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ABSTRACT

Human language production requires transforming abstract communicative intent
into fluent speech, yet the algorithmic nature of this transformation remains less
understood. Most studies aligning large language models (LLMs) with brain ac-
tivity have focused on autoregressive LLMs (aLLMs), which generate text left-to-
right by committing to the next token. While effective at predicting neural and
behavioral signatures of comprehension, this paradigm assumes incremental gen-
eration. In contrast, diffusion LLMs (dLLMs) construct sentences by iteratively
denoising global representations. Despite their distinct generative dynamics,
dLLMs now rival aLLMs on standard NLP benchmarks, prompting the question
of whether the brain likewise engages in global, iterative refinement—especially
during pre-articulatory planning when sentence structure remains flexible. To test
this hypothesis, we correlated intermediate denoising steps of a dLLM with elec-
trocorticography (ECoG) activity during naturalistic speech production. dLLM
representations explained significant neural variance from pre- to post-production,
with especially strong encoding in middle/inferior temporal and motor-related re-
gions. These results support iterative refinement as a plausible neural mechanism
of human speech planning.

1 INTRODUCTION

Human language processing—from comprehension to internal formulation to overt production—is a
window into the mind’s generative machinery. Most large language models (LLMs) used in model-
brain alignment studies operate via a left-to-right, next-token prediction paradigm (Caucheteux et al.,
2023} |Gao et al.} 2025} |Goldstein et al.l 2022} 2025} |Schrimpf et al., 2021 [Toneva & Wehbel 2019
Antonello et al.l 2024; Jain & Huth, [2018)). These autoregressive architectures have proven sur-
prisingly effective at capturing aspects of human brain activity during naturalistic language tasks,
especially when scaled up (Gao et al.| 2025 |Antonello et al.,[2024; Hong et al.,[2024). However, they
instantiate one specific algorithmic hypothesis about how linguistic output is constructed: sequential
conditional commitment to the next word. Emerging diffusion LLMs (dLLMs), such as LLaDA (Nie
et al.,|2025) and Dream (Ye et al.| |2025), propose a qualitatively different generative mechanism.
Instead of predicting the next token, they begin from a noisy, underspecified representation and iter-
atively denoise toward a coherent sentence. Despite their contrasting dynamics, large-scale dLLMs
now rival aLLMs such as LLaMA3 (Grattafiori et al.| 2024)) and Qwen2.5 (Yang et al.l 2024) across
arange of NLP benchmarks. This computational plurality challenges the assumption that next-word
prediction is the sole viable substrate for language modeling.

The question arises: Could the brain’s language production resemble an iterative refinement more
than a left-to-right sequence? In this view, speakers hold a graded, probabilistic proto-utterance that
is progressively refined before speech onset, with lexical, syntactic, and discourse constraints grad-
ually resolving into a coherent plan for articulation. Here, we test the cognitive plausibility of this
hypothesis by correlating intermediate embeddings of dLLMs (LLaDA and Dream) across denois-
ing steps with electrocorticography (ECoG) activity during naturalistic speech production. To the
best of our knowledge, no published study has yet reported direct comparisons of a dLLM’s internal
representations with neural recordings during language tasks — an important open research ques-
tion. We find that (1) earlier diffusion steps preferentially generate high-frequency content words,
diverging from the sequential patterns in autoregressive models; (2) dLLM embeddings evolve in
parallel with neural dynamics in temporal and motor regions; and (3) earlier steps align with pre-
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articulatory activity, while later steps align with motor execution and post-articulatory processing.
Together, these results highlight diffusion models as a cognitively plausible framework for capturing
the dynamics of human speech production.

