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ABSTRACT

Recently, Transformer-based models have performed remarkably well in audio-
visual segmentation (AVS) tasks. However, previous methods exhibit abnormal
behavior and unsatisfactory results when using cross-attention. By analyzing at-
tention maps, we identify two primary challenges in existing AVS models: 1)
attention dissipation, caused by anomalous attention weights after Softmax over
limited frames, and 2) narrow attention patterns in early decoder stages lead to
inefficient utilization of attention mechanism. In this paper, we introduce AVES-
Former, the first real-time audio-visual segmentation transformer that simultane-
ously achieves fast, efficient, and lightweight. Our model proposes an efficient,
prompt query generator to rectify cross-attention behavior. Moreover, we propose
an early focus (ELF) decoder, which enhances efficiency by incorporating convo-
lution operations tailored for local feature extraction, thus reducing computational
overhead. Extensive experiments demonstrate that AVESFormer effectively miti-
gates cross-attention issues, substantially improves attention utilization, and out-
performs the previous state-of-the-art, achieving a superior trade-off between per-
formance and speed. The code can be found in the supplementary material.
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Figure 1: mIoU (%) vs. Inference Latency (ms) on S4 (left), MS3 (middle), and AVSS (right)
compared with other popular methods. Latency is measured on a single Nvidia RTX 3090 GPU.
AVESFormer achieves the best trade-off between mIoU and inference latency.

1 INTRODUCTION

Audio-Visual Segmentation (AVS) (Zhou et al., 2022) has emerged as a novel multi-modality task
that plays a crucial role in robot sensing, video surveillance, and other scenarios. It aims to segment
fine-grained pixel-level sounding objects with corresponding audio-visual modalities. However,
existing AVS methods primarily focus on improving performance, often at a high cost of model size
and computational overhead (Gao et al., 2024; Mao et al., 2023b; Liu et al., 2023b; Huang et al.,
2023; Liu et al., 2023a; 2024a; Li et al., 2023b). Besides, default AVS setting directly processing T
frames at a time (Zhou et al., 2023; Li et al., 2023a) is also unfitted for immediate response. These
drawbacks render them unsuitable for applications with real-time requirements.

Recently, transformer-based models have brought significant improvements to AVS (Gao et al.,
2024; Yang et al., 2023; Huang et al., 2023; Li et al., 2023b; Liu et al., 2023b; 2024a; Li et al.,
2023a). However, AVS models often rely on modified attention variants despite the prevalence of
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Figure 2: Illustration of attention dissipation. The cross-attention matrix fails to distinguish different
tokens (left). One potential solution is to expand the audio feature into several tokens (right).

cross-attention for modality fusion within a single image in vision-language models (Li et al., 2022a;
2021; Luo et al., 2023). For instance, AVSegFormer (Gao et al., 2024) employs channel attention
mixer (CHA) to guide visual channels with audio. However, CHA may be dominated by visual
features and surpass audio representation (Chen et al., 2024). Chen et al. (2024) replaces Softmax
in attention with Sigmoid, suggesting it could highlight critical regions. Stepping-Stones (Ma et al.,
2024) proposes cosine similarity attention for audio guidance in audio-visual fusion. While these
adaptations have shown some success, attention variants generally do not exhibit the same expres-
sive capacity as the default mechanism (Tay et al., 2022). Therefore, a natural question arises: Why
is AVS’s conventional cross-attention fusion mechanism underutilized?

2.3%

20.8%

26.4%

46.0%4.6%
Vggish
ResNet
Query Generator
Transformer
Head

Figure 3: Runtime profiling of the AVSeg-
Former (Gao et al., 2024).

To this end, our studies start with the comprehensive
observation and exploration of cross-attention. We
characterize the attention probabilities and heatmaps
within the cross-attention of AVS models. It reveals
two critical issues behind them: (1) Attention Dissi-
pation, a previously unexplored phenomenon, where
cross-attention matrix vanishes in previous attempts,
hindering them from distinguishing audio-visual cor-
responding regions, as illustrated in Figure 2. It erupts
intensely in an improper attention configuration and
real-time AVS scenario. (2) Narrow Attention Pattern,
an inefficient heatmap pattern in cross-attention map
after solving attention dissipation. Attention maps at
early decoder stages tend to capture short-term local
correlation features, leading to undesired low utiliza-
tion of attention. These limitations not only obstruct the formation of long-range dependencies but
also contribute to the inference runtime bottleneck. As depicted in Figure 3, the runtime proportion
of the transformer, including the query generator, can exceed 70% of the total.

In this work, we introduce AVESFormer, an Audio-Visual Efficient Segmentation Transformer for
real-time AVS, seeking to refine the cross-attention mechanism through theoretical insights and
enhanced utilization of multi-modality features. First, we find that attention dissipation is derived
from the peculiar shape of the attention weights under the Softmax function and is prominently
reflected in real-time AVS and single-frame modality fusion. To address this issue, Prompt Query
Generator (PQG) is adopted to process audio features as a prompt, rebuilding distinguishing ability
and effectively eliminating attention dissipation. A novel Early Focus (ELF) decoder is proposed for
narrow attention patterns. Specifically, convolution is introduced in the early transformer decoder
stages, enabling more effective local feature interaction in contrast to the wasted inefficient attention
while reducing the computational cost of the latter.

