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Abstract

Dynamic 4D Gaussian Splatting (4DGS) effectively extends the high-speed render-
ing capabilities of 3D Gaussian Splatting (3DGS) to represent volumetric videos.
However, the large number of Gaussians, substantial temporal redundancies, and
especially the absence of an entropy-aware compression framework result in large
storage requirements. Consequently, this poses significant challenges for practical
deployment, efficient edge-device processing, and data transmission. In this paper,
we introduce a novel end-to-end RD-optimized compression framework tailored
for 4DGS, aiming to enable flexible, high-fidelity rendering across varied computa-
tional platforms. Leveraging Fully Explicit Dynamic Gaussian Splatting (Ex4DGS),
one of the state-of-the-art 4DGS methods, as our baseline, we start from the ex-
isting 3DGS compression methods for compatibility while effectively addressing
additional challenges introduced by the temporal axis. In particular, instead of stor-
ing motion trajectories independently per point, we employ a wavelet transform to
reflect the real-world smoothness prior, significantly enhancing storage efficiency.
This approach yields significantly improved compression ratios and provides a
user-controlled balance between compression efficiency and rendering quality.
Extensive experiments demonstrate the effectiveness of our method, achieving up
to 91× compression compared to the original Ex4DGS model while maintaining
high visual fidelity. These results highlight the applicability of our framework for
real-time dynamic scene rendering in diverse scenarios, from resource-constrained
edge devices to high-performance environments. The source code is available at
https://github.com/HyeongminLEE/RD4DGS.

1 Introduction

The advent of 3D Gaussian Splatting (3DGS) [1] marked a significant step in real-time radiance
field rendering, offering superior speed and simpler training compared to Neural Radiance Field
(NeRF)-based approaches [2, 3, 4, 5, 6, 7]. Furthermore, the Gaussian Splatting framework is not
restricted to static scenes but has been effectively extended to represent dynamic, or 4D, scenes such
as videos by capturing temporal variations [8, 9, 10, 11, 12, 13].

Dynamic 4D Gaussian Splatting (4DGS) methods typically require a substantial number of Gaus-
sians and extensive Spherical Harmonics (SH) parameters to represent volumetric video accurately.
Additionally, dynamic points in these methods are often stored independently per timestamp, inher-
ently causing significant temporal redundancies. Consequently, such characteristics lead to large
models and excessive storage demands, severely restricting applicability in resource-constrained
scenarios, including edge computing and efficient data transmission. Although several existing
techniques [14, 15, 16, 17] have explored model size reduction, there is currently no entropy-aware,
bit-level compression method for 4DGS that enables flexible rate-distortion optimization.
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In this paper, we propose a novel rate-distortion (RD) optimized compression method specifically
designed for 4D Gaussian Splatting (4DGS), enabling real-time applications across diverse computing
environments, ranging from edge devices to general computing platforms. We adopt Fully Explicit
Dynamic Gaussian Splatting (Ex4DGS) [18] as our baseline model and introduce a novel approach
that leverages inherent video characteristics beyond traditional RD-optimization. Specifically, fol-
lowing Ex4DGS, we decompose the scene into static and dynamic components. For components
common to both 3DGS and 4DGS, we apply masking and vector quantization after model training,
following the approach of Wang et al. [19]. Although Ex4DGS reduces redundancy by storing
dynamic points only at selected keyframes instead of every frame, the positions at these keyframes are
stored independently, inherently limiting the exploitation of temporal redundancy and thus reducing
compression efficiency. Instead of utilizing the compression method for 3DGS directly, we leverage
the prior that each point moves along a smooth trajectory. To this end, we apply a novel wavelet
transform to each point’s trajectory and discard high-frequency detail components, significantly
reducing storage without severely compromising fidelity. Additionally, we conduct a fine-grained
analysis, evaluating the rate-distortion impact of quantizing individual dynamic opacity elements.
Based on this analysis, we selectively apply quantization only to those elements that offer a favorable
trade-off between compression rate and rendering quality.

Our method achieves model sizes as low as only 1.1% on average of the original Ex4DGS model
while maintaining reasonable visual fidelity. Furthermore, our framework allows users to flexibly
control the trade-off between distortion and data rate based on specific scenario requirements.

Our contributions can be summarized as follows:

• We propose a novel end-to-end rate-distortion optimized compression framework specifically
designed for 4D Gaussian Splatting representations, using Ex4DGS as the baseline.

• To the best of our knowledge, this work is the first to introduce a bit-level rate-distortion optimizable
compression framework for dynamic 4D Gaussian representations.

• We apply the pointwise wavelet transform to further compress the position trajectories of dynamic
Gaussian points, effectively leveraging temporal redundancy inherent in 4D representations.

• Our method achieves significant compression ratios (up to 91×) for dynamic scenes while main-
taining reasonable visual fidelity and offering flexible control over the rate-distortion trade-off
suitable for diverse computing platforms.

2 Related Work

2.1 Neural Rendering

Neural Radiance Fields (NeRF) introduced a novel view synthesis approach by learning density and
color via a multi-layer perceptron from 3D coordinates and viewing directions [2]. Despite their
effectiveness, NeRF-based methods suffer from slow rendering and training speed. Follow-up works
accelerated rendering by employing multi-resolution hash grids [20] or optimizing sparse voxel grids
directly [21], though often at the expense of increased memory usage.

3D Gaussian Splatting (3DGS) [1] emerged as a fast and memory-efficient alternative by representing
scenes with anisotropic 3D Gaussians rather than dense voxels or networks. By optimizing the
parameters, including mean, covariance, and color, 3DGS achieves real-time rendering at high
resolutions using efficient algorithms instead of volumetric ray marching. Recent studies demonstrate
that 3DGS matches or surpasses NeRF in rendering quality, speed, and scalability.

Dynamic scene modeling extends this idea into 4D Gaussian Splatting (4DGS), incorporating time as
an additional dimension. Dynamic NeRF methods [3, 22] learn deformation fields or multi-space
embeddings to handle scene motion, while others utilize representations like temporal tri-planes
for compression [23], but they remain computationally heavy and slow to render. In contrast,
4DGS [8, 10] was introduced as a unified representation for spatiotemporal data, using a set of 4D
Gaussians with per-Gaussian motion trajectories or a deformation network to render moving scenes in
real time. Overall, Gaussian Splatting has rapidly become a promising alternative to NeRF, offering
comparable quality with significantly improved rendering speed, which is crucial for interactive
applications.
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2.2 Gaussian Splatting Compression

Explicit scene representations like 3D Gaussian Splatting (3DGS) [1] enable real-time, high-fidelity
rendering but inherently introduce substantial memory requirements. These arise from the need to
store numerous Gaussian primitives, each characterized by parameters for position, shape, opacity,
and color (often represented by complex spherical harmonics). This significant memory footprint has
spurred the development of various compression techniques specifically designed for 3DGS.

Recent approaches tailored for compressing 3DGS include Compact3DGS [24], which employs
trainable masking to prune redundant Gaussians, CompGS [25], adopting vector quantization to
store Gaussians, HAC++[26], leveraging hash-grid-assisted entropy coding, and Context 3DGS [27],
utilizing an autoregressive, anchor-based context model for hierarchical Gaussian compression.

Extending these techniques to dynamic scenes poses greater memory challenges due to temporal
variations. Recent specialized solutions include Light4GS [14], combining spatio-temporal pruning
with entropy coding; 4DGS-1K [15], optimizing Gaussian reuse and visibility masks for ultra-fast
rendering; MEGA [16], replacing spherical harmonics with lightweight predictors for significant
compression; and LGS [17], which prunes Gaussians and deformation fields within a framework
highly specialized for surgical scenes using stereo vision. These methods highlight the growing
focus on efficient and high-quality rendering of dynamic scenes. QUEEN [13] introduces integer-
based quantization enabling entropy coding; however, it does not explicitly optimize entropy within
a rate-distortion framework, leaving rate-distortion optimization for dynamic Gaussian Splatting
unexplored. Furthermore, QUEEN’s primary objective of per-frame compression for streaming
applications fundamentally differs from our goal of compressing the entire dynamic scene model for
efficient storage.

