OO-dMVMT integrates spatial and temporal
information by employing features such as joint collection distances (JCD) and the difference vectors
for the same joint between consecutive frames. However, since the conversion from coordinates to
JCD relies on the Euclidean distance between joints, some of the fine-grained spatial information
contained in the raw coordinate data is lost. Moreover, the normalization statistics computed from the
training dataset are also applied during testing, based on the assumption that the test data follows a
similar distribution—an assumption that may not hold in real-world scenarios.

2.3 ViTST

To handle irregularly sampled time-series data, ViTST [22] converts time-series data into line graph
images and then employs a pretrained vision transformer for classification. Specifically, each feature
within the time-series data is represented as an individual line graph. In each line graph, the horizontal
axis represents time, while the vertical axis denotes the observed values of the corresponding feature.
The converted image is then fed into a vision transformer. When ViT is used as the backbone, the
image representing the graph is divided into fixed-size patches, and global relationships are captured
by comparing the similarities between these patches. In contrast, the Swin Transformer divides
the input graph image into local Swin windows, performs self-attention within each Swin window,
and adopts a hierarchical structure by shifting the Swin windows to merge information between
adjacent Swin windows. However, because ViTST employs a fixed per-feature normalization scheme,
applying it directly to coordinate data that exhibit significant positional variability over time can
obscure subtle variations in movement trajectories. Additionally, data that belong to different absolute
coordinate systems but share the same local coordinate system may not be recognized as the same
class. Moreover, when features correspond to observed coordinate data—which can vary widely over
time—their line graph representations struggle to convey the differing scales of multiple feature axes
within a single image. ViTST, which does not incorporate dynamic range embedding, therefore fails
to capture this variability.

3 Proposed Method

Figure 2 illustrates the overall flow of the proposed training method, divided into three stages. As
shown on the left, the SKETCH (Skeleton Kinematics Extraction Through grapH) module transforms
raw four-dimensional skeleton data (time, x, y, and z) into a visual representation—enabling high-
level feature extraction from the raw data without prior topology knowledge—then applies our
novel Dynamic Range Embedding (DRE) to encode axis-wise relative range information, which is
subsequently added via element-wise broadcasting to the corresponding partition of the image. Here,
Ft represents the frame corresponding to the skeleton information at time t, and a window Wt is
defined by grouping NF frames (where NF denotes the number of frames per window), which is then
converted into a single graph image. In the middle stage, the graph image generated by SKETCH
is used as input to the backbone, where each image is divided into patches; relationships between
patches are captured via self-attention within Swin windows, and subsequently, ‘patch merging’ [27]
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Figure 2: Overall architecture of the proposed method. First, the skeleton data are partitioned into
windows (Wt). The SKETCH module then normalizes each window per-axis, generates a visual
representation, and applies Dynamic Range Embedding to produce the final graph image. The
transformed graph image is then passed through a backbone, followed by two separate heads: one for
gesture classification and another for start and end frame regression, enabling simultaneous gesture
recognition and segment boundary detection. ⊕ indicates element-wise broadcasting addition.

integrates local and global information. On the right, a classification head is responsible for gesture
classification per window, and two separate regression heads estimate the start and end frames of the
gesture within the window. Finally, the classification head and regression head are optimized using
cross entropy loss and mean squared error (MSE) loss, respectively.

3.1 Transforming the Online Task into a Window Problem

As shown in Fig. 11, in this study, the continuous stream of input frames in an online environment is
grouped into a window (W ), thereby converting the real-time frame-based classification task into
a window-based problem. The window W is represented as Wt ∈ RNF×j×c using time t. Each
window, composed of NF frames, is represented as a three-dimensional array with dimensions
corresponding to the numbers of frames (NF ), joints (j), and coordinates (c), effectively capturing
the spatio-temporal characteristics of the skeleton data. Within each window, the inherent frame-level
labels (NF labels) are aggregated, and the most frequent label is assigned as the window-level label,
a strategy applied during both training and testing. A window may also be labeled as ‘non-gesture’ if
non-gesture frames are dominant. In particular, when both gesture frames and non-gesture frames are
mixed within a window, the gesture’s start and end frames are also labeled to regress the boundaries
of the gesture, where these annotations are normalized to a [0, 1] range by mapping the first and last
frames of the window to 0 and 1, respectively. Aggregating frame-level labels in this way enables the
assignment of a reliable representative label to each window, helping to mitigate the effects of noisy
or inconsistent labels—such as transient frame-level mismatches between the actual gesture transition
frames and the incorrectly labeled frames. Moreover, by converting the problem into a window-based
one, leveraging the independent contextual information of each window and performing normalization
within each window can reduce the domain gap between training and testing data.

3.2 Skeleton Kinematics Extraction Through Coordinated grapH (SKETCH) Module

Figure 3 shows the graph plotting, normalization, and Dynamic Range Embedding (DRE) employed
in the proposed SKETCH module. The raw data is divided into windows (W ), and min–max nor-
malization is performed on each coordinate axis (x, y, and z) within each window. Through this
process, the relative patterns and subtle differences in the data are emphasized without relying on the
absolute coordinates. The normalized data is then converted into a 2D image through graph plotting.
Specifically, as shown on the right side of Fig. 3, the horizontal axis represents time (t), while the
vertical axis represents each coordinate value of (x, y, and z), and three subplots are vertically
stacked to form a single graph image. In each subplot, the coordinates of j joints are displayed
as discrete points, which are connected by lines to represent continuous movement. To preserve
cross-axis relative scales that may be lost in this transformation, we introduce our novel DRE to
encode axis-wise relative range information. Specifically, for each axis, coordinate values across
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Figure 3: Process of the SKETCH module. Raw skeleton sequences are windowed and min–max
normalized per coordinate axis (x, y, and z). In each subplot, 26 lines corresponding to the joint
coordinates are displayed. The dynamic range embedding module shares weights across all coordinate
axes. Frames 4, 5, and 6 show raw skeleton data aligned with the time-axis points of the graph image.

NF frames and j joints undergo Z-normalization [35] and are then reshaped into a vector of length
∈ R1×(NF ·j). This vector is processed by two successive fully connected (FC) layers—each followed
by BatchNorm (BN) and ReLU activation—and finally by a third FC layer to produce a single scalar
DRE value per axis, denoted as DREx, DREy, and DREz . These scalar values, which compactly
represent the movement range or variability of each axis, are broadcast [34] to all pixel channels of
the corresponding axis subplot and added to the visual representation, as illustrated in Fig. 3. The
entire process is termed Skeleton Kinematics Extraction Through Coordinated grapH (SKETCH).

Unlike ViTST, as described in Section 2.3, the proposed SKETCH module represents the interactions
among the j joint lines within a single subplot while assigning separate subplots for each coordinate
axis (x, y, and z), as shown in Fig. 3. This joint-wise co-location preserves the relative spatial
configuration between joints, enabling the model to directly perceive their spatial dependencies.
Moreover, by vertically stacking the subplots, temporal information is aligned along the horizontal
axis, providing a coherent temporal flow that effectively preserves the continuity of motion, thereby
aiding the model in identifying precise gesture boundaries such as the start and end frames. In
contrast, ViTST’s feature-wise isolated line graphs fragment the spatial context and obscure inter-joint
dependencies, making it difficult for the model to capture spatial relationships and temporal continuity
simultaneously (further details are provided in Appendix E.1). Furthermore, each joint is consistently
assigned a fixed color, ensuring consistent joint representation. Unlike conventional methods that rely
either on hand-crafted features or on dataset- and sensor-specific topology definitions, our approach
represents the time, three-dimensional space, and joints of the raw data in a single graph. This
graph image implicitly incorporates features typically extracted through rule-based methods while
enabling the model to autonomously learn richer representations from the raw data, and it is inherently
topology-agnostic, ensuring robust generalization across diverse skeleton structures. In this way, by
representing raw data on a window basis and performing normalization for each coordinate within
the window, the distribution differences (domain gap) between the training and testing data can be
mitigated. Through the SKETCH module, converting four-dimensional data into two-dimensional
images enables the effective utilization of powerful pre-trained classification models.