We evaluate our AVESFormer on S4, MS3, and AVSS tasks on challenging AVSBench dataset (Zhou
et al., 2023). As shown in Figure 1, comprehensive experiments show that AVESFormer achieves
state-of-the-art performance-latency trade-off. Furthermore, we also present that AVESFormer out-
performs previous transformer-based model (Gao et al., 2024) by +3.4% on S4, +8.4% on MS3 and
+6.3% on AVSS while using 20% less parameters and 3× speed-up.
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2 RELATED WORK

Real-Time Audio-Visual Segmentation. Audio-Visual Segmentation (AVS) is a more fine-
grained and complicated task than sound source localization (SSL) (Chen et al., 2021a; Hu et al.,
2020; Qian et al., 2020b) as it aims to locate the sounding object and show pixel-level predictions.
However, few research works focus on real-time scenario where only 1 frame is given at a time
instead of T frames. AVSBench (Zhou et al., 2022) is the first to propose audio-visual segmentation
benchmark, introducing temporal pixel-wise audio-visual interaction (TPAVI) module to facilitate
interaction between audio-visual information. AVSegFormer (Gao et al., 2024) is the first to develop
a novel transformer architecture for AVS. They introduce audio queries into the transformer decoder
to attend to corresponding visual features. CATR (Li et al., 2023a) performs bidirectional com-
binatorial dependence fusion to fully enhance spatial-temporal dependencies. (Chen et al., 2024)
incorporates contrastive loss into audio-visual semantic segmentation with positive and negative
pairs and uses larger resolution with extra data to reach higher performance.

Nevertheless, these methods encounter issues when dealing with single frame image and audio,
making them hardly work for real-time scenario. In detail, many research works meet a failure case
in cross attention with vision as query and audio as key and value. We call this failure case Attention
Dissipation. AVSegFormer (Gao et al., 2024) fails to deliver satisfactory results when firstly trying
Cross-Attention Mixer (CRA). (Chen et al., 2024) generates a plain attention map when visualizing
Softmax attention map in their work. To tackle this problem, researchers propose different cross
attention variants to amend it. TPAVI in AVSBench performs modality fusion by the dot-product
of vision and audio, which can be regarded as a linear attention. AVSegFormer employs a query
generator and perform channel attention to expand audio features and to avoid audio as key and
value. Chen et al. (2024) proposes Sigmoid attention to replace Softmax. Stepping-Stones (Ma et al.,
2024) proposes Adaptive Audio Query Generator, which obtains audio-conditioned query by cosine
similarity to enrich audio features. Although many alternative attention methods are proposed, the
underlying problem still remains unexplored. These attention variants can achieve some results, but
their expression ability is still not sufficient to match default attention(Tay et al., 2022). Therefore,
it is necessary to amend the behaviour of cross attention.

Efficient Vision Transformer. ViT (Dosovitskiy et al., 2020) and its variants (Liu et al., 2021;
Touvron et al., 2021; Wang et al., 2022) have demonstrated significant improvements in computer
vision. However the high computational cost makes them inferior to CNN in real-time inference
scenario. To mitigate this gap, previous works attempt to design more efficient architectures to
reduce computational burden. MobileViT (Mehta & Rastegari, 2021) combines CNN and ViT by
integrating global feature fusion of transformer in CNN. MobileFormer (Chen et al., 2022) bridges
MobileNet (Howard et al., 2017) and ViT in a parallel design to leverage advantages from both ar-
chitectures. EfficientFormer (Li et al., 2022b) finds insufficient operations in transformer and slims
the model size in a latency-driven manner. LVT (Xiao et al., 2021) adopts dilated convolution in
attention mechanisms to enhance model performance and efficiency. LIT (Pan et al., 2022) gives a
more detailed analysis of self-attention heads and applies MLP to build local dependencies. Effi-
cientViT (Cai et al., 2022) proposed to aggregate multi-scale features via small-kernel convolutions.
These methods have made contributions to the development of efficient ViT architectures. We ben-
efit greatly from their contributions to the analysis of AVS tasks.

3 REVISITING AVS UNDER REAL-TIME SCENARIO

3.1 PRELIMINARIES

This paper considers real-time audio-visual segmentation, which is different from common AVS
task settings. Traditional AVS tasks deal with a clip of video frames, which contains T visual
frames xvisual ∈ RT×3×H×W , and corresponding audio signals xaudio ∈ RT×D, where H and W
are the height and width of the image and D is the audio dimension.