2.3 End-to-End Rate-Distortion Optimized Compression

Rate-distortion (RD) optimization balances bitrate against reconstruction quality, a core principle
extensively used in traditional and neural compression methods. End-to-end image compression
frameworks by Ballé et al. [28] introduced autoencoder-based models jointly trained to minimize
distortion and bitrate, laying the foundation for differentiable compression. Follow-up studies
improved efficiency through advanced context modeling and latent priors [29, 30, 31].

Recently, RD-optimization concepts have been applied to neural scene representations. For example,
Takikawa et al. presented a neural field that continuously adjusts detail level and bitrate via a
tunable parameter [32]. Specifically for 3D Gaussian Splatting, Wang et al. [19] proposed an RD-
optimization-based framework that jointly optimizes Gaussian parameters with learnable pruning
and entropy-constrained quantization, achieving substantial reductions in model size with minimal
quality loss. Such approaches highlight the benefit of integrating RD-optimization directly into the
training process, enabling flexible compression tailored for diverse computational environments.
While compression techniques exist for 4DGS and RD-optimization has been applied to 3DGS, a
dedicated end-to-end RD-optimized framework specifically for 4DGS, offering flexible control over
the rate-quality trade-off by effectively exploiting spatiotemporal structure, is still lacking. In this
work, we develop a novel method to apply end-to-end RD-optimized compression to the 4D domain,
which is related to spatiotemporal representation.

3 Method

3.1 Preliminary

In this section, we first introduce the fundamental concepts behind 3D Gaussian Splatting (3DGS) [1].
We then briefly describe its extension to 4D scenes and detail our baseline model, Ex4DGS [18], which
explicitly models temporal dynamics. Finally, we outline the principles of end-to-end rate-distortion
optimization as applied to Gaussian Splatting.

3D Gaussian Splatting. 3D Gaussian Splatting (3DGS) [1] represents scenes using explicit 3D
Gaussian primitives. Each primitive i is parameterized by a position (mean) µi ∈ R3, a covariance
matrix Σi ∈ R3×3, an opacity value αi ∈ [0, 1], and view-dependent color represented by Spherical
Harmonics (SH) coefficients ci. The 3D Gaussian function is defined as:
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G(x) = e−
1
2 (x−µi)

TΣ−1
i (x−µi) . (1)

The 3D covariance matrix Σi defines the shape and orientation and is efficiently parameterized using
a scaling vector si ∈ R3 and a rotation quaternion qi ∈ R4, such that Σi = RiSiS

T
i R

T
i , where Ri

is the rotation matrix derived from qi and Si is a diagonal scaling matrix derived from si. To render
an image, these 3D Gaussians are projected onto the 2D image plane and then “splatted”. The final
pixel color C is computed by alpha-blending the contributions from N Gaussians sorted by depth:

C =

N∑
i=1

ciαi

i−1∏
j=1

(1− αj) , (2)

where αi here denotes the projected 2D Gaussian’s opacity, derived from αi and the 2D covariance.
This differentiable rendering process allows for end-to-end optimization of all Gaussian parameters
(µi, si,qi, αi, ci) using gradient descent, typically initialized from a sparse point cloud obtained via
Structure-from-Motion (SfM). 3DGS employs adaptive density control, involving splitting, cloning,
and pruning Gaussians during optimization.

4D Gaussian Splatting. 4D Gaussian Splatting (4DGS) [8] adapts 3DGS for dynamic scenes. We
build upon Ex4DGS [18], which separates Gaussians into static (Gs) and dynamic (Gd) components.
Static Gaussians (Gs) maintain constant covariance (Σs), opacity (αs), and SH coefficients (cs), with
only position µs(t) changing linearly over the scene duration L:

µs(t) = µ0 +
t

L
µdisp (3)

where µ0 is a pivot position and µdisp is the learned translation. Dynamic Gaussians (Gd) use a
keyframe approach, storing parameters only at sparse, uniformly sampled keyframes K = {t |
t = nI, n ∈ Z, t ∈ T }, where T represents the set of all timestamps in the entire video sequence.
Properties at intermediate times t are interpolated: position µd(t) using Cubic Hermite Interpolation
(CHip), quaternion rotation qd(t) using Spherical Linear Interpolation (Slerp), and temporal opacity
σt(t) using a custom two-Gaussian mixture model (parameterized by means aos, a

o
f and variances

bos, b
o
f ) to handle appearance/disappearance. For dynamic Gaussians in Ex4DGS, scale (sd) and SH

coefficients (cd) are typically assumed constant over time.

3.2 4D Dynamic Gaussian Compression

Building upon the Ex4DGS framework [18], we introduce an end-to-end compression framework
specifically tailored for dynamic 4D Gaussian representations. We follow the general principles
established by Wang et al. [19] for compatibility with 3DGS compression, extending them to
accommodate the unique challenges presented by dynamic scenes.

Gaussian and SH Coefficient Masking. To reduce model complexity, redundant Gaussians are
pruned using learnable masks ϕi. A soft mask ϕsoft

i = sigmoid(ϕi) is generated, then binarized
to a hard mask ϕhard

i ∈ {0, 1} using a threshold ϕthres and the straight-through estimator (STE):
ϕhard
i = sg(I(ϕsoft

i > ϕthres)− ϕsoft
i ) + ϕsoft

i . Here, sg(·) denotes the stop-gradient operation, and I(·)
is the indicator function. This hard mask is applied to key attributes like scale si and opacity αi. The
associated pruning cost, contributing to the rate term Lrate (the full formulation of which is detailed
in Appendix A), is:

LGSprune =
1

N

∑
i

ϕsoft
i (4)

Similarly, redundant SH coefficients are adaptively pruned using learnable masks θ(l)i per Gaussian
i and degree l ≥ 1. Soft masks θ

(l)soft
i = sigmoid(θ(l)i ) are binarized to hard masks θ

(l)hard
i via

STE using a threshold θth, too. The hard mask is applied to zero out corresponding coefficients
ĉ
(l)
i = θ(l)hardc

(l)
i . The weighted pruning loss contributing to Lrate is:

LSHprune =
1

N

∑
i

k∑
l=1

2l + 1

(k + 1)2 − 1
θ
(l)soft
i , (5)
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where k is the maximum degree of the SHs, typically set to 3. This masking strategy is uniformly
applied to both static and dynamic Gaussians, and experiments confirmed effective pruning across
both categories. The results are available in Appendix D.

SH Coefficient, Rotation, and Scale Compression. Spherical Harmonics (SH) coefficients, rotation,
and scale parameters exist for both static and dynamic Gaussians. These parameters are compressed
using entropy-constrained vector quantization (ECVQ) [33], following Wang et al. [19]. Recognizing
potential differences in compression sensitivity, scalar quantization is selectively applied.

Specifically, rotation parameters for dynamic Gaussians differ from static Gaussians in that they are
defined at each timestamp. Although storing residual rotations was initially considered, preliminary
experiments indicated that the entropy gain was marginal compared to the complexity of maintaining
additional codebooks. Hence, we opted to store all rotation parameters directly.

