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Abstract

Effective search methods are crucial for improv-
ing the performance of deep generative models
at test time. In this paper, we introduce a novel
test-time search method, Neural Genetic Search
(NGS), which incorporates the evolutionary mech-
anism of genetic algorithms into the generation
procedure of deep models. The core idea behind
NGS is its crossover, which is defined as parent-
conditioned generation using trained generative
models. This approach offers a versatile and easy-
to-implement search algorithm for deep gener-
ative models. We demonstrate the effectiveness
and flexibility of NGS through experiments across
three distinct domains: routing problems, adver-
sarial prompt generation for language models, and
molecular design.

1. Introduction
Genetic algorithms (GAs) have demonstrated remarkable
performance across a diverse range of tasks with discrete
search space, from classic combinatorial optimization prob-
lems (Holland, 1992; Omara & Arafa, 2010; Vidal et al.,
2012; Nagata & Kobayashi, 2013; Mahmoudinazlou &
Kwon, 2024) to more recent applications in molecular de-
sign (Morris et al., 1998; Jensen, 2019; Nigam et al., 2021;
Kerstjens & De Winter, 2022). By maintaining a population
of candidate solutions and iteratively applying evolution-
ary operators, such as crossover and mutation, GAs can
systematically explore vast search spaces.

In this work, we investigate how to incorporate the powerful
search capabilities of GAs into deep generative models.
Previous efforts that combined GAs with deep learning for
better search typically applied GAs after the generation
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Figure 1. Illustrative examples of parents and offspring in various
tasks. Offspring are generated through crossover and mutation.
Crossover combines two parent chromosomes (Yellow and Blue)
by restricting the vocabulary to tokens present in one of the parents.
Mutation (Pink) occasionally removes this limitation, promoting
the solution diversity.

process to refine the outputs of generative models using
existing problem-specific GAs (Ahn et al., 2020; Kim et al.,
2024). In contrast, our goal is to integrate the evolutionary
principles of GAs directly into the generation process of
deep models rather than simply chaining the deep models
and GAs.

We present Neural Genetic Search (NGS), a GA-inspired
new search algorithm for deep generative models. NGS
enhances the sequential generation process by incorporat-
ing genetic operators, crossover, and mutation. Specifically,
we define the crossover as a parent-conditioned generation,
where the model’s vocabulary is restricted to the tokens used
in the selected parents, while mutation simply removes this
restriction (Figure 1), allowing for more diverse outputs.
The generation with the genetic operators proceeds itera-
tively with an evolving population, steering the generation
toward better results over time, similar to traditional GAs.

Since the generation process is still governed by the trained
generative models, NGS effectively combine the search ca-
pability of GAs with the generative power of deep models.
Furthermore, as the proposed genetic operators are problem-
agnostic, NGS can be applied to any sequential generative
model across various tasks, in contrast to traditional GAs,
which require significant effort to design problem-specific
operators. NGS also can be easily implemented by adding
the population and the parent-conditioned masking rule to
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any existing algorithm with sequential generative models.
Finally, compared to single-pass generation, the population-
based iterative generation in NGS allows the generation
process to adapt over time, improving the quality of gener-
ated outputs and even the robustness to distribution shifts.

We evaluated our algorithm in three distinct domains where
sequential generative models are widely applied: routing
problems, red-teaming language models, and de novo molec-
ular design. Our extensive experiments validate that NGS
can serve as an effective test-time search method, fulfill-
ing its main purpose. We also found that NGS can replace
the conventional decoding algorithms, offering improved
robustness. Additionally, NGS can be viewed as an auto-
mated genetic algorithm that leverages sequential generative
models to learn genetic operators, eliminating the need for
extensive labor for algorithm design. These results suggest
that NGS has significant potential as a versatile and efficient
search strategy, adaptable to a wide range of applications
with sequential generative models.

2. Background
2.1. Sequential Generation in Discrete Space

This paper focuses on the sequential generation of discrete
objects to optimize predefined criteria, i.e., maximize re-
ward functions. This setting includes many practical appli-
cations, including solution generation for vehicle routing
problems, prompt optimization in language models, and
atom or fragment-based generation for molecular optimiza-
tion.

Let s ∈ S represent a sequence that corresponds to a discrete
object x ∈ X . Without loss of generality and to make the
explanation simpler, we assume that the sequence length is
T , i.e., s = (s1, s2, . . . , sT ) where st ∈ V is a token from
vocabulary V . We also denote the partial sequence with
length t− 1 as s<t.

We assume that we have a sequential generative policy pθ.
The probability of a sequence s being generated by the
policy pθ is:

pθ(s) =

T∏
t=1

pθ(st|s<t), (1)

where s<1 is defined as an empty sequence and pθ(st|s<t)
denotes the conditional distribution over next token st given
the partial sequence s<t modeled by pθ. In our work, this
conditional distribution is given by a pretrained neural net-
work, which is often conditioned on some contexts or con-
strained with problem-specific constraints.

Note that the mapping from a sequence to a discrete object
g : S → X is not necessarily injective, i.e., there can be mul-
tiple sequences that correspond to a single object. Thus, the

probability of an object x ∈ X being generated is defined
as pθ(x) =

∑
s:g(s)=x pθ(s). Additionally, we assume the

existence of a reward function rX : X → R which evaluates
the quality of a generated object x. For instance, in routing
problems, we can define rX (x) = −c(x) where c(x) is the
length of the route x that we want to minimize. In molecular
optimization, c could represent a property such as binding
affinity or drug-likeness, which we aim to maximize. Since
this work focuses on sequence generation, we mainly use
the reward function over sequences, r = rX ◦ g.

Our task is to maximize the reward function by generat-
ing a set of objects using the sequential generative model.
Depending on the task, we may also want to maintain the di-
versity in the generated objects. We provide a more detailed
discussion for each problem we considered in Appendix A.

2.2. Genetic Algorithm

Genetic algorithms (GAs) are evolutionary-inspired meta-
heuristics. By mimicking natural selection and genetic evo-
lution, GAs iteratively refine a population of candidate solu-
tions. The main components of GA are as follows:

• Chromosome: A representation of a potential solution,
encoded in a suitable format (e.g., a sequence of numbers).

• Population: A group of chromosomes that evolve over
the iterative refinement by GA.

• Selection: Parent chromosomes are selected based on
their reward, with chromosomes having higher reward
being more likely to be chosen.

• Crossover: Parents exchange genetic material to create
offspring, combining strengths from both.

• Mutation: Random changes to the offspring’s genetic
material to maintain diversity and explore new regions of
the solution space.

• Replacement: Offspring replace individuals with low
rewards in the population.

The challenge in developing GAs lies in designing each
component, particularly crossover and mutation operators,
that respect the unique problem-specific constraints while
effectively searching the solution space. In various do-
mains, extensive effort has been devoted to developing
highly specialized operators that can handle these complex-
ities. While these specialized operators are essential for
handling problem-specific constraints, they make it chal-
lenging to generalize across different problems or adapt to
new variations without redesigning the operators.