3.3 Backbone Models

In this study, we adopt Vision Transformer (ViT) or Swin Transformer as backbone models, which
tokenize input into patches and utilize Transformer architectures for joint gesture classification and
boundary localization [11, 27]. Swin Transformer further captures both local and global dependencies
via hierarchical patch merging and Swin window shifting, enabling the model to learn intra-subplot
relationships (among joints sharing the same coordinate axis) and inter-subplot relationships (across
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different coordinates and time steps). To support this, each backbone is equipped with a classification
head and two regression heads—implemented as single linear layers—for predicting gesture types
and temporal boundaries between gesture and non-gesture segments, respectively.

3.4 Loss Function

The model employs a combined loss function consisting of classification and regression terms.
The classification loss (Lcls) uses cross entropy as in [8] to classify the type of gesture, while the
regression losses (Lstart, Lend) use mean squared error (MSE) as in [8] to predict normalized start
and end frame positions within each window. This formulation enables the model to simultaneously
optimize gesture classification and boundary prediction. The total loss is defined as:

L = λ1Lcls + λ2Lstart + λ3Lend. (1)

3.5 Online Inference Process

In the inference phase, the output from the regression head is not used; only the results from the
classification head are utilized. Continuous window-based predictions are post-processed following
Algorithm 1 to classify frames into a certain gesture. Briefly, the input frames are grouped into
windows of fixed length (NF ), and for each window, class prediction value (ŷ) is obtained using
the model (f ). These predictions are then accumulated in a queue structure of fixed size (Q), and
g is determined by applying a majority voting method to the class prediction values stored in the
queue, enabling noise-robust frame-wise classification. However, waiting for the final detection after
collecting Q prediction values introduces a certain delay. Therefore, an appropriate value for Q must
be applied, taking into account both noise reduction and delay.

4 Experiments

All experiments were conducted using PyTorch [34] on a single NVIDIA RTX A6000 or NVIDIA
A100 GPU, and the model was trained and tested using the SHREC’19 and SHREC’22 datasets
(details provided in Appendix B). Appendix E reports the impact of various ablation versions of the
SKETCH module, loss configurations, and related factors, etc. Training strategies and implementation
details are provided in Appendix G.

4.1 SHREC’19 Results

Table 1: Comparison of benchmark and proposed methods on SHREC’19. DR and FP denote detection
rate and false positive, respectively. Values in parentheses indicate backbone configurations, where
backbone type: V = ViT, S = Swin; model size: L = Large, B = Base, S = Small; patch size; Swin
window size (for Swin only); and image resolution. JCD, FD, Adj, and Ref indicate the use of joint
collection distances, frame difference vectors, adjacency matrices, and reference-joint difference
vectors features, respectively. Plot denotes the use of graph image as input.

Method DR↑ FP↓ Time (s) FPS JCD FD Adj Ref Plot
PSUMNet [44] 0.64 0.22 0.0250 40 ✓ ✓
MS-G3D [28] 0.69 0.25 0.0303 33 ✓
SeS-GCN [38] 0.75 0.12 0.0020 500 ✓
SW 3-cent [3] 0.76 0.19 0.0030 333 ✓ ✓
DSTA [41] 0.81 0.08 0.0088 114 ✓
DG-STA [5] 0.81 0.07 0.0042 238 ✓
DDNet [54] 0.82 0.10 0.0022 455 ✓ ✓
uDeepGRU [4] 0.85 0.10 0.0030 333 ✓ ✓
OO-dMVMT [8] 0.88 0.05 0.0058 172 ✓ ✓
DS-GCN [51] 0.80 0.05 - - ✓ ✓
BlockGCN [60] 0.83 0.04 - - ✓ ✓ ✓
ProtoGCN [24] 0.86 0.05 0.0334 30 ✓ ✓

SKETCH (V-L-16-384) 0.90 0.03 0.0176 57 ✓
SKETCH (S-S-4-7-224) 0.88 0.04 0.0039 256 ✓
SKETCH (S-B-4-12-384) 0.91 0.03 0.0091 110 ✓
SKETCH (S-L-4-12-384) 0.92 0.02 0.0142 70 ✓
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As presented in Tab. 1 and illustrated in Fig. 12, the proposed SKETCH outperforms previous SOTA
methods in gesture-wise detection accuracy across diverse categories, while also ensuring real-time
operation with a throughput of at least 30 frames per second (FPS). This performance is particularly
noteworthy given the challenging evaluation protocol of the SHREC’19 dataset [4], which involves a
clear domain shift, as the test subjects were entirely different from those used in training. Despite
this domain discrepancy, the SKETCH module exhibits robust generalization ability, suggesting its
effectiveness in mitigating the domain gap—more so than existing methods.

4.2 SHREC’22 Results

Table 2: Recognition performance on the SHREC’22. JI denotes Jaccard index. Configurations follow
the same notation as described in Tab. 1.

Method DR↑ FP↓ JI↑ Delay (fr.) Time (s) JCD FD Adj Plot

DeepGRU [30] 0.26 0.25 0.21 8.0 0.0031
DG-STA [5] 0.51 0.32 0.40 8.0 0.0042 ✓
SeS-GCN [38] 0.60 0.16 0.53 8.0 0.0018 ✓
PSUMNet [44] 0.62 0.24 0.52 8.0 0.0244 ✓ ✓
MS-G3D [28] 0.68 0.21 0.57 8.0 0.0293 ✓ ✓
Stronger [12] 0.72 0.34 0.59 14.8 0.1000 ✓ ✓
DSTA [41] 0.73 0.24 0.61 8.0 0.0092 ✓ ✓
2ST-GCN+5F [12] 0.74 0.23 0.61 13.3 0.0021 ✓ ✓
TN-FSM+JD [12] 0.77 0.23 0.63 10.0 0.0046 ✓ ✓
Causal TCN [12] 0.80 0.29 0.68 19.0 0.0280 ✓
DDNet [54] 0.88 0.16 0.78 8.0 0.0022 ✓ ✓
OO-dMVMT [8] 0.92 0.09 0.85 8.0 0.0041 ✓ ✓

SKETCH (S-B-4-12-384) 0.91 0.06 0.86 8.0 0.0097 ✓
SKETCH (S-L-4-12-384) 0.92 0.07 0.87 8.0 0.0124 ✓

Table 2 presents the classification results of our method on the SHREC’22 dataset [12], demonstrating
competitive performance against SOTA approaches. Unlike conventional methods that rely on
hand-crafted features, our approach leverages SKETCH-based visual plots for a more interpretable
representation. As illustrated in Figs. 7, 13, and 14, our method effectively distinguishes visually
similar dynamic gestures such as Circle, V, and Cross—tasks where hand-crafted feature-based
methods often struggle due to their limited use of raw skeletal data.

Figure 4: Grad-CAM visualizations illustrating how boundary regression loss enhances the model’s
ability to localize gesture boundaries. Each Grad-CAM image corresponds to a single input window.
The red and blue lines represent the start and end frames of the gestures within each window,
respectively. For simplicity, abbreviated gesture names (e.g. Three → Thr) are used in the figure.