Opacity. Unlike traditional 3D Gaussian methods, Ex4DGS parameterizes dynamic opacity tempo-
rally by defining a scale function with center parameters (aos, a

o
f ) and variance parameters (bos, b

o
f ),

effectively acting as an on/off temporal mask multiplied with a base opacity (αd). Given that the base
opacity for dynamic points shares similar properties with the static opacity (αs), we follow Wang et
al. [19] and apply scalar quantization to the base opacity. However, the temporal center and variance
parameters, being expressed in time units rather than opacity values, exhibit different sensitivities to
quantization. Empirical tests indicated that variance parameters (bos, b

o
f ) were particularly sensitive

to quantization artifacts, hence, we avoid aggressive quantization for these parameters to maintain
visual fidelity. Detailed empirical validation of this decision is presented in Section 4.3.

3.3 Wavelet Compression for Dynamic Positions

To efficiently represent the motion trajectories of dynamic Gaussians (µd(t) ∈ RT×3), we employ
a single-level Haar wavelet transform along the temporal dimension. The wavelet transform is
specifically chosen for its excellent time-frequency localization, enabling an efficient representation
of motion trajectories that are generally smooth but may contain localized, high-frequency details
(e.g., sharp turns or accelerations). Formally, given the dynamic positions µd = [p1,p2, . . . ,pT ]

⊤

with pt ∈ R3, the wavelet transform is applied as:

F = Wµd, F = [Fa Fd] (6)

Here, W denotes the Haar wavelet transform matrix, decomposing the trajectory into approximation
(low-frequency) coefficients Fa ∈ RT

2 ×3 and detail (high-frequency) coefficients Fd ∈ RT
2 ×3.

Recognizing that coarse motion patterns captured by Fa are perceptually more significant, we
explicitly discard the detail coefficients Fd by zeroing them out. And the compressed trajectory µ̂d is
then reconstructed via the inverse Haar transform, which is equivalent to multiplying by the transpose
of W due to its orthogonality:

Fmasked = [Fa 0] , µ̂d = W⊤Fmasked (7)

This approach significantly reduces storage and transmission requirements while effectively preserv-
ing essential dynamic motion information.

3.4 End-to-End Rate-Distortion Optimization

Following Bellé et al. [28], our framework performs end-to-end rate-distortion optimization. Our
framework jointly optimizes all relevant parameters by minimizing a composite loss function. These
parameters include the original Ex4DGS parameters, those from our differentiated quantization (such
as codebooks and entropy models for ECVQ), and the wavelet-compressed dynamic position repre-
sentations. This total loss, Ltotal, integrates the standard rate-distortion objective with regularization
terms inherent to Ex4DGS:

Ltotal = Ldist + λRLrate + λregLreg (8)
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Here, Ldist represents the reconstruction fidelity loss, typically combining L1 loss and D-SSIM
between the rendered image C and the ground truth image CGT:

Ldist = (1.0− λdssim)LL1(C,CGT) + λdssim(1.0− SSIM(C,CGT)) (9)

The term Lrate quantifies the estimated bitrate cost of the compressed representation. It aggregates
several components aimed at reducing model size. These include entropy-based costs derived from
quantized attribute representations (e.g. VQ indices) and potentially auxiliary losses that promote
sparsity within the model, such as terms encouraging the pruning of redundant Spherical Harmonics
coefficients or entire Gaussian primitives. These components are collectively balanced by the
rate weighting factor λR. When ECVQ is employed, the objective intrinsically balances the rate
cost, and the quantization distortion for the respective attributes during codeword selection and
codebook learning. Furthermore, Lreg incorporates regularization terms adapted from Ex4DGS [18]
to encourage plausible scene dynamics. This includes terms penalizing excessive linear displacement
for static points and terms ensuring temporal smoothness in the motion and rotation trajectories
defined by the dynamic keyframes.

By optimizing this comprehensive loss function end-to-end, our framework learns the compression
mechanisms (quantization, pruning, wavelet processing via its impact on Ldist and Lrate) concurrently
with the scene representation itself. This joint process directly balances the bitrate costs against the
final rendering quality and dynamic consistency, guided by the various lambda hyperparameters.

4 Experiment

4.1 Experimental Settings

Datasets. To validate the effectiveness of the proposed method, we conduct various experiments
on two real-world datasets, including Neural 3D Video (N3V) [34] and Technicolor [35]. Because
the proposed method is built upon Ex4DGS [18], we match the evaluation protocol, it is originally
adopted by the previous work [36]. Specifically, we use the entire set of N3V and the five scenes of
Technicolor (Birthday, Fabien, Painter, Theater, and Train).

Metrics. As in the previous works, we report standard metrics including Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM), and Learned Perceptual Image Patch Similarity
(LPIPS) [37] for quantitative evaluation. We also measure the storage size for each compression level
to evaluate if the proposed method achieves reasonable performance across different compression
strengths. By varying the compression parameters, we generate rate-distortion (RD) curves to
comprehensively analyze the trade-off between visual quality (distortion) and the storage size (rate)
of a single model that includes the entire video sequence. Additionally, we report frames-per-second
(FPS) to measure the rendering speed.

Implementation Details. We first train the base model using Ex4DGS [18] until densification
terminates. Subsequently, we apply our proposed RD-optimized method, incorporating Gaussian
point pruning, adaptive spherical harmonics (SH) pruning, entropy-constrained vector quantization
(ECVQ), and the novel pointwise wavelet transform. To systematically analyze performance at
varying compression strengths, we define six compression levels (Levels 1–6), adjusting pruning
hyperparameters as follows: for Gaussian point pruning, λGSprune is set to [0.05, 0.02, 0.01, 0.005,
0.002, 0.0005]; for SH coefficient pruning, λSHprune is set to [0.5, 0.2, 0.1, 0.05, 0.02, 0.005],
respectively. All experiments are conducted on an NVIDIA RTX 3090 GPU. On average, with this
GPU setup, the initial Ex4DGS pre-training takes approximately 1 hour, and our subsequent ECVQ
and pruning optimization stage takes another hour, totaling around 2 hours of training time.

4.2 Rate-Distortion Performance

In this section, we analyze the end-to-end rate-distortion (RD) optimized compression performance
of the proposed method. Our primary goal is to leverage the spatio-temporal characteristics of
videos to achieve compression efficiency beyond the limits of existing methods, while offering
flexible control over the rate-distortion trade-off. This goes beyond simple masking and quantiza-
tion by incorporating video-specific properties. To achieve different operating points on the RD
curve, we generate compressed Gaussians of varying sizes by adjusting the strength of Spher-
ical Harmonics (SH) and Gaussian point pruning and quantization, similar to RD3DGS [19].
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Figure 1: Average RD performance comparison between our method (Levels 1-6) and the
Ex4DGS [18] on the Neural 3D Video (N3V) dataset. Per-scene details are provided in Appendix B.

Figure 2: Average RD performance comparison between our method (Levels 1-6) and the
Ex4DGS [18] on the Technicolor dataset. Per-scene details are provided in Appendix B.

This is primarily controlled by adjusting the weight λ for LGSprune and LSHprune. Figures 1
and 2 present the rate-distortion curves (PSNR, SSIM, LPIPS vs. Model size in MB) for the
N3V dataset [34] and the Technicolor dataset [35], respectively. Due to the space constraint,
we provide the per-scene results in Table 6. Furthermore, Figures 4 and 5 provide qualitative

Table 1: Ablation on quantizing opacity compo-
nents (αs, αd, ao∗, bo∗) for compression levels 1
and 6 on the N3V dataset. PSNR (dB) and rel-
ative model size reduction (%) are reported. ✓
indicates the component is quantized.

