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ABSTRACT

The recent success of State-Space Models (SSMs) in sequence modeling has in-
spired their extension to graphs, giving rise to Graph State-Space Models (GSSMs).
While effective, existing approaches often rely on sequentializations or spectral
decompositions that lack permutation equivariance, message-passing compatibility,
and computational efficiency. Moreover, they typically target either static or tem-
poral graphs in isolation and, crucially, provide only loose or qualitative results on
information propagation, offering no exact guarantees on challenges such as van-
ishing gradients and over-squashing. In this work, we revisit the design of GSSMs
through the lens of sensitivity analysis. We introduce a principled integration
of modern SSM computation into the Message-Passing Neural Network frame-
work, yielding a unified architecture that is computationally efficient, permutation
equivariant, and supports fast parallelism. Our formulation admits closed-form
Jacobian computations, enabling an exact sensitivity analysis of node-to-node
dependencies and rigorous lower bounds on information flow, contrasting sharply
with prior heuristic approaches. These theoretical insights clarify when and how
stable long-range propagation can be achieved. Finally, we validate our model
across a wide range of benchmarks, including node classification, graph property
prediction, long-range reasoning, and spatiotemporal forecasting, where it achieves
strong empirical performance while preserving the simplicity of message passing.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Wu et al., 2020a; Gravina & Bacciu, 2024), and in particular
Message-Passing Neural Networks (MPNNs) (Gilmer et al., 2017), have become a standard tool for
learning from graph-structured data. Yet, traditional MPNNs such as GCNs (Kipf & Welling, 2016)
struggle to propagate information across distant nodes due to phenomena like over-squashing (Alon &
Yahav, 2021; Topping et al., 2022; Di Giovanni et al., 2023) and, more generally, vanishing gradients
(Di Giovanni et al., 2023; Pascanu et al., 2013; Arroyo et al., 2025), which limit their effectiveness on
tasks requiring long-range dependency modeling (Dwivedi et al., 2022b). While a variety of remedies
have been proposed, ranging from rewiring techniques (Topping et al., 2022; Karhadkar et al., 2023;
Gutteridge et al., 2023), to transformers (Kreuzer et al., 2021b; Ying & Leskovec, 2021; Rampášek
et al., 2022; Dwivedi et al., 2021; 2022a), to regularization strategies in weight space (Gravina et al.,
2023; 2025), these often rely on heavy architectural modifications and typically do not extend cleanly
to standard MPNNs like GCNs.

In parallel, State-Space Models (SSMs) have recently emerged as a powerful paradigm in sequence
modeling, with architectures such as LRU (Orvieto et al., 2023), S4 (Gu et al., 2021), and subsequent
extensions (Smith et al., 2022; Gupta et al., 2022; Poli et al., 2023; Fu et al., 2022), culminating
in advanced designs like Mamba (Gu & Dao, 2023), Griffin (De et al., 2024), and xLSTM (Beck
et al., 2024). These models rely on linear recurrent dynamics interleaved with nonlinear projections,
a design that enables efficient training, stable gradient flow, universal approximation, and robust
long-range dependency modeling (Pipiras & Taqqu, 2017; Voelker et al., 2019; Orvieto et al., 2024;
Muca Cirone et al., 2024). Inspired by this progress, several works have attempted to adapt SSMs to
graph learning. Current approaches, however, either enforce sequentializations of the graph (Tang
et al., 2023; Wang et al., 2024a; Behrouz & Hashemi, 2024) or adopt spectral decompositions (Huang
et al., 2024; Zhao et al., 2024), which may compromise permutation equivariance (Bronstein et al.,
2021), distort graph topology, or rely on non-unique modes (Lim et al., 2023). Moreover, while these
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Figure 1: Illustration of our MP-SSM for temporal and static cases, considering a recurrence time
k + 1 = 3. The temporal case (left) incorporates dynamic updates to node embeddings over time
steps, represented as U = [U1,U2,U3], while the static case (right) uses fixed node embeddings
U = [U1,U1,U1]. An MP-SSM block comprises a linear recurrence followed by a multilayer
perceptron (MLP). Multiple MP-SSM blocks are stacked to construct a deep MP-SSM architecture.

methods improve propagation in practice, they provide at best loose guarantees on sensitivity, leaving
fundamental questions about stability and information flow unanswered.

This paper revisits Graph State-Space Models (GSSMs) through the lens of sensitivity analysis, i.e., by
studying how the state of a node depends on information from distant nodes. We propose a principled
integration of SSM computation into the MPNN framework that not only preserves permutation
equivariance and computational efficiency, but also admits exact sensitivity analysis. This allows us to
rigorously quantify node-to-node dependencies, derive precise lower bounds for vanishing gradients
and over-squashing, and identify unfavorable topologies that exacerbate propagation bottlenecks. In
contrast to prior work that relies on approximations or heuristic arguments, our analysis provides
concrete and informative characterizations of how information flows in the deep regime.

Our contributions can be summarized as follows:

1. Principled integration of SSMs and MPNNs through sensitivity analisys. We introduce
a simple yet general framework, namely Message-Passing State-Space Model (MP-SSM),
that embeds linear state-space dynamics directly into message passing. This design unifies
static and temporal graphs while preserving permutation equivariance and graph topology. It
enables stable long-range information propagation and supports fast parallel implementation.

2. Exact sensitivity analysis. Our formulation enables closed-form Jacobian computations,
yielding exact characterizations of local and global sensitivities, i.e., the model’s information
transfer capacity. We provide lower bounds that directly link architectural design choices to
the alleviation of vanishing gradients and over-squashing.

3. Empirical validation. Across 15 benchmarks including synthetic and real-world long-range
tasks, heterophilic node classification, and spatiotemporal forecasting, our approach consis-
tently matches or outperforms state-of-the-art baselines, demonstrating both its versatility
and effectiveness.

2 MESSAGE-PASSING STATE-SPACE MODEL

In this section, we present our framework, called Message-Passing State-Space Model (MP-SSM),
which integrates state-space modeling into the message-passing paradigm. The theoretical analysis
that guided the design of MP-SSM and ensures principled information propagation across the graph
is detailed in Section 3.
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Graph and Shift Operator. We represent a graph as G = (V,E) where V is a set of n nodes, and
E ⊆ V × V is a set of m undirected edges. The adjacency matrix Ã ∈ {0, 1}n×n encodes edge
presence with (Ã)ij = 1 if (i, j) ∈ E, and zero otherwise. To enable message passing, we use the
graph shift operator (GSO) defined as the symmetrically normalized adjacency with self-loops (Kipf
& Welling, 2016):

A = D− 1
2 (Ã+ I)D− 1

2 , (1)

where Ã is the adjacency matrix, and D is the degree matrix of Ã + I, with (D− 1
2 )ii =

(
1 +∑n

j=1(Ã)ij
)− 1

2 . We emphasize that, although we adopt the GSO in Eq. (1) for its simplicity and
widespread use, our framework is compatible with any choice of GSO.

Linear State-Space Recurrence on Graphs. We denote the graph data as a sequence of input node
features [Ut]

T
t=1, with Ut ∈ Rn×c′ , with c′ being the dimensionality of the input features. We note

that, for static graphs the sequence consists of a single element, i.e., U1 (as shown in the bottom-right
of Fig. 1). We embed the sequence of input states, obtaining a sequence of hidden states [Xt]

T
t=1,

where Xt ∈ Rn×c, via a linear message-passing scheme and channel mixing with learnable weight
matrices W ∈ Rc×c,B ∈ Rc′×c, as follows:

Xt+1 = AXtW +Ut+1B. (2)

Eq. (2) represents the linear state-space recurrence on graphs. Note that the message-passing
mechanism of many popular GNN models in the literature can be expressed through the form of of
this equation, including methods like GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2018), and
GIN (Xu et al., 2019). A key distinction from such models lies in the use of a purely linear recurrent
equation. This design choice is consistent with modern SSM approaches and, crucially, enables
both an exact sensitivity analysis (discussed in Section 3) and an efficient parallel implementation.
Specifically, MP-SSM can be parallelised by unrolling the linear recurrence and computing a closed-
form solution in a single step. In Appendix B, we describe our fast implementation, discussing both
its advantages and limitations, and provide a runtime comparison with a standard GCN, showing that
MP-SSM can achieve up to a 1000× speedup.

MP-SSM Block. A block of our MP-SSM is designed to propagate information between nodes that
are k hops away from each other, where k can also be large, as discussed in Section 3. Each block
is composed of k iterations of the linear recurrence described in Eq. (2), followed by a learnable
graph-agnostic nonlinear mapping. Setting the initial state X0 = 0 ∈ Rn×c, we define our MP-SSM
block as:

Xt+1 = AXtW +Ut+1B, t = 0, . . . , k, (3)
Yt+1 = MLP(Xt+1), (4)

where MLP denotes a nonlinear multilayer perceptron of 2 dense layers with a nonlinearity in between
them, and k a hyperparameter defining the depth of each MP-SSM block. Eqs. (3) and (4) define
the state-space representation on graphs, which forms the foundation of our proposed MP-SSM. Our
framework is inspired by SSMs, which are naturally suited for sequential data. In temporal graph
settings, the input naturally consists of a sequence of graphs (e.g., with time-varying features). Given
an input sequence U = [U1,U2, . . . ,Uk+1], we apply the same MLP decoder of Eq. (4), shared
across all time steps, to the corresponding embeddings [X1,X2, . . . ,Xk+1], producing an output
sequence [Y1,Y2, . . . ,Yk+1] of the same length. For static graphs, however, we must construct
a sequence from a single input instance U1. As illustrated in Figure 1, we unify the treatment
of temporal and static settings by generating a constant input sequence U = [U1,U1, . . . ,U1]
of length k + 1 for the static case. We note that this design induces a skip connection in the
recurrence. In the static setting, the MLP decoder is applied solely to the final embedding after
k + 1 steps. Consequently, both the input and output sequences are constant: [U1,U1, . . . ,U1]
as input and [Yk+1,Yk+1, . . . ,Yk+1] as output. Fig. 1 illustrates and summarizes the modes of
operation described above. In Appendix E, we clarify the originality of our framework in relation
to recent state-space modeling approaches for temporal graphs, i.e., GGRNN (Ruiz et al., 2020)
and GraphSSM (Li et al., 2024), and static graphs, i.e., S4G (Song et al., 2024). A key feature that
distinguishes MP-SSM from these approaches is the absence of nonlinearity in the graph diffusion
dynamics. In fact, the only nonlinearity in the entire MP-SSM block resides within the MLP decoder.
This property is crucial both for enabling exact sensitivity analysis and for supporting an efficient
parallel implementation of the recurrence, as detailed in Appendix B.
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The Deep MP-SSM Architecture. Following principles established in modern SSMs (Gu et al.,
2021; Orvieto et al., 2023), we build a hierarchy of representations by constructing a deep MP-SSM
architecture composed of stacked MP-SSM blocks. We use the output of an MP-SSM block as an
input for the next one. We visually summarize this concept at the top of Figure 1. We note that,
stacking multiple MP-SSM blocks allows the model to increase its effective aperture, aggregating
information from further nodes. Specifically, the embedding Yk+1 encodes information aggregated
up to the k-th hop. Therefore, stacking s MP-SSM blocks, each of depth k, allows to aggregate
information from up to sk hops away. In Appendix F, we provide a multi-hop interpretation of a deep
MP-SSM architecture, in the static case.

MP-SSM generalizes its corresponding MPNN backbone. We note that our MP-SSM can
implement its backbone MPNN, an important property that allows it to retain desired or known
behavior from existing MPNNs while also generalizing it and allowing for improved information
transfer, as discussed in Section 3. To show that our model can implement its backbone MPNN,
which in our case is based on GCN via the chosen GSO (as shown in Eq. (1)), we consider the
static case, i.e., an input sequence [U1, . . . ,U1], under the assumption that the MLP is a nonlinear
activation σ function. We note that this can be obtained if the weights within the MLP decoder are
the identity matrices, i.e., MLP(·) = σ(·). Then an MP-SSM block with k = 1 yields a GCN layer.
In fact, if k = 1 then Eqs. (3) and (4) read:

X1 = U1B ⇒ X2 = AU1BW +U1B = AX1W +X1 ⇒ Y2 = σ(AX1W +X1),

which implements a GCN with a residual connection. Then Y2 is passed as an input to the next
MP-SSM block, which yields a similar update rule, effectively constructing a deep GCN. However,
we note that if k ≥ 2, then an MP-SSM block deviates from the standard GCN processing.

Final SSM heuristics. If the GSO is the identity matrix (A = I), then our MP-SSM resutls in a
multi-input multi-output SSM. This architecture is graph-agnostic, and it can be made resilient to
vanishing and exploding gradient issues through standard deep learning heuristics such as residual
connections (He et al., 2016) and normalization layers (Vaswani et al., 2017b), with dropout being
employed as a regularization technique to support the learning of robust hierarchical representations
(Srivastava et al., 2014). In our deep MP-SSM architecture, we apply these heuristics between
MP-SSM blocks, following established practices in SSMs (Gu et al., 2021; Gu & Dao, 2023).
Appendix J.1 presents an ablation study tracing the incremental impact of each SSM heuristic on
graph representation learning, progressing from a plain GCN to a deep MP-SSM architecture. Finally,
we discuss the complexity and runtimes of MP-SSM in Appendix I.

3 SENSITIVITY ANALYSIS

We conduct a sensitivity analysis of MP-SSM via the spectral norm of the Jacobian of node features,
as in (Topping et al., 2022). We provide an exact characterization of MP-SSM’s gradient flow through
the graph, identify unfavourable topological structures that intensify oversquashing effects, and
quantitatively assess the impact of removing nonlinearities at each recurrent step of graph diffusion,
particularly in alleviating vanishing gradients in the deep regime.
Remark 3.1. As discussed in Section 2, MP-SSM extends graph-agnostic SSMs, for which established
deep learning heuristics are known to effectively address vanishing/exploding gradient issues. This
observation motivates our focus for sensitivity analysis on the linear recurrent equation within an
MP-SSM block, as it encapsulates the core dynamics relevant to information propagation on graphs.
Notably, all the other operations within a deep MP-SSM are independent of the graph structure.
Thus, if the linear recurrent equation supports effective information transfer, then this property
naturally extends across the full MP-SSM architecture, which is fundamentally an SSM-inspired
stack of such linear recurrences.

