
HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time
Series Forecasting

Boyuan Li 1 Yicheng Luo 1 Zhen Liu 1 Junhao Zheng 1 Jianming Lv 1 Qianli Ma† 1

Abstract
Irregular multivariate time series (IMTS) are char-
acterized by irregular time intervals within vari-
ables and unaligned observations across variables,
posing challenges in learning temporal and vari-
able dependencies. Many existing IMTS mod-
els either require padded samples to learn sepa-
rately from temporal and variable dimensions, or
represent original samples via bipartite graphs
or sets. However, the former approaches of-
ten need to handle extra padding values affect-
ing efficiency and disrupting original sampling
patterns, while the latter ones have limitations
in capturing dependencies among unaligned ob-
servations. To represent and learn both depen-
dencies from original observations in a unified
form, we propose HyperIMTS, a Hypergraph
neural network for Irregular Multivariate Time
Series forecasting. Observed values are converted
as nodes in the hypergraph, interconnected by
temporal and variable hyperedges to enable mes-
sage passing among all observations. Through
irregularity-aware message passing, HyperIMTS
captures variable dependencies in a time-adaptive
way to achieve accurate forecasting. Experiments
demonstrate HyperIMTS’s competitive perfor-
mance among state-of-the-art models in IMTS
forecasting with low computational cost. Our
code is available at https://github.com/
qianlima-lab/PyOmniTS.

1. Introduction
Multivariate Time Series (MTS) are prevalent in various
fields such as healthcare, weather, and biomechanics (Zhang
et al., 2023b; Shukla & Marlin, 2021). While MTS forecast-

1School of Computer Science and Engineering, South China
University of Technology, Guangzhou, China. Correspondence to:
Qianli Ma <qianlima@scut.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

ing has been extensively studied (Nie et al., 2022; Zhang
& Yan, 2022; Zhou et al., 2021; Yu et al., 2024; Yi et al.,
2023), these methods typically assume the input to be fully
observed and pay less attention to potential sensor malfunc-
tions, varying sampling sources, or human factors in reality.
These factors can result in Irregular Multivariate Time Series
(IMTS), which are characterized by irregular time intervals
within each variable and unaligned observations across vari-
ables. These characteristics make it challenging to provide
accurate forecasting on IMTS for informed decision-making
and planning.

In studies for IMTS, one category of methods pads the
series in the sample space to have same length across vari-
ables (Rubanova et al., 2019; Zhang et al., 2021; Tashiro
et al., 2021; Zhang et al., 2023a; 2024), as illustrated in Fig-
ure 1 (a) and (b). Padded series are either time-aligned or
patch-aligned, allowing for effective capturing of dependen-
cies along both temporal and variable dimensions. However,
such padding scheme can increase the amount of data to
be processed, primarily because observation timestamps for
different variables can span widely separated time periods.
Furthermore, some methods rely on relative positions of
observations instead of timestamps to represent temporal
information, which might disrupt the original sampling pat-
tern. It should be noted that padding refers to adding zeros
or predicted values in the sample space before inputting
IMTS into the neural network, differing from the continu-
ous latent space used in ODE-based methods (Rubanova
et al., 2019; Biloš et al., 2021; Mercatali et al., 2024).

Instead of relying on padded series, another category of
IMTS analysis methods proposes using sets or bipartite
graphs to represent original IMTS samples, as illustrated
in Figure 1 (c) and (d). Set-based methods view obser-
vations as unordered tuples in a set (Horn et al., 2020),
while bipartite graph approaches represent channels and
timepoints as disjoint nodes connected by edges (Yalavarthi
et al., 2024), both of which only express observed values
for high efficiency. However, sets typically do not account
for correlations among observations, and bipartite graphs
are unable to propagate messages between variables without
shared timestamps. These methods still have limitations in
capturing dependencies on original IMTS.

1

https://github.com/qianlima-lab/PyOmniTS
https://github.com/qianlima-lab/PyOmniTS

HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

Figure 1. Existing methods for processing IMTS sample. (a)
Canonical padding approach, which significantly increases the
amount of data. (b) Patch-aligned padding approach, which also
increase the amount of data. (c) Set views all observations as its
unordered items. (d) Bipartite graph uses observation edges to
connect variable and time nodes. It cannot model dependencies
between variables without aligned observations, like V2 and V3,
which require shared timestamps.

To represent original observations and comprehensively cap-
ture their dependencies, we propose HyperIMTS, a hyper-
graph neural network for IMTS forecasting. HyperIMTS
represents observations and their dependencies in a unified
hypergraph, transforming the IMTS forecasting task into
the node prediction task. It views observations as nodes
in the hypergraph, each associated with its corresponding
timestamp and variable. Observations belonging to the same
variable are connected by a multi-connected hyperedge, just
as observations sharing the same timestamp. Temporal de-
pendencies are captured through node-to-hyperedge and
hyperedge-to-node message passing, while variable depen-
dencies further benefit from hyperedge-to-hyperedge con-
nections. Moreover, given the difficulty in capturing vari-
able correlations under different time alignment situations,
we calculate time-aware similarities using nodes and overall
similarities using hyperedges to realize irregularity-aware
learning of variable dependencies.

Our major contributions are summarized as follows:

• We propose a new hypergraph modeling approach to
represent both observed values and their dependencies
in IMTS, which does not require padding and remains
extensible for dependency learning.

• Based on the hypergraph representation, we propose
HyperIMTS, a hypergraph neural network for the
IMTS forecasting task. It leverages timestamp informa-

tion preserved in the graph to adaptively capture both
time-aware and overall variable dependencies, enabling
irregularity-aware learning and accurate forecasting.

• We build a unified, extensible, and highly flexible
code pipeline for fair IMTS forecasting benchmark-
ing across time series models from various fields and
tasks, covering twenty-seven state-of-the-art models
and five IMTS datasets. Extensive empirical results
demonstrate the low forecast error and high efficiency
of HyperIMTS.

2. Related Work
2.1. Irregular Multivariate Time Series Modeling

Existing efforts on IMTS mainly focus on classifica-
tion (Che et al., 2018; Shukla & Marlin, 2020; Zhang et al.,
2021; 2023a; Horn et al., 2020; Shukla & Marlin, 2018) and
imputation tasks (Che et al., 2018; Rubanova et al., 2019;
Shukla & Marlin, 2020; Tashiro et al., 2021). In recent
years, an increasing number of studies have paid attention
to IMTS forecasting (Tashiro et al., 2021; Schirmer et al.,
2022; Yalavarthi et al., 2024; Zhang et al., 2024; Mercatali
et al., 2024). From a data preprocessing perspective, exist-
ing works on IMTS can be broadly categorized into padding
and non-padding methods. The former ones typically repre-
sent input time series as matrices with temporal and variable
dimensions, and they design model components to learn de-
pendencies along both dimensions (Shukla & Marlin, 2020;
Tashiro et al., 2021; Schirmer et al., 2022). Models based
on RNNs (Che et al., 2018), ordinary differential equations
(ODEs) (Rubanova et al., 2019; Biloš et al., 2021; Mer-
catali et al., 2024), transformers (Zhang et al., 2023a), and
graph neural networks (Zhang et al., 2021; Luo et al., 2024;
Zhang et al., 2024) are commonly used. While these models
can achieve outstanding performance, they often require
handling more input data, which can affect the efficiency
during preprocessing and training. The other non-padding
approaches use bipartite graph (You et al., 2020; Yalavarthi
et al., 2024) or set (Horn et al., 2020) to represent IMTS.
Their sparse representations can handle IMTS samples with-
out padding, but their model architectures restrict the ability
to capture dependencies in the original IMTS.

2.2. Using Graphs for MTS

Graphs are increasingly popular in time series analysis (Yi
et al., 2023; Wen et al., 2023; Wu et al., 2020; Cini et al.,
2021; Han et al., 2024), which usually represent variables as
nodes and their dependencies as edges. Although this type
of graph demonstrates great potential for learning multivari-
ate dependencies, it requires time-aligned or patch-aligned
samples for input encoding, which increases the amount of
data for IMTS samples. The hypergraph is a variant where

2

HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

Figure 2. Illustration of the proposed efficient hypergraph repre-
sentation for IMTS. (a) Original IMTS sample, where V1, V2, and
V3 represent three different variables. (b) The corresponding hy-
pergraph representation. From top to bottom, variable hyperedges,
observation nodes, and temporal hyperedges are displayed. Each
observation node connects to the associated variable hyperedge
above and the temporal hyperedge below. Gradient color lines
between hyperedges indicate hyperedge-to-hyperedge message
passing.

hyperedges can connect multiple nodes, facilitating more
types of message passing. Its ability to represent data at
different granularities and model their complex interactions
has attracted researchers in various fields (Zhou et al., 2006;
Yan et al., 2020; Gao et al., 2023; Yu et al., 2012). Hyper-
graph neural networks are still in their early stages for time
series analysis (Shang et al., 2024; Luo et al., 2022; Li et al.,
2022; Sawhney et al., 2021). They usually assume inputs
to be fully observed, which makes them not well-suited for
IMTS.