αs αd ao
∗ bo∗ L1 L6

- - - - 26.86 (0.00%) 29.57 (0.00%)
✓ 26.86 (4.16%) 29.57 (4.01%)
✓ ✓ 26.86 (3.84%) 29.57 (3.39%)
✓ ✓ ✓ 26.86 (4.97%) 29.57 (5.30%)
✓ ✓ ✓ 26.17 (5.16%) 28.52 (5.58%)
✓ ✓ ✓ ✓ 26.17 (5.98%) 28.52 (6.87%)

comparisons, showcasing the visual fidelity of
our method at key compression levels against
original Ex4DGS [18]. The results demonstrate
that our proposed approach, incorporating tech-
niques like differentiated quantization and the
wavelet transform, achieves significant model
size reduction (e.g., up to 91× compression)
compared to Ex4DGS while maintaining rea-
sonable visual quality. This validates the effec-
tiveness of our method in providing a flexible
trade-off between compression rate and render-
ing quality suitable for diverse computational
requirements.

4.3 Ablation Study

Opacity Quantization. We validate the opacity quantization strategy described in Section 3.2
through ablation experiments summarized in Table 1. Recognizing that each parameter contributes
differently to the final visual quality, we designed this experiment to identify the optimal subset of
parameters for quantization that best balances compression efficiency and rendering fidelity, rather
than naively quantizing all components. Specifically, we examine the quantization sensitivity of
four parameters: static opacity (αs), dynamic opacity (αd), center parameters (aos, a

o
f ), and variance

parameters (bos, b
o
f ). Although static and dynamic opacity share similar characteristics, we evaluate

them separately, considering the potential heightened sensitivity of dynamic opacity. The results
demonstrate that quantizing additional opacity-related parameters consistently improves storage
efficiency. However, notably in the last two rows, quantizing variance parameters significantly
reduces PSNR despite achieving marginal additional storage benefits. Based on the observation, we
conclude that quantization should be limited to the static and dynamic opacity and center parameters
to maintain a balanced trade-off between rendering fidelity and compression efficiency.

Wavelet Transform for Dynamic Positions. We further evaluate the effectiveness of wavelet-
based compression applied specifically to the dynamic position trajectories (µd(t)). As detailed
in Section 3, our proposed method leverages a Haar wavelet transform to capture low-frequency
motion components while explicitly discarding high-frequency details. Figure 3 compares the
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Figure 3: Rate-distortion impact
of using wavelet transform for
dynamic positions on the N3V
dataset. We compare the proposed
method (‘Ours’, with wavelet trans-
form) against the same model with-
out wavelet transform (‘w/o Wavelet
Transform’). Axes show avg. PSNR
(dB) vs. avg. model size (MB).

Figure 4: Qualitative results on the Technicolor dataset. We compare Ground Truth, Ex4DGS [18],
and ours at compression levels 6 and 1. PSNR (dB) / Size (MB) are shown below each image.

rate-distortion performance of our method with wavelet transform against the baseline without it,
clearly highlighting the benefit of incorporating wavelet compression. As shown in the figure, the
rate-distortion curve of our method (’Ours’) is consistently positioned to the top-left of the baseline
(’w/o Wavelet Transform’), indicating a superior performance trade-off. This positioning signifies
that for any given model size, our wavelet-based approach yields a higher PSNR, and conversely,
for any target PSNR, it requires a smaller model size. Notably, employing the wavelet transform
consistently improves performance across all tested compression levels, not only reducing the storage
size but also enhancing rendering fidelity. Specifically, at compression level 1, our method achieves
approximately 19% storage reduction alongside a PSNR gain of 0.19 dB. Even at the highest fidelity
setting (level 6), we observe around 26% storage savings coupled with a PSNR improvement of 0.09
dB. These results emphasize that exploiting the inherent smoothness of point trajectories through
wavelet-based compression not only effectively reduces redundancy in dynamic positions but also
enhances trajectory modeling accuracy, leading to improved overall RD performance.

Multi-Level Wavelet Decomposition. To further analyze the impact of our wavelet compression, we
conduct an ablation study on the level of wavelet decomposition applied to dynamic position trajecto-
ries. In addition to our proposed single-level Haar wavelet transform (retaining 1/2 of the coefficients),

Table 2: Ablation study on multi-level wavelet de-
composition for dynamic positions, averaged over
the N3V dataset. Columns compare decompositions
retaining different fractions of wavelet coefficients.

Compression Level 1. (1/2) Level 2. (1/4) Level 3. (1/8)
Level PSNR / Size PSNR / Size PSNR / Size

L6 28.73 / 14.05 28.47 / 11.35 27.74 / 9.80
L5 29.59 / 9.14 28.57 / 7.51 27.72 / 6.50
L4 29.14 / 6.23 28.14 / 5.14 27.44 / 4.44
L3 28.59 / 4.37 27.81 / 3.61 27.38 / 3.10
L2 28.27 / 2.91 27.57 / 2.42 27.17 / 2.05
L1 27.39 / 1.63 26.89 / 1.36 26.43 / 1.16

we test more aggressive 2-level (retaining
1/4) and 3-level (retaining 1/8) decompo-
sitions. As summarized in Table 2, apply-
ing a deeper multi-level decomposition pro-
gressively reduces the model size. For in-
stance, at compression Level 1, the size
decreases from 1.63 MB to 1.16 MB. How-
ever, this gain in compression comes at a
consistent cost to rendering quality. Cru-
cially, the new operating points generated
by the multi-level transforms do not sur-
pass the RD curve established by our orig-
inal single-level method.
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Figure 5: Qualitative results on the N3V dataset. We compare Ground Truth, Ex4DGS [18], and
ours at compression levels 6 and 1. PSNR (dB) / Size (MB) are shown below each image.

Analysis on Higher-Fidelity Trade-offs. Our framework’s compression is achieved through mul-
tiple lossy mechanisms, including pruning, ECVQ, and the wavelet transform. Therefore, we
explore whether adjusting parameters beyond pruning can yield higher-quality results. Specif-
ically, starting from our Level 6 setting, we test two strategies: (1) reducing the rate-loss
weight, λR, in our objective function, and (2) additionally increasing the ECVQ codebook size.

Table 3: Analysis of the RD trade-off at higher fideli-
ties. We compare L6 configuration against variants with
a reduced (λR) and an increased codebook size. Results
are averaged over the N3V dataset.2

Configuration Avg PSNR (dB) Size (MB)

Ex4DGS (Baseline) 32.11 115.63

Ours (L6, low λR, large codebook) 30.29 27.21
Ours (L6, low λR) 30.04 14.40

Ours (L6) 28.73 14.05
Ours (L1) 27.39 1.63

The results, averaged on the N3V dataset,
are presented in Table 3. Reducing λR

significantly boosts the PSNR by 1.31 dB
(from 28.73 to 30.04 dB) with only a
marginal increase in model size (0.35 MB).
While also enlarging the codebook pro-
vides a minor additional PSNR gain, it
nearly doubles the model size, indicating a
less efficient trade-off. This study demon-
strates that our framework can be flexibly
tuned to bridge the quality gap with the
baseline by adjusting the rate-loss weight.

4.4 Comparative Evaluation

This section evaluates the proposed method against existing models. Our primary goal is a framework
for flexible rate-distortion trade-offs in dynamic 4D scene representation, not just state-of-the-art
rendering. The comparison highlights the method’s quality-size characteristics and its ability to
significantly compress data while maintaining reasonable fidelity.

We report the PSNR, storage size, and FPS for the N3V dataset in Table 4. The most notable
advantage of our method is its significant size reduction. At compression Level 1, our model achieves
a remarkable 98.9% size reduction compared to the baseline Ex4DGS, resulting in an average size of
only 1.26 MB. Even when compared to 4DGaussians, the previously most storage-efficient method,
our approach demonstrates over 25 times greater efficiency at the same compression level. Our

2The PSNR and Size values for our Level 1 and 6 models differ from those in Table 4 as a different pre-trained
model was used for this ablation study. For a detailed explanation, please see Appendix F.
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Table 4: Quantitative results on the N3V dataset comparing PSNR (dB), average model size (MB),
and FPS. Our proposed RD-optimized method offers flexible compression levels. Level 6 achieves
a significant size reduction (e.g., about 10× reduction to 11.06MB) compared to the Ex4DGS [18]
while maintaining competitive quality. Level 1 demonstrates the capability for aggressive compression
(about 90× size reduction to 1.26MB) for highly resource-constrained scenarios.