Let X(j)
s and X

(i)
t denote the embeddings of nodes j and i at time steps s ≤ t. We define:

Definition 3.2 (Local sensitivity). The local sensitivity of the i-th node features to features of the j-th
node, after t− s applications of message-passing steps, is defined as the following spectral norm:

Sij(t− s) =

∣∣∣∣∣
∣∣∣∣∣ ∂X(i)

t

∂X
(j)
s

∣∣∣∣∣
∣∣∣∣∣. (5)
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Equation (5) measures the influence of node j’s features at time s on node i at time t.
Remark 3.3. If the local sensitivity between two nodes increases exponentially with t− s, then the
learning dynamics of the MPNN are unstable; that is the typical case for linear MPNNs using the
adjacency matrix without any normalization or feature normalization. Therefore, upper bounds on
local sensitivity are linked with stable message propagation, in the deep regime.

The linearity of the recurrence of an MP-SSM block allows an exact computation of the Jacobian
between two nodes j, i at different times s, t, in terms of the powers of the GSO, as expressed by
Equation (6) in Theorem 3.4 (for the proof, see Appendix C.2).
Theorem 3.4 (Exact Jacobian computation in MP-SSM). The Jacobian of the linear recurrent
equation of an MP-SSM block, from node j at layer s to node i at layer t ≥ s, can be computed
exactly, and it has the following form:

∂X
(i)
t

∂X
(j)
s

= (At−s)ij︸ ︷︷ ︸
scalar

(W⊤)t−s︸ ︷︷ ︸
matrix

. (6)

Consequently, GSOs that yield a bounded outcome under iterative multiplication promote stable
MP-SSM dynamics, as highlighted in Remark 3.3. In Lemma 3.5, we formally prove (see Ap-
pendix C.1) that the GSO defined in Equation (1) exhibits this stability property, along with additional
characteristics1 that support our theoretical analysis.
Lemma 3.5 (Powers of symmetrically normalized adjacency with self-loops). Assume an undirected
graph. The spectrum of the powers of the symmetric normalized adjacency matrix A = D− 1

2 (Ã+

I)D− 1
2 is contained in the interval [−1, 1]. The largest eigenvalue of At has absolute value of 1

with corresponding eigenvector d = diag(D
1
2 ), for all t ≥ 1. In particular, the sequence of powers

[At]t≥1 does not diverge or converge to the null matrix.

Thus, Lemma 3.5 implies that the symmetrically normalized adjacency with self-loops, i.e., Equa-
tion (1), serves as a GSO that ensures stable dynamics when performing a large number of message-
passing operations in the MP-SSM’s framework. Moreover, for such a particular GSO, we can derive
a precise approximation of the local sensitivity in the deep regime, as stated in Theorem 3.6 and
proved in Appendix C.3.
Theorem 3.6 (Approximation deep regime). Assume a connected graph, and the GSO defined in
Equation (1). Then, for large values of t − s, the Jacobian of the linear recurrent equation of an
MP-SSM block, from node j at layer s to node i at layer t ≥ s, admits the following approximation:

∂X
(i)
t

∂X
(j)
s

≈
√
(1 + di)(1 + dj)

|V |+ 2|E|
(W⊤)t−s, (7)

where dl =
∑n

j=1(Ã)lj is the degree of the l-th node.

For the case of the GSO of Equation (1), we can find a precise lower bound for the minimum local
sensitivity among all possible pairs of nodes in the graph, in the deep regime (proof in Appendix C.4).
Corollary 3.7 (Lower bound minimum sensitivity). Assume a connected graph, and the GSO of
Equation (1). Then, for large values of t − s, the following lower bound for the minimum local
sensitivity of the linear recurrent equation of an MP-SSM block holds:

2

|V |+ 2|E|
||Wt−s|| ≤ min

i,j
Sij(t− s). (8)

The minimum local sensitivity is realized for pairs of nodes among which the transfer of information
is the most critical due to the structure of the graph. Therefore, lower bounds on the minimum local
sensitivity are linked to the alleviation of over-squashing. Rewiring techniques are known to help
combating this phenomenon (Di Giovanni et al., 2023). Corollary 3.7 proves that, without rewiring,
MP-SSM can deal with over-squashing by increasing the norm of the recurrent weight matrix. In
Remark 3.8, we construct an example of a topology that approaches the lower bound of Eq. (8), thus
realising a worst case scenario due to over-squashing.

1Similar characteristics of the GSO in Equation (1) have also been discussed in (Oono & Suzuki, 2019).
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Remark 3.8 (Bottleneck Topologies). A chain of m cliques of order d represents a topology realising

a bad scenario for Eq. (7), since local sensitivity can reach values as low as
1

md2
, scaling on long

chains and large cliques, see Appendix C.3.1 for details. This effect is intrinsically tied to the specific
topology of the graph, and it aligns with prior studies that emphasize the challenges of learning on
graphs with bottleneck structures (Topping et al., 2022).

To assess the overall gradient information flow across the entire graph in the deep regime, we define:
Definition 3.9 (Global sensitivity). The global sensitivity of node features of the overall graph after
t− s hops of message aggregation is defined as:

S(t− s) = max
i,j

Sij(t− s). (9)

Remark 3.10. The local sensitivity between two far-apart nodes can be physiologically small due
to the particular topology of the graph (e.g. bottlenecks), or it can be even 0 if two nodes are not
connected by any walk. However, if the local sensitivity converges to 0, in the deep regime of
large t − s, for all the pairs of nodes, i.e., if the global sensitivity converges to 0 regardless of the
particular topology of the graph, then it means that the MPNN model is characterized by a vanishing
information flow. Therefore, lower bounds on global sensitivity are linked to the alleviation of
vanishing gradient issues, in the deep regime.

For connected graphs, we can leverage the exact Jacobian computation of Theorem 3.4 to prove the
following lower bound on the global sensitivity, see Appendix C.5 for the proof.
Theorem 3.11 (Lower bound global sensitivity). Assume a connected graph. The global sensitivity
of the linear recurrent equation of an MP-SSM block is lower bounded as follows:

ρ(A)t−s

|V |
||Wt−s|| ≤ S(t− s), (10)

where ρ(A) is the spectral radius of the GSO. Thus, for the GSO of Eq. (1), it holds the lower bound
1

|V |
||Wt−s|| ≤ S(t− s).

This theoretical result demonstrates that MP-SSM ensures values of the global sensitivity strictly
greater than zero, for any depth t− s and for connected graphs with any number of nodes. This result
cannot be guaranteed in a standard MPNN, as the nonlinearity applied at each time step increasingly
contributes to vanish information as the depth increases, with more discussions in Appendix D.
Remark 3.12. Note that both results of Eqs. (6) and (10) hold for any GSO. However, for the
particular case of the symmetrically normalized adjacency with self-loops, we can provide more
precise approximations and bounds.

From Section 2, we know that MP-SSM generalizes its backbone MPNNs, and the GCN architecture
in particular when using Eq. (1) as GSO. In Theorem 3.13, we provide an estimation of the vanishing
effect caused by the application at each time step of a ReLU nonlinearity in a standard GCN compared
with our MP-SSM, in the deep regime, as we prove in Appendix C.6.
Theorem 3.13 (GCN vanishes more than MP-SSM). Let us consider a GCN that aggregates infor-
mation from k hops away, i.e., with k layers, equipped with the ReLU activation function. Then, the
GCN vanishes information at a 2−

k
2 faster rate than our MP-SSM block with k linear recurrent steps.

4 EXPERIMENTS

We evaluate MP-SSM on standard benchmarks for both static and temporal graphs. For static graphs,
we assess long-range propagation via synthetic shortest-path tasks (Section 4.1) and heterophilic node
classification (Section 4.2). For temporal graphs, we test spatio-temporal forecasting performance
(Section 4.3). Additionally, we benchmark MP-SSM on long-range real-world benchmarks in
Appendix H and on a temporal graph benchmark with dynamic topology in Appendix L. MP-SSM
is compared against state-of-the-art MPNNs, multi-hop GNNs, graph transformers, graph SSMs,
and spatio-temporal models (details in Appendix G.1). The closest baselines are MPNNs and graph
SSMs. Datasets statistics and hyperparameter settings are described in Appendices G.2 and G.3,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

respectively. Code will be released upon acceptance. We emphasize that, unlike most state-of-the-art
graph models, MP-SSM runs at a speed comparable to that of a standard GCN (see runtime and
complexity analyses in Appendix I), even without leveraging the optimized implementation discussed
in Appendix B.

4.1 GRAPH PROPERTY PREDICTION Table 1: Mean test set log10(MSE)(↓) and std averaged
on 4 random weight initializations on Graph Property
Prediction tasks. The lower, the better. First, second, and
third best results for each task are color-coded.
Model Diameter SSSP Eccentricity

MPNNs
A-DGN -0.5188±0.1812 -3.2417±0.0751 0.4296±0.1003

DGC 0.6028±0.0050 -0.1483±0.0231 0.8261±0.0032

GAT 0.8221±0.0752 0.6951±0.1499 0.7909±0.0222

GCN 0.7424±0.0466 0.9499±0.0001 0.8468±0.0028

GCNII 0.5287±0.0570 -1.1329±0.0135 0.7640±0.0355

GIN 0.6131±0.0990 -0.5408±0.4193 0.9504±0.0007

GRAND 0.6715±0.0490 -0.0942±0.3897 0.6602±0.1393

GraphCON 0.0964±0.0620 -1.3836±0.0092 0.6833±0.0074

GraphSAGE 0.8645±0.0401 0.2863±0.1843 0.7863±0.0207

Transformers
GPS -0.5121±0.0426 -3.5990±0.1949 0.6077±0.0282

Ours
MP-SSM -3.2353±0.1735 -4.6321±0.0779 -2.9724±0.0271

Setup. We evaluate MP-SSM on three
synthetic tasks from Gravina et al.
(2023): predicting graph diameter,
single-source shortest paths (SSSP), and
node eccentricity. These tasks require
long-range information flow, making
them suitable benchmarks for evaluating
propagation depth. We follow the origi-
nal setup, data, and hyperparameters.
Results. Table 1 reports results using
log10(MSE). MP-SSM outperforms all
baselines, with an average gain of 2.4
points. On the eccentricity task, it im-
proves over A-DGN by 3.4 points, de-
spite A-DGN being tailored for long-
range tasks, and exceeds GCN (its back-
bone model) by over 4 points on average,
despite both using the same GSO. This
highlights MP-SSM’s superior ability to propagate information across distant nodes. An additional
ablation on multiple GSOs is reported in Appendix J.2.

4.2 HETEROPHILIC BENCHMARK

Table 2: Mean test set score and std averaged over 4 random weight
initializations on heterophilic tasks. First, second, and third best results.

Model Roman- Amazon- Minesweep. Tolokers Questionsempire ratings
Acc ↑ Acc ↑ AUC ↑ AUC ↑ AUC ↑

MPNNs
CO-GNN 91.57±0.32 54.17±0.37 97.31±0.41 84.45±1.17 80.02±0.86

GAT 80.87±0.30 49.09±0.63 92.01±0.68 83.70±0.47 77.43±1.20

Gated-GCN 74.46±0.54 43.00±0.32 87.54±1.22 77.31±1.14 76.61±1.13

GCN 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67 76.09±1.27

SAGE 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44 76.44±0.62

Graph Transformers
Exphormer 89.03±0.37 53.51±0.46 90.74±0.53 83.77±0.78 73.94±1.06

GOAT 71.59±1.25 44.61±0.50 81.09±1.02 83.11±1.04 75.76±1.66

GPS 82.00±0.61 53.10±0.42 90.63±0.67 83.71±0.48 71.73±1.47

GT 86.51±0.73 51.17±0.66 91.85±0.76 83.23±0.64 77.95±0.68

Heterophily-Designated GNNs
FAGCN 65.22±0.56 44.12±0.30 88.17±0.73 77.75±1.05 77.24±1.26

FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92

GBK-GNN 74.57±0.47 45.98±0.71 90.85±0.58 81.01±0.67 74.47±0.86

GPR-GNN 64.85±0.27 44.88±0.34 86.24±0.61 72.94±0.97 55.48±0.91

H2GCN 60.11±0.52 36.47±0.23 89.71±0.31 73.35±1.01 63.59±1.46

Graph SSMs
GMN 87.69±0.50 54.07±0.31 91.01±0.23 84.52±0.21 –
GPS+Mamba 83.10±0.28 45.13±0.97 89.93±0.54 83.70±1.05 –

Ours
MP-SSM 90.91±0.48 53.65±0.71 95.33±0.72 85.26±0.93 78.18±1.34

Setup. We evalu-
ate MP-SSM on five
heterophilic bench-
marks from Platonov
et al. (2023): Roman-
empire, Amazon-ratings,
Minesweeper, Tolokers,
and Questions. These
tasks test the model’s
ability to capture complex
interactions between
dissimilar nodes. We
follow the original data
and experimental settings.

Results. Table 2 shows
that MP-SSM consistently
performs well, achieving
the highest average rank-
ing across all tasks (see
Appendix K). It improves
GCN by up to 17% and
surpasses transformer-
and SSM-based GNNs, in-
cluding methods tailored
for heterophilic graphs,
demonstrating strong
adaptability to complex,
non-homophilic structures.
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4.3 SPATIO-TEMPORAL FORECASTING

Table 3: Average MSE and standard deviation (↓) of 10 ex-
perimental repetitions. Baseline results are reported from
Rozemberczki et al. (2021); Errica et al. (2023); Eliasof
et al. (2024) . First, second, and third best methods for
each task are color-coded.