Figure 4 shows the results of Grad-CAM [40] to visualize the impact of the regression losses (Lstart

and Lend) on the classification process. By detecting the start and end frames of a gesture, the
model learns localized boundaries rather than performing global classification. This enables refined
discrimination even in graphs where gestures and non-gestures are mixed, making it difficult to judge a
single classification based solely on the overall gesture. In contrast, models trained without regression
loss exhibit a tendency to attend to broader temporal regions, overlooking the actual boundaries
between different consecutive gestures. This often leads to ambiguities in temporal localization and
increases the likelihood of misclassifying gestures, particularly when gesture transitions are subtle
or occur in quick succession. Such boundary-aware modeling allows for more adaptive and precise
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Figure 5: Visualization of joint-level attention for gestures in the SHREC’22 dataset. The color
intensity indicates the magnitude of attention assigned by the model to each joint, with attention
increasing progressively from blue to red (see Fig. 15 for extended visualizations).

predictions compared to classification-only approaches. In addition, it opens up new perspectives on
the interpretability of features, thereby enhancing the reliability of gesture recognition.

Humans distinguish hand gestures by focusing on key joints or finger movements that uniquely
define each gesture. To examine whether the model attends to gestures in a similar way, we applied
Grad-CAM to the SKETCH-based graph images and mapped the resulting attention scores back to
the 3D skeleton coordinates for quantitative evaluation. As illustrated in Figs. 5 and 15, attention
maps reveal that the model focuses on task-relevant joints in a human-like manner, suggesting that it
captures high-level semantic representations rather than overfitting to geometric biases. This supports
the interpretability and intuitiveness of our SKETCH-based graph transformation. For further details
on the attention mapping process, qualitative interpretation, see the description in Fig. 15. In addition,
gesture-specific attention patterns and their semantic alignment are thoroughly analyzed in Fig. 8.

5 Conclusion

In this study, we proposed the Skeleton Kinematics Extraction Through Coordinated grapH
(SKETCH) module to overcome the limitations of conventional hand-crafted feature-based approaches
in skeleton-based hand gesture recognition. The proposed method converted four-dimensional (time,
x, y, and z) skeleton raw data into simple and intuitive visual graphs, with Dynamic Range Embed-
ding (DRE) further preserving axis-wise relative scale during this transformation, demonstrating
that it could fully leverage the rich information that is easily overlooked by conventional methods.
In particular, while existing approaches provided non-intuitive and uninterpretable representations
using a sequence of data, the SKETCH module opened up a new perspective in hand gesture recog-
nition through an interpretable data representation. Moreover, by applying an online, independent
min–max normalization technique, it effectively mitigated the domain gap caused by changes in sen-
sor viewpoints and individual body proportion differences, thereby achieving consistent performance
across various test environments. Through these designs, the framework becomes topology-agnostic,
ensuring robust generalization across diverse skeleton structures. Experimental results showed that
the proposed SKETCH method outperformed existing approaches in terms of high detection and
classification performance on major benchmarks such as SHREC’19 and SHREC’22. These results
suggested that skeleton-based hand gesture recognition can play a key role in realizing intuitive
human–computer interaction in fields such as intelligent robotics and mixed reality systems, and our
approach demonstrated the potential for extension to various future applications.

5.1 Limitations and Future Work

Although we demonstrated that high-level features can be extracted directly from raw skeleton data
with our novel representation, the current architecture still makes each decision independently and
therefore ignores information from preceding windows. In future work, we plan to overcome this
limitation by moving beyond fixed-length chunks to an adaptive scheme that captures longer-range
temporal context, ultimately enabling a unified architecture suitable for both online and offline 4D
action recognition tasks. Moreover, while our evaluation focused on skeleton-based hand gesture
recognition, the topology-agnostic design of SKETCH suggests its potential applicability to broader
domains such as skeleton-based human action recognition, which we leave as promising directions
for future research.
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A Overcoming Geometric Shortcut and Coordinate Bias via SKETCH

In prior 3D-based studies, there have been continued efforts to encourage models to autonomously
learn rich representations directly from unprocessed raw point data, as discussed in [56]. In particular,
coordinate-based 3D inputs such as skeletal joints and point clouds are commonly processed by
feeding normalized coordinate values directly into the model, without any intermediate representa-
tional transformation. However, this approach often leads to an excessive reliance on the absolute
coordinates of the training data, causing the model to overfit to low-level geometric cues [6, 50, 52]
rather than learning semantically meaningful representations.

This phenomenon has also been clearly identified in recent work such as Sonata [50], which highlights
the geometric shortcut as a key limitation in 3D self-supervised learning [50, 52, 56]. The geometric
shortcut refers to the model’s tendency to overly rely on low-level spatial hints such as surface normal
vectors, point heights, and relative positions, rather than learning meaningful semantic features. This
issue is particularly pronounced in 3D point cloud data, which is inherently sparse and non-grid in
structure, making it more likely for coordinate values to be misinterpreted as semantic cues. For
example, in environments where objects like the floor, desk, and ceiling can be distinguished solely
based on their y-coordinate (height), models may memorize these positional cues instead of learning
abstract, high-level representations. As a result, the learned features tend to collapse into simple
geometric patterns, ultimately degrading the model’s generalization ability.

(b) normalization
(unit sphere)

(c) Min–max normalization (d) -score normalization 
(standardized space)

(a) Original space

Figure 6: Comparison of raw and normalized 3D spaces using synthetic point clusters, demonstrating
that the relative spatial relationships between clusters persist across different normalization methods.
Black boundaries indicate each normalization space: (a) original space with three color-coded clusters
in Octants I, III, and VIII; (b) L2 normalization on the unit sphere; (c) min–max normalization in the
[0, 1]3 cube; (d) Z-score normalization in a standardized ±3σ cube.

Furthermore, Fig. 6 illustrates that simple normalization alone is insufficient to fundamentally
eliminate coordinate bias [56]. The figure shows red, blue, and green point clusters located in Octant I
(x > 0, y > 0, z > 0), Octant III (x < 0, y < 0, z > 0), and Octant VIII (x > 0, y < 0, z < 0) of the
original three-dimensional space, respectively, and demonstrates that these clusters retain their relative
spatial configuration even after normalization. Whether L2 normalization [39], min–max scaling, or
Z-score normalization [35] is applied, the directional and positional relationships between clusters
remain preserved, thereby allowing the model to continue learning features based on coordinate-
dependent spatial cues. Therefore, applying normalization to the raw data still fails to resolve the
geometric shortcut problem.

For example, in the case of an arbitrary spatial movement over time (e.g., Octant I → III → VIII), the
same dynamic gesture may be observed as different coordinate trajectories (e.g., Octant III → I →
VIII) depending on the viewpoint. Although the underlying motion remains identical, the resulting
coordinate trajectory differs due to changes in the observation angle. In other words, the same gesture
can be represented by entirely different coordinate sequences depending on the viewpoint. Even
after normalization, the relative arrangement and orientation of the points are preserved, allowing the
model to learn low-level representations based on such spatial cues. As a result, normalization alone is
insufficient to eliminate viewpoint-induced variation, and it fails to prevent the model from overfitting
to geometric shortcuts based on specific positions or directions. A similar phenomenon can also be
observed in Static Gestures (SG). Even when SG are performed within a single octant, the orientation
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of the hand may vary depending on the sensor’s viewpoint. As a result, the same gesture may exhibit
different inter-joint spatial relationships—for instance, the z-coordinate of the index finger may appear
greater or smaller than that of the thumb. Such variation arises not only from changes in viewpoint
but also from individual differences in body proportions. This indicates that simple normalization is
insufficient for achieving viewpoint-agnostic or subject-invariant representation learning.

Such issues have also been observed in prior studies on hand gesture recognition. For example,
models like deepGRU [30], which rely (solely) on raw coordinate inputs, have exhibited significantly
degraded performance due to representation collapse.

To address these challenges, this study proposes a plotting-based intermediate medium (SKETCH)
that goes beyond simple coordinate normalization and transforms normalized coordinates into
representations that alleviate sensor viewpoint and subject-specific variations. Specifically, raw
point or joint data are converted into graph images, which are then processed by pretrained image
backbones (e.g., ViT or Swin Transformer) to effectively extract high-level semantic features in the
image domain. This approach enables more effective utilization of the representational potential of
raw 3D data, addressing the geometric shortcut problem inherent in direct coordinate input while
providing a robust pathway for expressive representation learning.