2 RELATED WORK

Diffusion LLM. Early diffusion models such as Diffusion-LM (Li et al.| 2022)) and D3PM (Austin
et al.| 2021)) were relatively small, but they established the foundation for today’s billion-parameter
models such as LLaDA-8B (Nie et al., |2025)) and Dream-7B (Ye et al.,|2025). LLaDA adopts the
core architecture of LLaMA3’s transformer-based LLM. It uses the same tokenizer and Transformer
layer stack as LLaMA3-8B, enabling direct performance comparisons. Crucially, LLaDA removes
the causal (left-to-right) attention mask used in LLaMA models, allowing bidirectional self-attention
over the sequence. A special masking token (<MASK>) is introduced into the vocabulary to repre-
sent ’noisy” or corrupted tokens during diffusion-style generation. Dream’s architecture is directly
derived from Qwen2.5-7B and was initialized with Qwen2.5-7B’s pretrained weights to bootstrap
its knowledge. The key architectural modification for Dream was analogous to LLaDA’s: switching
from Qwen’s causal masking to full bidirectional self-attention.

Both LLaDA and Dream depart from conventional autoregressive training in that they do not use
next-word prediction on a prefix. Instead of producing one token at a time, they predict many tokens
at once given a partially masked context. This means the loss is computed over multiple token
positions simultaneously (all masked tokens) rather than only the next position. The training data
for dLLMs also must include very high masking ratios (up to 100% masked) so that the model learns
to generate whole sequences from nothing. Another important difference is the use of time-step
conditioning in dLLMs: the model is aware of a ”’step” or mask level during training, which alLLMs
do not require. This was implemented by adding an encoding of the mask fraction or diffusion
step index into the model’s input or hidden layers. The outcome is that dLLMs learn a sequence of
denoising steps rather than a single-step distribution.

Both LLaDA and Dream have demonstrated that dLLMs can match or even surpass aLLMs on many
language tasks. Industry efforts, such as Mercury (Labs et al., 2025) and Gemini Diffusion (Deep-
mind, 2024)) report generation speeds of thousands of tokens per second using optimized parallel
sampling, demonstrating that dLLMs are becoming practical alternatives rather than mere academic
curiosities.

Psycholinguistic models of speech production. Psycholinguistic models of speech production
(Levelt, |1989; |1999; |Garrett, |1975; [1980; |Dell, |1986; |1988)) have long proposed that speaking pro-
ceeds through a hierarchy of stages. For example, Levelt’s (1989;|1999) production model posits that
speech unfolds through a serial process of conceptualizing a message, formulating it into linguistic
form (lemmas, syntax, phonology), articulating it via motor commands, and monitoring output to
ensure accuracy. Dell’s (1986;|1988) interactive model proposes that speech production arises from
spreading activation across semantic, lexical, and phonological levels, allowing information to cas-
cade bidirectionally and explaining speech errors through simultaneous competition and interaction
between representations.

Neuroimaging evidence complements these models by revealing multiple hierarchical levels in the
brain’s speech production network. Classical lesion studies established Broca’s area as critical for
articulation (Brocal |1861)), and more recent work has shown that it orchestrates an orderly sequence
of linguistic operations. Intracranial recordings in Broca’s area, for instance, reveal a temporal
cascade spanning word selection, grammatical encoding, and phonological encoding (Sahin et al.,
2009). Similarly, motor cortex recordings have demonstrated structured maps and temporal codes
for phonemes, reflecting the fine-grained organization of articulatory gestures (Bouchard et al.,
2013).

Model-brain alignment during language use. In recent years, numerous studies have reported par-
allels between LLMs and human brain activity during language processing (Antonello et al., [2024;
Caucheteux et al.l 2023} |Gao et al. 2025; [Hong et al., |2024} Jain & Huth, 2018; |Goldstein et al.}
2022; 20255 [Schrimpf et al., [2021}; Toneva & Wehbe, [2019). For instance, GPT-2’s word probabili-
ties explained unique variance in ECoG responses in language areas, suggesting that both the brain
and LLMs rely on predictive representations (Goldstein et al.,[2022). Such findings support the idea
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that the simple objective of next-word prediction captures important aspects of the brain’s compu-
tation. More recent LLMs such as LLaMA (Touvron et al., [2023) and OPT (Zhang et al., [2022)
have been shown to align more closely with brain activity during language processing, exhibiting a
scaling law whereby larger models yield improved brain predictivity (Antonello et al.,|2024; Hong
et al., [2024; |Gao et al.| [2025).

