
Fast Implicit Constrained Optimization of
Non-decomposable Objectives for Deep Networks

Yatong Chen†‡∗, Abhishek Kumar†, Yang Liu‡, Ehsan Amid†
† Google Research, Brain Team

‡Department of Computer Science, UC Santa Cruz
ychen592@ucsc.edu, abhishk@google.com, yangliu@ucsc.edu, eamid@google.com

Abstract

We consider a popular family of constrained optimization problems in machine
learning that involve optimizing a non-decomposable objective while constraining
another. Different from the previous approach that expresses the classifier thresh-
olds as a function of all model parameters, we consider an alternative strategy
where the thresholds are expressed as a function of only a subset of the model
parameters, i.e., the last layer of the neural network. We propose new training
procedures that optimize for the bottom and last layers separately, and solve them
using standard gradient-based methods. Experiments on a benchmark dataset
demonstrate our proposed method achieves performance comparable to the existing
approach while being computationally efficient.

1 Introduction

Many machine learning applications involve optimizing for non-decomposable metrics, such as
false-positive rate (FPR) or precision, while constraining another, such as false-negative rate (FNR)
or recall. For these metrics, the loss on a set of data points cannot be expressed as the sum of
losses of individual data points (e.g., FPR involves a ratio that depends on the total false-positive
and true-negative classified examples). Such problems arise in several applications. For example,
many fairness objectives can be expressed as rate constraints, including the popular equal opportunity
and equalized odds fairness criteria [1, 4, 12, 13]. The typical baseline for solving these problems
is first to train the model using regular cross-entropy (CE) loss, followed by tuning the thresholds
imposed on the model predictions to classify between positive versus negative classes while the
constraint is satisfied. However, the post hoc approach often yields sub-optimal results as the model
parameters are trained on a different objective than the evaluation metric. To improve upon the
baseline approach, Implicit Constrained Optimization (ICO) [6] reformulates the prediction threshold
as a function of the model parameters and transforms the constrained optimization problem into an
unconstrained one to jointly optimize for the model parameters and the thresholds. ICO solves the
problem by decomposing the gradient into a sum of disjoint terms, which consist of the gradient of
the loss function and the constraint with respect to the model parameters and the thresholds. Such a
decomposition is computationally more expensive than standard training since it requires additional
backward passes to compute the gradients with respect to each component. In particular, ICO becomes
more expensive when there are multiple constraints, e.g., when optimizing for the area under the ROC
Curve (AUC). To reduce the computational cost, ICO resorts to approximations, e.g., intermittently
updating the thresholds – Section 3.3 in [6]. Thus, it is desirable to close this computation gap while
retaining the simplicity of the method as well as potentially improved performance on the metrics.

∗Work done as a Student Researcher at Google Brain.

Has it Trained Yet? Workshop at the Conference on Neural Information Processing Systems (NeurIPS 2022).

Motivation of This Work: Constrained Optimization of Only the Last Layer Standard neural
network architectures can be decoupled into a feature extractor sub-network at the bottom, followed
by a single fully-connected classifier layer to predict the class probabilities at the top (see Figure 1).
Several recent studies have shown that the feature extractor network can be trained reasonably well
even when the training data is noisy [7] or imbalanced [10, 5]. These studies show the significance of
retraining the last layer weights on a clean or balanced validation set in obtaining good performance
based on the feature representation extracted by the bottom sub-network. While it is natural to
impose the constraint on all the model parameters in our problem, the results from the earlier work
raise the question of whether constraining the last layer weights is sufficient for obtaining desired
performance [6].

To this end, we propose to make the prediction thresholds a function of only the last layer parameters.
This simplification leaves the parameters of the earlier layers free to be optimized with any surrogate
loss in an unconstrained manner. In the meantime, the constraint is imposed on the last layer
parameters. The major benefit of our approach is avoiding additional backward passes to calculate
the gradient of the constraint(s) with respect to the weights of the bottom sub-network.

Confidential + Proprietary

Neural Network’s
Bottom Layers
1 Through L-1

input

Feature Representation Learning

output Neural
Network’s
Last layer
(Dense)

Optimization

Figure 1: Demonstration of the bottom sub-network with weights θ9L and the top (i.e., last) layer
weights θL of a typical neural network.