B Dataset Description

The datasets used for training and evaluation were both online datasets: SHREC’2019 [4] and
SHREC’2022 [12]. The SHREC 2019 dataset captures five distinct hand gestures—Cross (X), Circle
(O), V-mark (V), Caret (^), and Square ([ ])—performed by 13 users using a LeapMotion sensor
at 0.05-second intervals. Each frame records 3D positions (x, y, and z) and quaternions (x, y, z,
and w) from 16 hand joints, though only the positional data is used in our approach for gesture
classification and gesture boundary prediction. Data from four users are used for training, and data
from the remaining nine users are used for testing. One sequence missing annotation was excluded
from the performance evaluation.

The SHREC’2022 dataset comprises 144 training sequences and 144 testing sequences captured
with the Hololens2 device [12], with each sequence consisting of 3D coordinates (x, y, and z) for
26 joints across frames of varying lengths. It contains 16 types of gestures, as depicted in the Fig. 7,
which are further classified into four categories: Static (SG: One, Two, Three, Four, Ok, and Menu),
Dynamic (DG: Left, Right, Circle, V, and Cross), Fine-grained Dynamic (FG-DG: Grab and Pinch),
and Dynamic-periodic gestures (D-PG: Deny, Wave, and Knob).

The SHREC’19 online-gesture dataset is publicly available for non-commercial academic use (no
explicit license is specified by the organizers), whereas the SHREC’22 dataset is released under the
Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY-NC-ND
4.0) license.

Figure 7: Illustration of the 16 gesture classes in the SHREC’2022 dataset [12], categorized into
Static, Dynamic, Fine-grained Dynamic, and Dynamic-periodic gestures.

18



C Evaluation Metrics

To quantitatively evaluate the performance of gesture recognition, we adopted four evaluation metrics:
detection rate (DR), false positive (FP) rate, Jaccard index (JI), and delay. These metrics were
computed for each gesture class and averaged across all classes to obtain the final results. The
evaluation protocol strictly follows the official metrics defined in the SHREC’22 [12] online gesture
recognition track. A predicted gesture segment was considered a correct detection if it satisfied the
following conditions: The predicted label matches the ground-truth label. The predicted segment
length does not exceed twice the ground-truth segment length. The temporal (frame) overlap ratio
between the predicted segment [fs

p , f
e
p ] and the ground-truth segment [fs

g , f
e
g ] is greater than or equal

to 0.5:

Detection criterion A predicted gesture segment is considered a correct detection if it satisfies all
of the following conditions:

1. The predicted label matches the ground-truth label.

2. The predicted segment length does not exceed twice the ground-truth segment length.

3. The temporal (frame) overlap ratio between the predicted segment [fs
p , f

e
p ] and the ground-

truth segment [fs
g , f

e
g ] is at least 0.5:

overlap =
min(fe

g , f
e
p )−max(fs

g , f
s
p )

fe
g − fs

g

.

Evaluation metrics Based on the above matching rule, we define the following metrics:

• Detection rate (DR):

DR =
TP

GT
,

where TP is the number of correctly detected gesture segments, and GT is the total number
of ground-truth gesture segments.

• False positive rate (FP rate):

FP =
FPcount

GT
,

where FPcount is the number of unmatched predicted gestures.

• Jaccard index (JI):

JI =
TP

TP + FN+ FP
,

where FN is the number of missed gesture segments.

• Delay:

Delay =


⌊
Q

2

⌋
− 1, if Q is even,⌊

Q

2

⌋
, if Q is odd.

where Q is the queue size in Algorithm 1.

All metrics were calculated for each gesture class and the overall performance was computed as the
mean value across all gesture classes. This evaluation protocol enables a comprehensive assessment
of detection accuracy, robustness to false positives, segmentation quality, and temporal prediction
latency.
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D Gesture-Specific Attention Patterns and Interpretability Analysis
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Figure 8: Visualization of model’s attention during gesture prediction for the Left, Right, Menu,
Circle, Pinch, and Cross gestures using Grad-CAM [40]. All examples were extracted from different
sequences.

Figure 8 illustrates Grad-CAM [40] result on the hand gesture recognition process through the
SKETCH. It demonstrates that the unique motion patterns of each gesture align with the regions that
the model focuses on, thereby showcasing the interpretability of our proposed method—enabled by
its use of raw data—in contrast to conventional, uninterpretable hand-crafted features. In this manner,
the transformation process using the SKETCH technique reflects the intrinsic characteristics of each
gesture and confirms that it forms an interpretable structure that consistently aligns with the regions
on which the model focuses.

For instance, the Left and Right gestures are characterized by the hand’s overall movement toward the
left or right direction while the hand shape itself remains fixed; during the SKETCH transformation,
a linearly increasing or decreasing graph is formed in the x-coordinate subplot. Accordingly, the
model’s attention is observed to align closely with these linear patterns in the graph. The Menu
gesture, defined by a static open-handed posture, exhibits a pattern of widely spaced lines distributed
across the entire image, suggesting that capturing the overall structural pattern plays a more critical
role in prediction than relying solely on localized information—an observation further supported by
the model’s behavior. The Circle gesture involves circular movement of the hand without altering its
shape. This results in waveform patterns appearing on both the x- and y-coordinate subplots after the
SKETCH transformation. Thus, it is confirmed that the model focuses on the regions where these
waveforms persist. The Pinch gesture is distinguished by the convergence of the thumb and index
finger coordinates, and the SKETCH transformation results in a pattern where the lines in the x and
y subplots gradually widen. The model’s emphasis on the widening region indicates that this is a
critical element in distinguishing the Pinch gesture.
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E Ablation Studies

E.1 Ablation Study: Plotting Methods

Table 3: Quantitative comparison on the SHREC’22 dataset of gesture classification error rates (%)
across four gesture categories—Static Gestures (SG), Dynamic Gestures (DG), Fine-grained Dynamic
Gestures (FG-DG), and Dynamic-periodic Gestures (D-PG)—under different ablation settings of the
proposed SKETCH module, including removal of color, ViTST-style joint coordinate arrangement,
and addition of markers. The values in parentheses “( )” indicate the error rate increase compared to
the standard SKETCH module.

Gestures SKETCH (a) Black (b) ViTST (c) Marker

SG 6.02 15.74 (+9.72) 29.63 (+23.61) 8.80 (+2.78)
DG 5.00 8.89 (+3.89) 7.78 (+2.78) 7.78 (+2.78)
FG–DG 12.50 15.28 (+2.78) 30.56 (+18.06) 15.28 (+2.78)
D–PG 13.89 20.37 (+6.48) 42.59 (+28.70) 19.44 (+5.55)
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Figure 9: Visualization of graph image representations generated by different ablation versions of
the SKETCH module for both static gestures (left) and dynamic-periodic gestures (right). Each row
corresponds to a different visualization method: the standard SKETCH design (SKETCH), a version
without color differentiation (Black), a version adopting ViTST-style joint arrangement (ViTST), and
a version with added markers (Marker). For dynamic-periodic gestures three temporally consecutive
and non-overlapping images are shown for each class to better capture and visualize the underlying
periodic patterns. Each graph image corresponds to a single input window.