However, it’s impractical for real-time inference on a whole bunch of T frames at a time. Users
expect an immediate response as a single input is given instead of waiting for the entire T frames
to be processed together. Meanwhile, the limited memory of edge devices is insufficient to handle
the entire video clip. Therefore, this paper aims at a more practical AVS scenario, called real-time

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 3000.0

0.5

1.0

1.5

2.0

2.5

3.0

A
tte

nt
io

n 
Pr

ob

0 2 4 6 8 10 12 14 16

Query Index
0.00

0.05

0.10

0.15

A
tte

nt
io

n 
Pr

ob

(a) Prob in query generator (b) Single frame heatmap (c) Heatmap when set T = 1

Figure 4: (a) Upper: Attention probabilities assigned to each audio query in query generator (Gao
et al., 2024), leading to a plain distribution. Lower: Attention prob by our AVESFormer, without
dissipation. (b) and (c) Upper: the plain heatmap in single frame fusion and real-time scenario.
Lower: the amended heatmap in AVESFormer.

AVS, where only one single frame is segmented, and the time dimension is forced to T = 1. Only
one image and a piece of audio signal are given for one segmentation mask.

Specifically, initially, audio-visual features are extracted by corresponding backbones. For input
image xvisual ∈ R3×H×W , hierarchical visual features Fvisual are extracted by visual backbone.
Meanwhile, the audio signal is resampled to yield a 16kHz mono output Amono ∈ RNsamples×96×64,
where Nsamples stands for the number of sampling points. Then, Amono is converted into Mel-
spectrum Amel ∈ R96×64 by short-time Fourier transform. Finally we put Amel into audio backbone
to extract features, denoted as Faudio ∈ R1×D, where D is the audio feature dimension. The goal
of AVS is to segment the corresponding sounding visual object region M ∈ RNclass×H×W given
the audio sounding signal, where Nclass is the number of class labels.

3.2 MOTIVATION OBSERVATIONS

In real-time AVS, visual feature Fvisual ∈ Rc×h×w and audio feature Faudio ∈ R1×c are given at
the same moment. The former is usually split into patches Pvisual ∈ RN×c where N = h × w
for attention operation. The common approach directly performs cross-attention, as shown on the
left panel of Figure 2. Let us denote qi, k, v ∈ R1×c as row vectors for i ∈ [1, 2, . . . , N ], with
Pvisual = [qi]N×c and Faudio = k = v. The cross-attention fusion can be represented as follows:

O = Softmax(PvisualFT
audio)Faudio, (1)

oi =
∑
j

ai,jvj =

∑
j e

qik
T
j vj∑

j e
qikT

j

, (2)

where O = [oi] ∈ RN×c and j stands for the row index of Faudio. The scale factor
√
d in Softmax

as well as linear transformation matrices of WQ, WK and WV (Vaswani et al., 2017) are omitted
for the sake of simplicity without affecting the conclusion.

However, Faudio is an 1-dimensional vector, which makes kj = k and vj = v. Based on this
hypothesis, we substitute j = 1 into Equation (2) to obtain:

oi =
eqik

T

v

eqikT = v. (3)

The final output of cross-attention fusion can be written as:

O = Softmax({qikT }ij)v = 1N×1Faudio = [Faudio]N×c
. (4)

From Equation (4), the cross-attention fusion turns into a simple replication of the audio feature,
as illustrated on the right panel of Figure 2. The phenomenon revealed in Equation (4), termed
Attention Dissipation, significantly harms the capability of distributing attention on multi-modality
representation, thus constraining the effectiveness of the attention mechanism (Gao et al., 2024;
Chen et al., 2024). See Appendix A.1.1 for more proof details.
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Figure 5: The overview of AVESFormer. The prompt query generator addresses attention dissipation
by inserting the audio feature on top of learnable parameters to generate audio-conditioned queries.
The ELF decoder processes local features using convolution blocks in the early stages.

Furthermore, attention dissipation appears in various situations, as shown in Figure 4. It leads to
the failure of the Cross-Attention Mixer (CRA) tried by Gao et al. (2024). But this phenomenon
still remains in their query generator, where cross-attention is performed on the individual audio
features as key, as shown in Figure 4(a). Chen et al. (2024) observes a plain Softmax attention map
in their visualization, as depicted by Figure 4(b), but doesn’t conduct further exploration. Moreover,
temporal audio-visual fusion under real-time AVS also appears attention dissipation (Li et al., 2023a;
Liu et al., 2023b), as shown in Figure 4(c).

4 METHOD

We now aim to perform proper cross-attention fusion for real-time AVS. Concretely, we are given a
single visual frame xvisual ∈ R3×H×W , and a raw audio signal Amono ∈ RNsamples×96×64. Our
goal is to learn a model that could successfully predict the segmentation mask M. We elaborate on
the detailed architecture and components of the proposed AVESFormer as shown in Figure 5.

4.1 PROMPT QUERY GENERATOR

Audio 
Feature

Learnable
Queries

Discard

PQG Blocks

Figure 6: Illustration of the
prompt query generator.