3. Problem Definition
We consider an IMTS dataset D := {Si|i = 1, ..., n} con-
sisting of n samples, where Si is the i-th sample. With a
total of T timestamps and U variables, each IMTS sample
can be denoted as a set containing M observation tuples
Si := {(tj , zj , uj)|j = 1, ...,M}, where tj ∈ {1, ..., T},
zj ∈ R, and uj ∈ {1, ..., U} represents the timestamp,
observed value, and variable indicator respectively. For
the IMTS forecasting task, given a split timestamp tS , an
IMTS sample is divided into a lookback window Xi :=
{(tj , zj , uj)|j = 1, ...,M, tj ≤ tS} and a forecast window
Yi := {[(tj , uj), zj]|j = 1, ...,M, tj > tS}. The forecast
query qj ∈ Qi is derived by combining (tj , uj) of the j-th
observation tuple within the forecast window. We aim to
learn a forecasting model F(·), such that given the lookback
window Xi and forecast query Qi as input, it accurately
predicts the corresponding observed values Zi:

F(Xi,Qi) → Zi. (1)

4. Methodology
We first detail the efficient hypergraph representation for
IMTS samples in Section 4.1. Subsequently, we explain how
to leverage it for the IMTS forecasting task in Section 4.2.

4.1. Efficient Hypergraph Representation for IMTS

Instead of using padding or patching, we convert original
observations into node embeddings within the hypergraph,
thereby improving efficiency in both data preprocessing
and model training. As shown in Figure 2, the hyper-
graph is defined as G := {V, E}. The observation node
embeddings are expressed as V := {vj |j = 1, ...,M},
and two types of hyperedge embeddings E := ET ∩ EU
are defined, including temporal hyperedge embeddings
Etime := {et|t = 1, ..., T} and variable hyperedge embed-
dings Evar := {eu|u = 1, ..., U}. The topology of a hy-
pergraph can be represented using two incidence matrices:
HT ∈ RM×T for temporal hyperedges, and HU ∈ RM×U

for variable hyperedges. Entries Hjt in HT are defined as:

Hjt =

{
1, vj ∈ et

0, vj /∈ et
. (2)

And entries Hju in HU are defined in the same way as
Eq. (2). Unlike the edge in traditional graph structures
which can only connect two nodes, a hyperedge can connect
an arbitrary number of nodes, enabling hypergraphs to cap-
ture more complex relationships among nodes. Using the
above notations, the IMTS forecasting problem is framed
as the node prediction task in hypergraphs, where nodes
representing forecast targets are the ones to predict.

We initialize node embeddings by encoding the observed
values Zi of the i-th sample through a non-linear mapping
ReLU(FFobs(·)) into Pobs-dimensional embedding V ∈
RM×Pobs :

V = ReLU(FFobs(Zi)), (3)

where the values of forecast targets are initialized to 0. For
temporal hyperedge embeddings from timestamp set Ti,
we initialize them using sinusoidal encoding after linear
mapping FFtime(·) to obtain the Ptime-dimensional temporal
embedding Etime ∈ RT×Ptime :

Etime = sin(FFtime(Ti)). (4)

For variable hyperedge embeddings from variable set Ui,
we use learnable parameters Wvar of shape U × Pvar for
initializations, where Pvar denotes the variable embedding
dimension:

Evar = ReLU(Wvar). (5)

4.2. Forecasting with HyperIMTS

The overview of our proposed model, HyperIMTS, is il-
lustrated in Figure 3. It leverages the hypergraph represen-

3

HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

Figure 3. The architecture of HyperIMTS. It first converts input IMTS samples with empty forecast targets into the proposed efficient
hypergraph representation. Three types of message passing are used sequentially: (a) Temporal and variable hyperedge embeddings are
updated via node-to-hyperedge message passing; (b) Inter-variable correlations are modeled during irregularity-aware hyperedge-to-
hyperedge message passing, where time-aware and overall variable similarities are merged based on time alignment; (c) Both temporal
and variable hyperedge embeddings are used for unified hyperedge-to-node updates.

tation detailed in Section 4.1 to represent IMTS samples.
Learning for temporal and variable dependencies is realized
using three types of message passing in the hypergraph,
where node-to-hyperedge is introduced in Section 4.2.1,
hyperedge-to-hyperedge is discussed in Section 4.2.2, and
hyperedge-to-node is presented in Section 4.2.3. It should
be noted that temporal dependencies are learned through
message passings among observations of the same variable,
and variable dependencies are learned through message
passings between different variables.

4.2.1. TEMPORAL AND VARIABLE HYPEREDGE UPDATE

In this section, we introduce node-to-hyperedge message
passing for updating temporal and variable hyperedge em-
beddings, as illustrated in Figure 3 (a). HyperIMTS ini-
tializes temporal hyperedge embeddings with sinusoidal
encoding, making them learnable to account for the vary-
ing number of observations at each timestamp. With tem-
poral hyperedge embeddings used as multi-head attention
queries qh = FFq(Etime) and concatenating observation
node embeddings with variable hyperedge embeddings as
keys kh = FFk(V||Evar) and values vh = FFv(V||Evar),
the message passing for updated temporal hyperedge em-

beddings E′
time can be expressed as:

O = ||Hh=1Softmax(
qhkh⊺√
d/H

)vh, (6)

E′
time = O+ ReLU(FFO(O)), (7)

where ||Hh=1 denotes the concatenation of results from H
attention heads, and d denotes the embedding dimension of
ktime. We note that variable hyperedge embeddings are in-
cluded in both keys and values to identify the corresponding
variable for each observation.

Besides updating temporal hyperedge embeddings, vari-
able hyperedge embeddings are also updated using multi-
head attention. The query is defined as qh

var = FFq(Evar),
and timestamp information is included in the keys kh

var =
FFk(V||Etime) and values vh

var = FFv(V||Etime) to distin-
guish relative positions. Similar to Eq. (6) and (7), we can
obtain the updated variable hyperedge embeddings E′

var.

By updating the embeddings of temporal and variable hy-
peredges, messages from observations are now aggregated
onto hyperedges, and we describe their further propagation
in the following sections.

4

HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

4.2.2. INTER-VARIABLE MESSAGE PASSING

In this section, we introduce the irregularity-aware
hyperedge-to-hyperedge message passing among variables,
as illustrated in Figure 3 (b). It begins by determining cor-
relations among variables, which are realized through the
calculation of variable similarities. We first calculate the
overall variable similarities among all connected observa-
tions. For two different variables ua and ub taken from
u = 1, ..., U , the dot-product similarity between their corre-
sponding variable hyperedge embeddings eua

and eub
can

be expressed as:

Svar = FFq(eua
) · FFk(eub

)⊺, (8)

where FFq and FFk are feed-forward layers for queries and
keys. However, overall variable similarity is a series-level
comparison, which does not leverage temporal information
within the series, and may not perform optimally across all
alignment scenarios. For example, similar variables V1 and
V2 in Figure 3 (b) have 3 shared timestamps and 2 unaligned
timestamps, which can lead to a positive but relatively small
overall variable similarity due to the unbalanced number
of observations. Based on the fact that if two time-aligned
series are identical, then their time-aligned subseries are
also identical, we can compare only the time-aligned ob-
servations, leading to higher similarity scores that better
promote message passing. Therefore, we refine the similar-
ity calculation by calculating time-aware similarities using
time-aligned observations. Specifically, they Sobs are calcu-
lated using the dot products of connected observation nodes
and can be expressed as:

Sobs = [vua
1 , ..., vua

Tshared
] · [vub

1 , ..., vub

Tshared
]⊺, (9)

where vua and vub denote observation nodes for two dif-
ferent variables, and only Tshared number of observations
with shared timestamps across variables are selected for
comparison. It should be noted that while our method and
padding-based methods shown in Figure 1 (a) and (b) all
leverages alignment information, we employ distinct ap-
proaches for better efficiency. Padding-based methods align
IMTS by padding them before feeding them into neural net-
works, leading to larger data volumes to be processed across
all network modules. In contrast, our method only selects
time-aligned observations during hyperedge-to-hyperedge
message passing, thereby eliminating the need to handle
large padded data in other network modules.