Despite these challenges, the evolving framework of GAs
remains highly powerful due to their inherent capacity to ex-
plore large, complex solution spaces. The GA’s population-
based approach, which maintains a diverse set of solutions,
enables the algorithm to explore many potential solutions si-
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Figure 2. Overview of GA with NGS. (1) The pretrained generative policy sequentially constructs sequences, which correspond to
chromosomes, to initialize the population. From this population, (2) parents are selected, and then (3) the policy reproduces offspring by
sampling new sequences with a parent-conditioned mask. Finally, (4) the newly generated candidates replace members of the population,
completing one evolutionary cycle.

multaneously, increasing the likelihood of finding global op-
tima. GAs have been successfully applied to various fields,
including routing (Vidal et al., 2012; Nagata & Kobayashi,
2013; Kobeaga et al., 2018; Wouda et al., 2024), molecu-
lar design (Morris et al., 1998; Jensen, 2019; Nigam et al.,
2021; Kerstjens & De Winter, 2022), scheduling (Murata
et al., 1996; Gonçalves et al., 2005), and robotics (Davidor,
1991; Lamini et al., 2018; Ismail et al., 2008).

3. Neural Genetic Search
We begin by assuming a pretrained sequential generative
policy pθ∗ .The only requirement is that the policy pθ∗ sam-
ples solutions in a factorized manner as in Eq. (1), which
allows a flexible use of training approaches and architec-
tures.1 An overview of our algorithm is provided in Figure 2
and Algorithm 1.

3.1. Crossover and Mutation

We propose a problem-agnostic crossover and mutation
operations that integrate readily into the generative process
of the pretrained model.

Crossover. Given two parent chromosomes (s1, s2),
we define our crossover operation as token-restriction,
i.e., the vocabulary for a child is restricted to Vs1,s2 =
{s11, . . . , s1T } ∪ {s21, . . . , s2T }.2 With this restricted vocab-
ulary, the pretrained generative policy constructs new se-
quences while ensuring they follow structural constraints
from the parents. The crossover is simply implemented by
masking out the tokens not in Vs1,s2 during the sequence
generation process in Eq. (1). We define the next token

1Though we aim to maximize the reward function, the policy
can be trained via supervised learning by distilling pre-collected
solutions with expert-designed solvers; see Section 5.1.3.

2We fixed the number of parents to two, but note that it is
allowed to use more than two parents in our algorithm.

distribution after the crossover with parents (s1, s2) as:

pcross(s1,s2)(st|s<t) ∝ I(st ∈ Vs1,s2)pθ∗(st|s<t), (2)

where I is an indicator function. As a result, the crossover
operator functions as a parent-conditioned generative pro-
cess.

Mutation. In classical GA, mutation introduces diversity by
allowing new genetic material that may not appear in either
parent. Analogously, our mutation allows new components
by un-masking the masked tokens. Thus, mutation removes
the effect of the crossover and reverts to the normal sequence
generation. This mutation is conducted in two cases:

• Constraint-enforcing mutation. If all tokens in Vs1,s2

cannot satisfy the specific constraints in the sequence, i.e.,∑
st∈Vs1,s2

pθ∗(st|s<t) = 0, we forcibly do the mutation.

• Stochastic mutation. Even if constraints are met, we
apply mutation with probability µ ∈ [0, 1].

Considering the mutation, the next token distribution is then
modified further as:

pNGS(s1,s2,µ)(st|s<t)

= Ms<t,s1,s2,µ · pθ∗(st|s<t)

+ (1−Ms<t,s1,s2,µ) · pcross(s1,s2)(st|s<t),

(3)

where the binary variable M indicates whether or not the
mutation occurs, i.e.,

Ms<t,s1,s2,µ

=

1 if
∑

st∈Vs1,s2

pθ∗(st|s<t) = 0

Y ∼ Bernoulli(µ) otherwise.

The resulting probability of a sequence s being generated
by the policy with NGS conditioned on parents s1 and s2

becomes:

pNGS(s1,s2,µ)(s) =

T∏
t=1

pNGS(s1,s2,µ)(st|s<t). (4)
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Figure 3. An illustration of crossover and mutation in TSP (Section 3.1.1). At t = t′, the token-restriction crossover masks out edges not
included in the parents, and then the pretrained policy gives the distribution over the remaining valid edges. At t = t′ + 1, since all edges
included in the parents are invalid ( ), the constraint-enforcing mutation activates, allowing selection of any unvisited node.

3.1.1. A CONCRETE EXAMPLE: TSP

We provide a concrete example with the traveling sales-
man problem (TSP) to provide further insight into how the
crossover and mutation work. Generally, a TSP instance is
defined on a complete graph G = (V, E), where V is the
set of N nodes and E is the set of edges. The goal is to
find a tour that visits each node exactly once and returns to
the starting point, minimizing the total travel distance; the
reward is defined as the negative total distance. Note that
the vocabulary V is the set of edges E , and a token is an
edge, i.e., st ∈ E .

Figure 3 illustrates how new offspring solutions are gener-
ated using NGS in TSP. A route is constructed sequentially
by choosing edges, with the constraint that each node cannot
be visited more than once. At time step t, the policy samples
an edge that connects the current node to the next node. This
sequence of selected edges is directly used as a chromosome.
The policy masks out the edges connecting the current nodes
to already-visited nodes to prevent repeated visits. Once all
nodes are visited, a tour is formed by returning to the starting
node. During offspring generation, the parent vocabulary is
defined as the set of edges that appear in either of the two
parent routes; that is, Vs1,s2 =

⋃N
t=1{s1t , s2t ∈ E} where

s1, s2 are selected parents. This in turn defines pcross as in
Eq. (2). If no edge in the parent set remains valid—they
all lead to visited nodes—the token restriction on parents
is relaxed through constraint-enforcing mutation, allowing
the policy to choose from any edge connected to unvisited
nodes to maintain route validity.

3.2. Rank-based Selection and Replacement

For selection and replacement, we employ rank-based pri-
oritized sampling (Tripp et al., 2020; Kim et al., 2023).
Rank-based sampling works as a stochastic elitism, provid-
ing controllability for balancing the stochasticity and the
eagerness in selection. In this section, we define rank with
regard to reward, but it is possible to use multiple criteria ;
see Appendix A.2.

Assume that the population P is filled with |P| chromo-
somes. We denote the rank of a sequence s in P respect to

the function f as rankP(s), which ranges from 0 (highest
reward) to P − 1 (lowest reward). Rank-based prioritized
sampling probability is defined as:

Pr(s) ∝ (κ|P|+ rankP(s))
−1

. (5)

To generate a pair of parents, we sample two chromosomes
without replacement and repeat this independently until we
obtain Noff pairs. Those pairs are fed into the crossover and
mutation process to generate the next generation. In the
replacement phase, we use P ∪ O, instead of P and sample
Npop chromosomes without replacement.

Algorithm 1 Neural Genetic Search

Require: Npop, Noff, the number of iterations Niter, a pre-
trained policy pθ∗

1: P = {(si, r(si))}Npop
i=1 , where si ∼ pθ∗(s) {Eq. (1)}

2: for i = 1 to Niter do
3: O ← ∅
4: for n = 1 to Noff do
5: Select parents (s1, s2) from P using Eq.(5)
6: Generate offspring s ∼ pNGS(s1,s2,µ)(s) {Eq.(4)}
7: O ← O ∪ {(s, r(s))}
8: end for
9: Replace P by sampling Npop chromosomes

from P ∪ O using Eq. (5).
10: end for

3.3. Algorithmic Overview and Viewpoints

The NGS algorithm is summarized in Algorithm 1. NGS
offers an improved search capability for the sequential gen-
erative models by gracefully combining the strength of GA
with the neural policy pθ∗ . A more detailed analysis of its
time and memory complexities can be found in Appendix D.
Below, we highlight two perspectives on NGS: 1) as a novel
decoding strategy that leverages evolutionary principles and
2) as a GA enhanced by learned operators.