2 Problem Formulation

Basic Setup In this paper, we consider a binary classification setting with feature space X and
binary label {0, 1}. Our goal is to learn a binary threshold scoring rule sθ|λ : X → {0, 1}m
parameterized by model parameter θ ∈ Rp and threshold values λ ∈ Rm, such that for any given
input x ∈ X , [sθ|λ(x)]i = 1(sθ(x) ≥ λi) where sθ(x) : X → R is a scoring model parameterized
by the model parameters θ ∈ Rp and 1(·) is the indicator function.

We assume the scoring model sθ is an L-layer neural network whose parameters can be divided into
two disjoint parts θ = [θ9L, θL] ∈ Rp: the parameters of the last dense layer θL ∈ RpL , and the
weights from the rest of the network, which we will also refer to as the bottom layers: θ9L ∈ Rp9L ,
where p = p9L + pL. The bottom layers transform the input x into a feature representation φ(x). The
last dense layer then sets sθ(x) = θ>L φ(x). In this work, we explore ideas involving faster training of
deep networks using non-decomposable objectives by applying different strategies for training the
last layer weights θL and the rest of the weights θ9L.

Objective Function In this paper, we consider a general form of a constrained optimization problem
with m constraints:

min
θ∈Rp

f(θ, λ) s.t. g(θ, λ) = 0 , (1)

where f : Rp × Rm → R and g : Rp × Rm → Rm are non-decomposable functions that cannot
be expressed as the sum of losses on individual data points, θ ∈ Rp are the model parameters, and
λ ∈ Rm are the thresholds and chosen such that the constraint is satisfied. Similar to [6], throughout
the training process, we assume that θ stay in the feasible region, namely ∀θ, ∃λ s.t. g(θ, λ) = 0.

Here, we provide one example that satisfies this general constraint optimization form, which is also
going to be the main task of our experimental demonstration in Section 4:
Example 1 (Minimizing FNR subject to a fixed FPR). Consider a setting where we want to minimize
the FNR at the threshold λ ∈ R at which the FPR is a fixed value β ∈ [0, 1]:

f(θ, λ) = FNR(sθ|λ) =
FN(sθ|λ)

TN(sθ|λ) + FP(sθ|λ)
, g(θ, λ) = FPR(sθ|λ) =

FP(sθ|λ)

TP(sθ|λ) + FN(sθ|λ)
− β ,

2

where FN(sθ|λ),TP(sθ|λ), and TN(sθ|λ) denote the true-positive, false-positive, and false-negative
values, respectively, for the threshold scoring rule.

Surrogate Losses It is possible that the optimization objectives and constraints described above
are non-differentiable. To make the training viable using gradient descent-based methods, we replace
f and g with their corresponding smooth surrogate losses, f̃ and g̃, and relax Eq. (1) into:2

min
θ∈Rp

f̃(θ, λ) s.t. g̃(θ, λ) = 0 . (2)

3 Methods

We first briefly discuss the previous methods and introduce our efficient alternative.

3.1 Previous Approach: Implicit Constraint Optimization (ICO) on All Weights

Different from traditional Lagrangian based methods [3], ICO [6] avoids explicitly solving the
constrained problem in Eq. (2) by formulating an equivalent unconstrained problem in which the
thresholds λ are expressed as an implicit function of the model parameters θ (within a neighborhood
around θ). Specifically, the implicit function theorem [11] implies: suppose (θ0, λ0) satisfies the
constraints, namely g̃(θ0, λ0) = 0. Then, we can express the thresholds as λ0 = h̃(θ0) in the
neighborhood of θ0 where h̃ is some implicit function that depends on problem setup and the local
structure of (θ0, λ0). See the detailed description of the theorem (Theorem 1) in the appendix.

The benefit of using Theorem 1 is that we can change the constrained optimization problem to be an
unconstrained optimization problem with only one free variable θ:

min
θ
f̃(θ, λ) s.t. g̃(θ, λ) = 0

Theorem 1
=⇒ min

θ
f̃(θ, h̃(θ)) . (3)

A differentiable function h̃(θ) that provides us g̃(θ, h̃(θ)) = 0 for a particular threshold that we care
about might not always exist. However, [6] identifies some conditions under which the resulting
Eq. (3) is convex in θ.3 We also provide detailed derivations in the appendix.