Table 3 presents a quantitative comparison of error rates across four gesture categories (SG, DG,
FG-DG, D-PG) under various ablation settings of the proposed SKETCH module. The experiments
were conducted under three ablation configurations: (a) removing color differentiation by rendering
all joints in the same black color, (b) replacing the joint coordinate arrangement of SKETCH with the
ViTST [22] layout (i.e., representing each joint as an individual line graph), and (c) adding markers at
each observation point to emphasize the observed data. It should be noted that in setting (b), the full
plotting method of ViTST, as described in Section 2.3, was not adopted. Instead, the joint coordinates
were rearranged into ViTST-style individual line graphs by treating each joint coordinate as an
independent feature, while still applying our proposed normalization method. The group-wise gesture
classification error rate (Group Error Rate) is computed based on the prediction performance of all
gesture classes belonging to the group (Static Gestures (SG), Dynamic Gestures (DG), Fine-grained
Dynamic Gestures (FG-DG), and Dynamic-periodic Gestures (D-PG)) and is defined as follows:

GroupErrorRateG = 1 −

∑
i∈G

TPi∑
i∈G

Segi
,
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Here, G denotes a specific gesture group (e.g., FG–DG), and i refers to the i-th gesture class (e.g.,
Grab) belonging to group G. TPi represents the number of correctly predicted segments (true
positives) for class i, while Segi denotes the total number of ground-truth segments for that class. In
other words, the group error rate is calculated based on the overall prediction accuracy aggregated
across all gesture classes within the group.

Based on the analysis, ablation setting (a) resulted in the largest error-rate increase for SG, followed
by D–PG, while setting (b) caused the greatest increase for D–PG, followed by SG. These results
are closely related to the inherent characteristics of SG and D–PG. Gesture classes belonging to
SG involve maintaining a specific hand shape over a period of time, with little to no noticeable
movement over time. As shown in the SKETCH visualizations in Fig. 9, the graph images of SG
classes (e.g., One, Four, OK, and Menu) produced by the SKETCH module display joint coordinates
as horizontally aligned parallel lines. This visual pattern reflects the static nature of these gestures,
with minimal variation along the time axis.

Therefore, the distinction between different SG classes relies not on temporal dynamics, but rather
on the relative spatial relationships between joint coordinates captured in the graph image. In this
context, the SKETCH module’s strategy of consistently assigning a unique color to each joint plays
a critical role in differentiating the joints. The relative spatial configuration—such as a particular
colored joint appearing higher than others within the same coordinate subplot, or two joints being
positioned closely or far apart—serves as a key visual cue for identifying SG gesture classes. In this
context, ablated version (a), which renders all joints in the same color (black), eliminates the ability
to distinguish between joint coordinates, ultimately hindering the model’s ability to effectively learn
the unique spatial arrangement (permutation) of joints characteristic of each SG class. In contrast,
ablated version (b) modifies the joint coordinate layout of SKETCH to follow the ViTST approach,
where each joint is represented as an individual line graph. This deviates from the standard SKETCH
format, in which multiple joint coordinates sharing the same coordinate axis are visualized together
within a single subplot. As a result, it becomes more difficult to capture the relative positions of joints
within a localized region of the image. Instead of directly perceiving spatial relationships among
joint coordinates, the model is forced to infer them indirectly based on the positional patterns within
each individual line graph. Consequently, compared to the original method that visualizes multiple
joints on the same coordinate axis within a single subplot, this configuration introduces limitations in
effectively recognizing the spatial relationships among joints.

A defining characteristic of gestures in the D-PG category (e.g., Deny, Wave, and Knob) is their
distinct periodicity, as clearly visualized in Fig. 9 using the SKETCH module. Effectively recognizing
such periodic gestures requires that the shape and repetition of each cycle along the time axis be
visualized with sufficiently high resolution. However, in ablated version (b), the joint coordinate
layout is modified according to the ViTST format, where each joint is represented as an individual
line graph arranged in a grid within a single graph image. This configuration leads to physical
compression of the time axis (in terms of pixel space), as each line graph with the same time length is
constrained within the limited image area. This becomes especially problematic for D-PG gestures,
as subtle temporal variations and periodic patterns along the time axis are crucial for accurate gesture
discrimination. If these patterns are visualized at low temporal resolution, their fine-grained structures
may become distorted or lost, ultimately hindering the model’s ability to correctly recognize D-PG
gestures.

While (c) caused a slight performance drop for all four categories due to markers subtly distorting the
fine shape of the lines and the relationships between joints. These results highlight the effectiveness
of SKETCH in preserving critical spatio-temporal and structural cues through carefully designed
visual representations, enabling more robust gesture recognition across diverse gesture categories.

E.2 Ablation Study: Impact of Regression Loss, Loss Weights, and Window Length

Table 4: Quantitative comparison on the SHREC’22 dataset of gesture recognition performance with
and without regression loss for gesture boundary localization.

Method DR↑ FP↓ JI↑
w/ regression 0.92 0.07 0.87
w/o regression 0.88 0.09 0.82
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Table 5: Influence of loss function weights (λ1, λ2, and λ3) on overall model performance on the
SHREC’22 dataset.

λ1 λ2 λ3 DR↑ FP↓ JI↑
1.0 0.5 0.5 0.90 0.07 0.85
1.0 1.0 1.0 0.92 0.07 0.87
1.0 1.5 1.5 0.88 0.06 0.84

Table 6: Effect of window length (NF ) on recognition performance on the SHREC’22 dataset.

NF DR↑ FP↓ JI↑
8 0.84 0.10 0.77
12 0.90 0.10 0.82
16 0.92 0.07 0.87
20 0.89 0.08 0.83

Based on the qualitative analysis of Fig. 4 in Section 4.2, we quantitatively compared the impact of
regression loss on the classification process as shown in Tab. 4. The experimental results showed
that the detection rate (DR) increased by 0.04, the false positive (FP) rate decreased by 0.02, and the
Jaccard index (JI) improved by 0.05, confirming that the regression loss contributes to enhancing the
model’s overall prediction performance across all evaluation metrics. Furthermore, the experimental
results in Tab. 5 indicate that optimal performance is achieved when regression loss and classification
loss are balanced.

In Tab. 6, the window-based approach is useful for online tasks as it mitigates noise and preserves
spatio-temporal context. Analysis of performance across varying window sizes confirmed that an
appropriate window size improves real-time classification performance.

E.3 Ablation Study: Conventional Hand-Crafted and Proposed Features

Table 7: Quantitative comparison of plotting-based gesture recognition performance on SHREC’22
using different input features.

Plotting features DR↑ FP↓ JI↑ Hand-crafted Raw

JCD 0.80 0.14 0.73 ✓
FD 0.87 0.06 0.83 ✓

SKETCH (ours) 0.92 0.07 0.87 ✓

All features were visualized using the same SKETCH-based plotting and model pipeline to ensure a
fair comparison. The quantitative results are summarized in Tab. 7. While JCD and FD are traditional
hand-crafted features commonly used in prior work, their performance falls short when compared
to directly plotted raw joint coordinates, indicating that hand-crafted preprocessing may lead to
information loss even under identical visualization and modeling setups. This result highlights a
fundamental limitation of hand-crafted representations, which rely on predefined rules and may fail
to capture the full complexity of skeletal motion. In contrast, by directly utilizing raw coordinate
data, our approach enables the model to autonomously extract discriminative features from rich,
unprocessed inputs, thereby achieving superior recognition performance that is not solely attributable
to the visualization method.
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E.4 Ablation Study: Normalization Strategies

Table 8: Impact of normalization strategies on gesture recognition performance in SHREC’19.