3.3.1. NGS AS A DECODING STRATEGY

NGS can be viewed as a decoding scheme for sequential
generative models because it converts the learned (condi-
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Figure 4. Benchmark results on various routing problems. NGS outperformed sampling and ACO by a significant margin in all problems,
showing its effectiveness as an inference-time search method. See Appendix E.1 for more comprehensive results.

tional) probability distribution into explicit outputs. Specif-
ically, NGS belongs to stochastic decoding methods and
shares similarities with top-k or top-p sampling, as it mod-
ifies (masking-out) the sampling distribution for better re-
sults. However, unlike single-pass approaches, NGS adopts
a population-based approach, which iteratively refines a set
of candidate solutions. This population-based procedure
often produces more diverse and higher-quality solutions,
especially for complex tasks that benefit from repeated im-
provement steps. Our experiments in Section 5.1 and Sec-
tion 5.2 verify that NGS effectively decodes outputs from a
model’s learned distribution.

3.3.2. NGS AS A GENETIC ALGORITHM

From another perspective, NGS can be viewed as a genetic
algorithm (GA) with a learned operator, where a pretrained
model specifies how to combine and modify parent solutions
via parent-conditioned generation. This approach provides
two key benefits: (1) it replaces traditional, hand-crafted
heuristics, and (2) it produces more informed, higher-quality
offspring by using the model’s learned distribution to guide
the combination process, rather than relying on random-
walk behavior with predefined rules. As shown in Sec-
tion 5.3, NGS can thus serve as an effective alternative GA.

4. Related Works
Deep generative models with GA. Several studies explore
combining GAs and deep generative models, particularly
in chemical domains. One direction is that utilizing expert-
designed GA to improve the generative models’ outcome.
Ahn et al. (2020) and Kim et al. (2024) employ Graph GA
(Jensen, 2019) whose crossover and mutation are designed
to guarantee the validity in chemical space, to refine the
generated molecules. Conversely, some researches suggest
to incorporate neural models to enhance or design GAs.
Notably, in SynNet (Gao et al., 2022b), the neural policy
construct offspring conditioned on molecule embedding
from the parent, allowing exploiting the generative capabil-
ity from the deep model similar to our works. However, to

ensure the plausibility, SynNet employs domain-specific re-
action rules in the subsequent synthesis planning. Gao et al.
(2024) utilizes the generative model to refine the molecules
obtained by Graph GA to more synthesizable ones. In Re-
inforced Genetic Algorithm (RGA; Fu et al., 2022), the
neural models guides the crossover and mutation process
with a protein target structure embedding to overcome a
random-work exploration with predefined rules.

More broadly, there is a growing trend that leverages large
language models (LLMs) as a black-box operator within
GAs, where parent samples are directly fed into LLM to
obtain new samples. These LLM-based GAs have been
studied in various domains, including prompt optimization
(Meyerson et al., 2024; Liu et al., 2024; Guo et al., 2024),
molecular design (Wang et al., 2024), and code genera-
tions (Lehman et al., 2023; Chen et al., 2023a; Ye et al.,
2024). However, a primary challenge is the reliance on
hand-crafted prompt engineering, and many approaches
continue to employ problem-specific rules along with the
LLM-based operator (Liu et al., 2024; Wang et al., 2024).

Test-time search for enhanced inference. Recent work
in large language models (LLMs) (Bai et al., 2022; Madaan
et al., 2023; Snell et al., 2024; Brown et al., 2024) demon-
strates that dedicating additional computation at test time
can greatly improve outputs (see Dong et al. (2024) for
an overview). Meanwhile, in combinatorial optimization
(CO), its mathematically rigorous algorithmic foundations
have inspired a line of research integrating traditional al-
gorithms into test-time search within deep learning. For
instance, Kool et al. (2022) employ restricted dynamic pro-
gramming guided by a graph neural network (GNN) that
predicts a solution heatmap in routing problems. Mean-
while, Ye et al. (2023) and Kim et al. (2025) use a predicted
edge heatmap in ant colony optimization (ACO) for broader
CO applications. Luo et al. (2023) propose a new greedy
decoding-based search that randomly destroys the generated
solutions and reconstructs solutions. Although effective,
this method relies on handcrafted rules for destruction. In
addition to external algorithmic integrations, there exist a
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range of self-improvement approaches, such as beam search
(Joshi et al., 2021; Choo et al., 2022), sampling (also called
best-of-N) (Kool et al., 2019), and Monte Carlo Tree Search
(Qiu et al., 2022), and active searches (Bello et al., 2016;
Hottung et al., 2022; Son et al., 2023) are also employed for
refining solutions at test time.

5. Experiments
To verify the effectiveness and versatility of the proposed
method, we conduct extensive experiments on solving rout-
ing problems (Section 5.1), red-teaming language models
(Section 5.2), and molecular optimization (Section 5.3). The
code is available at https://github.com/hyeonahkimm/ngs.

5.1. Routing Problems

In this section, we evaluate ours on various routing problems
to verify how NGS efficiently explores the combinatorial
solution space at test time. We consider four classic routing
problems — Traveling Salesman Problem (TSP), Capaci-
tated Vehicle Routing Problem (CVRP), Prize-Collecting
TSP (PCTSP), and Orienteering Problem (OP) — all of
which have been widely studied in both genetic algorithm
and deep learning research. Detailed descriptions for each
task are provided in Appendix C.

5.1.1. EXPERIMENTAL SETUP

Implementation details. Following Joshi et al. (2021), we
adopt a graph neural network (GNN) to generate an edge
heatmap for a given problem instance G. The heatmap
serves as a policy that provides the conditional distribution
of which edge to select. This heatmap-based approach has
been widely adopted in prior works (Kool et al., 2022; Ye
et al., 2023; Kim et al., 2025) thanks to its simplicity and
scalability to large instances.3 We train the GNN for each
setting of the problem following the advanced off-policy
reinforcement learning algorithm suggested by Kim et al.
(2025) to obtain the pretrained GNN. All training and testing
are performed three times independently.

Baselines. To validate the effectiveness of our method as
a test-time search method, we compare ours against var-
ious search algorithms while using the same pretrained
GNN. These search algorithms include sampling (best-of-
N), beam search (BS; Joshi et al., 2021), Monte Carlo Tree
Search (MCTS; Qiu et al., 2022), and ant colony optimiza-
tion (ACO; Ye et al., 2023; Kim et al., 2025). Note that the
ACO-based search of Kim et al. (2025) has already achieved
comparable results to state-of-the-art learning-based meth-
ods for routing problems; see details in Appendix B.1.

3Heatmap-based approaches are often referred to as “non-
autoregressive” methods in that they only call the neural network
once to generate a heatmap.

Table 1. Results on TSP and CVRP. Gap (%) is measured using
Concorde (Applegate et al., 2006) for TSP and PyVRP (Wouda
et al., 2024) for CVRP. “Time” shows the average duration needed
to solve a single instance.