Model Chickenpox PedalMe Wikipedia
Hungary London Math

Temporal GNNs
A3T-GCN 1.114±0.008 1.469±0.027 0.781±0.011

AGCRN 1.120±0.010 1.469±0.030 0.788±0.011

CDE 0.848±0.020 0.810±0.063 0.694±0.028

DCRNN 1.124±0.015 1.463±0.019 0.679±0.020

DyGrAE 1.120±0.021 1.455±0.031 0.773±0.009

DynGESN 0.907±0.007 1.528±0.063 0.610±0.003

EGCN-O 1.124±0.009 1.491±0.024 0.750±0.014

GConvGRU 1.128±0.011 1.622±0.032 0.657±0.015

GC-LSTM 1.115±0.014 1.455±0.023 0.779±0.023

GRAND 1.068±0.021 1.557±0.049 0.798±0.034

GREAD 0.983±0.027 1.291±0.055 0.704±0.016

HMM4G 0.939±0.013 1.769±0.370 0.542±0.008

MPNN LSTM 1.116±0.023 1.485±0.028 0.795±0.010

TDE-GNN 0.787±0.018 0.714±0.051 0.565±0.017

T-GCN 1.117±0.011 1.479±0.012 0.764±0.011

Ours
MP-SSM 0.748±0.011 0.647±0.062 0.509±0.008

Setup. We evaluate MP-SSM on five
forecasting datasets: Metr-LA, PeMS-
Bay (Li et al., 2018), Chickenpox Hun-
gary, PedalMe London, and Wikipedia
math (Rozemberczki et al., 2021). The
goal is to predict future node values from
time-series data. The first two focus on
traffic, while the others involve public
health, delivery demand, and web activ-
ity. We follow the original settings for
each dataset.

Results. MP-SSM outperforms exist-
ing temporal GNNs across all datasets
(Tables 3 and 4), highlighting its ability
to model both spatial and temporal de-
pendencies. These results confirm MP-
SSM’s versatility across static and tem-
poral graph domains. Notably, MP-SSM
significantly outperforms GGRNN (Ruiz
et al., 2020) and GraphSSM (Li et al.,
2024), see Table 4, two related state-
space approaches for temporal graphs,
thus highlighting the originality and ef-
fectiveness of our approach (see Ap-
pendix E for an extended discussion).

5 RELATED WORKS

Learning Long-Range Dependencies on Graphs. While GNNs effectively model local structures
via message passing, they struggle with long-range dependencies due to over-squashing and vanishing
gradients (Alon & Yahav, 2021; Di Giovanni et al., 2023; Arroyo et al., 2025). Standard models
like GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton et al., 2017), and GIN (Xu et al., 2019)
suffer from degraded performance on tasks requiring global context (Baek et al., 2021; Dwivedi
et al., 2022b), especially in heterophilic graphs (Luan et al., 2024; Wang et al., 2024b). Solutions
include graph rewiring (Topping et al., 2022; Karhadkar et al., 2023), weight-space regularization
(Gravina et al., 2023; 2025), and physics-inspired dynamics (Heilig et al., 2025). Graph Transformers
(GTs) like SAN (Kreuzer et al., 2021b), Graphormer (Ying & Leskovec, 2021), and GPS (Rampášek
et al., 2022) enhance expressivity using structural encodings (Dwivedi et al., 2021; 2022a), but suffer
from quadratic complexity. Scalable alternatives include sparse and linearized attention mechanisms
(Zaheer et al., 2020; Choromanski et al., 2020; Shirzad et al., 2023; 2024; Wu et al., 2023; Deng
et al., 2024), though simple MPNNs often remain competitive (Tönshoff et al., 2023).

Learning Spatio-Temporal Interactions on Graphs. Temporal GNNs often combine GNNs
with RNNs to model spatio-temporal dynamics (Gravina & Bacciu, 2024). Some adopt stacked
architectures that separate spatial and temporal processing (Seo et al., 2018; Pareja et al., 2020;
Panagopoulos et al., 2021; Bai et al., 2021; Cini et al., 2023a), while others integrate GNNs within
RNNs for joint modeling (Li et al., 2018; 2019; Chen et al., 2022; Cini et al., 2023b; Ruiz et al., 2020).
Our approach follows the latter, but goes further by embedding modern SSM principles directly
into the GNN architecture, unifying spatial and temporal reasoning through linear recurrence. This
contrasts with GGRNN (Ruiz et al., 2020), which employs a more elaborate message-passing scheme
involving nonlinear aggregation over multiple powers of the graph shift operator at each recurrent
step.

Casting State-Space Models into Graph Learning. Several recent models adopt SSMs for static
graphs by imposing sequential orderings, e.g., via degree-based sorting (Wang et al., 2024a) or
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Table 4: Multivariate time series forecasting on the Metr-LA and PeMS-Bay datasets for Horizon 12.
First, second, and third best results for each task are color-coded. Baseline results are reported from
(Shao et al., 2022; Liu et al., 2023; Gao et al., 2024; Fan et al., 2024; Zhang et al., 2024).

Model Metr-LA PeMS-Bay

MAE ↓ RMSE ↓ MAPE ↓ MAE ↓ RMSE ↓ MAPE ↓
Graph Agnostic
HA 6.99 13.89 17.54% 3.31 7.54 7.65%
FC-LSTM 4.37 8.69 14.00% 2.37 4.96 5.70%
SVR 6.72 13.76 16.70% 3.28 7.08 8.00%
VAR 6.52 10.11 15.80% 2.93 5.44 6.50%

Temporal GNNs
AdpSTGCN 3.40 7.21 9.45% 1.92 4.49 4.62%
ASTGCN 6.51 12.52 11.64% 2.61 5.42 6.00%
DCRNN 3.60 7.60 10.50% 2.07 4.74 4.90%
GMAN 3.44 7.35 10.07% 1.86 4.32 4.37%
Graph WaveNet 3.53 7.37 10.01% 1.95 4.52 4.63%
GTS 3.46 7.31 9.98% 1.95 4.43 4.58%
MTGNN 3.49 7.23 9.87% 1.94 4.49 4.53%
RGDAN 3.26 7.02 9.73% 1.82 4.20 4.28%
STAEformer 3.34 7.02 9.70% 1.88 4.34 4.41%
STD-MAE 3.40 7.07 9.59% 1.77 4.20 4.17%
STEP 3.37 6.99 9.61% 1.79 4.20 4.18%
STGCN 4.59 9.40 12.70% 2.49 5.69 5.79%
STSGCN 5.06 11.66 12.91% 2.26 5.21 5.40%

Temporal Graph SSMs
GGRNN 3.88 8.14 10.59% 2.34 5.14 5.21%
GraphSSM-S4 3.74 7.90 10.37% 1.98 4.45 4.77%

Ours
MP-SSM 3.17 6.86 9.21% 1.62 4.22 4.05%

random walks (Behrouz & Hashemi, 2024), often sacrificing permutation-equivariance. Spectral
methods (Huang et al., 2024) offer alternatives but are computationally demanding and prone to
over-squashing (Di Giovanni et al., 2023). In the temporal graph setting, GraphSSM (Li et al., 2024)
applies the diffusive dynamics of a GNN backbone first, followed by an SSM as a post-processing
module. In contrast, our approach embeds the core principles of modern SSMs directly into the
graph learning process, yielding a unified framework designed through the lens of sensitivity analysis
that seamlessly supports both static and temporal graph modeling, while maintaining permutation
equivariance, computational efficiency, and supporting parallel implementation.

6 CONCLUSIONS

In this work, we revisited Graph State-Space Models (GSSMs) through the lens of sensitivity analysis.
While prior GSSM approaches have demonstrated empirical improvements, they typically rely on
techniques that compromise core graph properties and offer only loose theoretical guarantees on
information flow.

We propose a general framework called Message-Passing State-Space Model (MP-SSM), whose
formulation preserves permutation equivariance, unifies static and temporal graphs, allows for
fast implementation and crucially enables exact sensitivity analysis. This allows us to rigorously
characterize node-to-node dependencies, derive precise lower bounds on vanishing gradients and
over-squashing, and identify structural conditions under which information propagation is guaranteed
to remain stable.

In addition to these theoretical contributions, our framework remains empirically competitive, achiev-
ing strong results across long-range, heterophilic, and spatiotemporal forecasting tasks. We believe
this perspective positions sensitivity analysis as a principled foundation for the design of future graph
state-space models.
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The research conducted in this paper conforms in every aspect with the ICLR Code of Ethics. Our
study does not involve human subjects, sensitive personal data, or applications with foreseeable
harmful consequences. All experiments were conducted on publicly available datasets, and no ethical
concerns are anticipated regarding data usage, methodology, or findings.

REPRODUCIBILITY STATEMENT

We provide all necessary details to implement our MP-SSM in Section 2 and Appendix B, and
describe the setup of each experiment in Section 4 and Appendix G, thereby ensuring sufficient
information to reproduce our results. Furthermore, all experiments are conducted on open-source
datasets available online. We pledge to openly release the full codebase upon acceptance.
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A LLMS USAGE

Large Language Models (LLMs) were used as general-purpose assistive tools to improve the writing
quality of this paper. Specifically, we used LLMs to help with grammar correction, rephrasing for
clarity, and suggesting some improvements to the overall structure of the text. All LLM-generated
text was carefully reviewed and edited by the authors to ensure that it accurately reflects the authors’
intentions and scientific content. No LLMs were used to generate scientific content, including but
not limited to research direction, hypothesis formulation, experimental design, data analysis, or
interpretation of results.

B FAST PARALLEL IMPLEMENTATION

We describe all the details to derive and implement a fast parallel implementation for the computation
of an MP-SSM block.

The unfolded recurrence of an MP-SSM block gives the following closed-form solution:

Xk+1 = AkU1BWk +Ak−1U2BWk−1 + . . .+AUkBW +Uk+1B. (11)

Therefore the equation of an MP-SSM block reads:

Xk+1 =

k∑
i=0

AiUk+1−iBWi, (12)

Yk+1 = MLP(Xk+1), (13)

The closed-form solution of an MP-SSM block tells us that we could implement the whole recurrence
in one shot. However, the computation of the powers of both the GSO, A, and the recurrent weights,
W, can be extremely expensive for generic matrices and large values of k. On the other hand, the
powers of diagonal matrices are fairly easy to compute, since they are simply the powers of their
diagonal entries. Below, we show how to reduce a generic dense real-valued MP-SSM block to an
equivalent diagonalised complex-valued MP-SSM block.

Assume the following diagonalisation of the shift operator: A = PΛP−1. If undirected graph, i.e.,
A is symmetric, then by spectral theorem the P is a real orthogonal matrix (i.e. P−1 = P⊤) and Λ
is real.

Assume the following diagonalisation of the weights: W = VΣV−1. If using dense real matrices as
weights, then their diagonalisation is possible only assuming complex matrices of eigenvectors V
and complex eigenvalues Σ. Also, note that the set of defective matrices (i.e. non-diagonalizable in
C) has zero Lebesgue measure (Golub & Van Loan, 2013).

Assume the following MLP equations with 2 layers: MLP(X) = ϕ(XW1)W2, where ϕ is a
nonlinearity, and W1,W2 real dense matrices.
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With the above assumptions, the MP-SSM block equations can be equivalently written as:

Xk+1 =

k∑
i=0

PΛiP−1Uk+1−iBVΣiV−1, (14)

Yk+1 = ϕ(Xk+1W1)W2, (15)

which we can write as:

Xk+1 = P

( k∑
i=0

ΛiP−1Uk+1−iBVΣi

)
V−1, (16)

Yk+1 = ϕ(Xk+1W1)W2, (17)

Multiply on the left side both terms by P−1 and on the right side both terms by V

P−1Xk+1V =

k∑
i=0

ΛiP−1Uk+1−iBVΣi (18)

If we change coordinate reference to Zk+1 = P−1Xk+1V, then we can write:

Zk+1 =

k∑
i=0

ΛiP−1Uk+1−iBVΣi, (19)

Yk+1 = ϕ(PZk+1V
−1W1)W2, (20)

Equations (19) and (20) give the same exact dynamics of the equations (12) and (13).

The matrix of complex eigenvectors V in (19) can be merged into the real matrix of weights B in
equation (21). Therefore, we can call B̂ a complex matrix of weights that accounts for the term
BV. Similarly, the matrix eigenvectors V−1 in (20) can be merged into the matrix of weights W1

in equation (22), that we call Ŵ1. To get an exact equivalence, we should exactly multiply by V

and V−1, but merging these into learnable complex-valued matrices B̂ and Ŵ1 then we get similar
performance.

With these new notations, we can write the equivalent diagonalised complex-valued MP-SSM block:

Zk+1 =

k∑
i=0

ΛiÛk+1−iB̂Σi, (21)

Yk+1 = ϕ(PZk+1Ŵ1)W2, (22)

where, in summary:

• input is pre-processed as Ûk+1−i = P−1Uk+1−i,
• Λ is the diagonal matrix of the eigenvalues of the GSO,

• learnable recurrent weights are B̂ (complex and dense), and Σ (complex and diagonal)

• learnable readout weights are Ŵ1 (complex and dense), and W2 (real and dense)

Equations (21)-(22) tell us that we can implement the whole recurrence efficiently in a closed-form
solution that only involves powers of diagonal matrices.

We emphasize that the feasibility of a graph-native, fast, and parallel implementation stems naturally
as a byproduct of the MP-SSM’s design choices, which unify graph diffusion and SSM-like linear
recurrence within a single update equation. This differs from previous GraphSSM models that
treat diffusion-based GNNs and SSMs as separate components, or that first linearize the graph into
sequences prior to applying SSM layers, as detailed in the Introduction (Section 1) and Related Work
(Section 5).