Target Axis-wise Z-norm Min–max norm DR↑ FP↓

Window ✓ 0.85 0.01
✓ ✓ 0.84 0.02

Window (ours) ✓ ✓ 0.92 0.02

Axis-wise normalization, which treats x, y, and z dimensions independently, consistently outperforms
joint normalization across all coordinates, as it better preserves directional variations specific to
each axis. The superiority of min–max over Z-score normalization lies in its ability to preserve the
relative spatial and temporal variations of joint movements within each window. Specifically, min–max
normalization maps each coordinate value to a fixed [0, 1] interval based on the observed minimum and
maximum values along each axis (x, y, and z), thereby maintaining the relative displacement between
joints at a given frame (inter-joint spatial structure) as well as the variability in a joint’s trajectory over
time (intra-joint temporal dynamics). Therefore, as commonly practiced in prior work ViTST [22],
Z-score normalization is often accompanied by outlier removal techniques such as interquartile
range (IQR), as used in [22], to mitigate the influence of extreme values. In our experiments, for the
Z-norm condition, outliers were removed using the IQR method, where the interquartile range was
defined as IQR = Q3−Q1, and values outside the range of [Q1− 1.5× IQR,Q3+1.5× IQR] were
excluded. After removing outliers, missing joint values were reconstructed using an interpolation
process to ensure continuity in the plotted line graphs (i.e. graph image). However, in skeleton-based
hand gesture recognition, where the number of joints is limited and each joint trajectory may contain
critical semantic cues, removing even a few outlier joint values can disrupt the temporal continuity and
degrade the model’s ability to recognize subtle and continuous motion patterns essential to accurate
gesture interpretation. These results empirically validate our claim that window-level, axis-wise,
and min–max normalization provides increased robustness to changes in viewpoint, user scale, and
sensor positioning, while serving as a critical component in achieving stable recognition in diverse
environments.

E.5 Ablation Study: Dynamic Range Embedding

Table 9: Ablation study on the effects of including Dynamic Range Embedding (DRE) and alternative
plotting methods on the SHREC’19 benchmark dataset.

Method DR↑ FP↓
(a) Black 0.91 0.04
(b) ViTST 0.75 0.03
(c) Marker 0.9 0.03

(d) SKETCH w/o DRE (ours) 0.89 0.03
(e) SKETCH w/ DRE (ours) 0.92 0.02

Inspired by the customized positional encoding schemes [26, 42, 46, 48, 49, 55, 58, 59] developed in
diverse 3D domains to capture intrinsic spatial information, we devised a novel method that embeds
the unique characteristics of each coordinate axis into a visual representation. Table 9 presents an
ablation study on the SHREC’19 dataset, evaluating both plotting methods and the Dynamic Range
Embedding (DRE) module across five configurations: (a) a ViTST baseline applied directly to raw
joint-coordinate sequences; (b) SKETCH-black, in which all joints are rendered in uniform black; (c)
SKETCH-marker, attaching markers to each joint coordinate at every observation point (reference
plots for variants (a)–(c) using the same method are shown in Fig. 9); (d) SKETCH without DRE; and
(e) SKETCH with DRE. Variants (b) do not utilize DRE. The results indicate that converting each
skeleton sequence into a visual representation and then applying the DRE module more effectively
encodes axis-wise movement range than the version without DRE, enabling SKETCH to extract
higher-level features.
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E.6 Ablation Study: Robustness on Pose Estimation Errors

Table 10: Impact of perturbations and missing rates on SHREC’19 gesture recognition performance.

Perturbations Missing Rate DR↑ FP↓
- - 0.92 0.02

Sequence 30% 0.91 0.02
Sequence 50% 0.89 0.02
Sequence 70% 0.85 0.02
Sequence 90% 0.73 0.34

Frame 30% 0.90 0.02
Frame 50% 0.78 0.20
Frame 70% 0.06 0.00

Table 11: Robustness on SHREC’19 under noise perturbations with varying noise rates (std.).

Perturbations Std. DR↑ FP↓
Noise 0.02 0.89 0.04
Noise 0.03 0.89 0.04
Noise 0.05 0.76 0.07

To further assess the robustness of SKETCH to pose estimation errors, we conducted additional
evaluations under missing-data perturbations on SHREC’19, introduced only at test time to examine
generalization under degraded pose inputs. Specifically, we considered three types of perturbations.
First, missing-joint robustness was tested by simulating joint-sensor failure through random deletion
of joints, and second, occlusion robustness was examined by masking joint coordinates across both
temporal and spatial dimensions to simulate partial marker occlusions. The results of these two
settings are summarized in Tab. 10. Finally, test noise robustness was evaluated by injecting white
Gaussian noise into the training joint coordinates and subsequently testing the model on sequences
corrupted with the same noise distribution, as shown in Tab. 11.

As summarized in Tabs. 10 and 11, we report detection rate (DR) and false positives (FP) under all
three perturbation settings. Despite these synthetic degradations, SKETCH consistently demonstrated
stable performance by capturing the spatio-temporal flow of joint kinematics, rather than relying on
individual joint positions, thereby highlighting its resilience to pose estimation errors.

E.7 Ablation Study: Regression Head and Dynamic Range Embedding

Table 12: Ablation study of our proposed modules on the SHREC’19 benchmark dataset.

Method Regression DRE DR↑ FP↓

SKETCH
0.84 0.04

✓ 0.89 0.03
✓ 0.90 0.04

SKETCH (ours) ✓ ✓ 0.92 0.02

As detailed in Sections E.2 and E.5, this section we conducted an ablation study on the SHREC’19
dataset to evaluate the individual contributions of the regression head and Dynamic Range Embedding
(DRE). We demonstrate that incorporating regression loss (see Equation 1) into the feature extraction
process during training is vital for effective hand gesture recognition, while our visual representation,
enhanced by DRE, effectively encodes the relative movement range and variability of joint coordinates.
By enabling the model to distinguish whether a motion is ongoing or has ended, and to represent the
dynamic behavior of joint coordinate trajectories, SKETCH is able to extract high-level spatiotemporal
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features directly from raw data. Accordingly, Tab. 12 reports performance with and without each
component: the full model—including both the regression head and DRE—consistently achieves the
highest accuracy and the lowest false positive rate.

F Additional Visualizations
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Figure 10: Comparison of offline and online datasets. (a) In the offline dataset, all frames within a
sequence correspond to a single gesture. (b) In the online dataset, non-gesture segments exist, and
each individual frames may belong to different gesture classes within the same sequence.

As illustrated in Fig. 10 and discussed in Sections 2.1 and 2.2, Fig. 10(a) represents an offline
dataset setting, in which each entire sequence corresponds to a single gesture label. This setup is
formulated as a sequence-level classification task, where the model receives the full frame sequence
and predicts a single class. In contrast, Fig. 10(b) depicts an online (real-time) setting, where non-
gesture segments are present and frame-wise labels may vary within a sequence. The model must
therefore simultaneously perform gesture segmentation and classification in a streaming manner. This
online scenario presents greater challenges, as the system is required to identify gesture boundaries
(i.e., start and end frames) and assign the correct class labels to each detected segment. Additionally,
because the number of gestures per sequence is unknown in advance, evaluation must consider both
detection and localization performance—incorporating metrics such as false positive rate and the
Jaccard index.
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Figure 11: Window-based problem formulation for online gesture recognition. A continuous frame
stream is partitioned into fixed-length windows (Wt), where aggregated frame labels determine the
window label by majority voting. For windows containing both gesture and non-gesture frames,
gesture boundaries are additionally labeled for localization.

As shown in Fig. 11 and discussed in Section 3.1, in an online setting, the incoming frame stream
is partitioned into fixed-length windows Wt ∈ RNF×j×c, where each window contains NF frames
of skeleton data with j joints and c coordinate dimensions. A window-level label is determined
by majority voting over the frame-level annotations within that window. In the case of “mixed”
windows—i.e., windows containing more than one gesture-related label, such as both gesture and
non-gesture frames—the gesture’s start and end positions are additionally annotated to facilitate
boundary localization. For such windows, the start index is initially set to 0 and the end index to
NF − 1, under the assumption that the gesture spans the entire window. Then, the label sequence is
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traversed in temporal order to identify the actual transition points: when a frame label switches from
non-gesture to a gesture class, the corresponding index is updated as the gesture start; conversely,
when the label changes from a gesture class to a non-gesture label, the index just before the transition
is assigned as the gesture end. If no transitions are found (i.e., the window contains only gesture
or only non-gesture), the default start and end indices remain unchanged. Finally, the start and end
indices are normalized to the range [0,1] by dividing by NF − 1 , resulting in two real-valued outputs,
gs and ge, for boundary regression.