Yet the human brain goes beyond local, word-by-word prediction. |Caucheteux et al.[(2023) demon-
strated that extending language models with multi-timescale predictions improved their alignment
with fMRI data: models trained to anticipate not only the next word but also upcoming words or
sentence-level features better matched neural activity, particularly in higher-order frontal and pari-
etal regions that integrate broader context. This suggests that alignment improves when models
adopt a predictive coding—like architecture, anticipating information further into the future and at
multiple levels of abstraction. dLLMs provide a natural test of this idea: by iteratively refining an
entire sequence, they inherently generate predictions with a broader temporal and structural horizon
than next-word generators. This iterative, global approach might be a better parallel for how we plan
utterances, a process hard to emulate with purely left-to-right generation.

3 METHODS

3.1 EXTRACTING ECOG DATA DURING SPEECH PRODUCTION

Our ECoG data were drawn from a previously published study (Goldstein et al., |2025) compris-
ing continuous 24/7 recordings from four patients (see Table[2]in Appendix [A|for a comprehensive
description of the patient demographics and clinical characteristics) who engaged in spontaneous
conversations with family, friends, doctors, and hospital staff during their week-long stay in the
epilepsy monitoring unit. Across patients, neural signals were collected from 675 intracranial elec-
trodes. We selected 466 electrodes located in six left-hemisphere regions of interest (ROIs) defined
by the "THCPMMP1 _combined” atlas (Glasser et al.,|2016): superior temporal gyrus (STG: 100 elec-
trodes), middle and inferior temporal lobe (MTL/ITL: 89 electrodes), inferior frontal gyrus (IFG:
84 electrodes), dorsolateral prefrontal cortex (DLPFC: 55 electrodes), motor cortex (MC: 97 elec-
trodes) and angular gyrus / temporo-parietal-occipital junction (AG/TPOIJ: 41 electrodes). These
regions have been shown to play critical roles in language use (Malik-Moraleda et al., 2022)). All
conversations were transcribed, and each word was time-aligned with the concurrent ECoG signals.
After preprocessing (see Appendix |C| for details), we divided the dataset into comprehension (lis-
tening) and production (speaking) periods, yielding 50 hours (289,971 words) of comprehension
data and 50 hours (230,238 words) of production data in naturalistic settings. For the present study,
we focused on production and analyzed 7,229 utterances between 5-25 words in length, excluding
short or long productions (see Figure 5]in Appendix [B]for summary statistics of the sentence length
distribution). To accommodate variable utterance lengths, we sampled ECoG activity at five evenly
spaced points within each utterance, together with five points from the two seconds preceding and
following production, yielding a 15-timepoint ECoG time course for each utterance (see Figure [I).
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Figure 1: Extracting ECoG data during speech production. ECoG activity at five evenly spaced
points within each utterance were sampled, together with five evenly-spaced points from the two
seconds preceding and following production, yielding a 15-timepoint ECoG time course for each
utterance.
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3.2 EXTRACTING SENTENCE EMBEDDINGS ACROSS STEPS