Model
PSNR (dB)↑ MB↓ Frame/s↑

Coffee
Martini

Cook
Spinach

Cut Roasted
Beef

Flame
Salmon

Flame
Steak

Sear
Steak Average Size

(Average) FPS

NeRF-based
NeRFPlayer [38] 31.53 30.56 29.35 31.65 31.93 29.13 30.69 5130 0.05
HyperReel [36] 28.37 32.30 32.92 28.26 32.20 32.57 31.10 360 2

K-Plane [39] 29.99 32.60 31.82 30.44 32.38 32.52 31.63 311 0.3
MixVoxels-L [40] 29.63 32.25 32.40 29.81 31.83 32.10 31.34 500 37.7
MixVoxels-X [40] 30.39 32.31 32.63 30.60 32.10 32.33 31.73 500 4.6

Gaussian Splatting-based
4DGS [8] 26.51 32.11 31.74 26.93 31.44 32.42 30.19 6057 72.0

4DGaussians [9] 26.69 31.89 25.88 27.54 28.07 31.73 28.63 34 146.6
3DGStream [41] 27.75 33.31 33.21 28.42 34.30 33.01 31.67 1200 -

Ex4DGS [18] 28.79 33.23 33.73 29.29 33.91 33.69 32.11 115 72.3
Ours [L1] 24.97 28.38 28.02 24.16 28.33 28.39 27.04 1.26 (-98.9%) 163.0
Ours [L6] 26.17 30.69 31.45 26.58 31.34 31.70 29.66 11.06 (-90.4%) 100.9

method significantly outperforms existing models in rendering speed, reaching up to 163 FPS at
Level 1, suitable for real-time applications. While there is an expected trade-off in rendering quality
(PSNR) due to aggressive compression,

Table 5: Quantitative results averaged over the Tech-
nicolor dataset. We compare the proposed method (L1,
L6) against the Ex4DGS [18] using standard quality
metrics and model size.

PSNR SSIM LPIPS Size(MB) FPS(s)

Ex4DGS [18] 33.62 0.916 0.088 140.2 72.3
Ours [L6] 32.20 0.904 0.100 19.6(-86.0%) 113.1
Ours [L1] 28.60 0.822 0.232 2.1(-98.5%) 213.9

our model still produces results that are
sufficiently competitive. Particularly note-
worthy is the comparison at Level 6, where
our method not only has a smaller model
size (11.06 MB) but also a higher average
PSNR (29.66 dB) compared to 4DGaus-
sians (34 MB, 28.63 dB). A similar trend
is observed for the Technicolor dataset, as
summarized in Table 5.

5 Discussion
Conclusion. We presented the first end-to-end rate-distortion (RD) optimized compression framework
for 4D Gaussian Splatting (4DGS) to address the challenge of large model sizes hindering deployment.
Leveraging Ex4DGS, our method uses static/dynamic decomposition with adaptive RD-guided
quantization and pointwise wavelet transform to achieve flexible compression. Although this work
builds upon the Ex4DGS framework, the core principles of our rate-distortion optimized compression
are general and can be adapted to other 4DGS models. Our approach demonstrates significant model
size reduction (down to approximately 1.1% of the original size ) while maintaining reasonable visual
quality across standard benchmarks and offering user control over the rate-quality trade-off. This
significantly improves the practicality of 4DGS for real-time rendering on diverse computational
platforms, including resource-constrained devices.

Limitation. Our approach of filtering high-frequency motion via a wavelet transform has an inherent
limitation in handling excessively dynamic movements, which can manifest as motion blur artifacts
on fast-moving objects, particularly at high compression levels. Additionally, dynamic points still
account for a substantial portion of total storage, highlighting significant room for improvement in
compressing dynamic components (Appendices G and H). Future work includes refining the loss
function, for example by applying separate masking weights for static and dynamic points, to further
enhance dynamic point compression and overall visual quality.

Broader Impacts. Our work significantly simplifies the storage, transmission, and deployment of
volumetric videos, directly contributing to the widespread adoption and accessibility of volumetric
content. In the long term, we anticipate that this research can serve as a foundational step toward
establishing standards for volumetric video formats. Nevertheless, easier distribution may also
enable rapid proliferation of malicious or inappropriate volumetric content, underscoring the need for
proactive measures to mitigate such risks.
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A Detailed Rate Loss Formulation

In Section 3.2, we introduced the rate term Lrate, which is a core component of our end-to-end
rate-distortion optimization framework. The structure of our rate loss is based on the formulation
proposed for static scenes in [19], which we adapt to the unique challenges of dynamic 4D Gaussian
Splatting by extending it to handle both static and dynamic components separately.

This section provides the detailed formulation of Lrate. The total rate loss is a weighted sum of four
distinct terms: Gaussian pruning loss (LGSprune), SH coefficient pruning loss (LSHprune), an entropy
loss (Lentropy), and a vector quantization loss (LVQ).

The complete expression for the total rate loss is:

Lrate = λGSpruneLGSprune + λSHpruneLSHprune + Lentropy + LVQ (10)

Here, LGSprune and LSHprune are the pruning losses defined in Equations (4) and (5) of the main text,
which encourage model sparsity. The terms Lentropy and LVQ arise from the entropy-constrained vector
quantization (ECVQ) applied to various Gaussian attributes (e.g., scale, rotation, SH coefficients).

The entropy loss, Lentropy, estimates the bitrate required to encode the quantized parameters. It is
formulated as the cross-entropy between the distribution of the quantized symbols and our learned
entropy model:

Lentropy =
1
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(11)

The vector quantization loss, LVQ, measures the distortion introduced by mapping continuous
parameter values to discrete codebook vectors during quantization:

LVQ =
1

N
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(12)

In these equations, the superscripts (s,m), (r,m), . . . denote different attributes such as scale and
rotation for both static and dynamic (m) Gaussians. The term ri,j represents the estimated bit cost
(rate), while di,j signifies the quantization error (distortion).

B Additional Quantitative Evaluation Results

We report the detailed quantitative evaluation results, including storage size and rendering fidelity
metrics (PSNR, SSIM, LPIPS), for each scene of the N3V and Technicolor datasets in Table 6. The
most notable highlight is the substantial model size reduction achieved by our proposed method across
all scenes, ranging from 79.3% at the highest fidelity setting (Level 6) to 99.3% at the most aggressive
compression level (Level 1). Although aggressive compression (lower levels) occasionally leads to
significant drops in rendering fidelity, our framework provides multiple trade-off options to flexibly
adapt according to deployment scenarios and resource constraints. These results indicate promising
directions for future work, focusing on enhancing reconstruction fidelity at lower compression levels
to further broaden applicability.
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Table 6: Quantitative results averaged over the N3V and Technicolor datasets. We compare the
proposed method (L1-L6) against the Ex4DGS [18] using standard quality metrics and model size.