(b)(a)

Figure 12: Performance comparison on the SHREC’19 dataset. (a) Per-class detection rate (DR)
for the Square, Cross, Caret, Circle, and V-Mark gestures. (b) Total number of false positives (FP)
aggregated across all gestures.

As shown in Fig. 12, the SHREC’19 dataset—where the training and test sets are drawn from entirely
different groups of subjects, with only four subjects in the training set and nine unseen subjects in the
test set—presents a substantial domain gap. This challenging setting demonstrates that our SKETCH
method outperforms other benchmark approaches in both detection rate and false positive rate. These
results indicate that our method robustly extracts high-level features that generalize well to unseen
users and new domains.

(a) (b)

Figure 13: Performance comparison on the SHREC’22 dataset. (a) Detection rate (DR) for each of
the 16 gesture classes. (b) Overall false positive (FP) aggregated across all classes.

Figure 13 illustrates that on the SHREC’22 benchmark—which features a larger set of gesture
classes than SHREC’19 and, unlike SHREC’19, does not clarify whether the training and test
subjects differ—our SKETCH method achieves a detection rate comparable to the state-of-the-art
OO-dMVMT model, while significantly reducing the false positive rate. This reduction is particularly
important for online gesture recognition. These results position SKETCH as the new state-of-the-art
approach in the field.
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Figure 14: Confusion matrix (17× 17) on the SHREC’22 dataset. Each row indicates ground-truth
and each column shows predicted class, including the additional NONE class to reflect non-gesture.

Figure 14 visualizes the confusion matrix for SHREC’22, where each of the 16 gesture classes is
evenly represented by 36 instances, and shows that our method achieves uniformly high performance
across all classes.
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Figure 15: Extended visualization of joint-level attention (corresponding to Fig. 5) for gestures in the
SHREC’22 dataset.

To investigate whether the model distinguishes gestures based on meaningful semantic cues, we
applied Grad-CAM to the SKETCH-based 2D graph images and visualized attention scores for each
joint. The Grad-CAM activations were first extracted from the 2D image space, and each joint’s
attention value was mapped back to its physical 3D coordinates (x, y, and z). Attention values
across axes were then averaged to obtain a scalar score per joint. The attention maps (Fig. 15)
show that for the Ok gesture, the model concentrated on the thumb and index finger as well as
the fingertips of the remaining three fingers; for the Grab gesture, high attention was uniformly
distributed across all five fingers; and for the Deny gesture, the focus was exclusively on the index
finger. These findings demonstrate that the model relies on critical joints for gesture discrimination,
closely mimicking human perception. This behavior further provides evidence that the model captures
high-level semantic structure and avoids overfitting to low-level geometric features, validating the
SKETCH-based representation in terms of both interpretability and effectiveness.
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Algorithm 1 Online Gesture Recognition Algorithm
Require: Model f , total number of gesture classes K, non-gesture label Cnon, window size NF ,
queue size Q, threshold value τ (frames; for minimum gesture length in SHREC’19).
Input: Stream of predictions, Wt = {X1, X2, . . . , XNF

}, where t is the current time index, X ∈
Rj×3, and where j is the number of joints.
Output: Gesture start frame, end frame, and class label.

1: t← 1, start← −1, end← −1
2: prev_g ← Cnon ▷ Initialize previous majority vote result
3: hist← {0, 0, . . . , 0} ∈ R1×K ▷ Histogram of gesture class occurrences
4: Queue← {Cnon, Cnon, . . . , Cnon} ∈ R1×Q ▷ Sliding window (e.g., using deque for efficient

updates)
5: while receiving new predictions Wt do
6: if size of Queue = Q then
7: Remove oldest element from Queue
8: end if
9: ŷt ← f(Wt) ▷ Predict label from model

10: Append ŷt to Queue
11: gt ← argmax(bincount(Queue)) ▷ Majority vote in the window In case of tie, choose the

label with the smallest index
12: if gt ̸= Cnon then ▷ Gesture detected
13: if prev_g = Cnon then ▷ Gesture start detected
14: start← max(1, t− ⌊NF /2⌋)
15: end if
16: hist[gt]← hist[gt] + 1
17: else ▷ Non-gesture detected
18: if prev_g ̸= Cnon then ▷ Gesture end detected
19: end← max(1, t− ⌊NF /2⌋)
20: chosen_label← argmax(hist) ▷ Final gesture label; tie-breaking similar as above.
21: if SHREC’19 then ▷ Only one gesture in a sequence
22: if (end− start) ≥ τ then ▷ Longer than threshold τ
23: Output (start, end, chosen_label)
24: break ▷ End processing for single-gesture sequence
25: else
26: skip ▷ Too short; do not output
27: end if
28: else ▷ For diverse gestures in a sequence
29: Output (start, end, chosen_label)
30: end if
31: Reset: start← −1, end← −1, hist← {0, 0, . . . , 0}
32: end if
33: end if
34: prev_g ← gt ▷ Update previous vote
35: t← t+ 1
36: end while
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G Training Strategies and Implementation Details

All experiments were conducted using the AdamW optimizer [29] with a weight decay of 1× 10−4,
a batch size of 32 trained over 20 epochs, and loss weights λ1 = λ2 = λ3 = 1. We applied a linear
warm-up [14] from 0 to the target learning rate over the first 30% of training steps, followed by a
cosine-annealing decay schedule.

For the SHREC’19 dataset, the initial learning rate was set to 8× 10−5, the window length NF to 40,
the queue length Q was set to nine, and the threshold τ (see in Algorithm 1) was set to 21, resulting
in a delay of four frames in our Swin [27] Large model.

For SHREC’22, we retained these core settings but reduced the initial learning rate to 4× 10−5 and
set NF to 16, and the Q was set to 18, resulting in a delay of eight frames in our Swin Large model.
To improve label reliability while training, we retained only those training windows in which the
majority gesture occupied at least 70% of the NF frames; windows lacking such a dominant class
were discarded because their mixed labels reduced annotation confidence.

For the input resolution of 224 × 224 used in the pretrained backbones (Tabs. 1 and 2), we first
generated 225× 225 images through SKETCH and then applied center cropping to obtain the final
224× 224 inputs.

H Toy Example Evaluation of Geometric Shortcut
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Figure 16: t-distributed stochastic neighbor embedding (t-SNE) visualizations of model representa-
tions on SHREC’22. (a–d) toy example of OO-dMVMT; (e–h) our SKETCH. (a, e) and (b, f) illustrate
t-SNE visualizations of the first- and last-layer output features on the training data, respectively, while
(c, g) and (d, h) present the corresponding features on the testing data. Each point is colored by its
gesture class as shown in the legend.

This experiment was conducted to demonstrate the geometric shortcut phenomenon that arises
when raw skeleton data is used as input. We implemented a toy example using the OO-dMVMT
architecture—the state-of-the-art model—replacing its hand-crafted features with raw skeleton
coordinates. We evaluated this toy example on the SHREC’22 benchmark dataset using only pure
windows—those in which all (NF ) frames share the same label—excluding mixed label windows
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to avoid confusing feature clusters. Figure 16 depicts t-distributed stochastic neighbor embedding
(t-SNE) plots of every feature representation for pure windows from both the training and testing data.
For each of the raw-input OO-dMVMT toy example and our SKETCH model, we applied t-SNE to the
features extracted by the first and the last layers of the model. Specifically, for SKETCH the first-layer
is the zeroth Swin Transformer block, whereas for the OO-dMVMT toy example they correspond to
the features at which multi-scale features are concatenated, (see [8], which introduces this process).
In both models, the output of the final layer corresponds to the high-level feature representation
just before it is passed to the classifier head. Under these conditions, the OO-dMVMT toy example
achieved 96.22% window-level training accuracy and 89.82% window-level test accuracy before
post-processing, whereas our proposed SKETCH model attained 99.00% and 92.58%, respectively.