3.2 Proposed Approach: Constraining the Last Layer Weights θL only

In this work, we propose making the thresholds λ a function of only the last layer’s weights θL, and
applying different training procedures for the bottom layer weights θ9L and last layer weights θL
separately.

Implicit function theorem on θL First, we propose to make the thresholds λ in the constraint
g̃(θ, λ) = 0 a function of only θL, which gives us the following modified form of the implicit
function theorem (see the appendix). The modified theorem implies that given φ(x), the classifier
weights θL control the value of the thresholds λ in a feasible region.

New objective form: decoupled training for θ9L and θL We propose a new optimization proce-
dure for training a neural network that optimizes its bottom layer weights θ9L and last layer weights
θL separately using different training objectives:

min
θ9L

r̃(θ9L|θL, λ) and min
θL

˜̀(θL, λ|θ9L) s.t. g̃(θL, λ|θ9L) = 0 . (4)

where r̃ : Rp9L → R and ˜̀ : RpL × Rm → R are differential objective function for θ9L and θL,
respectively. For the objective function r̃, the notation (θ9L|θL, λ) means we optimize over θ9L while
fixing θL and λ. The notation holds similarly for ˜̀ and g̃. Using this convention, we can write
f̃(θ, λ) = r̃(θ9L|θL, λ) + ˜̀(θL, λ|θ9L).

We assume the conditions in Theorem 2 hold, which means that we can re-write the thresholds λ as a
function of the last layer weights θL (i.e., λ = h̃L(θL)). The specification of the function form h̃L(·)
holds with respect to the modified setting.

2We provide an example of a surrogate loss for our particular setting involving f = FNR in the appendix.
3See Proposition 1 in Section 3 in [6].

3

Table 1: Minimizing false-negative rate (FNR) at a given false-positive rate (FPR) for celebA. The mean
FNR (in %) are reported over five random trails for different methods including (CE / TFCO [2, 9] / ICO[6]) / CE
+ Constrained FNR (Method 1) / FPR Regularizer on θ9L + Constrained FNR on θL (Method 2) / FPR Regularizer
on θ (Ablation), respectively. Among the three proposed methods, Method 2 outperforms the other two. Bold
indicates the best performance among the three newly proposed methods. Lower values are better.

FPR High-cheekbones Smiling Wearing-lipstick

1% (53.5/49.0/46.9) 51.3/46.4/48.2 (37.4/35.9/33.7) 37.5/32.7/37.1 (44.0/42.6/37.5) 42.40/38.8/40.5
2% (44.8/40.9/39.8) 45.1/40.0/41.8 (29.4/27.8/26.1) 30.2/26.5/27.5 (32.7/30.4/26.7) 31.74/29.7/28.3
5% (32.9/30.1/28.5) 31.9/28.9/29.4 (18.7/17.0/16.9) 18.9/16.4/16.6 (16.3/14.9/13.1) 15.4/15.4/15.1
10% (22.9/20.4/19.7) 22.8/20.2/20.2 (11.7/10.7/10.2) 12.1/10.7/11.0 (6.6/5.9/4.7) 7.0/5.3/5.5

The main focus of this work is to explore different training objectives and training strategies that take
the form of Eq. (4) to speed up the training procedure and get better prediction outcomes.

• Method 1: minimizing CE for θ9L and constrained FNR for θL Our first proposed method
is to use cross-entropy (CE) loss as the objective function for the bottom network θ9L, and use
constrained false-negative rate (FNR) only for updating the gradient for θL. This corresponds to
specifying r̃, ˜̀, and g̃ in Eq. (4) as follows:4

r̃ = CE, ˜̀= F̃NR, g̃ = F̃PR− β ,

where β ∈ [0, 1] is the target FPR rate for the constraint.

•Method 2: minimizing FNR with regularization Our second proposed method involves min-
imizing FNR for the whole network while imposing FPR constraints on the last layer weight. In
addition, we impose a constraint regularizer on θ9L. This corresponds to specify r̃, ˜̀, and g̃ in Eq. (4)
as follows:

r̃ = F̃NR + η |F̃PR− β| , ˜̀= F̃NR , g̃ = F̃PR− β , (5)

where β ∈ [0, 1] is the target FPR rate for the constraint and η > 0 balances between minimizing
the FNR loss and the regularization term. The intuition behind adding this regularization term is to
avoid trivially minimizing FNR by always predicting one at the output for any given input. Also,
the regularized objective form in Eq. (5) resembles the Lagrangian method proposed in [3, 2, 9] for
solving constrained optimization problems.