We selected LLaDA-8B (Nie et al.| 2025) and Dream-7B (Ye et al.| 2025) to test their alignment

with brain activity during speech production. We also included their autoregressive counterparts
LLaMA3-8B (Grattafiori et al.} 2024) and Qwen2.5-7B for comparison. We ex-
tracted sentence embeddings from the 20th layer of the four LLMs across five progressive generation
steps. LLaMA3-8B has 32 layers and Qwen2.5-7B has 28 layers in total. The 20th layer was chosen
because prior work indicates that representations at approximately two-thirds of a model’s depth
show the strongest correspondence with neural activity during language processing
2022). The five-step sampling captured how sentence representations evolve under the dis-
tinct generative dynamics of diffusion and autoregressive models. Specifically, for aLLMs (LLaMA,
Qwen), we simulated incremental left-to-right generation. Five progressive stages were defined by
including the first 20%, 40%, 60%, 80%, and 100% of words in a sentence, providing a linear ac-
cumulation of evidence toward the complete sentence (see Figure [2h, upper panel). For the dLLMs
(Dream, LLaDA), we implemented an iterative confidence-driven procedure to establish the order in
which tokens of a sentence are revealed. This approach differs fundamentally from the left-to-right
accumulation of aLLMs: instead of fixing a sequential order a priori, the model dynamically selects
the most predictable positions based on context at each iteration (see Figure 2h). We outline the
algorithm used to extract sentence embeddings across generative steps from dLLMs:

a Extract sentence embeddings at 5 generation steps from aLLM and dLLMs
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Figure 2: a, Extracting sentence embeddings at 5 generation steps in diffusion and autoregressive
LLMs. b, Aligning aLLLM and dLLM sentence embeddings to ECoG activity during speech produc-
tion using ridge regression.
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Input preparation. Each target sentence (the production part) was embedded within a conver-
sational prompt (e.g., ”In a casual conversation, you heard ’comprehension’ and you responded
’production’”). The comprehension field was populated with the preceding utterance from another
speaker (see Appendix [D]for examples). Model forward passes were then executed, and hidden rep-
resentations from the 20th layer were extracted for the target tokens in the production portion only.
To initialize the diffusion process, all target tokens were replaced with a designated mask symbol
([eMASK] for LLaDA and j|mask|;) yielding a fully masked response sequence appended to the
prompt.

Initial position selection. The fully masked sequence was passed through the model. For every
masked position, we computed the softmax probability of the correct target token. The position with
the highest confidence score was selected as the first revealed token. This ensured that the diffusion
process started from the location where the model was most certain of the ground-truth content given
only contextual cues.

Iterative revelation. Following this initialization, the model iteratively revealed one additional
token per step. At each iteration, previously revealed tokens were fixed in place, while unrevealed
positions remained masked. A forward pass generated logits for all masked positions. For each
position, the probability assigned to its correct token was extracted. The position with the highest
confidence was then revealed and added to the growing set of fixed tokens. Thus, each diffusion
model sentence embedding at Step k represents a state where the model has confidently placed k
out of n words in their positions, while the remaining words are still masked. This greedy loop
continued until all tokens in the target sentence had been revealed.

Order recording. The full revelation sequence was stored as an ordered list of positions, where each
index indicated the step at which a token was revealed. In practice, this list was aligned to the original
tokenization, such that each word could be assigned to the earliest step among its constituent tokens.
This produced a word-level revelation trajectory reflecting the model’s progressive reconstruction
dynamics. Based on the diffusion sequence, each sentence was divided into five steps—20%, 40%,
60%, 80%, and 100% of words (see Figure @h, lower panel).

Greedy confidence principle. The algorithm implements a greedy search strategy: at each step, the
most confident masked position is revealed, with no backtracking. Although not globally optimal,
this procedure is computationally efficient and reflects a psychologically plausible mechanism of
iterative refinement under uncertainty. The algorithm for token revelation in dLLMs is summarized
below:

Algorithm 1 Greedy confidence-based token revelation in dLLMs

Require: Model M, Tokenizer T', Context ¢, Target s, Mask token id m
Ensure: Original tokens, Revelation order, Step indices

: Construct prompt

target_ids < T.encode(s)

L « length(target_ids)

current_resp + [m]*

Run M on prompt + current_resp

Compute con f[p] = softmax(logits[p])[target_ids[p]] for all p
best_pos < arg max, con f[p]