N = 200 N = 500

Gap (%) Time Gap (%) Time

T
SP

Concorde - 1s - 10s
LKH3 (Helsgaun, 2017) 0.001 10s 0.022 32s

GNN (Kim et al., 2025)
+ Sampling 0.307 2s 1.827 10s
+ BS (w = 1000) 1.378 4s 20.637 18s
+ MCTS 0.164 20s 1.324 60s
+ ACO 0.294 5s 1.733 17s
+ NGS (Ours) 0.028 5s 0.322 17s

+ Sampling (long) 0.130 16s 1.479 101s
+ MCTS (long) 0.126 100s 1.268 300s
+ ACO (long) 0.102 47s 1.162 167s
+ NGS (Ours, long) 0.011 50s 0.110 170s

C
V

R
P

PyVRP - 4.0m - 21.0m
LKH3 (Helsgaun, 2017) 0.304 2.4m 0.182 18.6m

GNN (Kim et al., 2025)
+ Sampling 1.487 4s 1.982 7s
+ BS (w = 1000) 2.659 4s 2.624 7s
+ ACO 1.485 7s 1.975 14s
+ NGS (Ours) 0.981 8s 1.840 15s

+ Sampling (long) 1.104 0.7m 1.738 1.2m
+ ACO (long) 1.055 1.2m 1.684 2.3m
+ NGS (Ours, long) 0.126 1.3m 1.502 2.5m

Table 2. Experiment on TSP with an autoregressive model. We
adopt the pretrained model from LEHD. “Time” is measured as
the average duration needed to solve a single instance.

N = 200 N = 500

Gap (%) Time Gap (%) Time

LEHD + RRC 0.020 5.07m 0.172 16.5m
LEHD + Sampling 0.022 0.14m 0.376 1.46m
LEHD + NGS (Ours) 0.004 0.18m 0.152 1.48m

5.1.2. RESULTS

As shown in Table 1, in TSP and CVRP with the number
of nodes 200 and 500, NGS achieves significantly smaller
optimality gaps than the search baselines. Notably, NGS out-
performs both Sampling (long) and ACO (long), which used
10× larger search budget except for CVRP with N = 500,
demonstrating its search efficiency. Moreover, Figure 4 illus-
trates that NGS consistently delivers significant performance
gains in all routing problems considered. These results un-
derscore the flexibility and broad applicability of NGS. It
is noteworthy that all the search algorithms are based on
the same pre-trained neural network, i.e., all searches start
from the same heatmap; the only difference resulting in the
huge performance gaps between the algorithms is the search
procedure. We omit standard deviations for this benchmark
due to their negligible values, but Figure 5 shows ± 1-std
error ranges across three independent runs. More results are
provided in Appendix E.1.
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Table 3. The attacker model is fine-tuned and evaluated with
Source victim model (Llama-3.2-3B-Instruct). The attacker is
also evaluated on other various victim models, which corresponds
to Transfer setting. The highest mean toxicities among sampling-
based algorithms are highlighted with Bold. All the reported values
are averaged over five independent runs with distinct seeds.
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Method Toxicity Div. Toxicity

BS (w = 4) 0.93 0.24 0.18 0.52 0.00 0.67 0.00
BS (w = 8) 0.99 0.21 0.37 0.74 0.02 0.91 0.00

Sampling 0.59 0.84 0.28 0.50 0.05 0.25 0.08
Temp. (τ=0.8) 0.67 0.82 0.31 0.52 0.04 0.29 0.07
Temp. (τ=0.5) 0.79 0.77 0.40 0.58 0.04 0.40 0.04
top-k (k=10) 0.65 0.82 0.31 0.53 0.04 0.25 0.06
top-k (k=5) 0.69 0.79 0.35 0.52 0.04 0.28 0.05
top-p (p=0.8) 0.69 0.81 0.32 0.51 0.04 0.30 0.07
top-p (p=0.5) 0.78 0.77 0.39 0.56 0.03 0.38 0.04

NGS (Ours) 0.71 0.79 0.45 0.61 0.14 0.59 0.23

Results on real-world instances. We further evaluate
the proposed method on real-world benchmark problems,
TSPLib (Reinelt, 1991) and CVRPLib (Uchoa et al., 2017).
As shown in Table 5 of Appendix E.2, NGS preserves strong
performance despite the distribution shift, demonstrating
robust adaptability.

5.1.3. FURTHER STUDIES

NGS with an autoregressive policy. To verify our versa-
tility, we integrate NGS with autoregressive policy as well.
We adopt the state-of-the-art model, the Light Encoder and
Heavy Decoder (LEHD; Luo et al., 2023), which trained
via supervised learning. We compare NGS with Random
Re-Construct (RRC) that refines solutions by repeatedly
restarting from the randomly destroyed and augmented sub-
routes. Table 2 shows that LEHD + NGS achieves the lowest
optimality gap compared to sampling and RRC. While RRC
achieves competitive outcomes, it is specifically tailored
to routing problems and can struggle to generate diverse
solutions when further constraints are introduced.

Sensitivity Analysis. We examine the impact of GA hyper-
parameters. As reported in Appendix E.3, NGS consistently
performs well across a broad range of parameter settings,
indicating its robustness and practical usability.

5.2. Red-Teaming Language Models

In this experiment, we view NGS as an alternative decoding
strategy, especially in the context of automated red-teaming
of language models (LMs).

Red-teaming language model aims to generate attack
prompts to induce undesirable output from a “victim” lan-
guage model. Our experiment is based on the approach that
fine-tunes “attacker” LM to serve as an automated attack
prompt generator (Perez et al., 2022; Lee et al., 2024a). We
fine-tune the attacker LM following the fine-tuning approach
proposed by Lee et al. (2024a). Specifically, the reward of
an attack prompt is defined as the probability of it being
toxic (see Appendix A.2 for details). This reward signal
is then used for fine-tuning based on the combination of
GFlowNets and maximum likelihood estimation. Given the
fine-tuned attacker LM, we investigate how the decoding
schemes affect the red-teaming performance.

The evaluation of an attack algorithm follows these steps:
1) Generate 1,024 attack prompts using an attacker LM
and a decoding algorithm to evaluate. 2) For each attack
prompt, generate 5 responses using the target victim model,
calculate the toxicity of each response using the classifier,
and take the average, resulting in the toxicity of the prompt.
3) Calculate average toxicity and diversity over 1,024 attack
prompts. Note that generating diverse, high-reward prompts
is desirable in red-teaming unlike optimization tasks. We
use average pairwise cosine distance in the embedding space
using MiniLMv2 (Wang et al., 2021) as a diversity measure.

Experimental setup. Throughout the experiments, GPT-
2 (Radford et al., 2019) is used as an attacker and Llama-
Guard-3-8B (Llama Team, 2024) as the safety classifier.
During fine-tuning, Llama-3.2-3B-Instruct is used as a vic-
tim. For testing, we evaluate the attacker LM using various
victim LMs, not only the one used in the fine-tuning phase,
but also unseen LMs: Llama-3.1-8B-Instruct, Llama-3.3-
70B-Instruct (Llama Team, 2024), Gemma-2-9b-it (Team
et al., 2024), Qwen2.5-7B-Instruct (Yang et al., 2024), and
phi-4 (Abdin et al., 2024).