• Ablation: regularization on all layers’ weights For comparison, we also try imposing the
constraint regularizer on all weights. This is equivalent of modifying ˜̀, the objective function for θL
in Eq. (5) by adding a similar regularization term as in r̃:

˜̀= F̃NR + η |F̃PR− β| (6)

Interestingly, we observe that applying ICO on the last layer weights improves the performance over
using the same regularized loss for training all weights. We provide a detailed comparison in Eq. (4)
(see Table 1).

4 Experiments

We evaluate our approach on an image classification task. In particular, we use the celebA dataset [8].
We consider the task of minimizing the false-negative rate (FNR) at a given false-positive rate (FPR)
of β. Please refer to the appendix for more details.

Experimental Results We present our experimental results in Table 1. Overall our proposed
method 2 (which we refer to as “FPR Regularizer on θL + Constrained FNR on θL”) achieves
comparable performance compared to ICO, and we observe a consistent improvement of both our
proposed Method 2 and Ablation (which we refer to as “FPR Regularizer on θ”) compared to the other

4When it is clear from the content, we use ˜̀ to denote ˜̀(θ9L|θL, λ) to ease the notation. Same applies for r̃,
g̃, F̃PR, and F̃NR.

4

two baseline methods (CE and TFCO [2, 9]). Our method involves training θL and θ9L separately
while fixing the other parameters and making the thresholds as a function of only θL. Thus, our
approach is significantly cheaper compared to the baseline method ICO , which trains all parameters
together, making the thresholds a function of all the parameters. This observation demonstrates that
our proposed method can successfully preserve performance while reducing the cost of training
compared to previous methods. Interestingly, among the two proposed methods, imposing ICO
on θL while using FPR-regularizer on θ9L leads to better performance compared to imposing FPR-
regularizer on all weights θ. This supports our hypothesis that θ9L and θL take up different roles
during training, and the last layer weights θL play a more significant role in overall performance.

5 Conclusion and Future Work

We propose new training techniques for optimizing a popular constrained optimization problem that
involves non-decomposable rate metrics. Compared to the previous approach, where the classifier
thresholds are expressed as a function of all model parameters, we consider an alternative technique
where the thresholds are expressed as a function of only the last layer weights of a neural network.
Our empirical results show that among all proposed methods, adding a regularizer on the bottom
layers while solving the constrained optimization problem for the top layer achieves a comparable
performance to the previous approach, supporting our hypothesis on the important role of last layer
training in deep neural networks.

References

[1] Yatong Chen, Reilly Raab, Jialu Wang, and Yang Liu. Fairness transferability subject to bounded
distribution shift. Advances in Neural Information Processing Systems, 2022.

[2] Andrew Cotter, Heinrich Jiang, and Karthik Sridharan. Two-player games for efficient non-
convex constrained optimization. In Algorithmic Learning Theory. PMLR, 2019.

[3] Elad Eban, Mariano Schain, Alan Mackey, Ariel Gordon, Ryan Rifkin, and Gal Elidan. Scalable
learning of non-decomposable objectives. In Artificial intelligence and statistics. PMLR, 2017.

[4] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
Advances in neural information processing systems, 2016.

[5] Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is
sufficient for robustness to spurious correlations. arXiv preprint arXiv:2204.02937, 2022.

[6] Abhishek Kumar, Harikrishna Narasimhan, and Andrew Cotter. Implicit rate-constrained
optimization of non-decomposable objectives. International Conference on Machine Learning,
2021.

[7] Jingling Li, Mozhi Zhang, Keyulu Xu, John P Dickerson, and Jimmy Ba. Noisy labels can
induce good representations. arXiv preprint arXiv:2012.12896, 2020.

[8] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), 2015.

[9] Harikrishna Narasimhan, Andrew Cotter, and Maya Gupta. Optimizing generalized rate metrics
with three players. Advances in Neural Information Processing Systems, 32, 2019.

[10] Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. Domain-adjusted regression or:
ERM may already learn features sufficient for out-of-distribution generalization. arXiv preprint
arXiv:2202.06856, 2022.