We provide in Algorithm 1, the pytorch-like implementation of the fast MP-SSM, provided the input
sequence (Û1, . . . , Ûk+1), computes in parallel the whole output sequence (Y1, . . . ,Yk+1). We
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Algorithm 1 MP-SSM fast implementation
Require: the input features x ∈ Cnum steps×n×C (if temporal), else x ∈ Cn×C ; the number of

iterations (i.e., k+1) num steps; the diagonal complex-valued weight matrix W ∈ Chidden dim;
the complex-valued matrix B ∈ CC×hidden dim; the eigenvalues of the GSO eigenvals ∈ Cn

Ensure: out ∈ Cnum steps×n×hidden dim

1: powers = torch.arange(num steps)

2: Λpowers = eigenvals.unsqueeze(−1).pow(powers) ▷ shape: (n, num steps)
3: Σpowers = W.unsqueeze(−1).pow(powers) ▷ shape: (hidden dim, num steps)
4: if not temporal then
5: x = x.repeat(num steps, 1, 1) ▷ shape: (num steps, n, C), static case
6: end if
7: xflipped = torch.flip(x, dims = [0]) ▷ shape: (num steps, n, C)

8: xcomplex = xflipped.to(torch.cfloat)
9: xB = torch.matmul(xcomplex,B) ▷ shape: (num steps, n, hidden dim)

10: Λpowers = Λpowers.permute(2, 0, 1) ▷ shape: (num steps, n, 1)
11: Σpowers = Σpowers.transpose(1, 0).unsqueeze(1) ▷ shape: (num steps, 1, hidden dim)

12: scaled x B = Λpowers · xB · Σpowers

13: out = scaled x B.cumsum(dim = 0) ▷ shape: (num steps, n, hidden dim)

14: d1,d2,d3 = out.shape
15: xagg = out.permute(1, 2, 0).reshape(n,−1) ▷ shape: (n, num steps · hidden dim)

16: xagg = matmul(
x = xagg,
edge index = matrix p edge index,
edge weight = matrix p edge weight

)
17: xagg = xagg.reshape(d2,d3,d1).permute(2, 0, 1)
18: out = mlp(xagg, batch)

acknowledge that there is no free lunch: we achieve a one-shot parallel implementation trading
off GPU memory usage, since the whole tensor of shape (num steps, n, hidden dim), in line 9 of
Algorithm 1, must fit into the GPU. However, with sufficient GPU memory, the entire MP-SSM
block computation occurs in 10−3 seconds, see Figure 2. The figure also shows that MP-SSM scales
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Figure 2: Inference time on a graph of n = 100 nodes (with number of edges 3058), input dimension
C = 1, hidden dim = 32, and increasing lengths k = 10, 100, 500, 1000, 5000. GCN is a standard
GCN with tanh without residual with k layers. GCN (weight sharing) is the same, but just one layer
iterated k times. MP-SSM baselines use both 1 block.

similarly to GCN and GCN (weight sharing), whose lines are overlapping, but it is slightly faster,
owing to the lack of nonlinearity in the recurrence. This benefit grows with more iterations. On the
other hand, the fast implementation of MP-SSM maintains constant runtime, provided enough GPU
memory.
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We observe that, a practical solution for memory-constrained GPUs is to chunk the computation for
large number of recurernce steps. Assuming that S is the maximum number of time steps a GPU
can accommodate, the parallel implementation can be divided into NC = num steps/S of chunks.
These NC chunks can then be processed sequentially and their results combined. This approach
increases computational time roughly by a factor of NC due to the sequentialization on a single GPU.
Alternatively, if NC GPUs are available, each chunk can be processed in parallel on a different GPU,
since each intermediate computation depends on the current input (i.e., Ut) and powers of the GSO
and the learnable weights (i.e., Ak−t−1 and Wk−t−1) as shown in Equation (11). Then the results of
each GPU can be merged to obtain the next prediction Xt+1, greatly mitigating the slowdown.

Finally, we note that, unlike standard SSM models such as S4 and Mamba, which follow a Single-
Input-Single-Output strategy (computing a separate SSM for each input channel and then mixing
the results), our implementation in Algorithm 1 adopts a Multiple-Input-Multiple-Output strategy,
enabling native handling of multivariate inputs.

C PROOFS OF THE THEORETICAL STATEMENTS

Here, we provide all the proofs of lemmas, theorems, and corollaries stated in the main text.

C.1 PROOF OF LEMMA 3.5

Lemma. Assume an undirected graph. The spectrum of the powers of the symmetric normalized
adjacency matrix A = D− 1

2 (Ã+ I)D− 1
2 is contained in the interval [−1, 1]. The largest eigenvalue

of At has absolute value of 1 with corresponding eigenvector d = diag(D
1
2 ), for all t ≥ 1. In

particular, the sequence of powers [At]t≥1 does not diverge or converge to the null matrix.

Proof. At =
(
D− 1

2 (Ã + I)D− 1
2

)(
D− 1

2 (Ã + I)D− 1
2

)
. . .
(
D− 1

2 (Ã + I)D− 1
2

)
= D− 1

2 (Ã +

I)
(
D−1(Ã + I)

)t−1

D− 1
2 . Now, D−1(Ã + I) is a stochastic matrix, and so also its powers are

stochastic matrices. Therefore, D− 1
2AtD

1
2 =

(
D−1(Ã+ I)

)t
is a stochastic matrix. The eigenval-

ues of a stochastic matrix are contained in the closed unitary disk (Meyer, 2023; Banerjee & Mehatari,
2016). Let, λ1, . . . , λn all the eigenvalues (not necessarily distinct) of such a stochastic matrix,
with corresponding eigenvectors v1, . . . ,vn. Thus, D− 1

2AtD
1
2vl = λlvl, from which it follows,

multiplying both sides by D
1
2 , that AtD

1
2vl = λlD

1
2vl. This means that the eigenvalues of At are

exactly the same of those of the stochastic matrix D− 1
2AtD

1
2 with eigenvectors D

1
2v1, . . . ,D

1
2vn,

for all t. In particular, the assumption of undirected graph implies A is a symmetric matrix, thus
we get that all eigenvalues of At are real and contained inside [−1, 1], for all t. Since the spectral
radius of a stochastic matrix is 1, and the vector 1 with all components equal to 1 is necessarily
an eigenvector due to the row-sum being 1 for a stochastic matrix, then it follows that the largest
eigenvalue of At is 1 and d = diag(D

1
2 ) is an eigenvector corresponding to eigenvalue 1, for all t.

To see why the sequence of powers [At]t≥1 does not diverge or converge to the null matrix, we
observe that, since A is symmetric, the Spectral Theorem implies we can diagonalize in R the matrix
A = QΛQ⊤ with Q orthogonal matrix and Λ diagonal matrix of real eigenvalues. Powers of A can
be written as At = (QΛQ⊤)(QΛQ⊤) . . . (QΛQ⊤) = QΛtQ⊤. Thus the eigenvalues of At are
λt
l , for l = 1, . . . , n. We already proved that the eigenvalues λn ≤ . . . ≤ λ1 are contained in the real

interval [−1, 1]. Hence, this ensures that the sequence of powers cannot diverge. On the other hand,
we can spectrally decompose symmetric matrices as follows (Haykin, 2009), At =

∑n
l=1 λ

t
lqlq

⊤
l ,

where ql is the eigenvector corresponding to the eigenvalue λl. Thus, for large values of t, the spectral
components corresponding to eigenvalues strictly less than 1 in absolute value vanish, so the matrix
At approaches the sum of terms corresponding to eigenvalues with absolute value equal to 1. This
proves that the sequence of powers cannot converge to the null matrix.
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C.2 PROOF OF THEOREM 3.4

Theorem. The Jacobian of the linear recurrent equation of an MP-SSM block, from node j at layer
s to node i at layer t ≥ s, can be computed exactly, and it has the following form:

∂X
(i)
t

∂X
(j)
s

= (At−s)ij︸ ︷︷ ︸
scalar

(W⊤)t−s︸ ︷︷ ︸
matrix

.

Proof. In this proof we use the notation (M)ij to denote the (i, j) entry of a matrix M, and M(i) to
denote the i-th row of a matrix M. Let us start with the recurrent equation Xt+1 = AXtW+Ut+1B.
Therefore, the i-th node features are updated as follows: X

(i)
t+1 =

∑n
l=1(A)ilX

(l)
t W + U

(i)
t+1B.

Now, the only term involving X
(j)
t is (A)ijX

(j)
t W. Therefore, the Jacobian reads

∂X
(i)
t+1

∂X
(j)
t

=

∂

∂X
(j)
t

(
(A)ijX

(j)
t W

)
. Now, given a row vector x ∈ Rc and a square matrix M, then the function

f(x) = xM, whose i-th component is fi =
∑c

l=1 xl(M)li, has derivatives ∂fi
∂xj

= ∂
∂xj

(xj(M)ji) =

(M)ji. Hence, the Jacobian is ∂f
∂x = M⊤. Therefore, it holds

∂X
(i)
t+1

∂X
(j)
t

= (A)jiW
⊤. For the case

of non-consecutive time steps, we can unfold the recurrent equation Xt+1 = AXtW + Ut+1B
between any two time steps s ≤ t, as follows:

Xt = At−sXsW
t−s +

t−s−1∑
l=0

AlUt−lBWi. (23)

From the unfolded recurrent equation (23) of a MP-SSM we can see that the only term involv-

ing Xs is At−sXsW
t−s. Thus, the Jacobian reads

∂X
(i)
t

∂X
(j)
s

=
∂

∂X
(j)
s

(
(At−sXsW

t−s)(i)
)
=

∂

∂X
(j)
s

(
(At−s)ijX

(j)
s Wt−s

)
= (At−s)ij(W

⊤)t−s.

C.3 PROOF OF THEOREM 3.6

Theorem. Assume a connected graph, and the GSO defined in Eq. (1). Then, for large values of
t− s, the Jacobian of the linear recurrent equation of an MP-SSM block, from node j at layer s to
node i at layer t ≥ s, admits the following approximation:

∂X
(i)
t

∂X
(j)
s

≈
√
(1 + di)(1 + dj)

|V |+ 2|E|
(W⊤)t−s,

where dl =
∑n

j=1(Ã)lj is the degree of the l-th node.

Proof. We provide an estimation of the term (At−s)ij for the case of large values of t − s, and
assuming a connected graph. We use the decomposition At−s =

∑n
l=1 λ

t−s
l qlq

⊤
l , where ql is

the unitary eigenvector corresponding to the eigenvalue λl. As discussed in the proof of Lemma
3.5, for large values of t− s, all the spectral components corresponding to eigenvalues strictly less
than 1 (in absolute value) tend to converge to 0. Moreover, by the Perron–Frobenius theorem for
irreducible non-negative matrices (Horn & Johnson, 2012), since the graph is connected and with
self-loops, there is only one simple eigenvalue equal to 1, and −1 cannot be an eigenvalue. Thus
it holds the approximation At−s ≈ q1q

⊤
1 . Now thanks to Lemma 3.5, we know that q1 must be

the vector d = diag(D
1
2 ) normalised to be unitary, and D is the degree matrix of Ã + I. Thus,

q1 =
(
√
1 + d1, . . . ,

√
1 + dn)√∑n

l=1(1 + dl)
, where dl =

∑n
j=1(Ã)lj is the degree of the l-th node. Therefore,

(q1q
⊤
1 )ij =

√
(1 + di)(1 + dj)

n+
∑n

l=1 dl
=

√
(1 + di)(1 + dj)

|V |+ 2|E|
.
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C.3.1 EXAMPLE OF A BAD SCENARIO FOR EQ. (7)

Fig. 3 illustrates an example of a bad scenario for Eq. (7), i.e., a chain of m cliques of order d
connected via bridge-nodes of degree 2 (the minimum to connect them). In the Figure, we consider
m = 6 and d = 10. The pair of bridge nodes i and j depicted in red in Fig. 3 are 12 hops apart, so it
can be considered a relatively long-term interaction.

In the long-term approximation given by Eq. (7), the local sensitivity between two bridge nodes of this
topology scales as 1

md2 , for long chains (m large) and big cliques (d large). In fact, in such a graph the
vast majority of nodes has degree approximately d− 1, thus

∑n
l=1 dl ≈ n(d− 1). Specifically, there

are exactly m− 1 nodes of degree 2 (bridge nodes), and md nodes with degree approximately d− 1.
Now, n = m − 1 +md ≈ md, therefore n +

∑n
l=1 dl ≈ n + n(d − 1) = nd ≈ md2. Scaling to

long chains and large cliques, this approximation becomes more accurate, and so the local sensitivity

between two bridge nodes is rescaled by the term
√

(1+di)(1+dj)

n+
∑n

l=1 dl
≈ 3

md2 .

Figure 3: A chain of six cliques (containing ten nodes each) connected via bridge-nodes of degree 2.
The pair of red nodes is a pair of nodes that minimizes the quantity in Eq. (7). Note that the red nodes
are 12 hops apart, so it can be considered long-term.

C.4 PROOF OF COROLLARY 3.7

Corollary. Assume a connected graph, and the GSO of Eq. (1). Then, for large values of t − s,
the following lower bound for the minimum local sensitivity of the linear recurrent equation of an
MP-SSM block holds:

2

|V |+ 2|E|
||Wt−s|| ≤ min

i,j
Sij(t− s). (24)

Proof. In the deep regime, we can use the approximation of Eq. (7) of
∂X

(i)
t

∂X
(j)
s

≈√
(1 + di)(1 + dj)

|V |+ 2|E|
(W⊤)t−s. Therefore, we have:

min
i,j

∣∣∣∣∣
∣∣∣∣∣ ∂X(i)

t

∂X
(j)
s

∣∣∣∣∣
∣∣∣∣∣≈ 1

|V |+ 2|E|

∣∣∣∣∣∣(W⊤)t−s
∣∣∣∣∣∣ min

i,j

√
(1 + di)(1 + dj) ≥

2

|V |+ 2|E|

∣∣∣∣∣∣(W⊤)t−s
∣∣∣∣∣∣,

24
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where the last inequality holds since the minimum degree value of a node in a connected graph

is 1. Thus, we conclude that mini,j Sij(t− s) ≥ 2

|V |+ 2|E|
||(W⊤)t−s|| = 2

|V |+ 2|E|
||Wt−s||,

noticing that ||W⊤|| = ||W||.