Implementation details. First, to further encourage diver-
sity in the selection and replacement, we introduce the nov-
elty of a chromosomes and use weighted rank in rank-based
prioritized sampling in Eq. (5). In addition, in crossover,
we optionally discard the used token from Vs1,s2 after each
token selection to avoid meaningless repetition; please refer
to Appendix A.2 for details.

Baselines. We considered canonical sampling-based decod-
ing strategies for language models, specifically, tempered
sampling (Temp.) with temperature τ , top-k sampling, and
top-p sampling (also known as Nucleus sampling, Holtz-
man et al. 2020). We also include beam search (BS) with
beam width w, while we did not directly compare against it
because it is deterministic.

Results. We summarized the results in Table 3. The
‘Source’ column result shows that NGS could compara-
bly balance the toxicity (reward) and diversity. The results
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Table 4. Average scores of Top-10 molecules discovered within 10,000 evaluations
Type Score Func. (↑) SynNet SMILES GA STONED Graph GA NGS (Ours)

Property
Optimization

qed 0.947 ± 0.001 0.947 ± 0.001 0.948 ± 0.000 0.944 ± 0.001 0.948 ± 0.000
jnk3 0.673 ± 0.078 0.407 ± 0.088 0.616 ± 0.083 0.830 ± 0.135 0.891 ± 0.059
drd2 0.998 ± 0.003 0.993 ± 0.009 0.998 ± 0.004 1.000 ± 0.001 1.000 ± 0.000
gsk3b 0.824 ± 0.069 0.799 ± 0.041 0.755 ± 0.044 0.915 ± 0.065 0.958 ± 0.021

Multi-property
Optimization

perindopril mpo 0.563 ± 0.025 0.447 ± 0.018 0.503 ± 0.020 0.546 ± 0.038 0.600 ± 0.017
ranolazine mpo 0.784 ± 0.012 0.768 ± 0.030 0.850 ± 0.022 0.763 ± 0.028 0.854 ± 0.020
sitagliptin mpo 0.337 ± 0.051 0.477 ± 0.074 0.706 ± 0.081 0.629 ± 0.068 0.640 ± 0.061

Structure-based
Optimization

isomers c9h10n2o2pf2cl 0.715 ± 0.030 0.878 ± 0.049 0.949 ± 0.041 0.908 ± 0.025 0.914 ± 0.023
deco hop 0.676 ± 0.103 0.621 ± 0.006 0.625 ± 0.014 0.610 ± 0.017 0.851 ± 0.130
scaffold hop 0.517 ± 0.011 0.519 ± 0.012 0.533 ± 0.031 0.530 ± 0.035 0.697 ± 0.145

Average 0.703 0.686 0.748 0.768 0.835

in ‘Transfer’ setting are more remarkable in that NGS out-
performs the other decoding schemes significantly, showing
robustness toward the distribution shift. This is attributed
to NGS’s unique characteristic, population-based iterative
generation, which could adapt the generation process to-
wards better search space by conditioning on promising
parents from the previous generations. For more compre-
hensive results with standard deviation and results obtained
using another model as source victim models, please refer
to Appendix F.

5.3. De novo Molecular Design

In this experiments, we focus on verifying the effectiveness
of NGS as a new GA method, unlike the experiments in rout-
ing and red-teaming. In molecular design, various studies
have found that GA methods still remain as strong baselines
for recent deep learning methods. Furthermore due to the
black-box properties in chemical space, test-time search
with deep generative models have rarely studied. In several
works, Graph-based GA (Jensen, 2019), an expert-designed
GA, is directly employed to refine the solutions or support
the policy explorations (Ahn et al., 2020; Kim et al., 2024;
Gao et al., 2024; Wang et al., 2024; Lee et al., 2024b)

Experimental setup. De novo molecular design aims
to discover molecules with the desired property, which is
measured by the score function.We follow the experimen-
tal setting in the Practical Molecular Optimization (PMO)
benchmark (Gao et al., 2022a), which limits evaluations to
10,000. We provide further details in Appendix A.3.

Implementation details. This work employs a string-based
molecular representation, the Simplified Molecular-Input
Line-Entry System (SMILES) strings (Weininger, 1988), to
generate molecules; the examples are provided in Figure 1.
Following prior works (Olivecrona et al., 2017; Kim et al.,
2024), we adopt an LSTM policy to generate SMILES se-
quences. Since we have a limited budget, we use 8K calls
to train the policy using GFlowNets and 2K to conduct the
genetic search with NGS; see details in Appendix B.3.

Baselines. We compare NGS with GA methods specially
designed for molecular design: Graph GA (Jensen, 2019),
SMILES GA (Brown et al., 2019), STONED (Nigam et al.,
2021), and SynNet (Gao et al., 2022b). They utilize
fragment-based graphs, SMILES, SELFIES (Krenn et al.,
2020), and synthesis, respectively, as molecular represen-
tations. Note that in SMILES GA and STONED, where
the string-based representations are employed, mutation is
solely applied to obtain offspring molecules.

Results. As depicted in Table 4, NGS outperforms previous
GA methods in average Top-10 scores across 10 tasks in
different types by achieving the best scores in 8 tasks out
of 10. These results highlight the effectiveness of NGS as
an alternative GA method despite the computational cost
of policy training. In Appendix G, we compare NGS with
the results with training only. Moreover, NGS manages
to produce valid molecules without explicitly enforcing
validity checks or SMILES grammar constraints at each step.
Because the policy is trained on valid examples, it naturally
learns to generate syntactically correct SMILES strings and
thus maintains a high rate of validity in its outputs.

6. Conclusion
Contributions. We propose Neural Genetic Search (NGS),
a test-time search algorithm that combines the population-
based exploration of genetic algorithms with the expres-
sive power of pretrained generative models. By replacing
domain-specific crossover rules with a parent-conditioned
generation process and allowing mutation through unre-
stricted sampling, NGS offers an iterative refinement strat-
egy that boosts solution quality across diverse tasks without
needing specialized heuristics. Our experiments, conducted
across diverse tasks such as routing problems, adversarial
prompt generation, and molecular design, show that NGS
improves solution quality compared to previous search meth-
ods. Beyond its strong performance, NGS is flexible and
easy to adopt: it only requires a pretrained model that con-
structs discrete outputs sequentially.
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Future works. A promising extension of NGS is its inte-
gration into model-based optimization (MBO) frameworks,
where the objective function is a proxy model rather than di-
rectly interacting with environments. The population-based
and diversity-aware nature of NGS can enhance the robust-
ness for inaccurate proxies, especially with conservative
proxy estimations (Trabucco et al., 2021; Yu et al., 2021;
Chen et al., 2022; 2023b; Reddy et al., 2024).

Limitations. NGS has several key limitations. First, its
effectiveness relies on the quality of the underlying neural
policy. The potential performance gains may be limited if
the pretrained model’s distribution does not encompass high-
quality solutions. In such cases, the policy can be fine-tuned
by incorporating NGS, similar to approaches introduced by
Choo et al. (2022); we leave this as future work. Another
limitation is that NGS introduces a set of GA-related hy-
perparameters. While we provide the rationale behind their
selection and demonstrate their robustness across diverse
configurations, practitioners may still need to adjust them
for specific tasks. Lastly, NGS lacks theoretical guaran-
tees for generated distributions or convergence to optimal
solutions, since both deep generative models and genetic
algorithms are inherently difficult to analyze theoretically.