[11] Loring W Tu. Manifolds. In An Introduction to Manifolds. Springer, 2011.
[12] Jimmy Wu, Yatong Chen, and Yang Liu. Metric-fair classifier derandomization. In Proceedings

of the 39th International Conference on Machine Learning. PMLR, 2022.
[13] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P Gummadi.

Fairness constraints: Mechanisms for fair classification. In Artificial intelligence and statistics.
PMLR, 2017.

5

Appendix

An Example of Surrogate Loss for FNR For our particular example involving minimizing
f = FNR = FN

total positives , recall that FN(sθ|λ) =
∑
i:yi=1 1(pi(θ) ≤ λ) where pi is the predicted

probability for the i-th positive example. We replace the indicator function with its smooth surrogate
and get F̃N(sθ|λ) =

∑
i:yi=1 στ (−(pi − λ)), where στ (u) = 1/(1 + exp(−τ u)) denotes a temperature

scaled sigmoid function. This gives us f̃ = F̃N
total positives as the surrogate loss.

Implicit Function Theorem on θ Here, we provide the statement for the implicit function theorem
and its modification for the last layer weights:
Theorem 1 (Implicit Function Theorem on θ [11], informal). For any (θ0, λ0) ∈ U ⊆ Rp ×
Rm pair that satisfies g̃(θ0, λ0) = 0, if the determinant of the Jacobian matrix is nonzero, i.e.,
det[∂g̃

i

∂θj (θ0, λ0)] 6= 0, then there exists a neighborhood Θ×Λ of (θ0, λ0) in U and a unique function
h̃ : Θ⇒ Λ:

g̃(θ, λ) = 0⇔ λ = h̃(θ) . (7)

Theorem 2 (Implicit Function Theorem on θL). For any (θ0, λ0) ∈ U ⊆ Rp×Rm pair that satisfies
g̃(θ0, λ0) = 0, if the determinant of the Jacobian matrix w.r.t θL is nonzero, i.e. det[∂g̃

i

∂θLj (θ0, λ0)] 6= 0,

then there exists a neighborhood Θ×Λ of (θ0, λ0) in U and a unique function h̃L : Θ⇒ Λ such that

g̃(θ, λ) = 0⇔ λ = h̃L(θL) .

Gradient Update Rule for Eq. (3) To compute a local derivative for f̃(θ, h̃(θ)) within the neigh-
borhood of θ0 using Theorem 1, we have the following update rule:

∇θf̃(θ, h̃(θ)) = ∇θf̃(θ, λ) +
∂f̃(θ, λ)

∂λ
∇θh̃(θ) . (8)

We will further need the derivative of the implicit function h̃ w.r.t. θ, i.e.,∇θh̃(θ). Since g̃(θ, h̃(θ)) =
0 in the neighborhood of θ0, we have:

∇θg̃(θ, λ) +
∂g̃(θ, λ)

∂λ
∇θh̃(θ) = 0⇒ ∇θh̃(θ) = −∇θg̃(θ, λ)

∂g̃(θ,λ)
∂λ

. (9)

Plugging Eq. (9) back to Eq. (8), we can get the final gradient for the model parameter θ. See section
3.3 of [6] for a more detailed derivation for the update rule of θ and λ.

Gradient Update Rule for Eq. (4) Furthermore, we can break the gradient of Eq. (4) into two
parts: the gradient w.r.t θ9L and the gradient w.r.t θL. We thus obtain the following gradients:

∂θ9L f̃(θ, λ) = ∇θ9L r̃(θ9L|θL, λ) and ∂θL f̃(θ, λ) = ∇θL ˜̀(θL, λ|θ9L) +
∂ ˜̀

∂λ
∇θL h̃L(θL) . (10)

Experimental Details Following [6], we choose three binary attributes (i.e., High-cheekbones,
Smiling, and Wearing-lipsticks) as target attributes for our experiments and train a binary classifier
for each attribute. Similar to [6], we use a 6-layer neural network with 5 convolutional layers with
128, 256, 512, 512 filters, respectively, and we use ReLU as our activation functions and apply batch
normalization layers in the networks. We conduct 5 random trials for each experiment and report the
average values of the metric.

6

	Introduction
	Problem Formulation
	Methods
	Previous Approach: Implicit Constraint Optimization (ICO) on All Weights
	Proposed Approach: Constraining the Last Layer Weights L only

	Experiments
	Conclusion and Future Work