[N3V] Coffee Martini [N3V] Cook Spinach
SSIM PSNR LPIPS Size(MB) SSIM PSNR LPIPS Size(MB)

Ex4DGS [18] 0.918 28.79 0.070 129.77 Ex4DGS [18] 0.956 33.24 0.042 118.38
Ours [L6] 0.897 26.17 0.091 15.29 (-88.2%) Ours [L6] 0.942 30.69 0.064 10.44 (-91.2%)
Ours [L5] 0.894 25.92 0.098 10.60 (-91.8%) Ours [L5] 0.939 30.50 0.069 6.75 (-94.3%)
Ours [L4] 0.892 25.82 0.101 7.40 (-94.3%) Ours [L4] 0.935 30.11 0.075 4.50 (-96.2%)
Ours [L3] 0.888 25.74 0.108 5.21 (-96.0%) Ours [L3] 0.930 29.55 0.083 3.12 (-97.4%)
Ours [L2] 0.882 25.48 0.119 3.48 (-97.3%) Ours [L2] 0.922 28.99 0.099 2.06 (-98.3%)
Ours [L1] 0.868 24.97 0.144 1.92 (-98.5%) Ours [L1] 0.910 28.38 0.121 1.15 (-99.0%)

[N3V] Cut Roasted Beef [N3V] Flame Salmon
SSIM PSNR LPIPS Size(MB) SSIM PSNR LPIPS Size(MB)

Ex4DGS [18] 0.958 33.73 0.040 122.63 Ex4DGS [18] 0.926 29.29 0.066 128.11
Ours [L6] 0.943 31.45 0.064 10.04 (-91.8%) Ours [L6] 0.910 26.58 0.079 13.43 (-89.5%)
Ours [L5] 0.940 30.86 0.068 6.59 (-94.6%) Ours [L5] 0.908 26.35 0.082 8.97 (-93.0%)
Ours [L4] 0.936 30.23 0.074 4.42 (-96.4%) Ours [L4] 0.905 25.92 0.088 6.07 (-95.3%)
Ours [L3] 0.931 29.82 0.082 3.03 (-97.5%) Ours [L3] 0.902 25.68 0.095 4.18 (-96.7%)
Ours [L2] 0.924 29.04 0.093 2.01 (-98.4%) Ours [L2] 0.893 24.87 0.107 2.77 (-97.8%)
Ours [L1] 0.911 28.02 0.122 1.12 (-99.1%) Ours [L1] 0.875 24.16 0.138 1.52 (-98.8%)

[N3V] Flame Steak [N3V] Sear Steak
SSIM PSNR LPIPS Size(MB) SSIM PSNR LPIPS Size(MB)

Ex4DGS [18] 0.963 33.91 0.034 101.18 Ex4DGS [18] 0.960 33.69 0.035 93.69
Ours [L6] 0.950 31.34 0.059 8.49 (-91.6%) Ours [L6] 0.950 31.70 0.056 8.66 (-90.8%)
Ours [L5] 0.947 30.86 0.063 5.41 (-94.7%) Ours [L5] 0.948 31.22 0.061 5.43 (-94.2%)
Ours [L4] 0.943 30.38 0.070 3.56 (-96.5%) Ours [L4] 0.944 30.62 0.068 3.58 (-96.2%)
Ours [L3] 0.938 29.95 0.080 2.40 (-97.6%) Ours [L3] 0.938 29.95 0.077 2.48 (-97.3%)
Ours [L2] 0.931 29.13 0.093 1.58 (-98.4%) Ours [L2] 0.931 29.34 0.093 1.64 (-98.3%)
Ours [L1] 0.918 28.33 0.122 0.89 (-99.1%) Ours [L1] 0.917 28.39 0.122 0.94 (-99.0%)

[Technicolor] Train
SSIM PSNR LPIPS Size(MB)

Ex4DGS [18] 0.928 31.37 0.055 216.17
Ours [L6] 0.931 31.55 0.040 33.19 (-84.6%)
Ours [L5] 0.928 31.38 0.045 21.76 (-89.9%)
Ours [L4] 0.913 30.39 0.060 12.73 (-94.1%)
Ours [L3] 0.889 29.86 0.092 7.61 (-96.5%)
Ours [L2] 0.845 28.44 0.146 4.55 (-97.9%)
Ours [L1] 0.765 26.32 0.247 2.32 (-98.9%)

[Technicolor] Birthday [Technicolor] Fabien
SSIM PSNR LPIPS Size(MB) SSIM PSNR LPIPS Size(MB)

Ex4DGS [18] 0.942 32.38 0.044 162.38 Ex4DGS [18] 0.897 35.38 0.123 83.20
Ours [L6] 0.932 31.33 0.046 33.62 (-79.3%) Ours [L6] 0.871 32.90 0.168 5.89 (-92.9%)
Ours [L5] 0.932 31.33 0.047 25.47 (-84.3%) Ours [L5] 0.867 32.74 0.182 2.86 (-96.6%)
Ours [L4] 0.929 31.08 0.051 18.50 (-88.6%) Ours [L4] 0.861 32.60 0.200 1.77 (-97.9%)
Ours [L3] 0.924 31.00 0.057 13.59 (-91.6%) Ours [L3] 0.856 32.06 0.214 1.27 (-98.5%)
Ours [L2] 0.916 30.56 0.068 9.34 (-94.2%) Ours [L2] 0.850 31.68 0.228 0.90 (-98.9%)
Ours [L1] 0.896 29.46 0.092 5.39 (-96.7%) Ours [L1] 0.840 30.44 0.254 0.58 (-99.3%)

[Technicolor] Painter [Technicolor] Theater
SSIM PSNR LPIPS Size(MB) SSIM PSNR LPIPS Size(MB)

Ex4DGS [18] 0.932 36.73 0.091 106.30 Ex4DGS [18] 0.883 31.84 0.129 132.89
Ours [L6] 0.914 35.05 0.110 9.19 (-91.4%) Ours [L6] 0.871 30.16 0.138 16.27 (-87.8%)
Ours [L5] 0.905 34.00 0.122 5.55 (-94.8%) Ours [L5] 0.869 30.12 0.150 9.31 (-93.0%)
Ours [L4] 0.891 33.29 0.142 3.47 (-96.7%) Ours [L4] 0.858 29.70 0.172 5.58 (-95.8%)
Ours [L3] 0.873 32.20 0.168 2.30 (-97.8%) Ours [L3] 0.849 29.42 0.191 3.57 (-97.3%)
Ours [L2] 0.848 30.96 0.210 1.47 (-98.6%) Ours [L2] 0.833 29.00 0.221 2.19 (-98.4%)
Ours [L1] 0.804 28.93 0.293 0.79 (-99.3%) Ours [L1] 0.804 27.84 0.274 1.16 (-99.1%)

C Rate-Distortion Performance for Each Scene

In addition to the numerical results provided in Appendix B, we illustrate detailed per-scene rate-
distortion (RD) curves for both datasets. Specifically, Figures 6 and 7 show RD curves for the N3V
and Technicolor datasets, respectively. These figures visually reaffirm the notable size reductions
achieved by our method, consistently demonstrating drastic reductions in model sizes. A closer
examination reveals that fidelity degradation for the Technicolor dataset is relatively moderate
compared to N3V, likely due to the simpler and less intricate motions inherent in Technicolor scenes.
Conversely, N3V contains complex and detailed actions, such as precise tool movements or dynamic
interactions (e.g., operating kitchen tongs or using a torch to sear meat), making compression-induced
fidelity degradation more pronounced. This observation highlights opportunities for further enhancing
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compression methods, specifically targeting more effective exploitation of detailed volumetric motion
information. Another noteworthy finding appears in the Technicolor dataset’s “Train” scene, where
certain compression levels achieve superior rendering fidelity compared to the baseline Ex4DGS
method. This result indicates the potential benefit of model simplicity, characterized by fewer points
and lower entropy, which can unexpectedly enhance view-synthesis quality by effectively reducing
model redundancy.