Previous query generator module with default cross-attention, e.g.,
AVSegFormer Gao et al. (2024), tries to generate audio-conditioned
features by modeling p(z|Faudio), where z is the learnable queries,
to produce the audio queries related to current audio signals. The
scaled-dot-product attention measures the relevance. However, this
method fails because of the attention dissipation of learnable queries,
such as Q, and each individual audio feature, such as K and V .

Similarly focused on obtaining audio-conditioned queries via
p(z|Faudio), we propose a novel prompt query generator (PQG), as
depicted in Figure 6. The audio feature in a single frame is regarded
as a prompt (Liu et al., 2023c) and concatenated on the head of a set
of learnable queries Qlearn ∈ RNq×D:

Q† = [Faudio|Qlearn] ∈ R(Nq+1)×D, (5)

where [·|·] denotes concatenation and Nq denotes query number.
Then, PQG calculates relevance between learnable queries and audio
features by self-attention. Each learnable query may convey part of
the related information from the original audio feature, and overall,
they inherit the information.
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Block 1 Block 2 Block 3 Block 4 Block 5 Block 6
Figure 7: Attention probabilities of different blocks in fully transformer decoder. Each map shows
the attention probability of the audio query to all visual patches. Maps are averaged along all heads
and queries. Each row indicates a test sample. Dark red indicates higher attention probability, and
early orange indicates lower attention probability.

Finally, the original audio feature is discarded at the output to obtain Fgen ∈ RNq×D. It is impor-
tant to note that PQG serves as an effective approach for modeling p(z|Faudio). While preserving
the information from the original audio feature, the generated audio features also avoid attention
dissipation within itself and the following operation.

4.2 EARLY FOCUS DECODER

Our approach is based on the audio-visual cross-attention patterns, as shown in Figure 7. In the early
stages, audio features generate narrow local responses on attention maps. In the early stages, audio
features generate narrow local responses on attention maps. As it goes deeper, the attention region
enlarges gradually and, in the end, forms shaped regions suitable for segmentation. Therefore, we
propose a novel early focus (ELF) decoder. Since the early stage primarily captures local patterns,
attention to high computational cost is replaced by convolution to capture local semantics. In early
decoder stage l, visual feature Fvisual is processed by convolution:

F l+1
visual = LN(F l

visual + Conv(F l
visual)), (6)

where LN denotes LayerNorm (Ba et al., 2016). In deeper stages, we split Fvisual into visual patches
Pvisual (Dosovitskiy et al., 2020) to perform cross-attention with Fgen from PQG:

P l+1
visual = LN(P l

visual + CA(P l
visual,Fgen,Fgen)), (7)

where CA denotes multi-head cross-attention and CA(Q,K, V ) = Softmax(QKT )V . The ELF de-
coder eliminates the computational burden brought by wasted attention operations but still maintains
the original module function to extract local features.

5 EXPERIMENTS

Dataset. We evaluate our method on the AVSBench dataset (Zhou et al., 2022; 2023), which is
composed of AVSBench-Object and AVSBench-Semantic. AVSBench-Object is designed for audio-
visual segmentation tasks with pixel-level annotations with two subsets: single sound source seg-
mentation (S4) subset and multiple sound source segmentation (MS3) subset. AVSBench-Semantic
is an expanded version of AVSBench-Object, providing additional semantic masks to facilitate
audio-visual semantic segmentation (AVSS). See Appendix A.2.1 for more experimental details.

Implementation Details. Our model is trained on NVIDIA RTX 3090 GPU. From the aspect
of real-time inference, we employ ResNet-50 and ResNet-18 (He et al., 2016) pre-trained on Ima-
geNet (Russakovsky et al., 2015) as our visual backbones. Considering Pyramid Vision Transformer
(PVT-v2) (Wang et al., 2022) is unsuitable for real-time applications, we do not adopt it as the vi-
sual backbone. We employ Vggish (Hershey et al., 2017) pre-trained on AudioSet (Gemmeke et al.,
2017) to encode audio input. Jaccard index J and F-score F are adopted as evaluation metrics. See
Appendix A.2.1 for more experimental details.
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Table 1: Comparison with state-of-the-art methods on the S4, MS3 benchmark. The evaluation
metrics are Jaccard index and F-score.

Method Backbone S4 MS3

J F J F
LVS (Chen et al., 2021b) ResNet-18 38.0 51.0 29.5 33.0
MSSL (Qian et al., 2020a) ResNet-18 44.9 66.3 26.1 36.3
3DC (Mahadevan et al., 2020) ResNet-152 57.1 75.9 36.9 50.3
SST (Duke et al., 2021) ResNet-101 66.3 80.1 42.6 57.2
iGAN (Mao et al., 2021) Swin-T 61.6 77.8 42.9 54.4
LGVT (Zhang et al., 2021) Swin-T 74.9 87.3 40.7 59.3

AVSBench (Zhou et al., 2022)