C.5 PROOF OF THEOREM 3.11

Theorem. Assume a connected graph. The global sensitivity of the linear recurrent equation of an
MP-SSM block is lower bounded as follows:

S(t− s) ≥ ρ(A)t−s

|V |
||Wt−s||,

where ρ(A) is the spectral radius of the GSO. Thus, for the GSO of Eq. (1), it holds the lower bound

S(t− s) ≥ 1

|V |
||Wt−s||.

Proof. By Eqs. (5), (6) and (9), we get S(t − s) = maxi,j |(At−s)ij |||(W⊤)t−s|| =
maxi,j |(At−s)ij |||Wt−s||. Let us define n = |V | the number of nodes. The square of the maximum
entry of an (n, n) matrix M is always greater than the arithmetic mean of all the square coefficients, in
other words, ||M||2F

n2 ≤ maxi,j M
2
i,j , where ||M||F denotes the Frobenius norm. Therefore, ||M||F

n ≤
maxi,j |Mi,j |. Now, the symmetry of A implies there are λ1, . . . , λn real eigenvalues with corre-
sponding orthonormal eigenvectors q1, . . . ,qn so that we can decompose At−s =

∑n
l=1 λ

t−s
l qlq

⊤
l .

Thus, the Frobenius norm is ||At−s||F =

√∑n
l=1 λ

2(t−s)
l ||ql||2 =

√∑n
l=1 λ

2(t−s)
l ≥ |λ1|t−s,

where |λ1| is the largest in absolute value between all the eigenvalues, i.e. the spectral radius ρ(A).

max
i,j

|(At−s)ij | ≥
||At−s||F

n
≥ ρ(A)t−s

n
, (25)

from which we get the thesis

S(t− s) = max
i,j

|(At−s)ij | ||Wt−s|| ≥ ρ(A)t−s

n
||Wt−s||.

For the particular case of GSO given by Eq. (1), the spectral radius ρ(A) is exactly 1 due to Lemma
3.5.

C.6 PROOF OF THEOREM 3.13

Theorem. Let us consider a GCN network that aggregates information from k hops away, i.e., with
k layers, equipped with the ReLU activation function. Then, the GCN vanishes information at a 2−

k
2

faster rate than our MP-SSM block with a number k of linear recurrent steps.

Proof. The state-update equation of a GCN with a residual connection is Xt+1 = σ(AXtW +Xt).
Therefore, the features of i-th node at time t+1 are updated as X(i)

t+1 = σ
(∑n

l=1(A)ilX
(l)
t W+X

(i)
t

)
.

Similarly to the proof of theorem 3.4, we can write

∂X
(i)
t+1

∂X
(j)
t

=
∂

∂X
(j)
t

(
σ
(
(A)ijX

(j)
t W

))
=

= diag
(
σ′
(
(A)ijX

(j)
t W

))
(A)ijW

⊤,

where we assumed that i ̸= j, so that the residual connection term does not appear in the derivative
w.r.t. X(j)

t . Since we are considering σ = ReLU, the diagonal entries σ′
(
(A)ijX

(j)
t W

)
are either

0 or 1. Let’s assume that the components of the vector σ′
(
(A)ijX

(j)
t W

)
are independent and

identically distributed (i.i.d.) Bernoulli random variables, each with probability 1
2 of taking the value
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0. Now, let’s consider a walk {(it, jt)}k−1
t=0 of length k connecting the j-th node at a reference time

t = 0 to the i-th node at time t = k. Then, the Jacobian of GCN along such a walk reads:

∂X
(i)
k

∂X
(j)
0

=

k−1∏
t=0

PtMt,

where Pt = diag
(
σ′
(
(A)itjtX

(jt)
t W

))
, and Mt = (A)itjtW

⊤. On the other hand, the Jacobian

of the linear recurrent equation (3) of an MP-SSM block, in the static case with a number k of linear
recurrent steps computed along the same walk reads:

∂X
(i)
k

∂X
(j)
0

=

k−1∏
t=0

Mt.

We aim to prove that, for a generic vector x with entries i.i.d. random variables distributed symmetri-
cally about zero (e.g. according to a Normal distribution with zero mean), it holds the approximation
||
∏k−1

t=0 PtMtx|| ≈ 2−
k
2 ||
∏k−1

t=0 Mtx||. We prove the thesis using a recursive argument. First, we
observe that, denoting y = M0x, then we can write

||P0M0x||2 = ||P0y||2 = (p1y1)
2 + . . .+ (pnyn)

2. (26)

Now, since the pi are assumed i.i.d. Bernoulli random variables, each with probability 1
2 of taking

the value 0, in the sum of (26), roughly a portion of half of the contributions from y are zeroed-out
due to action of P0. Therefore,

||P0M0x||2 = ||P0y||2 ≈ 1

2
||y||2 =

1

2
||M0x||2. (27)

Note that the larger the dimension of the graph n, the more accurate the approximation of (27).
Therefore, we conclude that ||P0M0x|| ≈ 2−

1
2 ||M0x||. Now, we proceed recursively by denoting

x̃t = Pt−1Mt−1 . . .P0M0x, and defining the scalars ct =
||Mtx̃t||
||x̃t||

> 0, for all t = 1, . . . , k − 1.

Then, we can write

||Pk−1Mk−1Pk−2Mk−2 . . .P0M0x|| =
= ||Pk−1Mk−1x̃k−1|| ≈

≈ 2−
1
2 ||Mk−1x̃k−1|| =

= 2−
1
2 ck−1||x̃k−1|| =

= 2−
1
2 ck−1||Pk−2Mk−2x̃k−2|| ≈

≈ 2−
1
2 ck−12

− 1
2 ck−2||x̃k−2|| ≈ . . .

≈ 2−
k
2 ck−1ck−2 . . . c0||x||.

On the other hand, for the case of MP-SSM, it reads:

||Mk−1Mk−2 . . .M0x|| = ck−1||Mk−2 . . .M0x|| =
= ck−1ck−2||Mk−3 . . .M0x|| = . . .

= ck−1ck−2 . . . c0||x||.

This proves that a standard GCN vanishes information 2−
k
2 faster than MP-SSM.

We assumed weight sharing in the GCN, but the same proof holds assuming different weights
W1, . . . ,Wk at each GCN layer, by simply using the same exact weight matrices for the linear
equation of MP-SSM.

D THE VANISHING GRADIENT TENDENCY IN NONLINEAR MPNNS

Let us consider a highly connected graph without bottlenecks, such that the transfer of messages
from any node to any other node is not affected by issues due to structural properties of the graph.
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However, in the deep regime, the presence of a nonlinearity at each time step can lead the global
sensitivity (as defined in Eq. (9)) to be vanishing small.

For an MP-SSM block, the local sensitivity Sij(t− s) of the features of the i-th node to features of
the j-th node after t − s applications of message-passing aggregations, is exactly the norm of the
Jacobian of Eq. (6), i.e. the norm of the product of the (i, j)-entry of At−s and the matrix (W⊤)t−s.
For standard MPNN approaches, the local sensitivity has a more complicated expression due to
nonlinearities at each aggregation step, but usually there are 3 key contributors: one from several
multiplications of the shift operator (akin to At−s in our MP-SSM), one from several multiplications
of the weights (akin to (W⊤)t−s in our MP-SSM), and one from several multiplications of the
derivative of the nonlinearity evaluated on the sequence of embeddings D(s),D(s + 1), ..,D(t).
Usually the nonlinearity is pointwise, so D(t) is a diagonal matrix with entries usually in [0, 1], thus
contributing to vanishing the gradient more and more at each time step. Hence, if the subsequent
multiplications of weights and nonlinearity-based terms tend to vanish, while the powers of the shift
operator A are bounded (as it is for the case of the symmetrically normalized adjacency with self-
loops, proved in Lemma 4.5) then the local sensitivity tends to vanish for all pair of nodes, for t− s
large enough. This will be reflected in the global sensitivity, which also will tend to vanish, for t− s
large enough. This demonstrates that global sensitivity effectively quantifies the severity of vanishing
gradient issues in MPNN models plagued by this problem. Note further that the local sensitivity
of the linear recurrence in each block of our MP-SSM has the exact form of ||(At−s)ij(W

⊤)t−s||,
while for standard MPNN approaches with nonlinearities at each time step the vanishing effect will
be stronger, as we formally proved for the case of GCN in Theorem 3.13.

D.1 ADDITIONAL VANISHING EFFECTS BEYOND VARIANCE-PRESERVING SCALING.

The analysis in Theorem 3.13 quantifies the contraction introduced by pointwise nonlinearities through
a Bernoulli(0.5) model of the ReLU derivative masks. One may attempt to counteract this contraction
by rescaling the activation function (e.g., using

√
2ReLU) or by similar adopting variance-preserving

initialization schemes such as He initialization He et al. (2015), which are designed to maintain stable
signal norms in feedforward architectures. These techniques effectively compensate for the expected
shrinkage caused by the diagonal derivative matrices. Nonetheless, when nonlinear transformations
are repeatedly applied through the same weight matrix, as in weight-sharing settings or recurrent
message-passing, the i.i.d. assumptions underlying variance-preserving theory no longer hold. As
observed in prior work on deep and recurrent networks Sussillo & Abbott (2014), repeated application
of a fixed operator induces directional compounding of contractions or expansions along its singular
directions, leading to a substantially stronger vanishing effect than predicted by independent-layer
analyses. In the remainder of this subsection, we discuss this phenomenon in more detail and
provide an empirical illustration showing that, even after compensating for Bernoulli contraction via√
2-scaling, significant gradient decay persists at large depths.

To illustrate this phenomenon, we report a simple controlled experiment in an RNN-like setting
(no graph structure) over k = 1000 recurrent steps. We compare (i) a ReLU RNN with weight
sharing of equation xt+1 = ReLU(Wxt +But+1), (ii) the same model with

√
2-scaled ReLU (as

in variance-preserving scheme), i.e. xt+1 =
√
2ReLU(Wxt +But+1), and (iii) a linear RNN, i.e.

xt+1 = Wxt +But+1. For each setting we measure the spectral norm of the Jacobian
∥∥∂xk

∂x0

∥∥ over
five independent trials. The recurrent matrix W ∈ R128×128 is sampled from a standard normal
distribution and rescaled to have spectral radius 1; B ∈ R128×10 and the inputs ut ∈ R10 are sampled
i.i.d. from a standard normal distribution for each time step.

Scenario
√
2 scaling Mean Jacobian norm over 5 trials

Shared W , ReLU No 5.52× 10−174

Shared W , ReLU Yes 9.74× 10−26

Shared W , Linear No 2.025

Table 5: Jacobian norm
∥∥∂xk

∂x0

∥∥ for k = 1000 recurrent steps under different nonlinearities and
initialization schemes.
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The results in Table 5 show that, even if
√
2-scaling is devised to preserve layerwise variance, the

repeated application of the same W causes contractions or expansions to compound along the
same singular directions of W. By contrast, in the feedforward / independent-weights case each
random matrix Wt rotates and redistributes contraction across directions, which mitigates consistent
compounding. For this reason, the Bernoulli-based estimate of 2−k/2 of Theorem 3.13 should be
interpreted as a best-case contraction rate. Indeed, for k = 1000, the Bernoulli assumption in
our theorem predicts 2−500 ≈ 10−150, yet our empirical results show an even stronger vanishing
effect (around 10−175). The empirical gap is fully consistent with theory: it reflects the additional
contraction created by repeatedly applying the same operator, deviating from the i.i.d. assumption.
This geometric compounding effect is not captured by the Bernoulli analysis alone, yet it accumulates
on top of it and becomes significant at large depths. Thus, the vanishing gap between MP-SSM and
opportunely rescaled nonlinear models still emerges empirically at large depths.

E RELATION TO OTHER GNNS BASED ON STATE-SPACE MODELING

Static Graph Modelling. In the recent literature, we can find GNNs that leverage the state-space
model formalism. An example is that of S4G (Song et al., 2024). Despite both S4G and our MP-SSM
leverage the same formalism, there are key differences that distinguish the two models. (i) Our
MP-SSM operates natively on graphs, while S4G requires graph-to-sequence conversion. S4G,
like other attempts to incorporate SSMs into graph learning (e.g., Wang et al. (2024a); Behrouz
& Hashemi (2024)), chooses to first extract sequences from a static graph and then apply an SSM
module, which in the case of S4G is the S4 model (Gu et al., 2021). We note that this process
compresses graph neighborhoods into linear sequences and thus may not fully retain the original
structural relationships. In contrast, our MP-SSM maintains the graph structure and operates on it
directly. Moreover, differently from S4G, our MP-SSM framework seamlessly extends naturally to
temporal graphs as well as time-varying topologies. (ii) To create a sequence, S4G collapses the
k-hop neighborhood of a root node into a single embedding at step k of a surrogate input sequence.
In other words, a node in the k-hop shell contributes only to step k, regardless of the richer set of
longer or alternative paths through which information could propagate. MP-SSM instead aggregates
information along all walks (including cycles) in accordance with the powers of the GSO of choice,
leading to a fundamentally different inductive bias that more faithfully reflects graph structure. (iii)
S4G uses a single-input single-output (SISO) sequential architecture, while MP-SSM is inherently a
multi-input multi-output (MIMO) model. In modern state-space models, MIMO architectures have
already been shown to provide strictly greater expressive capacity than SISO variants (Smith et al.,
2022). In our setting of spatiotemporal learning, this advantage is further supported by graph-based
studies demonstrating that jointly modeling multiple time series through a relational structure yields
more informative representations and superior predictive performance compared to treating each
series independently (Cini et al., 2023b; Spadon et al., 2022). Finally, (iv) our MP-SSM provides
a theoretical general analysis in which the sensitivity directly depends on the graph topology and
the chosen GSO. Specifically, our analysis enables a quantitative understanding of graph learning
issues like vanishing gradients and oversquashing without considering the collapsed surrogate of a
graph, i.e., a sequence. This analysis is possible thanks to the precise computations in our theoretical
framework, which, to the best of our knowledge, are not present in the existing literature.