We then combine two similarities based on Tshared, the total
number of timestamps Ttotal in two variables, and a learnable
threshold parameter δ to obtain the irregular-aware variable
similarity SIMTS:

SIMTS = αSobs + (1− α)Svar, (10)

α =

{
Tshared
Ttotal

, for Svar > δ and Sobs ̸= 0

0, otherwise
, (11)

where δ is initialized to 0.5. The logic behind α is to pri-
oritize Sobs over Svar if there are more aligned observa-
tions than unaligned ones, and the variables are similar. If
Sobs = 0, it indicates that all observations among the vari-
ables are unaligned, such as V2 and V3 in Figure 3. In this
case, we maintain their connection for message passing
using the overall variable similarity Svar.

By gathering all the similarities SIMTS for each pair of vari-
ables as entries in the attention map Avar, hyperedge-to-
hyperedge message passing is implemented using scaled
dot-product attention:

E′′
var = Softmax(

Avar√
d
)FFv(E

′
var), (12)

where E′′
var represents the updated variable hyperedge em-

beddings after message passing, and d denotes the embed-
ding dimension.

Through irregularity-aware message passing among variable
hyperedges, correlated messages are exchanged adaptive to
the time alignment across variables. We discuss their further
propagation to nodes in the next section.

4.2.3. NODE UPDATE

In this section, we introduce hyperedge-to-node message
passing for node updates, as illustrated in Figure 3 (c). For
the total L residual layers, we use variable hyperedge em-
beddings E′

var without inter-variable message passing in
the first L − 1 layers, which helps in learning temporal
dependencies, also known as intra-variable dependencies.
Variable hyperedge embeddings E′

var propagate messages
back to connected nodes, along with timestamp information
from temporal hyperedge embeddings:

V′ = SelfAtten(V), (13)
V′′ = ReLU(V + FFnode(V

′||E′
time||E′

var)), (14)

where SelfAtten(V) performs a self-attention update on
nodes V, and FFnode is the linear mapping layer for nodes.
At the last layer of the residual structure, we use variable
hyperedge embeddings E′′

var after inter-variable message
passing during calculation, which helps in learning variable
dependencies. It is implemented by replacing E′

var with E′′
var

in Eq. (14).

Through the node update process, observations receive cor-
related messages via temporal and variable dependencies,
which also update the nodes to be predicted.

4.2.4. TRAINING OF HYPERIMTS

In this section, we introduce the process of obtaining fore-
cast values and training HyperIMTS. For the i-th sample
where i ∈ n, we convert its updated node embeddings back

5

HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

Table 1. Experimental results on five irregular multivariate time series datasets evaluated by MSE (mean ± std). The best and second-best
results are indicated in bold and underlined, respectively. We employ four decimal places to better demonstrate standard deviations in
results.

Algorithm MIMIC-III MIMIC-IV PhysioNet’12 Human Activity USHCN

R
eg

ul
ar

higp 0.9726 ± 0.0001 0.6616 ± 0.0001 0.5025 ± 0.0179 0.2670 ± 0.0198 0.2330 ± 0.0003
MOIRAI 0.8655 ± 0.0000 0.4293 ± 0.0000 0.4924 ± 0.0000 0.1079 ± 0.0000 1.2320 ± 0.0000
FEDformer 0.7675 ± 0.0019 0.8008 ± 0.0270 0.4150 ± 0.0002 0.1619 ± 0.0006 0.3237 ± 0.0150
Ada-MSHyper 0.6680 ± 0.0038 0.4217 ± 0.0012 0.4143 ± 0.0008 0.1480 ± 0.0039 0.2406 ± 0.0189
Autoformer 0.7082 ± 0.0077 0.5963 ± 0.0158 0.4137 ± 0.0040 0.0983 ± 0.0065 0.4367 ± 0.0452
TimesNet 0.6515 ± 0.0052 0.4355 ± 0.0015 0.4076 ± 0.0006 0.1206 ± 0.0025 0.2402 ± 0.0116
iTransformer 0.7160 ± 0.0081 0.5083 ± 0.0095 0.3975 ± 0.0023 0.0906 ± 0.0020 0.4288 ± 0.0634
FourierGNN 0.7066 ± 0.0069 0.4580 ± 0.0024 0.3946 ± 0.0027 0.2822 ± 0.0100 0.4244 ± 0.0655
Mamba 0.6853 ± 0.0014 0.6102 ± 0.0051 0.3906 ± 0.0012 0.1253 ± 0.0006 0.2100 ± 0.0026
TSMixer 0.6127 ± 0.0011 0.3566 ± 0.0021 0.3817 ± 0.0007 0.1635 ± 0.0028 0.2152 ± 0.0144
PatchTST 0.6403 ± 0.0019 0.2939 ± 0.0009 0.3781 ± 0.0009 0.0763 ± 0.0001 0.2830 ± 0.0754
Leddam 0.5935 ± 0.0054 0.3697 ± 0.0019 0.3754 ± 0.0025 0.0913 ± 0.0006 0.2887 ± 0.0259
BigST 0.5855 ± 0.0008 0.3579 ± 0.0023 0.3425 ± 0.0010 0.1671 ± 0.0147 0.2019 ± 0.0014
Reformer 0.5677 ± 0.0007 0.3894 ± 0.0023 0.3573 ± 0.0003 0.0982 ± 0.0013 0.2058 ± 0.0042
Informer 0.5657 ± 0.0037 0.4477 ± 0.0067 0.3441 ± 0.0006 0.0708 ± 0.0003 0.2000 ± 0.0014
Crossformer 0.6136 ± 0.0128 0.3696 ± 0.0025 0.3385 ± 0.0053 0.1410 ± 0.0208 0.2121 ± 0.0035

Ir
re

gu
la

r

PrimeNet 0.9900 ± 0.0000 0.6650 ± 0.0000 0.8035 ± 0.0000 4.3697 ± 0.0005 0.4925 ± 0.0012
SeFT 0.9916 ± 0.0001 0.6713 ± 0.0002 0.7777 ± 0.0003 1.4141 ± 0.0023 0.3345 ± 0.0010
mTAN 0.8963 ± 0.0227 0.5346 ± 0.0127 0.3889 ± 0.0026 0.0925 ± 0.0020 0.1929 ± 0.0020
NeuralFlows 0.7167 ± 0.0025 0.4737 ± 0.0018 0.4196 ± 0.0016 0.1680 ± 0.0033 0.2007 ± 0.0043
CRU 0.7065 ± 0.0028 0.4346 ± 0.0022 0.6189 ± 0.0012 0.1374 ± 0.0040 0.2255 ± 0.0086
GNeuralFlow 0.6950 ± 0.0046 0.5005 ± 0.0021 0.3881 ± 0.0032 0.1734 ± 0.0012 0.1832 ± 0.0025
GRU-D 0.6125 ± 0.0281 0.6622 ± 0.0018 0.3462 ± 0.0004 0.1761 ± 0.0228 0.1639 ± 0.0026
Raindrop 0.5924 ± 0.0013 0.3413 ± 0.0046 0.3918 ± 0.0014 0.0958 ± 0.0039 0.2131 ± 0.0067
tPatchGNN 0.5173 ± 0.0037 0.2744 ± 0.0022 0.3221 ± 0.0017 0.0443 ± 0.0005 0.2010 ± 0.0191
Warpformer 0.4869 ± 0.0007 0.2742 ± 0.0023 0.3084 ± 0.0007 0.0539 ± 0.0007 0.1565 ± 0.0012
GraFITi 0.4534 ± 0.0015 0.2454 ± 0.0006 0.3060 ± 0.0009 0.0435 ± 0.0001 0.2026 ± 0.0107

HyperIMTS (Ours) 0.4259 ± 0.0021 0.2174 ± 0.0009 0.2996 ± 0.0003 0.0421 ± 0.0021 0.1738 ± 0.0078

to IMTS values via output linear mapping FFout(·):

Ẑi = FFout(V
′′||E′

time||E′′
var), (15)

where each node is decoded together with the information
from its connected hyperedges. The model is trained by
minimizing the Mean Squared Error (MSE) loss between
the prediction Ẑi for forecast queries and the corresponding
ground truth Zi.

4.2.5. COMPUTATIONAL COMPLEXITY

The computational complexity of HyperIMTS mainly arises
from three attention calculations, including multi-head at-
tention in Eq. (6), scaled dot-product attention in Eq. (12),
and self-attention in Eq. (14). For a query matrix of shape
(Nq, P) and a key matrix of shape (Nk, P), the linear map-
ping complexity is O(NqP

2) for the query and O(NkP
2)

for the key. For the dot-product operation, the computa-
tional complexity is O(NqNkP), and multiplying resultant
with a value matrix of shape (Nk, P) also has a complexity
of O(NqNkP). During node-to-hyperedge message pass-
ing as defined in Eq. (6), Nq is U for variable hyperedge
embeddings and T for temporal ones, and Nk is M . In
the hyperedge-to-hyperedge message passing described in
Eq. (12), both Nq and Nk are U for variable hyperedges.
For self attention in Eq. (14), both Nq and Nk are M for
observation nodes. Although attention is not a computa-

Table 2. Summary of five datasets. Canonical padding approach
significantly increases number of observations, and patch-aligned
padding can either be better or worse than canonical one. The patch
lengths for the five datasets are 12 hours for MIMIC-III, MIMIC-
IV, and PhysioNet’12, 300 milliseconds for Human Activity, and
0.2 year for USHCN, respectively.