ResNet-50

72.8 84.8 47.9 57.8
CATR (Li et al., 2023a) 74.8 86.6 52.8 65.3
DiffusionAVS (Mao et al., 2023a) 75.8 86.9 49.8 62.1
ECMVAE (Mao et al., 2023b) 76.3 86.5 48.7 60.7
AuTR (Liu et al., 2023b) 75.0 85.2 49.4 61.2
AQFormer (Huang et al., 2023) 77.0 86.4 55.7 66.9
AVSC (Liu et al., 2023a) 77.0 85.2 49.6 61.5
AVSegFormer (Gao et al., 2024) 76.5 85.9 49.5 62.8
AVSBG (Hao et al., 2024) 74.1 85.4 45.0 56.8
BAVS (Liu et al., 2024a) 78.0 85.3 50.2 62.4
UFE (Liu et al., 2024b) 79.0 87.5 55.9 64.5
MUTR (Yan et al., 2024) 78.6 87.3 57.0 66.1

AVESFormer (ours) ResNet-18 77.3 87.5 55.5 65.1
ResNet-50 79.9 89.1 57.9 68.7

5.1 MAIN RESULTS

Comprehensive experiments have been conducted on AVSBench-Object and AVSBench-Semantic
datasets alongside other methods. As shown in Table 1 and Table 2. Model parameter counts and in-
ference latency is presented in Table 3. Our AVESFormer exhibits the state-of-the-art performance-
speed trade-off among all models. Specifically, AVESFormer surpasses previous methods w.r.t.
mIoU by 79.9% on the S4 subset, 57.9% on the MS3 subset and 31.2% on the AVSS subset, respec-
tively. Figure 1 illustrates that the inference speed of AVESFormer exceeds previous methods with
the ResNet-50 backbone by large margins. In summary, these results demonstrate the advantages of
AVESFormer in terms of performance, speed, and model size.

Table 2: Comparison with state-of-the-art methods on the AVSS benchmark. The evaluation metrics
are Jaccard index and F-score.

Method Backbone AVSS

J F
3DC (Mahadevan et al., 2020) ResNet-152 17.3 21.6
AOT (Yang et al., 2021) Swin-B 25.4 31.0

AVSBench (Zhou et al., 2022)
ResNet-50

20.2 25.2
AVSegFormer (Gao et al., 2024) 24.9 29.3
BAVS (Liu et al., 2024a) 24.7 29.6

AVESFormer (ours) ResNet-18 26.3 31.8
ResNet-50 31.2 36.8

7
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Table 3: Comparison with state-of-the-art methods on parameter counts and latency. #Params refers
to the number of parameters. Latency is reported on a single NVIDIA RTX 3090 GPU. * means the
parameters of audio backbone Vggish (Hershey et al., 2017) are included.

Method Backbone #Params∗ Latency
(M) (ms)

AVSBench (Zhou et al., 2022)

ResNet-50

163 15.7
CATR (Li et al., 2023a) 177 21.6
ECMVAE (Mao et al., 2023b) 162 18.9
AVSegFormer (Gao et al., 2024) 151 37.9

AVESFormer (ours) ResNet-18 108 8.8
ResNet-50 127 12.0

TPAVIDissipationImage CHA Sigmoid Ours GT

Figure 8: Visualization of attention maps, including cross-attention with attention dissipation,
TPAVI (Zhou et al., 2022), channel attention mixer (CHA) (Gao et al., 2024), sigmoid atten-
tion (Chen et al., 2024) and our ELF decoder. Each map shows the correlation between audio
queries and visual patches. Red indicates a higher attention score, while blue indicates a lower one.

5.2 HANDLING ATTENTION DISSIPATION

Effectiveness of Prompt Query Generator To verify the effectiveness of PQG, we remove it to
fuse modality with raw, unprocessed audio features. Additionally, the original query generator (QG)
proposed by Gao et al. (2024) and an optional bias query generator (BQG) are also included. The
ordinary query generator follows default settings with 6 layers and 300 queries. The bias query
generator replicates the audio query and adds a learnable bias term. As shown in Table 4, PQG
treats the audio feature as a prompt and cleverly addresses dissipation to avoid attention dissipation,
yielding more improvements than the bias query generator.

Table 4: Effect of PQG. PQG overcomes atten-
tion dissipation to gain more improvements.

Method
S4 MS3

J F J F

w/o QG 75.9 87.1 50.0 61.9
w/ QG 78.5 88.7 50.0 61.7

w/ BQG 75.9 87.1 49.6 60.0
w/ PQG 79.9 89.1 57.9 68.7

Table 5: Performance of different fusion strate-
gies. After fixing attention dissipation, cross-
attention fusion works still best.

Method S4 MS3

J F J F
dissipation 79.2 88.1 47.1 60.9
w/ TPAVI 79.6 88.7 55.4 65.4
w/ CHA 79.6 88.6 55.7 65.8
w/ sigmoid 78.4 88.6 55.3 62.0
w/ cross attn 79.9 89.1 57.9 68.7
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Table 6: Performance of AVSegFormer (Gao et al., 2024) and AVESFormer with QG and PQG.