Figure 6: Per-scene RD performance comparison between our method (Levels 1-6) and the
Ex4DGS [18] on the Neural 3D Video (N3V) dataset.
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Figure 7: Per-scene RD performance comparison between our method (Levels 1-6) and the
Ex4DGS [18] on the Technicolor dataset.
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D Analysis on the Number of Pruned Points

To verify that the proposed method effectively reduces redundancy in both dynamic (Gd) and static
(Gs) components, we examine the reduction ratios across different compression levels, as reported in
Table 7. The results indicate that at the highest compression setting (Level 1), the reduction rates
for dynamic and static points are similarly significant. However, at the lowest compression level
(Level 6), the reduction ratio of dynamic points consistently surpasses that of static points. This
suggests that when fidelity is prioritized, our method tends to prune dynamic points more aggressively,
likely due to the smaller spatial coverage of dynamic points compared to static points. Nonetheless,
given that dynamic points typically correspond to salient foreground elements, overly aggressive
pruning of dynamic points may adversely impact overall visual quality. This highlights an avenue for
future improvement: dynamically adjusting the pruning strategy—for example, by assigning separate
weighting coefficients to static and dynamic points within the pruning loss—to better preserve visually
salient dynamic components while maintaining high compression efficiency.

Table 7: Reduction in static (Gs) and dynamic (Gd) point counts for Technicolor scenes.

Gs Gd Gs Gd

Birthday
- 705377 1028398

Fabien
- 87284 259209

1 62457 (-91.1%) 53578 (-94.8%) 1 7010 (-92.0%) 2455 (-99.1%)

6 419283 (-40.6%) 344054 (-66.5%) 6 47383 (-45.7%) 60256 (-76.8%)

Train
- 1810464 241302

Painter
- 103811 463955

1 57078 (-96.8%) 10013 (-95.9%) 1 4342 (-95.8%) 6307 (-98.6%)

6 1221140 (-32.6%) 57536 (-76.2%) 6 58010 (-44.1%) 103793(-77.6%)

E Comparison with Concurrent Work: Light4GS

This section provides a direct comparison with the concurrent work Light4GS [14]. To ensure a fair
comparison, we retrained our model to match the experimental protocol of Light4GS, which uses a
different resolution (1024× 768) and a slightly different subset of the N3V dataset. The results are
summarized in Table 8.

The comparison highlights the different strengths of the two methods. While Light4GS achieves a
higher absolute PSNR, our method demonstrates superior performance in terms of compression ratio
and rendering speed, particularly in the high-compression setting. Specifically, our high-compression
model is more than 2.5x smaller (1.48 MB vs. 3.77 MB) and runs approximately 4x faster (∼160 FPS
vs. ∼40 FPS).

Furthermore, the PSNR gap is not a fundamental limitation of our compression framework. As
demonstrated in our ablation study on higher-fidelity trade-offs (Table 3), relaxing the rate-loss weight
(λR) can significantly boost our model’s PSNR. This suggests the performance difference also stems
from different design priorities and baseline models (Ex4DGS for ours, 4DGS for Light4GS), rather
than the compression methodology itself. Our framework’s primary advantage lies in its flexibility,
offering a wide, user-controllable spectrum of rate-distortion-speed trade-offs suitable for diverse
deployment scenarios.

Table 8: Direct comparison with Light4GS on the N3V dataset, following their experimental
protocol. Our method excels in high-compression and rendering speed, while Light4GS achieves
higher peak PSNR.

Model PSNR (dB) Size (MB) FPS
Ours (High-Compression) 27.90 1.48 ∼160
Ours (High-Quality) 30.80 12.56 ∼100

Light4GS (High-Compression) 31.48 3.77 ∼40
Light4GS (High-Quality) 31.69 5.46 ∼37
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F Note on Pre-trained Models for Ablation Studies

Our RD-optimized framework follows a two-stage training process: initial pre-training using the
Ex4DGS methodology, followed by RD-optimized fine-tuning. For consistency, all primary ex-
perimental results reported in this paper (except for Tables 2 and 3) originate from a single, fixed
pre-trained model.

The ablation studies presented in Tables 2 and 3 were conducted as supplementary experiments.
As the original pre-trained model was unavailable at the time of these additional experiments, they
utilized a separately pre-trained model. Our methodology involves initiating the RD-optimized fine-
tuning after the densification stage of the Ex4DGS schedule, which is prior to its full convergence.
Consequently, minor performance variations in the starting point for fine-tuning can occur between
different pre-training runs. This explains the slight differences in the baseline performance for the
Level 1 and Level 6 configurations between these tables and others in the paper. However, this
does not affect our main conclusion: once a pre-trained model is fixed, our framework consistently
demonstrates a flexible and effective rate-distortion trade-off controlled by the fine-tuning parameters.
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G Visualization of Static and Dynamic Points

We visualize the static and dynamic components separately across different compression levels to
further investigate the impact of our proposed compression method, as shown in Figures 8 to 10.
Consistent with the quantitative findings discussed in Appendix D, our method tends to prune dynamic
points more aggressively than static points, despite dynamic regions generally holding higher visual
saliency. Particularly noticeable in the highly compressed results (Level 1) shown in Figures 8
and 9, rapidly moving objects often exhibit noticeable local blur due to aggressive dynamic point
pruning. Nevertheless, it’s worth emphasizing that even at moderate compression (Level 6), our
method successfully achieves substantial storage savings (approximately 90% on average) while
preserving rendering quality across most scenes without significant visual artifacts. This demonstrates
our method’s practical balance between storage efficiency and visual fidelity.

Figure 8: Visualization of static and dynamic points on N3V dataset. From top to bottom: Coffee
Martini, Cook Spinach, and Cut Roasted Beef.
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Figure 9: Visualization of static and dynamic points on N3V dataset. From top to bottom: Flame
Salmon, Flame Steak, and Sear Steak.
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Figure 10: Visualization of static and dynamic points on Technicolor dataset. From top to bottom:
Fabien, Birthday, Theater, Train, and Painter.
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H Analysis of Compressed Representation Size

This appendix details the storage allocation (in MB and percentage) for individual components of
our RD-optimized model across various scenes from the Technicolor Table 10 and N3V Table 9
datasets. Results are shown for Low Rate (Level 1) and High Rate (Level 6) settings. These tables
provide a granular view of bit distribution for key components such as sorting indices for the masked
SH parameters (sort idx), entropy-coded indexes (Indexes), masked wavelet coefficients Fmasked,
dynamic position displacements (µdisp), static position (µ0), codebooks, logits, and opacity variance
parameters (βo

∗).

Across both datasets, it can be observed that components related to the explicit representation
of Gaussians and their dynamic properties (e.g., Fmasked, Indexes, sort idx) generally constitute
a significant portion of the bitstream, especially at higher rates where more detail is preserved.
The relative proportions vary across scenes, reflecting differences in scene complexity and motion
characteristics.

Table 9: Storage allocation (MB and percentage) for components in our RD-optimized 4DGS
model. N3V Scenes at Low (L1) and High (L6) rate settings.