Reveal best_pos; update state and record order

while |revealed| < L do

10: Run M on prompt + current_resp

11: for each p not in revealed do

12: conf[p] + softmax(logits[p])[target_ids[p]]

13: end for

14: best_pos <+ arg max con f[p]

15: Reveal best_pos; update state and record order

16: end while

17: return original tokens, revelation order, step indices

A U S

9

Sentence embeddings extraction After determining the revelation order of words in dLLMs, we
computed sentence embeddings for each of the five steps by averaging token-level states at that
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step, yielding a single vector per step (dimension 3,584 for Dream and Qwen, 4,096 for LLaDA and
LLaMA). The resulting arrays were stored in (n sentences) X (5 steps) x (embedding dimension).

3.3 ALIGNING SENTENCE EMBEDDINGS WITH ECOG ACTIVITY

We modeled neural responses from multiple embedding sources using a banded ridge
(multiple-kernel) regression (Dupré la Tour et al| [2022), implemented with Himalaya’s
MultipleKernelRidgeCV (see Figure [2b). Each embedding model (Dream, LLaDA, Qwen,
LLaMA) was treated as a separate kernel with its own regularization parameter, enabling joint inte-
gration of embedding spaces while adaptively weighting their contributions.

Neural responses y were predicted as y = ZZ K,w;, where K; = XiXiT and w; are kernel
weights. The regression minimized ||y — >, K;w;||? + >, a;w; K;w;, with independent ridge
penalties «; per kernel. We used the precomputed kernel option with random search over
a; € [10°,10%°], optimizing log-weights §; = —loga; via cross-validation. Data were split
90%/10% into training and testing sets in temporal order. Per-kernel predictions y; were obtained
using predict (split=True), and Pearson correlations with observed responses were com-
puted as model-specific scores. This was repeated for each embedding step (1-5) and timepoint,
producing a tensor of size (5 x 15 x 4 models).

Statistical significance was assessed with non-parametric permutation tests. Correlation scores were
aggregated across all electrodes, with LLaDA+Dream averaged as diffusion and LLaMA+Qwen
as autoregressive. Null distributions were generated from 1000 random permutations across 50,625
comparisons (5 steps X nelectrodes x 15 timepoints), and p-values were computed as the proportion
of permuted values exceeding the observed score.

3.4 ANALYZING WORD-LEVEL FEATURES ACROSS DIFFERENT GENERATION STEPS

Visualizing embeddings with PCA. We applied principal component analysis (PCA) to layer-20
embeddings from dLLMs and alLLMs to visualize how sentence representations evolve across five
steps. For each subject, embeddings of shape (n sentences x 5 steps x dimension) were concate-
nated and reshaped so each sentence—step pair was treated as a data point. PCA reduced dimen-
sionality to three components, performed separately for diffusion and autoregressive LLMs, with
explained variance averaged across models.

Measuring diffusion-autoregressive distances. Representational differences were quantified
using Jensen—Shannon (JS) divergence between 5-step embeddings from LLaMA vs. LLaDA
and Qwen vs. Dream. At each step, sentence-level JS distances were computed for paired
autoregressive-diffusion LLMs and averaged across the two pairs.

Word frequency across steps. Log word frequencies for words at each step were retrieved from the
Google Books N-gram corpus (Googlel [2010) for both model families and compared across steps
using paired ¢-tests with FDR correction for multiple comparisons.

POS distributions across steps. Part-of-speech (POS) tags obtained with spaCy were grouped
into four categories: NOUN (including PROPN, PRON), VERB (including AUX), ADJ/ADV, and
FUNC (all remaining tags). For each generation step, tag proportions were computed relative to the
sentence total, averaged across Dream and LLaDA, and compared against autoregressive distribu-
tions using paired ¢-tests with FDR correction for multiple comparisons.