Description MIMIC-III MIMIC-IV PhysioNet’12 Human Activity USHCN

Max length 96 971 47 131 337
Variable 96 100 36 12 5
Sample 21,250 17,874 11,981 1,359 1,114
Avg # obs. 144.6 304.8 308.6 362.2 313.5
Avg # obs. (padding) 9,216.0 92,000.0 1,692.0 1,573.2 1,685.0
Avg # obs. (patching) 9,210.0 33,761.3 1,800.0 1,803.0 1,112.9

tionally efficient operation theoretically, HyperIMTS only
handles observed values, resulting in smaller data volumn
compared to padding approaches. The statistics of actual
datasets can be found in Table 2.

5. Experiments
5.1. Experimental Setup

5.1.1. DATASETS

Five widely studied irregular multivariate time series
datasets, covering healthcare, biomechanics, and climate,
are used in the experiments, and their statistics are sum-
marized in Table 2. MIMIC-III (Johnson et al., 2016) is a

6

HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

Table 3. Ablation results of HyperIMTS and its five variants on five irregular multivariate time series datasets.

Ablation MIMIC-III MIMIC-IV PhysioNet’12 Human Activity USHCN

Complete 0.4259 ± 0.0021 0.2174 ± 0.0009 0.2996 ± 0.0003 0.0421 ± 0.0021 0.1738 ± 0.0078

w/o VE 0.9556 ± 0.0029 0.6293 ± 0.0053 0.6945 ± 0.0002 1.3855 ± 0.0006 0.3299 ± 0.0054
w/o IAVD 0.4466 ± 0.0007 0.2358 ± 0.0012 0.3050 ± 0.0006 0.0481 ± 0.0004 0.1983 ± 0.0105
rp IAVD 0.4317 ± 0.0030 0.2189 ± 0.0024 0.3014 ± 0.0003 0.0463 ± 0.0008 0.1794 ± 0.0062
w/o TE 0.4954 ± 0.0043 0.2652 ± 0.0005 0.3029 ± 0.0003 0.0745 ± 0.0001 0.1757 ± 0.0088
rp TE 0.4403 ± 0.0024 0.2333 ± 0.0004 0.3029 ± 0.0003 0.0473 ± 0.0007 0.1894 ± 0.0118

clinical database collected from ICU patients during the first
48 hours of admission, which is rounded for 30 minutes.
MIMIC-IV (Johnson et al., 2023) is built upon MIMIC-III,
which has higher sampling frequency and rounded for 1
minute. PhysioNet’12 (Silva et al., 2012) is also a clinical
database collected from the first 48 hours of ICU stay, which
is rounded for 1 hour. Human Activity contains biomechan-
ics data describing 3D positional variables, which is rounded
for 1 millisecond. USHCN (Menne et al., 2016) includes
climate data over 150 years collected by meteorological
stations scattered over the United States, and we focus on a
subset of 4 years between 1996 and 2000. For PhysioNet’12,
MIMIC-III, MIMIC-IV, and USHCN, we follow the pre-
processing setup in previous work (Yalavarthi et al., 2024).
For Human Activity, we follow the preprocessing set up in
(Zhang et al., 2024). All five datasets are split into training,
validation, and test sets adhering to ratios of 80%, 10%, and
10%, respectively. Training and validation sets are shuffled,
while test sets are not.

5.1.2. BASELINES

To conduct comprehensive and fair comparisons, we design
a unified and extensible pipeline to evaluate models across
various domains and tasks. Twenty-seven baselines are in-
cluded in the benchmark, covering SOTA methods from
(1) Multivariate time series forecasting: FEDformer (Zhou
et al., 2022), Ada-MSHyper (Shang et al., 2024), Auto-
former (Wu et al., 2021), TimesNet (Wu et al., 2022), iTrans-
former (Liu et al., 2023), FourierGNN (Yi et al., 2023),
Mamba (Gu & Dao, 2024), TSMixer (Chen et al., 2023),
PatchTST (Nie et al., 2022), Leddam (Yu et al., 2024), Re-
former (Kitaev et al., 2019), Informer (Zhou et al., 2021),
Crossformer (Zhang & Yan, 2022), (2) Time series pre-
training: MOIRAI (Woo et al., 2024), PrimeNet (Chowd-
hury et al., 2023), (3) Traffic forecasting: higp (Cini et al.,
2024), BigST (Han et al., 2024), (4) IMTS classification,
imputation, and forecasting: SeFT (Horn et al., 2020),
mTAN (Shukla & Marlin, 2020), NeuralFlows (Biloš et al.,
2021), CRU (Schirmer et al., 2022), GNeuralFlow (Mer-
catali et al., 2024), GRU-D (Che et al., 2018), Rain-
drop (Zhang et al., 2021), tPatchGNN (Zhang et al., 2024),
Warpformer (Zhang et al., 2023a), GraFITi (Yalavarthi et al.,

2024). Further details on introductions and hyperparameter
settings of these baselines can be found in Appendix A.4.

5.1.3. IMPLEMENTATION DETAILS

All models are trained on a Linux server with PyTorch ver-
sion 2.4.1 using two NVIDIA GeForce RTX 3090 GPUs,
and efficiency analysis is conducted on another Linux server
with PyTorch version 2.2.2+cu118 using one NVIDIA
GeForce RTX 2080Ti GPU. The learning rate Ln for the
n-th epoch is kept unchanged when n <= 3, and adjusted
according to Ln = L0× 0.8n−3 when n > 3, where the ini-
tial learning rate L0 is specific to each model and dataset and
can be found in Appendix A.4. All experiments run with a
maximum epoch number of 300 and early stopping patience
of 10 epochs. To mitigate randomness, we conduct each
experiment using five different random seeds ranging from
2024 to 2028 and calculate the mean and standard deviation
of the results. MSE is used as the training loss function for
models, unless a custom loss function proposed in the origi-
nal paper is used. When adapting regular time series models
for IMTS, masks indicating observed values are included
in MSE calculations during training. The detailed settings
for the hyperparameters are provided in Appendix A.4. We
note that our experimental results may differ from those in
existing papers, mainly due to differences in normalization
methods, random seeds, and learning rate schedulers. We
eliminate these differences to ensure fair comparisons.

5.2. Main Results

Table 1 shows the models’ forecasting performance, eval-
uated using MSE on five datasets, where the best results
are highlighted in bold and the next best shown in under-
line. The lookback time periods are 36 hours for MIMIC-III,
MIMIC-VI, and PhysioNet’12, 3000 milliseconds for Hu-
man Activity, and 3 years for USHCN. Human Activity use
300 milliseconds as forecast length, and the rest datasets
use the next 3 timestamps as forecast targets, following the
settings in existing works (Biloš et al., 2021; De Brouwer
et al., 2019). Results evaluated using MAE are detailed
in Appendix A.1, and an analysis of varying lookback and
forecast horizons can be found in Appendix A.2. As can be

7

HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

Figure 4. Model efficiency comparison on MIMIC-III, with 36
hours of lookback length, 3 forecast timestamps, 96 variables, and
a batch size of 32. Our proposed model, HyperIMTS, achieves the
lowest MSE while maintaining high computational efficiency, as
measured by training time and memory footprints.

seen, HyperIMTS excels as the best-performing model in
four out of the five datasets. The results on USHCN exhibit
high variance, as noted in previous work (Yalavarthi et al.,
2024). However, these results are also provided for com-
prehensive comparisons. By leveraging irregularity-aware
message passing in hypergraphs for dependency learning
on all observations, HyperIMTS provides up to 11.4% im-
provement in comparison with the overall next best model
GraFITi. On average, HyperIMTS exhibits significant re-
duction in MSE compared to the best-performing regular
time series model, Crossformer. We observed that some
models designed for regular time series outperform a few
IMTS models, highlighting the necessity of evaluating both
regular and irregular time series models for more compre-
hensive comparisons. Also, the time series pretraining mod-
els MOIRAI and PrimeNet do not perform particularly well
in general. This suggests potential discrepancies among
different datasets, particularly between regular and irreg-
ular time series datasets, which requires further efforts in
designing the pretraining process.