Impact Statement
Neural Genetic Search (NGS) enhances the test-time per-
formance of deep generative models by integrating genetic
algorithm-inspired search into the generation process. It is
model-agnostic and broadly applicable to any generative
model that produces discrete objects through sequential gen-
eration. NGS offers a lightweight yet effective framework
for improving solution quality, diversity, and robustness
across a wide range of domains.
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A. Detailed problem formulations
This section provides more detailed explanations of each sequential generation problem we considered.

A.1. Routing problems

In all routing problem we considered, a problem instance can be defined on the fully connected graph G = (V, E), where V
is the set of N nodes, and E is a set of edges, each associated with a weight representing the distance between two connected
nodes. The goal is to find the optimal route that satisfies all problem-specific constraints.

In this context, a candidate solution for a routing problem can be defined as a set of edges that compose a route, which in turn
can be represented as a sequence of edges. Thus, the vocabulary corresponds to all the edges, i.e., V = E , a chromosome
corresponds to a sequence of edges, and the policy pθ∗ is a conditional distribution that enables sequential selection of
edges. Note that the policy should be conditioned on the problem-specific constraints, which mask out the infeasible edges
based on these constraints. The reward r is defined as the objective function of each problem. We provide details about
problem-specific components for each problem in Appendix C.

A.2. Red-Teaming Language Models

In this task, we use an attacker language model (LM) to generate attack prompts to elicit toxic responses from victim
LM. The V corresponds to the vocabulary of the attacker LM (GPT-2 (Radford et al., 2019) in our experiment), and a
chromosome is an attack prompt (a sentence in natural language). We define our sequential generative policy pθ∗ with a
pretrained attacker LM equipped with top-p (Nucleus) sampling (Holtzman et al., 2020) (p=0.95). The top-p serves as a
“plausibility constraint,” which prevents the crossover (Eq. (2)) from generating highly unlikely tokens.

The reward for an attack prompt is defined as the average toxicity of the response from the victim LM given the attack
prompt. The toxicity is the probability of the ‘unsafe’ token of the safety classifier model (Llama-Guard-3 (Llama Team,
2024)) given the victim’s response.

We found that the token restriction using Vs1,s2 as suggested in Section 3.1 could lead to meaningless repetition of a set
of words in the parents (and this often ‘hacks’ the reward function and gives better quantitative results). To prevent this
undesirable behavior, we discard the token from Vs1,s2 once it is selected. Algorithmically, at step t, we sample st following
Eq. (3) and then replace Vs1,s2 with Vs1,s2 \ {st}.

As discussed in Section 5.2, it is desirable to generate a diverse set of toxic prompts in the red-teaming language model task.
To promote diversity in the population, we incorporate novelty measure during selection and replacement. We define the
novelty ν of a chromosome s as averaged pairwise cosine distance against the population, i.e.,

ν(s;P) = 1

|P|
∑
s′∈P

(1− cosine similarity(e(s), e(s′)), (6)

where e is the sentence encoder (MiniLMv2 (Wang et al., 2021)). Then, we define weighted rank using both reward and
novelty as follows:

rankr,ν,ω,P(s) = (1− ω) · rankr,P(s) + ω · rankν,P(s), (7)

where ω is novelty rank weight (we set ω = 0.1) and rankr,P and rankν,P is reward and novelty rank, respectively. This
weighted rank is used for selection and mutation, following the rank-based selection rule in Eq. (5).

A.3. De novo molecular design

We employ the string-based representation, the Simplified Molecular-Input Line-Entry System (SMILES; Weininger, 1988),
which represents molecules using ASCII text. SMILES encodes a molecule’s connectivity (which atoms are bonded to
which), as well as additional details such as bond types, charges, and stereochemistry. We directly adopt the vocabulary set
from Olivecrona et al. (2017), which consists of 55 tokens, including start and end tokens. The examples are illustrated in
Figure 1.

The reward is defined as a normalized scalar in [0, 1] that measures a pharmaceutically relevant property. For example, QED
quantifies the drug-likeness of molecules, whereas JNK3, DRD2, and GSK3b measure a molecule’s activity against specific
proteins. Please refer to Gao et al. (2022a) and Brown et al. (2019) for additional details on each task.
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Lastly, we employ an LSTM policy without explicitly enforcing validity constraints. Following previous work (Olivecrona
et al., 2017), the policy is initialized with a prior policy trained on a public dataset (e.g., ZINC250K) to learn valid SMILES
patterns. We then rely on this policy to guide the crossover process and produce valid SMILES strings.

B. Additional experimental details
Computing resource. We use a server with two sockets of AMD EPYC 7542 32-Core Processor, and a single GPU, the
NVIDIA RTX A6000, for the routing and De novo molecular design experiments. For the red-teaming language models
task, we use a cloud server with four NVIDIA A100 HBM2e 80GB PCIe gpus.

B.1. Routing problems

Training procedure. We followed the training procedure of Kim et al. (2025).4 Specifically, we train a graph neural network
(GNN) that generates heatmaps using the GFlowNet (Bengio et al., 2021) training, combined with off-policy exploration
through the local-search operators (2opt for TSP, Swap* (Vidal, 2022) for CVRP, and destroy-and-repair local search for
others). For details regarding the training procedure, please refer to the original paper (Kim et al., 2025).

Hyperparameters. For sampling, we use 1,000 for mini-batch size. We use 100 for the number of ants in ACO and the
number of offspring in NGS, which makes the two algorithms have the same number of iterations: 10 when generating 1,000
candidates and 100 when 10,000 (long). Note that for TSP and CVRP, we employ the local search after solution generation
for all baselines, as usually done in heatmap-based approaches. We use 100 for both population size and offspring size of
NGS, 0.01 for the stochastic mutation rate µ, and 0.001 for the weight-shifting factor κ in rank-based sampling.

B.2. Red-Teaming Language Models

Fine-tuning procedure. We mainly followed the two-stage fine-tuning procedure of Lee et al. (2024a). In the first stage, a
policy explores the space of prompts during the GFlowNet-based fine-tuning. All evaluated prompts are stored in the buffer.
In the second stage, we fine-tune the attack language model (LM) with high-quality prompts obtained by filtering prompts
with both high toxicity and high likelihood from the buffer. For more details, please check the original paper (Lee et al.,
2024a).

Hyperparameters. At test time, we attack a victim LM using the fine-tuned attack LM. We considered common sampling-
based decoding strategies as baselines, including sampling, tempered sampling with temperature τ ∈ [0.5, 0.8], top-k
sampling with k ∈ [5, 10], and top-p sampling with p ∈ [0.5, 0.8]. Each baseline only changes the specified hyperparameter,
and the others remain the same. For NGS, we use 256 and 16 for the population size and offspring size, respectively. We use
0.05 for the stochastic mutation rate µ and 0.01 for the weight-shifting factor κ in the rank-based sampling.