4 RESULTS

4.1 WORD-LEVEL FEATURES ACROSS DIFFUSION AND AUTOREGRESSIVE STEPS

Table[T| presents five illustrative examples of words generated across the five diffusion steps. At Step
1 the most predictable token (often a content word like ’dinner” or "her husband”) is placed, by
Step 5 the full sentence is formed. Figure [3p shows the first three PCs of the 5-step embeddings for
aL.LMs and dLLMs. dLLMs exhibited a clearer temporal trajectory than alLLMs: embeddings from
successive steps were more distinctly separated in principal component space. Moreover, the first PC
of diffusion embeddings explained substantially more variance (25.2%) than that of autoregressive
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embeddings (9.7%), highlighting stronger step-wise differentiation in dLLMs. We further quantified
these differences by computing Jensen—Shannon divergence between model families (Figure 3p),
which revealed consistently greater separation at earlier steps.

Significant differences also emerged in the distribution of log word frequency across generative steps
(Figure [3k). At the onset and offset of sentences, dLLMs produced words of significantly higher
frequency than aLLMs (Step 1: ¢ = 16.21, p < 109; Step 5: ¢t = 17.16, p < 106). In contrast,
in the middle portions of sentences, alLLMs favored higher frequency words (Step 3: ¢ = —10.74,
p < 10%; Step 4: t = —13.66, p < 109). No significant difference was observed at Step 2 (¢t = 1.86,
p = 0.063). These results reveal a U-shaped frequency pattern for dLLMs—relying on common,
high-frequency words at sentence onset and offset while using relatively lower frequency words
mid-sentence—whereas alLLLMs show the opposite tendency in the middle steps.

Finally, POS distributions diverged systematically between model types (Figure [3d): Paired ¢-tests
reveal consistent boundary effects: dLL.Ms favored more content words (NOUN, VERB) at Step 1
(t = 6.08, p < 10%) and Step 4 (t = 2.40, p = 0.017), whereas aLLMs used more NOUNs at
Step 5 (t = —18.92, p < 10°). VERB and FUNC categories likewise exhibited mirrored trends:
dLLMs used more verbs at sentence start (Step 1: ¢ = 13.18, p < 10%), while aLLMs dominated
the later steps. ADJ/ADV showed smaller but significant differences in a few steps. The shifting
POS proportions support the hypothesis that dLL.Ms reorganize lexical categories across the course
of generation differently than aLLMs.

Table 1: Examples of original sentences and reordered outputs from LLaDA and Dream across five
generation steps.

Source Step 1 Step 2 Step 3 Step 4 Step 5
Original Uh where are they going for dinner
LLaDA dinner Uh where they are going for
Dream  dinner Uh where they are going for
Original Mhm I see my sister and her husband
LLaDA her husband Mhm see I my sister and
Dream  her husband Mhm see sister I my and
Original Yeah Eh it’ll give her some cushion
LLaDA Eh cushion Yeah it’ll give her some
Dream  her cushion Yeah it’ll Eh give some
Original We’ll try our best together
LLaDA try We'll our best together
Dream try We'll best our together
Original Nota big soda I don’t drink soda
LLaDA sodal drink soda Not big a don’t
Dream  big soda drink soda Not I a don’t

4.2 BRAIN ENCODING PERFORMANCE

FigureH]illustrates the encoding performance of aLLMs and dLLMs during naturalistic speech pro-
duction. Encoding performance was quantified as the correlation coefficient between predicted
and observed ECoG activity, evaluated across five generative steps and six cortical ROIs: STG,
MTL+ITL, IFG, DLPFC, MC, AG/TPOJ.