Model w/ Method S4 MS3 #Params Latency

J F J F (M) (ms)

AVSegFormer w/ QG 76.5 85.9 49.5 62.8 151 37.9
AVSegFormer w/ PQG 77.4 86.9 56.0 67.7 144 32.5
AVESformer w/ QG 76.5 85.9 49.5 62.8 131 17.9
AVESformer w/ PQG 79.9 89.1 57.9 68.7 127 12.0

Figure 9: Visualization of attention maps by each audio query in PQG. Red indicates a higher
attention score, while blue indicates a lower one.

Intrinsic nature of PQG Attention maps of individual queries in PQG are visualized in Figure 9
to analyze its functionality. For a given frame, certain audio queries attend to the corresponding
sounding object, while others may focus on the background. Each audio query captures distinct se-
mantic features: some attend to specific parts of the sounding object, while others capture the entire
object. Across different frames, queries adapt by attending to different objects. For instance, a query
might focus on the sounding object in one frame but shift attention to the background in a differ-
ent context. This demonstrates PQG’s ability to effectively capture diverse semantic information in
various audio-conditioned scenarios.

Fusion Strategy. Furthermore, cross-attention fusion after addressing attention dissipation com-
pared to other fusion strategies is investigated. Including a) cross-attention under attention dissipa-
tion, b) TPAVI by Zhou et al. (2022), c) CHA by Gao et al. (2024), d) sigmoid by Chen et al. (2024).
Results are shown in Table 5. After addressing attention dissipation, cross-attention emerges as the
optimal choice, demonstrating the most distinguishing representation ability. Figure 8 shows the
attention map visualizations of different fusion strategies.

Influence with Plug and Play PQG. Furthermore, PQG can be integrated into other models such
as AVSegFormer (Gao et al., 2024), as shown in Table 6. On MS3, where the audio distinguishing
capability is crucial due to the presence of multiple sound sources within an image, PQG demon-
strates substantial improvement (+6.5% mIoU) when applied to AVSegFormer.

5.3 HYPERPARAMETERS AND ABLATION STUDIES ON AVESFORMER

Training Setup. We provide ablation results with AVESFormer. To make quick evaluations, we
adopt ResNet-50 as the backbone and perform extensive experiments on the S4 and MS3 sub-tasks.
Other training settings remain consistent with Section 5.

ELF Decoder. We analyze the influence of convolution at different stages of the ELF decoder.
As shown in Table 7, ”C” denotes convolution, and ”T” denotes transformer. ”Stage” indicates the

9
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Table 7: Impact of the convolution blocks at different stages. We show model performance with
different convolution insertion stages.

Stage S4 MS3 AVSS Latency

J F J F J F (ms)

T-T-T 77.3 87.6 56.2 66.6 30.7 35.1 14.9
C-T-T 79.9 89.1 57.9 68.7 31.2 36.8 12.0
T-C-T 77.6 88.0 56.5 67.3 29.3 35.1 12.1
T-T-C 77.1 88.3 55.2 67.3 31.0 36.4 11.8

Image

AVSegFormer

GT

AVSBench

AVESFormer

Figure 10: Visualization of segmentation predictions on S4 (left), MS3 (middle) and AVSS (right)
Dataset with AVSBench (Zhou et al., 2022) and AVSegFormer (Gao et al., 2024).

insertion stage of convolution, with three options listed: early (C-T-T), middle (T-C-T), and deep
(T-T-C). Additionally, a pure transformer decoder (T-T-T) is included. As convolution blocks are
moved deeper, the mIoU drops by 2.81% on S4 and 2.73% on MS3. This decline can be attributed
to the fact that early layers primarily generate local responses. In contrast, deeper layers facili-
tate high-level interactions between audio-visual modalities, which are essential for AVS tasks.

Table 8: Performance of different number of
queries in PQG.

S4 MS3
# of queries J F J F

8 79.3 88.9 55.8 66.0
16 79.9 89.1 57.9 68.7
32 79.4 88.9 56.2 66.6
64 79.1 88.9 55.8 67.0
128 79.0 88.8 56.0 67.4
256 79.3 89.0 57.3 67.8

Number of Queries. Table 8 presents the
performance of AVESFormer trained with
varying numbers of quires of PQG in AVS-
Bench. The experiments span query counts
from 8 to 256 with a scale factor of 2. Notably,
utilizing 16 queries performs best across S4 and
MS3. This suggests that even though there are
a number of sounding object categories, a large
number of queries may not be necessary. A few
queries in AVESFormer are adequate for learn-
ing distinguishing audio features.

Qualitative Analysis. Visualizations of AVESFormer compared with those of AVSBench (Zhou
et al., 2022) and AVSegFormer (Gao et al., 2024) are depicted in Figure 10. Our AVESFormer over-
comes critical attention dissipation and makes more sophisticated visualization and segmentation
performance. See Appendix A.3.1 for more visualizations.