5.3. Ablation Study

We evaluate the performance of HyperIMTS and five of its
variants on all five datasets. (1) rp TE replaces learnable
temporal hyperedges with non-learnable sinusoidal embed-
dings; (2) w/o TE removes all temporal hyperedges; (3)
rp IAVD replaces irregularity-aware variable dependencies
with overall variable dependencies only; (4) w/o IAVD re-
moves irregular-aware variable dependencies by disabling
hyperedge-to-hyperedge message passing among variable
hyperedges; (5) w/o VE: removes all variable hyperedges;

The ablation results are summarized in Table 3. As can be
seen, all model components are necessary. Results from
w/o IAVD and rp IAVD show the necessity of accounting
for variable dependencies when dealing with irregular ob-
servation timestamps. rp TE demonstrates the importance
of learnable temporal representations in effectively leverag-
ing timestamp information within IMTS. w/o TE and w/o
VE show the effectiveness of both temporal and variable
hyperedges for feature extraction and message passing.

5.4. Efficiency Analysis

We select the most competitive baselines as well as represen-
tative methods for the efficiency comparison. From a data
preprocessing perspective, these methods can be categorized
as follows: (1) Non-padding methods: HyperIMTS and
GraFITi; (2) Patch-aligned padding method: tPatchGNN;
(3) Canonical padding methods: Warpformer and GNeu-
ralFlow; (4) Fully observed MTS methods: Crossformer
and PatchTST. Models are evaluated based on their MSE,
training time, and GPU memory footprints. The training
time for one epoch with a batch size of 32 is recorded, then
divided by the number of batches to determine the train-
ing time per iteration. Memory footprints only encompass
the model’s usage instead of representing the entire pro-
cess. The results on MIMIC-III are shown in Figure 4. As
can be seen, our model HyperIMTS achieves the lowest
MSE while keeping computational costs relatively low. It
can also be observed that non-padding models like Hyper-
IMTS and GraFITi achieve faster training speeds compared
to other models. tPatchGNN uses patch-aligned padding,
which can reduces the average number of padding values
in MIMIC-III and runs faster than models using canonical
padding. However, it still consumes a considerable amount
of GPU memory, and may result in more padding values
than canonical approaches for samples with numerous asyn-
chronous observations. Transformer-based models, includ-
ing Warpformer, Crossformer, and PatchTST, also exhibit
large memory usage. This is primarily due to the attention
calculations on padded samples, which involve a greater
amount of data compared to original samples. Although
using a small amount of memory, the ODE-based model
GNeuralFlow takes significantly longer training time com-
pared to other models, indicating the potential inefficiency
of ODE solvers. Further efficiency analysis for varying
lookback lengths as well as results on other datasets are
available in Appendix A.3

6. Conclusion
This paper introduces a hypergraph neural network ap-
proach, HyperIMTS, to address the IMTS forecasting prob-
lem. HyperIMTS represents observed values as nodes in
the hypergraph without padding, and connects them with

8

HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

hyperedges denoting timestamps and variables. Through
three types of message passing in hypergraphs, HyperIMTS
effectively captures temporal and variable dependencies in
a unified and efficient manner. Moreover, by leveraging
time-aware similarity from observation nodes and overall
similarity from variable hyperedges, HyperIMTS adaptively
choose the optimal way to model variable correlations based
on time alignment. HyperIMTS demonstrates competitive
performance on the IMTS forecasting task across twenty-
seven state-of-the-art time series models in our unified code
pipeline. Nevertheless, there are still limitations for Hyper-
IMTS. Our model currently does not support multi-modal
data, such as text notes or images, which are found in med-
ical IMTS datasets and may enhance forecasting. Addi-
tionally, attention calculations are more resource-intensive
compared to other recent methods, such as state space ap-
proaches. We will address these limitations in future work.

Acknowledgements
We thank the anonymous reviewers for their help-
ful feedbacks, and all the donors of the original
datasets. The work described in this paper was par-
tially funded by the National Natural Science Founda-
tion of China (Grant Nos. 62272173), the Natural Sci-
ence Foundation of Guangdong Province (Grant Nos.
2024A1515010089, 2022A1515010179), the Science and
Technology Planning Project of Guangdong Province (Grant
No. 2023A0505050106), and the National Key R&D Pro-
gram of China (Grant No. 2023YFA1011601).

Impact Statement
This paper details efforts to advance irregular multivariate
time series forecasting across various scientific domains.
While our research may have broader societal impacts, we
do not consider it necessary to single out any particular
consequences for emphasis here.

References
Biloš, M., Sommer, J., Rangapuram, S. S., Januschowski, T.,

and Günnemann, S. Neural Flows: Efficient Alternative
to Neural ODEs. In Advances in Neural Information Pro-
cessing Systems, volume 34, pp. 21325–21337. Curran
Associates, Inc., 2021.

Che, Z., Purushotham, S., Cho, K., Sontag, D., and Liu, Y.
Recurrent Neural Networks for Multivariate Time Series
with Missing Values. Scientific Reports, 8(1):6085, 2018.
ISSN 2045-2322. doi: 10.1038/s41598-018-24271-9.

Chen, S.-A., Li, C.-L., Arik, S. O., Yoder, N. C., and Pfis-
ter, T. TSMixer: An All-MLP Architecture for Time

Series Forecast-ing. Transactions on Machine Learning
Research, 2023. ISSN 2835-8856.

Chowdhury, R. R., Li, J., Zhang, X., Hong, D., Gupta, R. K.,
and Shang, J. PrimeNet: Pre-training for Irregular Multi-
variate Time Series. Proceedings of the AAAI Conference
on Artificial Intelligence, 37(6):7184–7192, 2023. ISSN
2374-3468. doi: 10.1609/aaai.v37i6.25876.

Cini, A., Marisca, I., and Alippi, C. Filling the G ap s:
Multivariate Time Series Imputation by Graph Neural
Networks. In International Conference on Learning Rep-
resentations, 2021.

Cini, A., Mandic, D., and Alippi, C. Graph-based Time Se-
ries Clustering for End-to-End Hierarchical Forecasting.
In International Conference on Machine Learning, pp.
8985–8999. PMLR, 2024.

De Brouwer, E., Simm, J., Arany, A., and Moreau, Y.
GRU-ODE-Bayes: Continuous Modeling of Sporadically-
Observed Time Series. In Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Associates,
Inc., 2019.

Gao, Y., Feng, Y., Ji, S., and Ji, R. HGNN+: General
Hypergraph Neural Networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(3):3181–
3199, 2023. ISSN 1939-3539. doi: 10.1109/TPAMI.2022.
3182052.

Gu, A. and Dao, T. Mamba: Linear-Time Sequence Model-
ing with Selective State Spaces. In First Conference on
Language Modeling, 2024.

Han, J., Zhang, W., Liu, H., Tao, T., Tan, N., and Xiong, H.
BigST: Linear Complexity Spatio-Temporal Graph Neu-
ral Network for Traffic Forecasting on Large-Scale Road
Networks. Proc. VLDB Endow., 17(5):1081–1090, 2024.
ISSN 2150-8097. doi: 10.14778/3641204.3641217.

Horn, M., Moor, M., Bock, C., Rieck, B., and Borgwardt,
K. Set Functions for Time Series. In International Con-
ference on Machine Learning, pp. 4353–4363. PMLR,
2020.

Johnson, A. E. W., Pollard, T. J., Shen, L., Lehman, L.-
w. H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P.,
Anthony Celi, L., and Mark, R. G. MIMIC-III, a freely
accessible critical care database. Scientific Data, 3(1):
160035, 2016. ISSN 2052-4463. doi: 10.1038/sdata.2016.
35.

Johnson, A. E. W., Bulgarelli, L., Shen, L., Gayles, A.,
Shammout, A., Horng, S., Pollard, T. J., Hao, S., Moody,
B., Gow, B., Lehman, L.-w. H., Celi, L. A., and Mark,
R. G. MIMIC-IV, a freely accessible electronic health
record dataset. Scientific Data, 10(1):1, 2023. ISSN
2052-4463. doi: 10.1038/s41597-022-01899-x.

9

HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The
Efficient Transformer. In International Conference on
Learning Representations, 2019.

Li, Z., Huang, C., Xia, L., Xu, Y., and Pei, J. Spatial-
Temporal Hypergraph Self-Supervised Learning for
Crime Prediction. In 2022 IEEE 38th International Con-
ference on Data Engineering (ICDE), pp. 2984–2996.
IEEE Computer Society, 2022. ISBN 978-1-66540-883-
7. doi: 10.1109/ICDE53745.2022.00269.

Liu, Y., Hu, T., Zhang, H., Wu, H., Wang, S., Ma, L.,
and Long, M. iTransformer: Inverted Transformers Are
Effective for Time Series Forecasting. In The Twelfth
International Conference on Learning Representations,
2023.

Luo, X., Peng, J., and Liang, J. Directed hypergraph at-
tention network for traffic forecasting. IET Intelligent
Transport Systems, 16(1):85–98, 2022. doi: 10.1049/itr2.
12130.