Temporal Graph Modelling. In the recent literature, we can find temporal graph models that leverage
the state-space approach. The MP-SSM presents a simplified yet effective recurrent architecture
for temporal graph modeling, offering clear advantages in architectural design when compared to
alternatives such as GGRNN (Ruiz et al., 2020) or GraphSSM (Li et al., 2024). The MP-SSM
recurrent dynamics are governed by a simple linear diffusion on the graph:

Xt+1 = AXtW +Ut+1B. (28)

In contrast, the GGRNN recurrent equation (in its simplest form, without gating mechanisms) adopts
a more elaborate design:

Xt+1 = σ

K−1∑
j=0

AjXtWj +

K−1∑
j=0

AjUt+1Bj

 , (29)
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where multiple powers of the shift operator, A, are used to aggregate information from both previous
embedding Xt and current input features Ut+1, weighted with several learnable matrices, Wj and
Bj , which are applied for different j values, and finally, applying a nonlinearity at each time step.

The key distinguishing feature of MP-SSM is the absence of nonlinearity in the recurrent update, with
the only nonlinear transformation appearing in a downstream MLP decoder, typically composed of two
dense layers with an activation function in between. This feature also allows for a fast implementation
of the recurrence, since it can be unfolded to get a closed-form solution, see Appendix B. Moreover,
in an MP-SSM block, the same weights, W,B and MLP parameters, are shared across all time steps,
ensuring strict weight sharing throughout the sequence. Moreover, our methodology implements a
stack of MP-SSM blocks to build richer representations, differently from GGRNN where only one
layer of recurrent computation is performed.

On the other hand, the GraphSSM model (Li et al., 2024) adopts a strategy of stacking several
GraphSSM blocks similar to MP-SSM, but their building blocks are fundamentally different from
our MP-SSM block. In fact, a GraphSSM block processes the spatio-temporal input sequence [Ut] in
three main stages, see Appendix D.2 of Li et al. (2024). First, a GNN backbone is applied to the input
sequence, generating a corresponding sequence of node embeddings Xt. Next, each embedding is
mixed with the one from the previous time step Xt−1, producing a smoothed temporal embedding
Ht. This mixed sequence [Ht] is then treated as a multivariate time series and passed through an
SSM layer (such as S4, S5, or S6) to yield the final sequence [Yt] as the output of a GraphSSM
block. Our approach is conceptually simpler, as it integrates both the GNN diffusive dynamics and
sequence-based processing within a unified linear recurrence (Eq. (28)) followed by a shared MLP
applied across time steps. In this sense, MP-SSM embeds the core principles behind modern SSMs,
which are the very principles that have driven the success of sequential modeling, directly into the
graph processing framework. In contrast, GraphSSM merely combines GNN and SSM backbones
in a modular fashion to address temporal graph tasks, without deeply integrating their underlying
mechanisms.

In Table 6, we provide a direct comparison between MP-SSM, GGRNN, and GraphSSM, on the Metr-
LA and PeMS-Bay datasets. To ensure a fair and comprehensive comparison, we computed MAE,
RMSE, and MAPE for all three models: MP-SSM, GGRNN, and GraphSSM. We used GGRNN
without gating mechanisms, as it achieved the best performance on Metr-LA according to (Ruiz
et al., 2020, Table IV), and GraphSSM-S4, since the authors reported in Li et al. (2024) that their
experiments were primarily conducted using the S4 architecture. As the results show, our method
consistently and significantly outperforms both GGRNN and GraphSSM across all three metrics on
both datasets.

Table 6: Multivariate time series forecasting on the Metr-LA and PeMS-Bay datasets for Horizon 12.
Best results for each task are in bold.

Model Metr-LA PeMS-Bay

MAE ↓ RMSE ↓ MAPE ↓ MAE ↓ RMSE ↓ MAPE ↓

GGRNN 3.88 8.14 10.59% 2.34 5.14 5.21%
GraphSSM-S4 3.74 7.90 10.37% 1.98 4.45 4.77%

MP-SSM (ours) 3.17 6.86 9.21% 1.62 4.22 4.05%

F MULTI-HOP INTERPRETATION OF A DEEP MP-SSM ARCHITECTURE

MP-SSM is fundamentally different from multi-hop GNNs approaches: it operates through strictly
1-hop message passing at each iteration and does not perform aggregation from far-away hops by
design. Nonetheless, to better understand its behavior in deeper architectures, we explore how a
multi-hop perspective can be used for interpretation, drawing contrasts with a representative multi-hop
model, Drew (Gutteridge et al., 2023). For this purpose, let us consider the static case, with the
input being the sequence [U1, . . . ,U1]. The linearity of the recurrent equation of an MP-SSM block
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allows us to unfold the recurrent equation as follows:

Xk+1 = Ak+1X0W
k+1 +

k∑
i=0

AiU1BWi. (30)

Therefore, assuming a zero initial state and including the MLP into the equation, we have the
following expression in the output of the first MP-SSM block:

Yk+1 = MLP
( k∑
i=0

AiU1BWi
)
. (31)

Due to the various powers of the shift operator I,A,A2, . . . ,Ak, we can interpret Eq. (31) as a
k-hop aggregation of the input graph U1. Now, the sequence [Yk+1, . . . ,Yk+1] is the input to the
second MP-SSM block. Therefore, stacking the second MP-SSM block, and considering a residual
connection from the first MP-SSM block, we have the following expression in the output of the
second MP-SSM block:

Y2(k+1) = Yk+1 + MLP
( k∑
i=0

AiYk+1B2W
i
2

)
, (32)

where B2,W2, are the shared weights of the second MP-SSM block. In general, in a deep MP-SSM
architecture of s blocks, we have the following expression in the output of the s-th MP-SSM block:

Ys(k+1) = Y(s−1)(k+1) + MLP
( k∑
i=0

AiY(s−1)(k+1)BsW
i
s

)
. (33)

To reveal the multi-hop view, we denote Ŷ(s) = Ys(k+1), Ŵ
(s)
i = BsW

i
s, and describe the deep

MP-SSM architecture at the granularity of its blocks, as follows:

Ŷ(s) = Ŷ(s−1) + MLP
( k∑
i=0

AiŶ(s−1)Ŵ
(s)
i

)
. (34)

This multi-hop interpretation of a deep MP-SSM architecture resembles the DRew-GCN architecture
(Gutteridge et al., 2023), a multi-hop MPNN employing a dynamically rewired message passing
strategy with delay. In fact, the recurrent equation of DRew-GCN, rephrased in our MP-SSM notation
for ease of comparison, is defined as:

Y(s+1) = Y(s) + σ

(
s+1∑
i=1

A(i)Y(s−τν(i))W
(s)
i

)
, (35)

where A(i) is the degree-normalised shift operator that considers all the neighbors at an exact i hops
from each respective root node, W(s)

i are weight matrices, and τν(i) is a positive integer (the delay)
defining the temporal window for the aggregation of past embeddings. Comparing Eq. (34) and
Eq. (35) we can summarize the following differences:

• DRew aggregates information using A(i), a function of the GSO that counts neighbors at an
exact i hops distance, while MP-SSM considers the powers of the GSO, Ai, thus accounting
for all the possible walks of length i. Similarly, the learnable weights in MP-SSM reflect the
architectural bias induced by the recurrence, as they are structured through powers of a base
matrix, specifically following the form Ŵ

(s)
i = BsW

i
s.

• DRew nonlinearly aggregates information via a pointwise nonlinearity σ, while MP-SSM
employs a more expressive 2-layers MLP.

• MP-SSM uses the same features for multi-hop aggregation (corresponding to τν(i) ≡ 0),
whereas DRew aggregates features from previous layers with a delay τν(i) = max(0, i−ν),
effectively introducing a temporal rewiring of the graph.

Although the unfolding of MP-SSM yields expressions involving powers of the GSO, this resemblance
to multi-hop architectures such as DRew (Gutteridge et al., 2023) is purely superficial. Unlike models
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that aggregate information from distant nodes within a single layer, MP-SSM performs strictly 1-hop
message passing at each iteration. The higher-order GSO terms emerge naturally from the recurrence,
not from an architectural bias toward multi-hop aggregation. This formulation, grounded in first
principles, preserves the original graph topology and constitutes a structurally distinct approach.
We provide in Table 7 a comparison of DRew-GCN (results taken from Gutteridge et al. (2023))
with our MP-SSM on the Peptides-func and Peptides-struct from the LRGB task (Dwivedi et al.,
2022b). Notably, MP-SSM outperforms DRew-GCN on the Peptides-struct task, suggesting that the
structural architectural bias introduced by the recurrence, combined with MLP adaptivity, offers a
stronger advantage than aggregating information via rewired connections from delayed past features.
In contrast, on the Peptides-func task, the performance of the two models falls within each other’s
standard deviation, indicating no statistically significant difference between DRew-GCN, despite its
dynamic rewiring strategy with delay, and MP-SSM. In Appendix H we report an extended evaluation
on the LRGB benchmark.

Table 7: Results for Peptides-func and Peptides-struct averaged over 3 training seeds. DRew-GCN
results are taken from Gutteridge et al. (2023). The best scores are in bold.

Model Peptides-func Peptides-struct
AP ↑ MAE ↓

DRew-GCN 69.96±0.76 0.2781±0.0028

MP-SSM (ours) 69.93±0.52 0.2458±0.0017

G EXPERIMENTAL DETAILS

G.1 EMPLOYED BASELINES

In our experiments, the performance of our method is compared with various state-of-the-art GNN
baselines from the literature. Specifically, we consider:

• classical MPNN-based methods, i.e., GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton
et al., 2017), GAT (Veličković et al., 2018), GatedGCN (Bresson & Laurent, 2018), GIN (Xu
et al., 2019), ARMA (Bianchi et al., 2021), GINE (Hu et al., 2020), GCNII (Chen et al.,
2020), and CoGNN (Finkelshtein et al., 2024);

• heterophily-specific models, i.e., H2GCN (Zhu et al., 2020), CPGNN (Zhu et al., 2021),
FAGCN (Bo et al., 2021), GPR-GNN (Chien et al., 2021), FSGNN (Maurya et al., 2022),
GloGNN (Li et al., 2022), GBK-GNN (Du et al., 2022), and JacobiConv (Wang & Zhang,
2022);

• physics-inspired MPNNs, i.e., DGC (Wang et al., 2021), GRAND (Chamberlain et al.,
2021), GraphCON (Rusch et al., 2022), A-DGN (Gravina et al., 2023), GREAD (Choi et al.,
2023), CDE (Zhao et al., 2023), and TDE-GNN (Eliasof et al., 2024);

• Graph Transformers, i.e., Transformer (Vaswani et al., 2017a; Dwivedi & Bresson, 2021),
GT (Shi et al., 2021), SAN (Kreuzer et al., 2021a), GPS (Rampášek et al., 2022),
GOAT (Kong et al., 2023), Exphormer (Shirzad et al., 2023), NAGphormer (Chen et al.,
2023), GRIT (Ma et al., 2023), and GraphViT (He et al., 2023);

• Higher-Order DGNs, i.e., DIGL (Gasteiger et al., 2019), MixHop (Abu-El-Haija et al.,
2019), DRew (Gutteridge et al., 2023), and GRED (Ding et al., 2024).

• SSM-based GNN, i.e., Graph-Mamba (Wang et al., 2024a), GMN (Behrouz & Hashemi,
2024), GPS+Mamba (Behrouz & Hashemi, 2024), GGRNN (Ruiz et al., 2020), and
GraphSSM (Li et al., 2024).

• Graph-agnostic temporal predictors, i.e., Historical Average (AV), SVR (Smola & Schölkopf,
2004), and FC-LSTM (Sutskever et al., 2014), and VAR (Lu et al., 2016);

• Spatio-temporal GNNs, i.e., DCRNN (Li et al., 2018), GConvGRU (Seo et al., 2018), Graph
WaveNet (Wu et al., 2019b), ASTGCN (Guo et al., 2019), STSGCN (Song et al., 2020),
GMAN (Zheng et al., 2020), MTGNN (Wu et al., 2020b), AGCRN (Bai et al., 2020),
T-GCN (Zhao et al., 2020), DyGrAE (Taheri & Berger-Wolf, 2020), EGCN-O (Pareja
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et al., 2020), A3T-GCN (Bai et al., 2021), MPNN LSTM (Panagopoulos et al., 2021),
GTS (Shang et al., 2021), STEP (Shao et al., 2022), GC-LSTM (Chen et al., 2022), Dyn-
GESN (Micheli & Tortorella, 2022), HMM4G (Errica et al., 2023), STAEformer (Liu et al.,
2023), RGDAN (Fan et al., 2024), AdpSTGCN (Zhang et al., 2024), and STD-MAE (Gao
et al., 2024).

G.2 DATASETS STATISTICS

In our experiments, we compute the performance of our MP-SSM on widely used benchmarks for
both static and temporal graphs. Specifically, we consider:

• long-range propagation tasks, i.e., the three graph property prediction tasks proposed by
Gravina et al. (2023) (“Diameter”, “SSSP”, and “Eccentricity”) and the “Peptide-func” and
“Peptide-struct” tasks from the long-range graph benchmark (Dwivedi et al., 2022b);

• heterophilic tasks, i.e., “Roman-empire”, “Amazon-ratings”, “Minesweeper”, “Tolokers”,
and “Questions” (Platonov et al., 2023);

• temporal tasks, i.e., “Metr-LA” and “PeMS-Bay” for traffic forecasting (Li et al., 2018), and
the “Chickenpox Hungary”, “PedalMe London”, and “Wikipedia math” forecasting tasks
introduced by Rozemberczki et al. (2021).