B.3. De novo molecular design

Training procedure. Unlike routing problems or language-model attacks, molecular design constrains the total number
of evaluations rather than distinctly separating training from inference. Therefore, we allocate 8K evaluations to train the
policy and then conduct NGS with the trained policy. Following Kim et al. (2024), we adopt generative flow networks
(GFlowNets; Bengio et al., 2021; 2023) but without guided exploration. Because GFlowNets are off-policy, they can
leverage replay training extensively, thus exhibiting sample-efficient learning. Indeed, the results in Kim et al. (2024)
show that GFlowNets outperform REINVENT (Olivecrona et al., 2017) even without guided exploration. Specifically, we
initialize our policy with the same pretrained parameters used in REINVENT, trained on an unlabeled dataset. We then use
the allocated 8K evaluations to train this policy by generating samples, storing them in an experience buffer, and minimizing
the trajectory-balance loss (Malkin et al., 2023) using those buffered samples. We follow the hyperparameter setup from
Kim et al. (2024), including the batch size, number of replay training iterations, inverse temperature, and learning rates;
please refer to their original implemetation for more details.5

Hyperparameters. During NGS, we use the population size and offspring size as 100 and 5, respectively. The stochastic
mutation rate µ is set as 0.01, and the weight-shifting factor κ in Eq. (5) as 0.01.

4https://github.com/ai4co/rl4co
5https://github.com/hyeonahkimm/genetic_gfn
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C. Description of routing problems
In routing problems, the problem is defined on the fully connected graph G = (V, E), where V is the set of N nodes, and E
is a set of edges, each associated with a weight representing the distance between two connected nodes. The goal is to find
the optimal route that satisfies all given constraints. In this context, a route is defined as a cycle within the graph, and the
vocabulary is composed of the set of edges E . We provide details about problem-specific components for each problem. All
problem instances are generated according to Ye et al. (2023).

C.1. Traveling salesman problem

The traveling salesman problem (TSP) aims to find the shortest route that visits all cities exactly once and returns to the
starting point. A solution is defined as a Hamiltonian cycle with minimum total weights (i.e., total distance to travel).
Consequently, the reward function r(x) is defined as a negative value of total distance. Starting from a random node, a route
is generated by sequentially selecting the next node to visit. This is done by choosing an edge connected to the current node,
thus extending the route. To avoid revisiting nodes, the model masks out edges that lead to already visited nodes.

C.2. Capacitated vehicle routing problem

The capacitated vehicle routing problem (CVRP; Dantzig & Ramser, 1959) is defined on a fully connected graph G = (V, E),
where V is the set of nodes, which includes a depot (the starting and ending point for the vehicles) and the customers (the
locations that need to be served with demand), and E is the set of edges representing the connections between nodes, each
with an associated travel distance. In CVRP, we assume the use of multiple homogeneous vehicles, each with a capacity Q,
and the goal is to serve all customers exactly once while minimizing the total travel distance. The reward function is defined
as the negative of the total distance, and the solution consists of a set of multiple routes, each starting and ending at the
depot (a special node with zero demand). Additionally, the total demand of each route cannot exceed the vehicle capacity Q.

Similar to the TSP, the solution is generated sequentially by selecting the next node, which corresponds to choosing an edge
connected to the current node. However, the process begins at the depot, which allows multiple visits. At each step, the
policy masks out edges that lead to already visited nodes, except for the depot. To enforce the capacity constraints, edges
leading to nodes with demands that exceed the remaining vehicle capacity are also masked out to have zero probability.

C.3. Prize-collecting traveling salesman problem

The prize-collecting traveling salesman problem (PCTSP; Balas, 1989) is a variation of the TSP, where the constraints for
visiting all nodes are relaxed. Instead, the PCTSP introduces the prize constraints about the minimum prizes to collect. In
the PCTSP, each node has a prize and penalty; thus, the salesman gets prizes for visiting the cities and penalties for the
unvisited cities. The reward is defined as the summation of the total distance and the net penalties from un-visited nodes.

Similar to the CVRP, a route starts and ends with the depot whose prize and penalty are zero. To prevent repeated visiting,
the policy masks out all edges connected to already visited nodes. In addition to satisfy the prize constraints, when the
collected prize is less than the minimum prizes the edge connected to the depot is also masked out.

C.4. Orienteering problem

The orienteering problem (OP; Golden et al., 1987) is a variation of the classical routing problems where the objective is to
find a route that maximizes the total prize collected from visited cities, subject to a constraint on the total travel distance.
Unlike the PCTSP, where the goal is to minimize penalties for unvisited cities, the orienteering problem is focused on
maximizing the reward within a limited travel budget.

In the OP, each city has a prize associated with it, and the objective is to visit a subset of cities in order to maximize the total
prize collected, while ensuring that the total distance traveled does not exceed a specified maximum distance. Thus, tshe
reward is defined as the sum of the prizes from the cities visited.

Similar to the PCTSP, the solution is represented as a set of routes starting from a depot. Each route must respect the
distance constraint while selecting cities that contribute to the total prize. To prevent revisiting cities, the policy masks
out edges connected to previously visited cities, ensuring that each city is visited at most once. Additionally, the edge
connecting the depot can be masked out if the total distance constraint has already been met or exceeded, ensuring no
additional unnecessary travel occurs.
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D. Time and memory complexities
The proposed crossover, mutation, selection, or replacement in Section 3 does not require a significant amount of time to
perform. However, it may increase the generation time depending on the mini-batch size.

Consider that we want to generate K sequences in total and assume that our mini-batch size is limited to m (K > m). Then,
we need to iterate ⌈K/m⌉ times of generation, regardless of the generation algorithm. On the other hand, when considering
the NGS iteration with specified Npop and Noff, we need to iterate ⌈Npop/m⌉+ ⌈(K −Npop)/Noff⌉ · ⌈Noff/m⌉ times. When
m is smaller than Noff, the number of iterations of NGS is similar to the normal generation. Otherwise, the number of
iterations can increase much larger than ⌈K/m⌉. In practice, however, m is usually smaller compared to Noff, and thus, the
time complexity is not increased too much (see Table 2).

Our algorithm slightly increases memory usage, as the population should be kept in memory, which is usually negligible. In
routing problem experiments, NGS requires additional memory since we need to construct the N ×N edge matrix for each
chromosome. However, using the sparse matrix could largely relieve this.

E. Additional experimental results on routing problems
E.1. Extended results

Figure 5 shows extended results for the routing problems (Section 5.1), including the results for instances with 1,000 nodes.
Overall, NGS substantially outperforms the baseline methods in all settings except for CVRP with 1,000 nodes. We suspect
two reasons for the worse results in CVRP1000: (1) our heatmap-based policy may be suboptimal given the increased
complexity of large-scale CVRP, and (2) the post-processing local search, Swap* (Vidal et al., 2012), largely overshadows
any differences between the generation algorithms.
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Figure 5. Comprehensive results on routing problems.

E.2. Results on real-world instances

We benchmark our model against baselines on real-world TSP and CVRP instances from TSPLib (Reinelt, 1991) and
CVRPLib-X (Uchoa et al., 2017). We use the models trained on random uniform instances of size 200, 500, and 1,000 for
evaluation of TSP/CVRPLib instances with sizes 100-299, 300-699, and larger than 700, respectively. As shown in Table 5
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NGS achieves significantly better performance than the baselines on these real-world datasets.

Table 5. Average optimality gap with the best-known solutions on TSPLib and CVRPLib-X.