Coffee Martini Cook Spinach
Low Rate [L1] High Rate [L6] Low Rate [L1] High Rate [L6]

Component Rate (MB) Proportion (%) Rate (MB) Proportion (%) Component Rate (MB) Proportion (%) Rate (MB) Proportion (%)
Fmasked 0.448 22.21% 4.574 28.53% Fmasked 0.285 23.71% 3.699 33.78%
Indexes 0.413 20.46% 4.051 25.26% Codebooks 0.241 20.01% 2.869 26.20%
sort idx 0.319 15.81% 2.574 16.05% Indexes 0.234 19.41% 1.409 12.87%

Codebooks 0.284 14.08% 1.676 10.45% sort idx 0.151 12.50% 0.862 7.87%
µ0 0.214 10.62% 1.676 10.45% µ0 0.097 8.07% 0.851 7.77%

µdisp 0.214 10.62% 0.999 6.23% µdisp 0.097 8.07% 0.851 7.77%
Logits 0.091 4.53% 0.339 2.11% Logits 0.078 6.46% 0.274 2.50%
βo
∗ 0.033 1.66% 0.146 0.91% βo

∗ 0.021 1.78% 0.135 1.24%
Header 0.000 0.00% 0.000 0.00% Header 0.000 0.00% 0.000 0.00%
Total 1.923 - 15.292 - Total 1.149 - 10.444 -

Cut Roasted Beef Flame Salmon
Low Rate [L1] High Rate [L6] Low Rate [L1] High Rate [L6]

Component Rate (MB) Proportion (%) Rate (MB) Proportion (%) Component Rate (MB) Proportion (%) Rate (MB) Proportion (%)
Fmasked 0.262 22.34% 3.396 32.25% Fmasked 0.303 19.03% 3.809 27.05%

Codebooks 0.238 20.29% 2.699 25.62% Indexes 0.303 18.98% 3.453 24.51%
Indexes 0.222 18.88% 1.432 13.60% Codebooks 0.271 17.01% 2.339 16.61%
sort idx 0.154 13.08% 0.885 8.41% sort idx 0.256 16.06% 1.542 10.95%
µ0 0.101 8.58% 0.885 8.41% µ0 0.175 10.99% 1.542 10.95%

µdisp 0.101 8.58% 0.849 8.06% µdisp 0.175 10.99% 0.973 6.91%
Logits 0.077 6.57% 0.252 2.39% Logits 0.088 5.51% 0.282 2.01%
βo
∗ 0.020 1.68% 0.133 1.27% βo

∗ 0.023 1.43% 0.143 1.02%
Header 0.000 0.00% 0.000 0.00% Header 0.000 0.00% 0.000 0.00%
Total 1.120 - 10.044 - Total 1.521 - 13.432 -

Flame Steak Sear Steak
Low Rate [L1] High Rate [L6] Low Rate [L1] High Rate [L6]

Component Rate (MB) Proportion (%) Rate (MB) Proportion (%) Component Rate (MB) Proportion (%) Rate (MB) Proportion (%)
Codebooks 0.222 23.68% 2.680 30.10% Codebooks 0.225 22.82% 2.738 30.15%
Fmasked 0.183 19.54% 2.200 24.71% Fmasked 0.189 19.21% 2.278 25.08%
Indexes 0.164 17.49% 1.263 14.18% Indexes 0.171 17.31% 1.282 14.12%
sort idx 0.121 12.90% 0.834 9.36% sort idx 0.134 13.56% 0.830 9.14%
µ0 0.090 9.11% 0.810 8.91% µ0 0.081 8.60% 0.798 8.97%

µdisp 0.081 8.60% 0.798 8.97% µdisp 0.090 9.11% 0.810 8.91%
Logits 0.072 7.70% 0.199 2.23% Logits 0.073 7.43% 0.203 2.24%
βo
∗ 0.014 1.47% 0.132 1.48% βo

∗ 0.014 1.45% 0.131 1.44%
Header 0.000 0.01% 0.000 0.00% Header 0.000 0.01% 0.000 0.00%
Total 0.895 - 8.491 - Total 0.941 - 8.661 -
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Table 10: Storage allocation (MB and percentage) for components in our RD-optimized 4DGS
model. Technicolor Scenes at Low (L1) and High (L6) rate settings.

Train Theater
Low Rate [L1] High Rate [L6] Low Rate [L1] High Rate [L6]

Component Rate (MB) Ratio (%) Rate (MB) Ratio (%) Component Rate (MB) Ratio (%) Rate (MB) Ratio (%)
sort idx 0.537 22.08% 10.230 29.40% Fmasked 0.242 19.86% 5.660 33.17%
Indexes 0.458 18.81% 7.327 21.06% Codebooks 0.231 18.96% 4.272 25.04%
Fmasked 0.361 14.84% 7.327 21.06% Indexes 0.222 18.24% 2.698 15.81%
µdisp 0.343 14.09% 6.394 18.37% sort idx 0.189 15.51% 1.258 7.37%
µ0 0.343 14.09% 2.072 5.95% µdisp 0.101 8.33% 1.080 6.33%

Codebooks 0.230 9.46% 0.866 2.49% µ0 0.101 8.33% 1.080 6.33%
Logits 0.080 3.31% 0.461 1.32% Logits 0.077 6.33% 0.883 5.18%
βo
∗ 0.080 3.31% 0.123 0.35% βo

∗ 0.054 4.43% 0.130 0.76%
Header 0.000 0.00% 0.000 0.00% Header 0.000 0.00% 0.000 0.00%
Total 2.319 - 33.187 - Total 1.162 - 16.271 -

Painter Fabien
Low Rate [L1] High Rate [L6] Low Rate [L1] High Rate [L6]

Component Rate (MB) Ratio (%) Rate (MB) Ratio (%) Component Rate (MB) Ratio (%) Rate (MB) Ratio (%)
Fmasked 0.227 27.48% 3.737 38.79% Codebooks 0.188 31.09% 2.169 35.11%

Codebooks 0.196 23.66% 2.499 25.94% Fmasked 0.089 14.67% 1.516 24.53%
Indexes 0.150 18.12% 1.295 13.44% Indexes 0.084 13.89% 0.861 13.94%
sort idx 0.085 10.33% 0.831 8.62% sort idx 0.076 12.57% 0.482 7.81%
Logits 0.065 7.91% 0.472 4.90% Logits 0.063 10.48% 0.480 7.77%
βo
∗ 0.051 6.13% 0.348 3.62% µdisp 0.042 7.00% 0.285 4.61%

µdisp 0.026 3.18% 0.348 3.62% µ0 0.042 7.00% 0.285 4.61%
µ0 0.026 3.18% 0.104 1.08% βo

∗ 0.020 3.29% 0.100 1.62%
Header 0.000 0.01% 0.000 0.00% Header 0.000 0.01% 0.000 0.00%
Total 0.789 - 9.188 - Total 0.576 - 5.892 -

Birthday
Low Rate [L1] High Rate [L6]

Component Rate (MB) Ratio (%) Rate (MB) Ratio (%)
Fmasked 1.929 34.13% 12.386 35.14%
Indexes 1.280 22.65% 8.057 22.86%
sort idx 0.929 16.43% 6.107 17.32%
βo
∗ 0.429 7.59% 2.753 7.81%

µdisp 0.375 6.63% 2.516 7.14%
µ0 0.375 6.63% 2.516 7.14%

Codebooks 0.250 4.43% 0.794 2.25%
Logits 0.085 1.50% 0.122 0.35%
Header 0.000 0.00% 0.000 0.00%
Total 5.391 - 33.617 -
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We include the summarization of the contribution and the problem scope in
the introduction section, too.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation is included in the “Discussion” section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Even if we provide the theoretical ground of the wavelet transformation, we
do not provide the assumption or proof because we introduce the previously well studied
wavelet transformation into the context of the 4D Gaussian Splatting.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We elaborate on the proposed method as well as the baseline to enhance
reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will make the source code to reproduce the experimental results public
as well as the pre-trained model. We already include the source code as the supplementary
material. For data, we do not introduce any datasets.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the details of the training and test datasets, hyperparameters of the
newly proposed method, while following the baseline. In addition, the source code contains
the detailed configuration files.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Because the computational cost to run multiple times for all the experiments is
too expensive, however, we verified that the training variance is small with three datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information related to the computational cost in the experiment
section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do not compose a new dataset and adopt only the well-discussed datasets.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impacts in the discussion section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The proposed method is related to 3D reconstruction of the multi-view videos.
It does not have any risks of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We maintain the original license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We use LLMs only for improving the grammatical errors in writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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