6 CONCLUSION

In this paper, we analyze the attention dissipation phenomenon and inefficient transformer de-
coder. Based on these findings, we introduce AVESFormer, the first transformer-based real-time
AVS model. Experimental results demonstrate that AVESFormer achieves the new state-of-the-art
performance-speed trade-off. We hope our method provides insights into new architecture design
not only in AVS tasks but also in various multi-modality scenarios.
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A APPENDIX

A.1 ATTENTION DISSIPATION

A.1.1 PROOF ON ATTENTION DISSIPATION

As discussed in Sec. 3.2, a brief explanation of attention dissipation is given. Now, we will provide
more detailed proof of this phenomenon.

As commonly practised in AVS tasks, visual features are extracted from the visual backbone to get
Fvisual ∈ Rc×h×w of one frame. Then we patchify the visual feature into Pvisual ∈ RN×c where
N = h× w. Meanwhile, audio signals within one frame are input into the audio backbone to form
Faudio ∈ R1×c. Note that since we only consider one frame at a time in real-time scenario, the
sequence length of the audio feature is equal to 1. We cannot omit the sequence length dimension
because we should keep this shape to perform matrix multiplication in the attention mechanism.

Consequently, the modality fusion process is performed originally by cross attention, where visual
patches are query while the audio feature is key and value:

O = Softmax(PvisualFT
audio)Faudio ∈ RN×c, (8)

where

Pvisual =


q1
q2
...
qN

 , (9)

qi ∈ R1×c, i ∈ [1, 2, . . . , N ], (10)

Faudio = k = v ∈ R1×c. (11)

The attention logit matrix A can be written as:

A = PvisualFT
audio =


q1
q2
...
qN

 kT =


q1k

T

q2k
T

...
qNkT

 ∈ RN×1, (12)

where

qik
T ∈ R, i ∈ [1, 2, . . . , N ]. (13)

Softmax is calculated along the row vector on attention matrix A to get attention probability matrix
P:

P = Softmax(A)|row =


eq1k

T

/
∑

eq1k
T

eq2k
T

/
∑

eq2k
T

...
eqNkT

/
∑

eqNkT

 =


eq1k

T

/eq1k
T

eq2k
T

/eq2k
T

...
eqNkT

/eqNkT

 =


1
1
...
1

 = 1N×1. (14)

Finally the output O becomes a simply replication of value matrix:

O = Softmax(A)|rowFaudio = PFaudio = 1N×1Faudio =


1
1
...
1

Faudio =


Faudio

Faudio

...
Faudio

 . (15)

The attention dissipation phenomenon shows that cross-attention with visual features such as query
and audio as key and value turns out to be a simple replication of audio signals. It goes against our
original intent of modality fusion.
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A.1.2 CODE IMPLEMENTATION

To make a fully comprehensive understanding of attention dissipation, we provide a PyTorch-like
pseudo-code for easy verification and implementation of cross-attention dissipation. Algorithm 1
provides the pseudo-code of attention dissipation in the AVS task. For the current frame, we calcu-
late the attention matrix with the use of visual features as query and audio as key and value.

Algorithm 1 Pseudo-code of Attention Dissipation in a PyTorch-like style.

# image, audio: visual and audio feature
# attn: attention matrix
# out: output of attention

import torch
import torch.nn as nn
import torch.nn.functional as F

def cross_attention(image:torch.Tensor, audio:torch.Tensor):
"""
:param image: torch.tensor with shape [B, C, H, W]
:param audio: torch.tensor with shape [B, C]
:return: fused feature and attention weight
"""

image = image.flatten(2).transpose(1, 2)
audio = audio.unsqueeze(1)

q = image
k = audio
v = audio

attn = torch.matmul(q, k.transpose(1, 2))
attn = F.softmax(attn, dim=-1)
out = torch.matmul(attn, v)

return out,attn

A.2 EXPERIMENTS

A.2.1 EXPERIMENTAL DETAILS

Dataset. We evaluate our method on the AVSBench dataset (Zhou et al., 2022; 2023), which is
composed of AVSBench-Object and AVSBench-Semantic. AVSBench-Object is designed for audio-
visual segmentation tasks with pixel-level annotations. Videos are sourced from YouTube, cropped
into 5 seconds, and sampled at one frame per second to compose the image data. There are two
subsets in AVSBench-Object: single sound source segmentation (S4) subset and multiple sound
source segmentation (MS3) subset. The S4 subset contains 4,932 videos: 3,452 for training, 740
for validation and 740 for testing. The labels contain 23 categories, including humans, vehicles,
animals and kinds of instruments. Note that annotations in S4 training set is only given in the first
frame. Meanwhile, MS3 subset is composed of multiple sound sources, including 424 videos, 286
for training, 64 for validation and 64 for testing. MS3 shares the same categories as S4.