Luo, Y., Liu, Z., Wang, L., Wu, B., Zheng, J., and Ma,
Q. Knowledge-Empowered Dynamic Graph Network
for Irregularly Sampled Medical Time Series. In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Menne, M., Williams, Jr., C., and Vose, R. Long-term
daily and monthly climate records from stations across
the contiguous united states (u.s. historical climatology
network). 1 2016. doi: 10.3334/CDIAC/CLI.NDP019.

Mercatali, G., Freitas, A., and Chen, J. Graph Neural Flows
for Unveiling Systemic Interactions Among Irregularly
Sampled Time Series. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems, 2024.

Nie, Y., Nguyen, N. H., Sinthong, P., and Kalagnanam, J.
A Time Series is Worth 64 Words: Long-term Forecast-
ing with Transformers. In The Eleventh International
Conference on Learning Representations, 2022.

Rubanova, Y., Chen, R. T. Q., and Duvenaud, D. K. Latent
Ordinary Differential Equations for Irregularly-Sampled
Time Series. In Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc., 2019.

Sawhney, R., Agarwal, S., Wadhwa, A., Derr, T., and Shah,
R. R. Stock Selection via Spatiotemporal Hypergraph
Attention Network: A Learning to Rank Approach. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 35(1):497–504, 2021. ISSN 2374-3468. doi:
10.1609/aaai.v35i1.16127.

Schirmer, M., Eltayeb, M., Lessmann, S., and Rudolph,
M. Modeling Irregular Time Series with Continuous
Recurrent Units. In International Conference on Machine
Learning, pp. 19388–19405. PMLR, 2022.

Shang, Z., Chen, L., Wu, B., and Cui, D. Ada-MSHyper:
Adaptive Multi-Scale Hypergraph Transformer for Time
Series Forecasting. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems, 2024.

Shukla, S. N. and Marlin, B. Interpolation-Prediction Net-
works for Irregularly Sampled Time Series. In Interna-
tional Conference on Learning Representations, 2018.

Shukla, S. N. and Marlin, B. Multi-Time Attention Net-
works for Irregularly Sampled Time Series. In Interna-
tional Conference on Learning Representations, 2020.

Shukla, S. N. and Marlin, B. M. A Survey on Principles,
Models and Methods for Learning from Irregularly Sam-
pled Time Series. 2021. doi: 10.48550/arXiv.2012.00168.

Silva, I., Moody, G., Scott, D. J., Celi, L. A., and Mark,
R. G. Predicting In-Hospital Mortality of ICU Patients:
The PhysioNet/Computing in Cardiology Challenge 2012.
Computing in cardiology, 39:245–248, 2012.

Tashiro, Y., Song, J., Song, Y., and Ermon, S. CSDI: Con-
ditional Score-based Diffusion Models for Probabilistic
Time Series Imputation. In Advances in Neural Informa-
tion Processing Systems, volume 34, pp. 24804–24816.
Curran Associates, Inc., 2021.

Wen, H., Lin, Y., Xia, Y., Wan, H., Zimmermann, R., and
Liang, Y. DiffSTG: Probabilistic Spatio-Temporal Graph
Forecasting with Denoising Diffusion Models, 2023.

Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., and
Sahoo, D. Unified Training of Universal Time Series
Forecasting Transformers. In International Conference
on Machine Learning, pp. 53140–53164. PMLR, 2024.

Wu, H., Xu, J., Wang, J., and Long, M. Autoformer: Decom-
position Transformers with Auto-Correlation for Long-
Term Series Forecasting. In Advances in Neural Informa-
tion Processing Systems, volume 34, pp. 22419–22430.
Curran Associates, Inc., 2021.

Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., and Long, M.
TimesNet: Temporal 2D-Variation Modeling for General
Time Series Analysis. In The Eleventh International
Conference on Learning Representations, 2022.

Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., and Zhang,
C. Connecting the Dots: Multivariate Time Series Fore-
casting with Graph Neural Networks. In Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’20, pp. 753–
763. Association for Computing Machinery, 2020. ISBN
978-1-4503-7998-4. doi: 10.1145/3394486.3403118.

Yalavarthi, V. K., Madhusudhanan, K., Scholz, R., Ahmed,
N., Burchert, J., Jawed, S., Born, S., and Schmidt-Thieme,

10

HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

L. GraFITi: Graphs for Forecasting Irregularly Sampled
Time Series. Proceedings of the AAAI Conference on
Artificial Intelligence, 38(15):16255–16263, 2024. ISSN
2374-3468. doi: 10.1609/aaai.v38i15.29560.

Yan, Y., Qin, J., Chen, J., Liu, L., Zhu, F., Tai, Y., and
Shao, L. Learning Multi-Granular Hypergraphs for Video-
Based Person Re-Identification. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2899–2908, 2020.

Yi, K., Zhang, Q., Fan, W., He, H., Hu, L., Wang, P., An, N.,
Cao, L., and Niu, Z. FourierGNN: Rethinking Multivari-
ate Time Series Forecasting from a Pure Graph Perspec-
tive. In Thirty-Seventh Conference on Neural Information
Processing Systems, 2023.

You, J., Ma, X., Ding, Y., Kochenderfer, M. J., and
Leskovec, J. Handling Missing Data with Graph Repre-
sentation Learning. In Advances in Neural Information
Processing Systems, volume 33, pp. 19075–19087. Cur-
ran Associates, Inc., 2020.

Yu, G., Zou, J., Hu, X., Aviles-Rivero, A. I., Qin, J., and
Wang, S. Revitalizing Multivariate Time Series Fore-
casting: Learnable Decomposition with Inter-Series De-
pendencies and Intra-Series Variations Modeling. In
Forty-First International Conference on Machine Learn-
ing, 2024.

Yu, J., Tao, D., and Wang, M. Adaptive Hypergraph Learn-
ing and its Application in Image Classification. IEEE
Transactions on Image Processing, 21(7):3262–3272,
2012. ISSN 1941-0042. doi: 10.1109/TIP.2012.2190083.

Zhang, J., Zheng, S., Cao, W., Bian, J., and Li, J. Warp-
former: A Multi-scale Modeling Approach for Irregular
Clinical Time Series. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 3273–3285, 2023a. doi: 10.1145/3580305.
3599543.

Zhang, K., Wen, Q., Zhang, C., Cai, R., Jin, M., Liu,
Y., Zhang, J., Liang, Y., Pang, G., Song, D., and Pan,
S. Self-Supervised Learning for Time Series Analy-
sis: Taxonomy, Progress, and Prospects. 2023b. doi:
10.48550/arXiv.2306.10125.

Zhang, W., Yin, C., Liu, H., Zhou, X., and Xiong, H. Ir-
regular Multivariate Time Series Forecasting: A Trans-
formable Patching Graph Neural Networks Approach. In
Forty-First International Conference on Machine Learn-
ing, 2024.

Zhang, X., Zeman, M., Tsiligkaridis, T., and Zitnik, M.
Graph-Guided Network for Irregularly Sampled Mul-
tivariate Time Series. In International Conference on
Learning Representations, 2021.

Zhang, Y. and Yan, J. Crossformer: Transformer Utiliz-
ing Cross-Dimension Dependency for Multivariate Time
Series Forecasting. In The Eleventh International Confer-
ence on Learning Representations, 2022.

Zhou, D., Huang, J., and Schölkopf, B. Learning with
Hypergraphs: Clustering, Classification, and Embedding.
In Advances in Neural Information Processing Systems,
volume 19. MIT Press, 2006.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond Efficient Transformer
for Long Sequence Time-Series Forecasting. Proceedings
of the AAAI Conference on Artificial Intelligence, 35(12):
11106–11115, 2021. ISSN 2374-3468. doi: 10.1609/aaai.
v35i12.17325.

Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., and Jin, R.
FEDformer: Frequency Enhanced Decomposed Trans-
former for Long-term Series Forecasting. In International
Conference on Machine Learning, pp. 27268–27286.
PMLR, 2022.

11

HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

Table 4. Experimental results on five irregular multivariate time series datasets, evaluated using MAE. The experimental setup is the same
as Table 1.