In Table 8, we report the statistics of the employed datasets.

Table 8: Dataset statistics
Task Nodes Edges Graphs (or Timesteps) Frequency

St
at

ic

Diameter 25 - 35 22 - 553 7,040 –
SSSP 25 - 35 22 - 553 7,040 –
Eccentricity 25 - 35 22 - 553 7,040 –
Peptide-func 150.94 (avg) 307.30 (avg) 15,535 –
Peptide-struct 150.94 (avg) 307.30 (avg) 15,535 –
Roman-empire 22,662 32,927 1 –
Amazon-ratings 24,492 93,050 1 –
Minesweeper 10,000 39,402 1 –
Tolokers 11,758 519,000 1 –
Questions 48,921 153,540 1 –

Te
m

po
ra

l Metr-LA 207 1,515 34,272 5 mins
PeMS-Bay 325 2,369 52,116 5 mins
Chickenpox Hungary 20 102 512 Weekly
PedalMe London 15 225 15 Weekly
Wikipedia math 731 27,079 1,068 Daily

G.3 HYPERPARAMETER SPACE

In Table 9, we report the grid of hyperparameters employed in our experiments by our method on all
the considered benchmarks.

H RESULTS ON THE LONG-RANGE GRAPH BENCHMARK

To further evaluate the performance of our MP-SSM, we consider two tasks of the Long-Range Graph
Benchmark (LRGB) (Dwivedi et al., 2022b).

Setup. We evaluate MP-SSM on the Peptides-func and Peptides-struct tasks from the LRGB
benchmark, which involve predicting functional and structural properties of peptides that require
modeling long-range dependencies. We follow the original experimental setup and 500k parameter
budget.

Results. As shown in Table 10, MP-SSM outperforms standard MPNNs, transformer-based GNNs,
and most multi-hop and SSM-based models. It achieves the highest average ranking across tasks
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Table 9: The grid of hyperparameters employed during model selection for the graph property
prediction tasks (GPP), Long Range Graph Benchmark (LRGB), heterophilic benchmarks (Hetero),
and spatio-temporal benchmarks (Temporal).

Hyperparameters Values

GPP LRGB Hetero Temporal

Optimizer Adam AdamW AdamW AdamW
Learning rate 0.003 0.001, 0.0005, 0.0001 0.001, 0.0005 ,0.0001 0.005, 0.001, 0.0005 ,0.0001
Weight decay 10−6 0, 0.0001, 0.001 0, 0.0001, 0.001 0, 0.0001, 0.001
Dropout 0 0, 0.5 0, 0.4, 0.5, 0.6, 0, 0.5
N. recurrences 1, 5, 10, 20 1, 2, 4, 8, 16 1, 2, 4, 8, 16 1, 2, 4, 8, 16
Embedding dim 10, 20, 30 32,64,128,256 32,64,128,256 32,64,128,256
N. Blocks 1, 2 1, 2, 4, 8, 16 1, 2, 4, 8, 16 1, 2, 4, 8, 16
Structure of U U = [U1, . . . ,U1] U = [U1,U2, . . . ]

without relying on global attention or graph rewiring. Compared to other graph SSMs, MP-SSM
delivers strong performance while preserving permutation-equivariance.

Table 10: Results for Peptides-func and Peptides-struct averaged over 3 training seeds. Re-evaluated
methods employ the 3-layer MLP readout proposed in Tönshoff et al. (2023). Note that all MPNN-
based methods include structural and positional encoding. The first, second, and third best scores are
colored. Baseline results are reported from Dwivedi et al. (2022b); Gutteridge et al. (2023); Tönshoff
et al. (2023); He et al. (2023); Ding et al. (2024); Gravina et al. (2025). ‡ means 3-layer MLP readout
and residual connections are employed.

Model Peptides-func Peptides-struct avg. Rank
AP ↑ MAE ↓ ↓

MPNNs
A-DGN 59.75±0.44 0.2874±0.0021 26.0
GatedGCN 58.64±0.77 0.3420±0.0013 29.0
GCN 59.30±0.23 0.3496±0.0013 29.5
GCNII 55.43±0.78 0.3471±0.0010 30.5
GINE 54.98±0.79 0.3547±0.0045 32.0
GRAND 57.89±0.62 0.3418±0.0015 29.0
GraphCON 60.22±0.68 0.2778±0.0018 24.0
SWAN 67.51±0.39 0.2485±0.0009 12.5

Multi-hop GNNs
DIGL+MPNN 64.69±0.19 0.3173±0.0007 25.0
DIGL+MPNN+LapPE 68.30±0.26 0.2616±0.0018 16.5
DRew-GatedGCN 67.33±0.94 0.2699±0.0018 19.5
DRew-GatedGCN+LapPE 69.77±0.26 0.2539±0.0007 12.0
DRew-GCN 69.96±0.76 0.2781±0.0028 14.0
DRew-GCN+LapPE 71.50±0.44 0.2536±0.0015 8.0
DRew-GIN 69.40±0.74 0.2799±0.0016 17.5
DRew-GIN+LapPE 71.26±0.45 0.2606±0.0014 9.5
GRED 70.85±0.27 0.2503±0.0019 7.0
MixHop-GCN 65.92±0.36 0.2921±0.0023 23.0
MixHop-GCN+LapPE 68.43±0.49 0.2614±0.0023 15.5

Transformers
GraphGPS+LapPE 65.35±0.41 0.2500±0.0005 15.5
Graph ViT 69.42±0.75 0.2449±0.0016 5.5
GRIT 69.88±0.82 0.2460±0.0012 5.0
Transformer+LapPE 63.26±1.26 0.2529±0.0016 19.5
SAN+LapPE 63.84±1.21 0.2683±0.0043 22.0

Modified and Re-evaluated‡

DRew-GCN+LapPE 69.45±0.21 0.2517±0.0011 11.0
GatedGCN 67.65±0.47 0.2477±0.0009 11.0
GCN 68.60±0.50 0.2460±0.0007 7.5
GINE 66.21±0.67 0.2473±0.0017 12.0
GraphGPS+LapPE 65.34±0.91 0.2509±0.0014 17.0

Graph SSMs
GMN 70.71±0.83 0.2473±0.0025 4.5
Graph-Mamba 67.39±0.87 0.2478±0.0016 12.5

Ours
MP-SSM 69.93±0.52 0.2458±0.0017 4.0
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Ablations. As discussed in Section 2, the MLP in Equation (4) is implemented as a standard MLP
with 2 linear layers and a nonlinearity in between. To better understand the role of the nonlinearity
and MLP’s depth, we ablate in Table 11 on the performance of ReLU, GELU, and ELU functions,
and in Table 12 we ablate over MLP depths of 1, 2, and 3. Our results show that the performance
of the tested nonlinearities are statistically similar, while that a two-layer MLP is a good balance
between computational demand and performance.

Table 11: Results for Peptides-func and Peptides-struct averaged over 3 training seeds for three
different nonlinearities in the MLP of Equation (4), i.e., ReLU, GELU, and ELU.

Model Peptides-func Peptides-struct
AP ↑ MAE ↓

MP-SSM w/ ReLU 69.93±0.52 0.2458±0.0017

MP-SSM w/ GELU 69.88±0.49 0.2456±0.0018

MP-SSM w/ ELU 69.95±0.60 0.2459±0.0011

Table 12: Results for Peptides-func and Peptides-struct averaged over 3 training seeds for three
different depth of the MLP in Equation (4).

Model Peptides-func Peptides-struct
AP ↑ MAE ↓

MP-SSM w/ 1 layer MLP 69.12±0.43 0.2461±0.0009

MP-SSM w/ 2 layers MLP 69.93±0.52 0.2458±0.0017

MP-SSM w/ 3 layers MLP 69.91±0.57 0.2451±0.0014

I COMPLEXITY AND RUNTIMES

We discuss the theoretical complexity of our method, followed by a comparison of runtimes with
other methods.

Complexity Analysis. Our MP-SSM consists of a stack of blocks. Each of them performs a linear
recurrence of k iterations followed by the application of a nonlinear map, as defined in Eqs. (3)
and (4). Note that k is either the length of the temporal graph sequence or a hyperparameter. Given the
similarities between the linear recurrence in MP-SSM and standard MPNNs, described in Section 2,
the recurrence retains the complexity of standard MPNNs. Therefore, the Eq. (3) is linear in the
number of node |V | and edges |E|, achieving a time complexity of O(k · (|V | + |E|)), with k
the number of iterations. Considering O(m) the time complexity of the MLP in Eq. (4), then
the final time complexity of one MP-SSM block is O(k · (|V | + |E|) +m) in the static case and
O(k · (|V |+ |E|+m)) in the temporal case.

Runtimes. We provide runtimes for MP-SSM and compare it with other methods, such as Graph GPS
and GCN, in Table 13. In all cases, we use a model with 256 hidden dimensions and a varying depth
effective by changing the number of recurrences from 2 to 16 in our MP-SSM with 2 MP-SSM blocks,
and the number of layers is the depth for other methods. We report the training and inference times in
milliseconds, as well as the downstream performance performance obtained on the Roman-Empire
dataset. As shown in the table, MP-SSM delivers stronger performance than graph transformers at
only a fraction of their computational cost, i.e., maintaining a runtime comparable to GCN, which
scales linearly with the graph size. Notably, our MP-SSM achieves better performance than GCN
and GPS, and maintains its performance as depth increases, different than GCN. All runtimes are
measured on an NVIDIA A6000 GPU with 48GB of memory.
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Table 13: Training and Inference Runtime (milliseconds) and obtained node classification accuracy
(%) on the Roman-Empire dataset.

Metrics Method Depth

4 8 16 32

Training (ms)
GCN

18.38 33.09 61.86 120.93
Inference (ms) 9.30 14.64 27.95 53.55
Accuracy (%) 73.60 61.52 56.86 52.42

Training (ms)
GPS

1139.05 2286.96 4545.46 OOM
Inference (ms) 119.10 208.26 427.89 OOM
Accuracy (%) 81.97 81.53 81.88 OOM

Training (ms)
GPSGAT+Performer (RWSE)

1179.08 2304.77 4590.26 OOM
Inference (ms) 120.11 209.98 429.03 OOM
Accuracy (%) 84.89 87.01 86.94 OOM

Training (ms)
MP-SSM

23.19 41.44 72.09 141.82
Inference (ms) 10.93 18.87 38.87 67.59
Accuracy (%) 85.73 88.02 90.82 90.91

J ABLATIONS

J.1 IMPACT OF SSM HEURISTIC ON GRAPH REPRESENTATION LEARNING

We perform an ablation study to isolate the incremental contribution of each SSM heuristic to the
performance gains in reconstructing graph-structural information that depends on learning long-range
dependencies; specifically for computing quantities like the diameter of a graph, the single-source-
shortest-paths (SSSP), and the eccentricity of a node, see Section 4.1 for more details on these tasks.
Results of this ablation are reported in Table 14.

Table 14: Architecture ablation study. Mean test log10(MSE) and std averaged on 4 random weight
initialization on Graph Property Prediction tasks (Section 4.1). The lower, the better. The evaluation
include: a nonlinear multilayer GCN (GCN), a linear multilayer GCN (Linear GCN), a linear
multilayer GCN with weight sharing (Linear GCN (ws)), Linear GCN (ws) followed by an MLP
(1 Block Linear GCN), a stack of multiple 1 Block Linear GCN (Multi-Blocks Linear
GCN), and our MP-SSM, which represent a multi-blocks linear GCN with standard deep learning
heuristics such as residual connections and normalisation layers between blocks.

Model Diameter ↓ SSSP ↓ Eccentricity ↓

GCN 0.7424±0.0466 0.9499±0.0001 0.8468±0.0028

Linear GCN -2.1255±0.0984 -1.5822±0.0002 -2.1424±0.0014

Linear GCN (ws) -2.2678±0.1277 -1.5823±0.0001 -2.1447±0.001

1 Block Linear GCN -2.2734±0.1513 -1.5836±0.0025 -2.1869±0.0058

Multi-Blocks Linear GCN -2.3531±0.3183 -1.5821±0.0001 -2.1861±0.0066

MP-SSM -3.2353±0.1735 -4.6321±0.0779 -2.9724±0.0271

We devised an ablation aimed to incrementally add/remove components starting from a plain GCN
and ending with the full MP-SSM architecture. We first remove the nonlinearity from a GCN (second
row in Table 14), then add weight sharing to obtain a linear recurrence (third row), then introduce a
shared MLP over the recurrent steps to obtain an MP-SSM block (fourth row), next stack multiple
MP-SSM blocks (fifth row), and finally add residual connections and normalization between blocks
(last row).

The ablation conducted reveals that removing the nonlinearity from GCN yields a significant perfor-
mance improvement. Introducing weight sharing, effectively incorporating recurrence into the linear
graph diffusion process, yields a slight performance boost while considerably reducing the number of
parameters. Appending an MLP at the last time step of this linear recurrent architecture does not result
in statistically significant gains, except marginally for the Eccentricity task. Likewise, constructing a
hierarchical block structure does not noticeably enhance performance. These limited improvements
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suggest that, for the three tasks considered, the linear recurrence mechanism alone, provided a
long enough recurrence, is sufficient to capture meaningful representations to reconstruct graph’s
structural information. Finally, incorporating standard deep learning heuristics further strengthens the
full MP-SSM architecture, consistently improving performance across all tasks. These results also
highlight that the components contributing most to MP-SSM’s performance vary across tasks. For
example, in the Diameter task, the linear propagation alone yields the largest gains, whereas in SSSP
the residual connections and normalization provide the main performance boost. Overall, MP-SSM’s
effectiveness stems from the synergy of its core basic components: (i) linear recurrent propagation,
which propagates information across the graph while avoiding the accumulation of nonlinear distor-
tions, (ii) universal approximation power of MLPs, enabling expressive feature transformations on
representations that have been progressively aggregated over many recurrent diffusion steps, and (iii)
stacked deep residual blocks, allowing hierarchical representation learning while promoting stable
gradients.