Autoregressive LL.Ms. Time-resolved encoding (panel a) reveals modest correlations across ROIs,
with encoding performance gradually increasing after sentence onset and peaking around sentence
offset. Although correlations are generally weak, later generative steps (Steps 4-5, shown in darker
red) consistently outperform earlier steps (Step 1, light yellow), suggesting that autoregressive em-
beddings become more predictive of neural activity as sentence production unfolds. The correspond-
ing heatmaps (panel b) confirm this trend: across all ROIs, Step 5 embeddings yield the strongest
correlations, particularly in IFG and MC, while Step 1 embeddings show weaker encoding. We
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Figure 3: Structural and lexical differences across generative steps in aLLMs and dLLMs. a
PCA shows greater step-wise separation in diffusion embeddings than in autoregressive ones. b
Jensen—Shannon divergence decreases across steps. ¢ dLLMs favor higher-frequency words at sen-
tence boundaries. d dLLMs produce more content words early, whereas aLLMs favor function
words.

also evaluated LLaMA and Qwen separately and found no meaningful difference in their encoding
performance (see Figure[6|in Appendix [E).

Diffusion LLLMs. dLLLM embeddings exhibit a systematic temporal alignment with neural dynamics
during speech production. Earlier diffusion steps (Steps 1-2) correlated more strongly with neural
activity in temporal regions such as STG and MTLA+ITL and DLPFC prior to articulation, suggesting
that these representations capture pre-articulatory planning processes. By contrast, later diffusion
steps (Steps 4-5) achieved higher correlations in STG, IFG, DLPFC, MC, and AG/TPOJ around and
after sentence offset, consistent with mid- and post-articulatory stages of production (panel c, d).
This step-specific mapping was less pronounced in aLLMs, where encoding performance increased
more gradually across steps. Together, these findings indicate that dLLMs not only capture overall
neural dynamics but also differentiate between pre-articulatory planning and later motor-related
processes across cortical regions. We also analyzed LLaDA and Dream separately, and although
some differences were observed in the motor cortex, our main conclusions remain unchanged (see

Figure[7]in Appendix [E).

5 DISCUSSION AND CONCLUSION

This work provides the first direct evidence that dLLMs capture neural dynamics of human speech
production in ways that qualitatively differ from aLLMs. Whereas alLLMs gradually increase neural
predictivity as tokens accumulate, dLLMs show sharper step-wise differentiation: earlier diffusion
steps align with pre-articulatory activity while later steps align with activity during and after artic-
ulation within middle/inferior temporal and motor cortices. These results suggest that the brain’s
production system may function more like an iterative refinement process than a strictly left-to-
right generator. From a cognitive neuroscience perspective, this refinement offers a mechanism
for balancing early commitments (e.g., reliance on high-frequency words at utterance boundaries)
with later flexibility in lexical and syntactic choice, thereby reconciling evidence for both sequential
planning and global message-level representations in speech production.

Nevertheless, several caveats remain: We only examined a single layer (layer 20) from each model;
it remains possible that other layers, or combinations of layers, exhibit stronger or qualitatively
different alignment. Moreover, our token revelation procedure reflects one particular instantiation of
diffusion dynamics; alternative denoising strategies may produce different mappings. Future work
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a Timecourse of encoding performance for autoregressive LLMs across steps in different brain regions
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Figure 4: Encoding performance of alLLMs and dLLMs during speech production. a,b alLLMs show
gradual increases in encoding performance across steps, with later steps aligning more strongly
around articulation. ¢,d dLLMs exhibit sharper step-wise differences: early steps correlate with
pre-articulatory activity in temporal regions, while later steps align with mid- and post-articulatory

activity in frontal and motor regions.

should therefore expand the range of models, datasets, and tasks considered, and test whether similar

dynamics hold across modalities such as fMRI, MEG, or in cross-linguistic production.

In conclusion, our study shows that dLLMs do more than merely rival alLLMs on linguistic bench-
marks — they offer a cognitively plausible model of human speech production. This work opens sev-
eral avenues: testing dLLM-brain alignment with other modalities (fMRI, MEG), exploring finer-
grained layer-wise dynamics, and developing hybrid models that integrate sequential and diffusion

principles.
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A PARTICIPANTS

Table 2: Patient demographics and clinical characteristics.