Algorithm MIMIC-III MIMIC-IV PhysioNet’12 Human Activity USHCN
R

eg
ul

ar

higp 0.6529 ± 0.0003 0.5804 ± 0.0001 0.5183 ± 0.0140 0.3870 ± 0.0115 0.3411 ± 0.0003
MOIRAI 0.5790 ± 0.0000 0.3998 ± 0.0000 0.4937 ± 0.0000 0.1914 ± 0.0000 0.8274 ± 0.0000
FEDformer 0.5651 ± 0.0006 0.6469 ± 0.0157 0.4549 ± 0.0003 0.2897 ± 0.0009 0.3704 ± 0.0060
Ada-MSHyper 0.5354 ± 0.0024 0.4423 ± 0.0008 0.4579 ± 0.0002 0.2610 ± 0.0037 0.3186 ± 0.0074
Autoformer 0.5475 ± 0.0033 0.5477 ± 0.0096 0.4534 ± 0.0031 0.2178 ± 0.0062 0.4102 ± 0.0047
TimesNet 0.5232 ± 0.0012 0.4511 ± 0.0005 0.4538 ± 0.0005 0.2258 ± 0.0023 0.3378 ± 0.0021
iTransformer 0.5581 ± 0.0052 0.4875 ± 0.0068 0.4443 ± 0.0019 0.2018 ± 0.0024 0.3365 ± 0.0065
FourierGNN 0.5381 ± 0.0021 0.4499 ± 0.0016 0.4386 ± 0.0019 0.3764 ± 0.0069 0.4013 ± 0.0206
Mamba 0.5423 ± 0.0010 0.5612 ± 0.0034 0.4390 ± 0.0008 0.2330 ± 0.0006 0.3245 ± 0.0025
TSMixer 0.4949 ± 0.0003 0.3977 ± 0.0011 0.4351 ± 0.0004 0.2836 ± 0.0037 0.3010 ± 0.0033
PatchTST 0.5153 ± 0.0011 0.3246 ± 0.0006 0.4325 ± 0.0005 0.1723 ± 0.0014 0.3502 ± 0.0424
Leddam 0.4828 ± 0.0033 0.3985 ± 0.0018 0.4281 ± 0.0022 0.2003 ± 0.0008 0.3134 ± 0.0073
BigST 0.4734 ± 0.0004 0.3990 ± 0.0015 0.4012 ± 0.0005 0.2695 ± 0.0108 0.3322 ± 0.0029
Reformer 0.4724 ± 0.0004 0.4253 ± 0.0014 0.4117 ± 0.0002 0.2282 ± 0.0022 0.3136 ± 0.0042
Informer 0.4682 ± 0.0026 0.4592 ± 0.0044 0.4059 ± 0.0002 0.1833 ± 0.0010 0.3186 ± 0.0024
Crossformer 0.4961 ± 0.0092 0.4021 ± 0.0022 0.3954 ± 0.0054 0.2498 ± 0.0170 0.3322 ± 0.0058

Ir
re

gu
la

r

PrimeNet 0.6690 ± 0.0000 0.5879 ± 0.0001 0.6887 ± 0.0000 1.7268 ± 0.0001 0.4945 ± 0.0007
SeFT 0.6661 ± 0.0004 0.5895 ± 0.0005 0.6742 ± 0.0003 0.9923 ± 0.0006 0.4079 ± 0.0038
mTAN 0.6437 ± 0.0088 0.5184 ± 0.0057 0.4390 ± 0.0019 0.2181 ± 0.0032 0.3335 ± 0.0019
NeuralFlows 0.5490 ± 0.0013 0.4794 ± 0.0010 0.4604 ± 0.0014 0.3088 ± 0.0035 0.3144 ± 0.0032
CRU 0.5369 ± 0.0014 0.4558 ± 0.0011 0.5815 ± 0.0008 0.2572 ± 0.0040 0.3371 ± 0.0074
GNeuralFlow 0.5352 ± 0.0027 0.4899 ± 0.0003 0.4377 ± 0.0026 0.3146 ± 0.0016 0.2980 ± 0.0034
GRU-D 0.4891 ± 0.0138 0.5816 ± 0.0012 0.4065 ± 0.0003 0.3155 ± 0.0205 0.2923 ± 0.0019
Raindrop 0.4850 ± 0.0008 0.3879 ± 0.0032 0.4410 ± 0.0012 0.2174 ± 0.0046 0.3128 ± 0.0076
tPatchGNN 0.4293 ± 0.0039 0.3096 ± 0.0016 0.3825 ± 0.0024 0.1238 ± 0.0003 0.2928 ± 0.0068
Warpformer 0.4039 ± 0.0009 0.3142 ± 0.0022 0.3667 ± 0.0009 0.1296 ± 0.0013 0.2704 ± 0.0020
GraFITi 0.3923 ± 0.0010 0.3004 ± 0.0004 0.3621 ± 0.0007 0.1204 ± 0.0006 0.3029 ± 0.0145

HyperIMTS (Ours) 0.3800 ± 0.0009 0.2837 ± 0.0007 0.3598 ± 0.0002 0.1199 ± 0.0059 0.2773 ± 0.0064

A. Additional Experiments
A.1. Different Metrics

We present the results measured using MAE in Table 4, which follows the same experimental setup as Table 1. As can
be seen, HyperIMTS outperforms twenty-seven baselines on four of the five datasets and comes in second place on the
remaining one. The variance in results for the USHCN dataset remains high, similar to the findings from MSE evaluations,
as discussed in Section 5.2.

A.2. Varying Lookback Lengths and Forecast Horizons

We also assess performance across varying lookback and forecast horizons. For varying forecast horizons, we follow the
same settings in previous work (Zhang et al., 2024) and keep the lookback length settings the same as in Table 1. For
MIMIC-III, MIMIC-IV, and PhysioNet’12, the forecast horizon is set to 12 hours. For Human Activity, the forecast horizon
is 1000 milliseconds. For USHCN, the forecast horizon is set to 1 year. The results are summarized in Table 5, where we
select the most competitive baselines from Table 1 and include some well-known models for comparison, including five
MTS forecasting models and five IMTS models. It can be seen that HyperIMTS remains the overall best-performing model
evaluated based on ranking. We note that, unlike fully observed MTS, IMTS samples are typically split based on time
periods rather than the number of observations. The forecast settings here view 75% of the time period as the lookback
window, while the remaining 25% as the forecast window.

For varying lookback lengths, the results are shown in Figure 5. We keep the forecast horizons the same as in Table 5,
and varying the lookback lengths to: (1) MIMIC-III: 12, 24, and 36 hours; (2) MIMIC-IV: 12, 24, and 36 hours; (3)
PhysioNet’12: 12, 24, and 36 hours; (4) Human Activity: 1000, 2000, and 3000 milliseconds; (5) USHCN: 1, 2, and 3
years. As can be seen in the result, the forecasting performance of HyperIMTS generally improves with increasing lookback
length, except for MIMIC-III, where all models perform worse at 36 hours than at 24 hours. It is possible that the change in
temporal patterns, observed after a 24-hour stay for patients, may be responsible.

12

HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

Table 5. Experimental results on five irregular multivariate time series datasets evaluated using MSE, with the lookback length following
Table 1 and forecast horizons set to the rest length of the whole series, which are 12 hours for MIMIC-III, MIMIC-IV, and PhysioNet’12,
1000 milliseconds for Human Activity, and 1 year for USHCN.

Algorithm MIMIC-III MIMIC-IV PhysioNet’12 Human Activity USHCN

R
eg

ul
ar

Ada-MSHyper 0.7437 ± 0.0098 0.4305 ± 0.0035 0.4593 ± 0.0006 0.1627 ± 0.0027 0.5001 ± 0.0047
iTransformer 0.7825 ± 0.0061 0.4815 ± 0.0014 0.4545 ± 0.0020 0.0997 ± 0.0025 0.5624 ± 0.0051
PatchTST 0.6976 ± 0.0008 0.3704 ± 0.0010 0.4374 ± 0.0005 0.0868 ± 0.0006 0.6816 ± 0.1005
Informer 0.6606 ± 0.0063 0.3752 ± 0.0025 0.4050 ± 0.0004 0.0837 ± 0.0003 0.4337 ± 0.0013
Crossformer 0.6412 ± 0.0018 0.3624 ± 0.0022 0.4080 ± 0.0022 0.1656 ± 0.0289 0.4672 ± 0.0092

Ir
re

gu
la

r GNeuralFlow 0.7434 ± 0.0068 0.4826 ± 0.0020 0.4390 ± 0.0022 0.2074 ± 0.0281 0.4988 ± 0.0013
GRU-D 0.6367 ± 0.0020 0.4446 ± 0.0005 0.4059 ± 0.0006 0.1829 ± 0.0229 0.5320 ± 0.0056
tPatchGNN 0.5896 ± 0.0055 0.2881 ± 0.0008 0.3806 ± 0.0009 0.0601 ± 0.0005 0.5709 ± 0.0438
Warpformer 0.5664 ± 0.0020 0.2991 ± 0.0020 0.3730 ± 0.0008 0.0611 ± 0.0010 0.4531 ± 0.0005
GraFITi 0.5348 ± 0.0008 0.2722 ± 0.0008 0.3772 ± 0.0001 0.0596 ± 0.0007 0.4419 ± 0.0092

HyperIMTS (Ours) 0.5111 ± 0.0015 0.2328 ± 0.0005 0.3683 ± 0.0002 0.0589 ± 0.0020 0.4400 ± 0.0049

Figure 5. Forecasting performance with varying lookback lengths and fixed forecast horizons.