N # Sampling ACO NGS (ours)

T
SP

L
ib 100-299 30 1.29% 1.26% 1.08%

300-699 10 3.32% 3.19% 1.65%
700-1499 12 5.62% 5.40% 3.14%

C
V

R
PL

ib 100-299 43 2.44% 2.43% 2.04%
300-699 40 3.42% 3.43% 3.27%
700-1001 17 4.15% 4.16% 4.02%

E.3. Sensitivity analysis

We conduct sensitivity analysis for the key hyperparameters — population size Npop, offspring size Noff, and the mutation
rate µ — on TSP and CVRP with 500 nodes. The results in Figure 6 indicate that a smaller population size generally yields
better outcomes, likely due to more greedy parent selection. Increasing the offspring size tends to degrade performance, as it
reduces the number of search iterations.
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Figure 6. Sensitivity analysis on TSP and CVRP with 500 nodes.
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F. Additional experimental results on red-teaming language models
F.1. Extended Results

In Table 6, we provide a more detailed version of Table 3 with standard deviation. Also, in Table 7, we provide additional
results obtained by using Llama-3.1-8B-Instruct (Llama Team, 2024) as source victim LM.

Table 6. The attacker model is fine-tuned and evaluated using Llama-3.2-8B-Instruct as Source victim model. The highest mean
toxicities among sampling-based algorithms are highlighted with Bold. All the reported values are averaged over five independent runs
with distinct seeds. Note that the diversity for the Transfer settings is almost identical to the Source setting.
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Method Toxicity Div. Toxicity

BS (w = 4) 0.93 ± 0.01 0.24 ± 0.00 0.18 ± 0.02 0.52 ± 0.04 0.00 ± 0.00 0.67 ± 0.05 0.00 ± 0.00
BS (w = 8) 0.99 ± 0.00 0.21 ± 0.00 0.37 ± 0.00 0.74 ± 0.03 0.02 ± 0.02 0.91 ± 0.01 0.00 ± 0.00

Sampling 0.59 ± 0.02 0.84 ± 0.00 0.28 ± 0.02 0.50 ± 0.01 0.05 ± 0.00 0.25 ± 0.01 0.08 ± 0.01
Temp. (τ=0.8) 0.67 ± 0.01 0.82 ± 0.00 0.31 ± 0.02 0.52 ± 0.00 0.04 ± 0.00 0.29 ± 0.00 0.07 ± 0.01
Temp. (τ=0.5) 0.79 ± 0.01 0.77 ± 0.00 0.40 ± 0.02 0.58 ± 0.01 0.04 ± 0.00 0.40 ± 0.01 0.04 ± 0.00
top-k (k=10) 0.65 ± 0.02 0.82 ± 0.00 0.31 ± 0.02 0.53 ± 0.01 0.04 ± 0.00 0.25 ± 0.01 0.06 ± 0.01
top-k (k=5) 0.69 ± 0.01 0.79 ± 0.00 0.35 ± 0.01 0.52 ± 0.01 0.04 ± 0.00 0.28 ± 0.01 0.05 ± 0.00
top-p (p=0.8) 0.69 ± 0.01 0.81 ± 0.00 0.32 ± 0.02 0.51 ± 0.01 0.04 ± 0.00 0.30 ± 0.01 0.07 ± 0.00
top-p (p=0.5) 0.78 ± 0.01 0.77 ± 0.00 0.39 ± 0.02 0.56 ± 0.01 0.03 ± 0.00 0.38 ± 0.01 0.04 ± 0.01

NGS (Ours) 0.71 ± 0.01 0.79 ± 0.01 0.45 ± 0.03 0.61 ± 0.01 0.14 ± 0.03 0.59 ± 0.06 0.23 ± 0.05

Table 7. The attacker model is fine-tuned and evaluated using Llama-3.1-8B-Instruct as Source victim model. The highest mean
toxicities among sampling-based algorithms are highlighted with Bold. All the reported values are averaged over five independent runs
with distinct seeds. Note that the diversity for the Transfer settings is almost identical to the Source setting.
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Method Toxicity Div. Toxicity

BS (w = 4) 0.97 ± 0.01 0.22 ± 0.00 0.49 ± 0.00 0.98 ± 0.00 0.71 ± 0.06 0.02 ± 0.00 0.03 ± 0.00
BS (w = 8) 0.71 ± 0.01 0.26 ± 0.00 0.25 ± 0.00 0.65 ± 0.01 0.29 ± 0.07 0.00 ± 0.00 0.01 ± 0.00

Sampling 0.53 ± 0.01 0.84 ± 0.00 0.45 ± 0.01 0.52 ± 0.01 0.18 ± 0.00 0.30 ± 0.01 0.25 ± 0.01
Temp. (τ=0.8) 0.60 ± 0.01 0.81 ± 0.00 0.50 ± 0.01 0.56 ± 0.01 0.23 ± 0.01 0.27 ± 0.01 0.22 ± 0.00
Temp. (τ=0.5) 0.73 ± 0.01 0.66 ± 0.01 0.57 ± 0.01 0.65 ± 0.01 0.38 ± 0.00 0.14 ± 0.01 0.12 ± 0.01
top-k (k=10) 0.59 ± 0.01 0.82 ± 0.00 0.50 ± 0.01 0.55 ± 0.00 0.21 ± 0.01 0.29 ± 0.02 0.23 ± 0.01
top-k (k=5) 0.62 ± 0.01 0.79 ± 0.00 0.53 ± 0.01 0.57 ± 0.00 0.25 ± 0.01 0.26 ± 0.01 0.22 ± 0.01
top-p (p=0.8) 0.61 ± 0.01 0.82 ± 0.00 0.51 ± 0.01 0.57 ± 0.01 0.22 ± 0.01 0.31 ± 0.00 0.24 ± 0.02
top-p (p=0.5) 0.70 ± 0.01 0.75 ± 0.01 0.57 ± 0.00 0.63 ± 0.01 0.32 ± 0.01 0.24 ± 0.01 0.21 ± 0.01

NGS (Ours) 0.65 ± 0.01 0.77 ± 0.02 0.55 ± 0.02 0.59 ± 0.01 0.39 ± 0.01 0.50 ± 0.02 0.51 ± 0.02
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G. Additional experimental results on molecular design

Table 8. Average Top-10 scores with 10K training and ours where we conduct NGS during last 2K evaluations.

Type Score Func. (↑) Fully Training Training (8K)
+ NGS (2K)

Property
Optimization

qed 0.948 ± 0.000 0.948 ± 0.000
jnk3 0.883 ± 0.054 0.891 ± 0.059
drd2 1.000 ± 0.000 1.000 ± 0.000
gsk3b 0.935 ± 0.049 0.958 ± 0.021

Multi-property
Optimization

perindopril mpo 0.616 ± 0.035 0.600 ± 0.017
ranolazine mpo 0.862 ± 0.022 0.854 ± 0.020
sitagliptin mpo 0.568 ± 0.076 0.640 ± 0.061

Structure-based
Optimization

isomers c9h10n2o2pf2cl 0.911 ± 0.030 0.914 ± 0.023
deco hop 0.837 ± 0.135 0.851 ± 0.130
scaffold hop 0.699 ± 0.147 0.697 ± 0.145

Average 0.826 0.835

In this section, we examine the effect of conducting NGS rather than training the policy by fully leveraging the limited
evaluation budgets. The results in Table 8 shows that NGS achieves higher Top-10 scores in overall. Although NGS
discovers new high-reward molecules during search, the policy exploration is still effective. These findings suggest that
NGS can be further enhanced as an alternative GA method by incorporating policy exploration.
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