P1 P2 P3 P4

Age (years) 53 26 48 24

Sex F M F M

Electrodes implanted 104 125 255 192

Hours of speech recorded | 17 37 17 29

Words recorded 79,654 213,473 117,800 109,282

Comprehension words 47,642 109,967 71,754 60,608

Production words 32,012 103,506 46,046 48,674

Pathology / Seizure focus | Posterior Left an- | Right an- | Focal epilepsy
temporal lobe | teromedial teromedial in left hemi-
(neocortical) temporal lobe | temporal lobe | sphere  with
epilepsy; epilepsy epilepsy; broad focus
seizure focus ictal  onsets | including
adjacent  to localized temporal neo-
posterior tem- to temporal | cortex, frontal
poral lesion pole and hip- | operculum,

pocampus postcentral
gyrus, insula

Implant Left grid, | Left grid, | Bilateral Left grid,

strips, depth strips, depth strips/depths, strips, depth
left grid

B SENTENCE DATA

a Distribution of sentence length in words.

b Distribution of sentence length in time (ms).
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Figure 5: Summary statistics of production sentences. a Distribution of sentence length in words.
Dashed lines indicate the 5-25 words threshold. b Distribution of sentence length in time (ms).

C ECO0G PREPROCESSING

The ECoG preprocessing pipeline mitigated artifacts arising from movement, faulty electrodes, line
noise, abnormal physiological signals (e.g., epileptic discharges), eye blinks, and cardiac activity. A
semi-automated procedure was used to identify and remove corrupted data segments (e.g., seizures,
loose wires), while additional noise was attenuated using fast Fourier transform (FFT), independent
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component analysis (ICA), and de-spiking methods. Neural signals

were then band-pass filtered
in the broadband range (75-200 Hz), and the power envelope was computed as a proxy for each
electrode’s average local firing rate. The resulting signals were z-scored, smoothed with a 50-ms
Hamming kernel, and trimmed by 3,000 samples at each end to minimize edge effects. All prepro-

cessing was conducted using custom MATLAB 2019a (MathWorks) scripts.

D PROMPT EXAMPLES

Conversation:
Nurse (comprehension): "Oh my hands are cold."
Patient (production): "Oh they do actually."

Prompt to LLMs:

In a casual conversation, you heard "Oh my hands are cold."

you responded "Oh they do actually."

Conversation:

Nurse (comprehension): "You'’re not gonna need it in two days.

porary."
Patient (production): "I know, but I feel like in two
bly gonna go take this thing out of my head."

Prompt to LLMs:

In a casual conversation, you heard "You’re not gonna need it in
two days. It’s temporary." and you responded "I know,
like in two days they’re probably gonna go take this thing out of

my head."

E BRIAN ENCODING PERFORMANCE OF EACH LLM.

a Timecourse of encoding performance for LLaMA across steps in different brain regions
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a Timecourse of encoding performance for LLaDA across steps in different brain regions
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b Timecourse of encoding performance for Dream across steps in different brain regions
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Figure 7: Timecourse of encoding performance for LLaDA (a) and Dream (b) across steps in differ-
ent brain regions.

F IMPLEMENTATION DETAILS

All computations for extracting dLLM and aLLLM sentence embeddings and for running ridge re-
gression brain-encoding analyses were performed on a high-performance computing (HPC) cluster
equipped with 128 CPU cores and two A100 GPUs per node.

16



	Introduction
	Related Work
	Methods
	Extracting ECoG data during speech production
	Extracting sentence embeddings across steps
	Aligning sentence embeddings with ECoG activity
	Analyzing word-level features across different generation steps

	Results
	Word-level features across diffusion and autoregressive steps
	Brain encoding performance

	Discussion and Conclusion
	Participants
	Sentence data
	ECoG preprocessing
	Prompt examples
	Brian encoding performance of each LLM.
	Implementation details