Despite its reasonably high window-level accuracy, the toy example of OO-dMVMT still falls into the
geometric shortcut phenomenon. This can be observed through the comparison in Fig. 16(d) and (h),
which present t-SNE visualizations of the last-layer output feature representations for OO-dMVMT
and SKETCH, respectively. Compared to SKETCH, the toy example of OO-dMVMT produces
features that are merely hyperplane-separable—i.e., sufficient for a linear classifier to distinguish—but
fail to form clearly clustered distributions by class, highlighting the lack of semantically meaningful
structure. This reflects the toy example of OO-dMVMT’s tendency to exploit geometric shortcut—i.e.,
relying on low-level, coordinate-based cues that lead to non-generalizable decision boundaries—rather
than learning semantically rich, well-separated class clusters. This indicates that feeding raw skeleton
coordinates causes the OO-dMVMT model to overfit to trivial coordinate cues—extracting only
low-level features instead of semantically meaningful, high-level representations—and thus provides
evidence of the geometric shortcut effect.

32



I Impact of Spatial Emphasis in Skeleton-Based Gesture Recognition

Left Right Wave Deny Pinch

(a)
Gesture class
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MenuThreeTwo Ok

V Circle Knob GrabCross

Figure 17: Visualization of 14 representative gesture classes from the SHREC’22 dataset using the
ShapeProj plotting method. Each block corresponds to a gesture class. Pink section (a) shows (i)
the 3D skeleton and (ii) the reference image. Green section (b) presents four projection views of
the joint trajectories: projections onto the xy, xz, and yz planes, and a view generated via principal
component analysis (PCA). This layout highlights the spatial configurations captured by ShapeProj
across multiple perspectives.

Table 13: Classification performance comparison between ShapeProj and SKETCH on the SHREC’22
dataset. Backbone configurations (e.g., S-B-4-12-384) follow the same notation as described in Tab. 1.

Method DR↑ FP↓ JI↑
ShapeProj (S-B-4-12-384) 0.82 0.05 0.79
ShapeProj (S-L-16-384) 0.85 0.05 0.81

SKETCH (S-B-4-12-384) 0.91 0.03 0.86
SKETCH (S-L-16-384) 0.92 0.02 0.87

Certain hand gestures in 3D space exhibit highly distinctive and discriminative shapes, such that
the gesture class can be identified solely based on the spatial configuration of joints. As shown
in Fig. 17(a), gestures such as Two, Ok, and Pinch display clear morphological distinctions: Two
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involves extension of only the index and middle fingers; Ok is formed by creating a circle with the
thumb and index finger while the remaining fingers are extended; and Pinch is characterized by the
thumb and index finger closing together with the other fingers naturally curled inward. These clearly
defined hand shapes serve as intuitive cues for human perception and can also act as effective features
for gesture recognition models.

Building on this observation, this section investigates how an alternative plotting strategy—referred
to hereafter as ShapeProj—affects model performance, with a particular focus on preserving the
natural spatial structure of the human hand in 3D space through orthogonal projection. While both
ShapeProj and SKETCH approaches utilize raw coordinate data without relying on rule-based feature
engineering (i.e., hand-crafted features), the proposed method adopts a rendering technique designed
to maintain the geometric integrity of the hand. We aim to assess whether visualizations that preserve
the physical configuration of the hand (as shown in Fig. 17(b)) can serve as effective representations
for gesture recognition.

ShapeProj projects the 3D skeleton sequence (∈ RNF×j×3) onto four views: the xz, xy, and yz
planes, and an additional axis on which the variance is maximized when the 3D skeleton sequence
is projected (derived by principal component analysis (PCA)). The use of PCA aims to depict the
hand shape from a perspective that most clearly separates joint positions, regardless of the absolute
location of the gesture in 3D space, and with minimal loss of information. For visualization, the
resulting 2D joint coordinates obtained from each orthogonal projection and PCA are assigned to the
four quadrants of a single image. Prior to plotting, min–max normalization is applied independently
to each 2D axis of the data (∈ RNF×j×2) to ensure scale consistency. Each joint is assigned a unique
color, and the temporal trajectory of each joint is illustrated by connecting its positions across frames
using colored lines. Markers are added to indicate observed joint positions, and for the first frame in
each quadrant, black edges are drawn to connect joints based on semantic hand structure, enabling
direct rendering of the hand shape.

Figure 17(b) shows the visualization results for the SHREC’22 dataset using ShapeProj. Compared
to SKETCH, this approach more clearly represents the spatial configuration of the hand joints in
3D space, but sacrifices temporal resolution as a trade-off. As shown in Tab. 13, the classification
performance of the hand shape-preserving visualization (ShapeProj) is sufficiently robust to sug-
gest that emphasizing spatial configuration can provide meaningful discriminative cues for gesture
recognition.

However, comparison with SKETCH reveals that SKETCH-based representations consistently out-
perform those generated by ShapeProj. This suggests that for an online, streaming-based gesture
recognition task, the model relies more heavily on relative motion patterns between joints over time,
rather than on spatial configurations in which temporal dynamics are less prominently expressed.
Such a tendency is also observed in Tab. 7, where we compare hand-crafted features by plotting joint
collection distances (JCD) and frame difference vectors (FD). JCD captures static spatial structure by
computing distances between joints within the same frame, while FD encodes temporal dynamics
by measuring displacement across frames. Despite both being hand-crafted, the FD-based images
yield superior performance compared to JCD, highlighting the importance of temporal information.
In summary, while the spatial configuration of the hand provides a strong and informative basis for
classification, our experiments indicate that characteristic motion patterns between joints over time
play a more decisive role in effectively solving the gesture recognition task.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In Abstract and Section 1, we point out the limitations of existing methods and
propose corresponding solutions. These contributions are summarized in the final paragraph
of the Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5.1 introduces the current limitations of our method and explores
possible avenues for future enhancements."
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our work is not strictly a purely theoretical work, we provide more of an
empirical formula.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide information to ensure that the experiments reported in Section 4
and Appendix G can be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We use publicly-accessible data SHREC’19 [4] and SHREC’22 [12]. We
upload the codes and instructions to recover the results. Once the blind review period is
finished, we’ll open-source all codes, instructions, and model checkpoints.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide details on the optimizer type, hyperparameter settings, batch size,
number of epochs, and weight decay in Section G. The hyperparameter configurations were
determined empirically, as demonstrated in Section E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We ensured fairness by conducting thorough ablation studies and extensive
hyper-parameter tuning across multiple experimental settings—including A100 and A6000
GPUs as noted in Section 4—with full details provided in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We specify the type of computational resources used in Section 4 the main text,
and provide additional details in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm full compliance
with its guidelines, including transparency (see Appendix G), and privacy protection (see
Section B).

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section 1 indirectly demonstrates that research on hand-gesture recognition
plays a vital role in enhancing quality of life.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work uses only publicly available skeleton gesture datasets (SHREC’19 [4],
SHREC’22 [12]) and does not release any new high-capacity generative models or sensitive
scraped data; therefore no special safeguards are required.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use two public skeleton-gesture datasets: SHREC’19 [4] (no explicit
license; free for academic use) and SHREC’22 [12] (CC BY-NC-ND 4.0).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will upload the codes and instructions to recover the results. Once the blind
review period is finished, we’ll open-source all codes, instructions, and model checkpoints.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:The study relies on publicly available skeleton-based gesture datasets
(SHREC’19 [4], SHREC’22 [12]) and does not involve any new data collection, crowdsourc-
ing tasks, or experiments with human subjects; therefore this item is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification:The study uses only publicly available skeleton-based gesture datasets (e.g.,
SHREC’19 [4] and SHREC’22 [12]). No new data were collected from human subjects, and
no crowdsourcing or user studies were conducted; therefore IRB approval is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:Large language models (e.g., ChatGPT) were employed solely for minor english
proofreading and wording suggestions during paper preparation.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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