Implementation Details. During training, we use the original image size as 224×224. We apply
horizontal flipping on S4 and MS3 for data augmentation. Since the S4 sub-set only contains anno-
tations on the first frame in the training split, we only use the first frame to provide supervision. We
use the AdamW optimizer and a polynomial learning rate decay with power = 0.9. On S4 and MS3,
the learning rate is set to 0.0005, and on AVSS, it is set to 0.0001. Following previous practice Gao
et al. (2024), we train MS3 for 60 epochs since it is relatively small, while the S4 and AVSS subsets
are trained for 30 epochs. Batch size is set to 16 for S4 and MS3 and 8 for AVSS. We adopt two
ResNet He et al. (2016) backbones (ResNet-50 and ResNet-18) for the segmentation network. For
the audio backbones, we use VGGish Hershey et al. (2017) frozen during the training. The prompt
query generator (PQG) receives the feature from the audio backbone as prompt. The number of
queries is set to 16, and the number of layers is set to 3. At the output end, the audio feature prompt
is discarded. The transformer decoder is adopted from Multi-Scale Deformable (MSDeform) at-
tention Zhu et al. (2020). The first two attention blocks are replaced by convolution to form ELF
decoder. Convolution blocks are attached with residual connection and LayerNorm Yu et al. (2024).
As for the segmentation loss, on S4 and MS3, we set λIoU = 1.8 and on AVSS λIoU = 1.0 with
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λDice = 1.0 and λaux = 0.1. For inference, since the end-to-end real-time scenario does not support
inferring on a bunch of frames (because we want to segment one image at a time on the device), the
latency of all models is measured under one single frame, that is, T = 1. Nevertheless, some of
the methods employ temporal information within multiple frames, which would be lost in a single
frame scenario; we still keep their performance the same for comparison.

Evaluation Metrics. Following Zhou et al. (2022), we adopt Jaccard index J and F-score F
to evaluate. J indicates the mean intersection over union (mIoU) Everingham et al. (2015) be-
tween segmentation prediction and ground truth. F measures the precision and recall by F =
(1+β2×precision×recall)

β2×precision+recall , where β2 = 0.3.

It is important to emphasize that although other methods are evaluated in default AVS settings,
that is, with T frames at a time, some of them may show a slight decay because of the absence of
temporal information and the appearance of attention dissipation in real-time AVS. But AVESFormer
is entirely evaluated under real-time AVS, and hold the same performance in default AVS setting.

A.2.2 MORE RESULTS

Different Backbone. We provide additional results with another commonly used backbone PVT-
v2 (Wang et al., 2022). Results are shown in the following table.With larger scale and more pa-
rameters, PVT-v2 gains more performance. However, the inference time of PVT-v2 accounts for
a significant proportion up to 86.3% of the whole network. It indicates that the model spends too
much time merely on PVT-v2 backbone, while the rest of the network takes 6ms or so. Also, the
slight performance improvement of PVT-v2 comes at the cost of nearly 7x inference latency, which
is not really efficient. In comparison, ResNet backbones show nice property in the trade-off between
performance and inference speed. As a result, we choose ResNet as a more suitable architecture for
real-time applications rather than PVT-v2.

Table 9: Performance of different backbones.

Backbone S4 MS3 AVSS Latency Backbone Latency

J F J F J F (ms) (ms)

PVT-v2 80.5 89.2 59.5 72.3 32.9 38.5 43.8 37.8
ResNet50 79.9 89.1 57.9 68.7 31.2 36.8 12.0 5.5
ResNet18 77.3 87.5 55.0 65.1 26.3 31.8 8.8 2.4

A.3 QUALITATIVE ANALYSIS

A.3.1 RESULTS VISUALIZATION

We present additional visualization results for the paper, alongside AVSBench Zhou et al. (2022),
AVSegFormer Gao et al. (2024) and our model on AVSBench-Object Zhou et al. (2022) and
AVSBench-Semantic Zhou et al. (2023) with ResNet-50 He et al. (2016) backbone, as depicted
in Figure. 11, Figure. 12, and Figure. 13. We demonstrate that AVESFormer efficiently presents
a more fine-grained prediction and a more accurate audio-visual corresponding capability to the
segmentation of objects in the scene compared to previous methods.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Im
ag

e
G

T
A

V
Se

gF
or

m
er

A
V

SB
en

ch
O

ur
s

Figure 11: Qualitative audio-visual segmentation results on AVSBench-Object S4 sub-set Zhou et al.
(2023) by TPAVI Zhou et al. (2022), AVSegFormer Gao et al. (2024), and AVESFormer. Each row
represents the raw image, ground truth or different methods. Each column represents various data
samples.

A
V

Se
gF

or
m

er
O

ur
s

A
V

SB
en

ch
G

T
Im

ag
e

Figure 12: Qualitative audio-visual segmentation results on AVSBench-Object MS3 sub-set Zhou
et al. (2023) by TPAVI Zhou et al. (2022), AVSegFormer Gao et al. (2024), and AVESFormer. Each
row represents the raw image, ground truth or different methods. Each column represents various
data samples.
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Figure 13: Qualitative audio-visual segmentation results on AVSBench-Semantics Zhou et al. (2023)
by TPAVI Zhou et al. (2022), AVSegFormer Gao et al. (2024), and AVESFormer. Each row rep-
resents the raw image, ground truth or different methods. Each column represents various data
samples.
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