J.2 ON THE INFLUENCE OF DIFFERENT GSOS ON THE GRAPH PROPERTY PREDICTION TASKS

The stability of MP-SSM depends on the magnitudes of the powers of the chosen GSO, as shown by
our exact Jacobian computation (Theorem 3.4). For stable (even infinite) recursions, the powers must
neither diverge nor vanish, motivating the use of the symmetrically normalized adjacency matrix with
self-loops (i.e., Equation (1)) as GSO in our MP-SSM framework, as proven in Lemma 3.5. Another
suitable GSO candidate is the Random Walk normalized Laplacian (i.e., L = I−D−1A), whose
powers possess similar stability guarantees. In Table 15, we have added an experiment on the Graph
Property Prediction benchmark (see Section 4.1) task comparing performance using the Random
Walk (RW) and the unnormalized Laplacian (i.e., L = D −A) GSOs. As can be seen, using the
Random Walk GSO leads to performance comparable to our GSO in Equation (1), as both possess
similar stability guarantees. In contrast, the unnormalized Laplacian is the least suitable choice. The
reason is that the powers of this operator can grow rapidly, and since these powers appear in the
gradients (see the Jacobian expression in Equation (6)), such amplification can induce significant
training instabilities and ultimately degrade performance. This observation is empirically confirmed
in Figure 4: with identical model configurations, the unnormalized Laplacian causes the Jacobian
norm to grow exponentially after roughly 10 steps.

Table 15: Mean test set log10(MSE)(↓) and std averaged on 4 random weight initializations on Graph
Property Prediction tasks for different GSOs in MP-SSM. We consider three GSOs: symmetrically
normalized adjacency matrix with self-loops (Eq. (1)); the Random Walk normalized Laplacian (RW),
L = I−D−1A; and the unnormalized Laplacian (L), L = D−A. The lower, the better.

Model Diameter ↓ SSSP ↓ Eccentricity ↓
MP-SSM (Eq. (1)) -3.2353±0.1735 -4.6321±0.0779 -2.9724±0.0271

MP-SSM (RW) -3.2445±0.0481 -4.3860±0.0379 -3.1326±0.1040

MP-SSM (L) -2.3509±0.0192 -3.9729±0.8539 -2.2353±0.0138

K EXTENDED COMPARISON ON THE HETEROPHILIC BENCHMARK

To further evaluate the performance of MP-SSM, we report a more complete comparison for the
heterophilic task in Table 16. Specifically, we include more MPNN-based models, graph transformers,
and heterophily-designated GNNs.

In Table 16, we color the top three methods. Different from the main body of the paper, here we
also include sub-variants of methods in the highlighted results, providing an additional perspective
on the findings. Notably, our MP-SSM achieves the best average ranking across all datasets in the
heterophilic benchmarks. We believe that MP-SSM perform strongly on these tasks because of two
main reasons: (i) it is well-suited to capture long-range dependencies, and (ii) it can effectively
represent low- and high-frequency components. Specifically, as discussed in Platonov et al. (2023),
these tasks likely involve long-range dependencies due to their graph structure and dimensionality,
and MP-SSM is well-suited to capture such dependencies (as discussed in Section 3), giving it
an advantage. Second, unlike standard MPNNs that rely on repeated local nonlinear aggregation,
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∥J
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Figure 4: The norm of the Jacobian of a 1 block MP-SSM for different GSOs, measured on the
Diameter task (see Section 4.1). We consider two GSOs: symmetrically normalized adjacency matrix
with self-loops (Eq. (1)), and the unnormalized Laplacian (L), L = D−A.

MP-SSM uses a linear recurrence. When unfolded, this corresponds to a weighted sum over powers
of the graph shift operator (see Equation (11)). Crucially, these weights are learnable and can be
negative, allowing the model not only to accumulate signals but also to cancel or invert them. Such
behavior is known to be useful for heterophilic settings (Chien et al., 2021; Eliasof et al., 2023). This
enables MP-SSM to represent both low- and high-frequency components, effectively learning flexible,
potentially high-pass aggregation schemes. We hypothesize that this spectral flexibility, combined
with the nonlinear MLP, allows MP-SSM to capture heterophilic patterns effectively.

L MP-SSM AND TIME-VARYING TOPOLOGIES

To further evaluate the spatiotemporal performance of our MP-SSM, we consider the Twitter Tennis
RG benchmark Rozemberczki et al. (2021), where both node features and edges change over time.
Specifically, Twitter Tennis RG is a mention graph in which nodes are Twitter accounts and their
labels encode the number of mentions between them. We follow the original experimental setup of
Rozemberczki et al. (2021).
As shown in Table 17, MP-SSM outperforms all the baselines, demonstrating its effectiveness also
with evolving graph topologies.

M ON THE SIMILARITY WITH POLYNOMIAL FILTERS

Although there are similarities with polynomial filters, such as ChebNet (Defferrard et al., 2016) and
SGC (Wu et al., 2019a), since MP-SSM gives rise to a polynomial-like expansion when unfolding
the recurrence (i.e., Equation (11)), this similarity is only structural. Indeed, ChebNet employs the
Chebyshev polynomial, which suffer from instability issues with high-order Chebyshev filters (Hariri
et al., 2025). Differently, the polynomial-like behavior of MP-SSM emerges naturally from iterating
a 1-hop linear recurrence and its dynamics remains stable even at large recurrent depths, as proven in
Lemma 3.5 and Theorem 3.6. Moreover, the recurrence in the MP-SSM block unfolds into a learnable
combination of all powers of the GSO, thereby offering a significantly richer propagation scheme
than the fixed k-hop aggregation used by SGC. To further illustrate these differences empirically, we
report in Table 18 the performance on the Graph Property Prediction benchmark (see Section 4.1)
comparing our MP-SSM with ChebNet and SGC. We note that the performance gap is large across all
tasks, despite the superficial similarity in polynomial structure, highlighting that our method behaves
fundamentally differently in practice and better capture long-range dependencies between nodes.
Therefore, while one may observe polynomial expressions in an unrolled recurrence, the architectural
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Table 16: Mean test set score and std averaged over 4 random weight initializations on heterophilic
datasets. The higher, the better. First, second, and third best results for each task are color-coded.
Baseline results are reported from Finkelshtein et al. (2024); Behrouz & Hashemi (2024); Platonov
et al. (2023); Müller et al. (2024); Luan et al. (2024). “∗” in the rank column means that the average
has been computed over less trials.

Model Roman-empire Amazon-ratings Minesweeper Tolokers Questions avg. Rank
Acc ↑ Acc ↑ AUC ↑ AUC ↑ AUC ↑ ↓

Luan et al. (2024)
MLP-1 64.12±0.61 38.60±0.41 50.59±0.83 71.89±0.82 70.33±0.96 41.0
MLP-2 66.04±0.71 49.55±0.81 50.92±1.25 74.58±0.75 69.97±1.16 34.4
SGC-1 44.60±0.52 40.69±0.42 82.04±0.77 73.80±1.35 71.06±0.92 38.6

Graph-agnostic
ResNet 65.88±0.38 45.90±0.52 50.89±1.39 72.95±1.06 70.34±0.76 37.4
ResNet+adj 52.25±0.40 51.83±0.57 50.42±0.83 78.78±1.11 75.77±1.24 32.0
ResNet+SGC 73.90±0.51 50.66±0.48 70.88±0.90 80.70±0.97 75.81±0.96 29.0

MPNNs
CO-GNN(Σ, Σ) 91.57±0.32 51.28±0.56 95.09±1.18 83.36±0.89 80.02±0.86 8.0
CO-GNN(µ, µ) 91.37±0.35 54.17±0.37 97.31±0.41 84.45±1.17 76.54±0.95 6.8
GAT 80.87±0.30 49.09±0.63 92.01±0.68 83.70±0.47 77.43±1.20 18.0
GAT-sep 88.75±0.41 52.70±0.62 93.91±0.35 83.78±0.43 76.79±0.71 9.8
GAT (LapPE) 84.80±0.46 44.90±0.73 93.50±0.54 84.99±0.54 76.55±0.84 16.0
GAT (RWSE) 86.62±0.53 48.58±0.41 92.53±0.65 85.02±0.67 77.83±1.22 11.6
GAT (DEG) 85.51±0.56 51.65±0.60 93.04±0.62 84.22±0.81 77.10±1.23 12.6
Gated-GCN 74.46±0.54 43.00±0.32 87.54±1.22 77.31±1.14 76.61±1.13 31.4
GCN 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67 76.09±1.27 25.8
GCN (LapPE) 83.37±0.55 44.35±0.36 94.26±0.49 84.95±0.78 77.79±1.34 14.6
GCN (RWSE) 84.84±0.55 46.40±0.55 93.84±0.48 85.11±0.77 77.81±1.40 12.0
GCN (DEG) 84.21±0.47 50.01±0.69 94.14±0.50 82.51±0.83 76.96±1.21 16.4
SAGE 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44 76.44±0.62 15.6

Graph Transformers
Exphormer 89.03±0.37 53.51±0.46 90.74±0.53 83.77±0.78 73.94±1.06 16.6
NAGphormer 74.34±0.77 51.26±0.72 84.19±0.66 78.32±0.95 68.17±1.53 30.6
GOAT 71.59±1.25 44.61±0.50 81.09±1.02 83.11±1.04 75.76±1.66 31.2
GPS 82.00±0.61 53.10±0.42 90.63±0.67 83.71±0.48 71.73±1.47 21.4
GPSGCN+Performer (LapPE) 83.96±0.53 48.20±0.67 93.85±0.41 84.72±0.77 77.85±1.25 12.8
GPSGCN+Performer (RWSE) 84.72±0.65 48.08±0.85 92.88±0.50 84.81±0.86 76.45±1.51 16.6
GPSGCN+Performer (DEG) 83.38±0.68 48.93±0.47 93.60±0.47 80.49±0.97 74.24±1.18 22.6
GPSGAT+Performer (LapPE) 85.93±0.52 48.86±0.38 92.62±0.79 84.62±0.54 76.71±0.98 14.4
GPSGAT+Performer (RWSE) 87.04±0.58 49.92±0.68 91.08±0.58 84.38±0.91 77.14±1.49 15.0
GPSGAT+Performer (DEG) 85.54±0.58 51.03±0.60 91.52±0.46 82.45±0.89 76.51±1.19 20.0
GPSGCN+Transformer (LapPE) OOM OOM 91.82±0.41 83.51±0.93 OOM 33.8
GPSGCN+Transformer (RWSE) OOM OOM 91.17±0.51 83.53±1.06 OOM 34.4
GPSGCN+Transformer (DEG) OOM OOM 91.76±0.61 80.82±0.95 OOM 36.2
GPSGAT+Transformer (LapPE) OOM OOM 92.29±0.61 84.70±0.56 OOM 30.2
GPSGAT+Transformer (RWSE) OOM OOM 90.82±0.56 84.01±0.96 OOM 33.8
GPSGAT+Transformer (DEG) OOM OOM 91.58±0.56 81.89±0.85 OOM 36.0
GT 86.51±0.73 51.17±0.66 91.85±0.76 83.23±0.64 77.95±0.68 14.4
GT-sep 87.32±0.39 52.18±0.80 92.29±0.47 82.52±0.92 78.05±0.93 12.6

Heterophily-Designated GNNs
CPGNN 63.96±0.62 39.79±0.77 52.03±5.46 73.36±1.01 65.96±1.95 40.0
FAGCN 65.22±0.56 44.12±0.30 88.17±0.73 77.75±1.05 77.24±1.26 31.0
FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92 18.2
GBK-GNN 74.57±0.47 45.98±0.71 90.85±0.58 81.01±0.67 74.47±0.86 28.0
GloGNN 59.63±0.69 36.89±0.14 51.08±1.23 73.39±1.17 65.74±1.19 41.0
GPR-GNN 64.85±0.27 44.88±0.34 86.24±0.61 72.94±0.97 55.48±0.91 38.4
H2GCN 60.11±0.52 36.47±0.23 89.71±0.31 73.35±1.01 63.59±1.46 39.6
JacobiConv 71.14±0.42 43.55±0.48 89.66±0.40 68.66±0.65 73.88±1.16 36.2

Graph SSMs
GMN 87.69±0.50 54.07±0.31 91.01±0.23 84.52±0.21 – 11.0∗

GPS + Mamba 83.10±0.28 45.13±0.97 89.93±0.54 83.70±1.05 – 25.5∗

Ours
MP-SSM 90.91±0.48 53.65±0.71 95.33±0.72 85.26±0.93 78.18±1.34 2.4

motivation, stability properties, and empirical behavior of MP-SSM differ sharply from classical
polynomial-filter GNNs.
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Table 17: Mean test MSE and std averaged over 10 experimental repetitions on Twitter Tennis RG
Benchmark. Baseline results are reported from (Rozemberczki et al., 2021).

DCRNN GConvLSTM DyGrAE EGCN-H T-GCN AGCRN MP-SSM (Ours)

2.049±0.023 2.049±0.024 2.031±0.006 2.040±0.018 2.045±0.027 2.039±0.022 2.028±0.015

Table 18: Mean test set log10(MSE)(↓) and std averaged on 4 random weight initializations on Graph
Property Prediction tasks. The lower, the better. ChebNet’s results are reported from Hariri et al.
(2025).

Model Diameter SSSP Eccentricity

ChebNet -0.1517±0.0343 -1.8519±0.0539 -1.2151±0.0852

SGC -2.6497±0.0333 -1.5822±0.0001 -2.3798±0.0126

MP-SSM -3.2353±0.1735 -4.6321±0.0779 -2.9724±0.0271
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