13

HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

Figure 6. Efficiency comparison with varying lookback lengths and fixed forecast horizons on MIMIC-III. The efficiency of non-padding
methods is relatively insensitive to the increase in lookback length.

A.3. Additional Efficiency Analysis

We further analyze the efficiency of non-padding, patch-aligned padding, and canonical padding approaches for different
lookback lengths. We fix the forecast horizons to 12 hours in MIMIC-III, and vary the lookback lengths from 12 to 36
hours. The results are summarized in Figure 6, where HyperIMTS and GraFITi are non-padding approaches, tPatchGNN
uses patch-aligned padding, and Warpformer as well as GNeuralFlow are canonical padding approaches. As can be seen,
efficiency for non-padding methods is relatively insensitive to increases in lookback length. Patch-aligned padding method
tPatchGNN also achieves relatively fast speed, but deteriorates quickly with the increase of lookback length. Non-padding
method Warpformer spends the highest amount of GPU memory as well as training time compared to others.

We also provide four additional efficiency comparisons on MIMIC-IV, PhysioNet’12, Human Activity, and USHCN using the
same settings as Table 1, and the results are summarized in Figure 7. They confirm the finding that efficiency of non-padding
methods is relatively insensitive to increases in lookback length, as MIMIC-IV and USHCN have larger max time length
than PhysioNet’12 and Human Activity. When the data volumn is small, non-padding methods have a similar base cost to
other approaches, explaining their slower performance on PhysioNet’12 and Human Activity. We also notice the unexpected
efficiency of Crossformer on MIMIC-IV. This may be attributed to the router mechanism in the cross-dimensional stage of
Crossformer, as MIMIC-IV has the largest number of variables among the five IMTS datasets.

In summary, HyperIMTS demonstrates superior overall performance while maintaining low computational costs across all
datasets and input settings. Non-padding approaches exhibit a similar base cost to other padding methods when the lookback
length is relatively small. However, their efficiency is insensitive to the increase in lookback length. Therefore, they can
generally use less memory and training time for longer inputs. Further improvements on non-padding methods can focus on
more efficient dependency modeling mechanisms, such as the router mechanism used in Crossformer.

A.4. Baseline Details

We briefly introduce each baseline model along with their key hyperparameter settings here. Unless otherwise specified,
we use a batch size of 16 for USHCN, and 32 for others. We try to use the same hyperparameter settings for learning rate,
hidden dimension, special loss functions, and number of layers from their original papers and codes, if available. Number of
epochs, early stopping patience, random seeds, and learning rates have been described in Section 5.1.3. For all classification
models, we replace the final softmax layer with a linear layer to enable forecasting.

A.4.1. METHODS FOR MTS

higp (Cini et al., 2024) uses hierarchical structure along variable dimension for traffic forecasting. The hidden dimension
is 512. The learning rate is 1× 10−3. Since the model requires pre-defined variable adjacency matrix in dataset, which is not
available for IMTS datasets, we borrow the idea from graph neural networks and replace it with graph learner in the model.

14

HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

(a) MIMIC-IV (b) PhysioNet’12

(c) Human Activity (d) USHCN

Figure 7. Efficiency comparisons on MIMIC-IV, PhysioNet’12, Human Activity, and USHCN. tPatchGNN and Warpformer run out of
GPU memory on MIMIC-IV and are not plotted. Efficiency for non-padding methods is similar to other approaches on shorter lookback
length like PhysioNet’12 and Human Activity, but they are less sensitive to the grouth of length, thus faster than most other methods on
MIMIC-IV and USHCN.

15

HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

MOIRAI (Woo et al., 2024) is a pretraining model for time series forecasting. We use the small version of the provided
pretrained configurations and weights, comprising 6 layers with hidden dimension 384. We finetune the model on IMTS
datasets with learning rate of 1× 10−4.

FEDformer (Zhou et al., 2022) is a frequency-enhanced decomposed transformer for MTS forecasting. The attention
factor is 3. The hidden dimension is 512. The learning rate is 1× 10−4.

Ada-MSHyper (Shang et al., 2024) uses hypergraphs for temporal multiscale learning in MTS forecasting. The window
size for multiscale is 4. The learning rate is 1× 10−3. We also use its node and hyperedge constrainted loss function for
training.

Autoformer (Wu et al., 2021) is a transformer variant with auto-correlation decomposition for MTS forecasting. The
attention factor is 3. The hidden dimension is 512. The learning rate is 1× 10−3.

TimesNet (Wu et al., 2022) uses 2-D variantion modeling for MTS analysis. The attention factor is 3. The hidden
dimension is 512. The dimension for FCN is 32. The learning rate is 1× 10−3.

iTransformer (Liu et al., 2023) exchanges the temporal and variable dimension for MTS forecasting. The hidden
dimension is 512. The learning rate is 1× 10−3.

FourierGNN (Yi et al., 2023) views all observated values as nodes in a graph, and perform graph learning in frequency
domain to forecast MTS. The hidden dimension is 512. The learning rate is 1× 10−3.

Mamba (Gu & Dao, 2024) is a selective state-space model for sequence modeling. The hidden dimension is 128. The
dimension for FCN is 16. The learning rate is 1× 10−4.

TSMixer (Chen et al., 2023) is an all-MLP model for MTS forecasting. The number of encoder layers is 2. The number
of decoder layers is 1. The attention factor is 3. The hidden dimension is 256. The dimension for FCN is 512. The learning
rate is 1× 10−4.

PatchTST (Nie et al., 2022) leverages patching in transformer for MTS forecasting. The patch lengths are 12, 90, 6,
300 and 10 for MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively. The number of encoder
layers is 3. The attention factor is 3. The number of heads in attention is 16. The learning rate is 1× 10−4.

Leddam (Yu et al., 2024) uses learnable seasonal-trend decomposition for MTS forecasting. The hidden dimension is
512. The learning rate is 1× 10−3.

BigST (Han et al., 2024) uses a spatio-temporal graph neural network for traffic forecasting. The hidden dimension is 32.
The dropout rate is 0.3. The learning rate is 1× 10−3.

Reformer (Kitaev et al., 2019) is an efficient implementation of the Transformer. The number of encoder layers is 2. The
number of decoder layers is 1. The attention factor is 3. The learning rate is 1× 10−4.

Informer (Zhou et al., 2021) is another efficient implementation of the Transformer for MTS forecasting. The hidden
dimension is 512. The learning rate is 1× 10−4.

Crossformer (Zhang & Yan, 2022) learns cross-dimensional dependencies for MTS forecasting. The segment lengths are
12, 360, 6, 300, and 3 for MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN respectively. The hidden
dimension is 512. The learning rate is 1× 10−3.

A.4.2. METHODS FOR IMTS

PrimeNet (Chowdhury et al., 2023) is an IMTS pretraining model. Since the provided weights are specific to datasets
with 41 variables, we retrain the model on all datasets. The patch lengths are 12, 180, 6, 300, and 10 for MIMIC-III,

16

HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

MIMIC-IV, PhysioNet’12, Human Activity, and USHCN respectively. The number of heads in attention is 1. The learning
rate is 1× 10−4.

SeFT (Horn et al., 2020) is a set-based method for IMTS classification. The number of layers is 2. The dropout rate is 0.1.
The learning rate is 1× 10−3.

mTAN (Shukla & Marlin, 2020) converts IMTS to reference points for IMTS classification. The number of reference
points are 32 on MIMIC-III and 8 on the rest datasets. The learning rate is 1× 10−3.

NeuralFlows (Biloš et al., 2021) is an efficient alternative to Neural ODE in IMTS analysis. The number of flow layers is
2. The latent dimension is 20. The hidden dimension for time is 8. The number of hidden layers is 3. The learning rate is
1× 10−3.

CRU (Schirmer et al., 2022) uses continuous recurrent units for IMTS analysis. The hidden dimension is 20. The learning
rate is 1× 10−3.

GNeuralFlow (Mercatali et al., 2024) enhances NeuralFlows with graph neural networks for IMTS analysis. The flow
model uses ResNet. The number of flow layers is 2. The latent dimension for input is 20. The latent dimension for time is 8.
The number of hidden layers is 3. The learning rate is 1× 10−3.

GRU-D (Che et al., 2018) adapts GRUs for IMTS classification. The hidden dimension is 512. The learning rate is
1× 10−3.

Raindrop (Zhang et al., 2021) models time-varying variable dependencies for IMTS classification. The hidden dimension
is 512. The learning rate is 1× 10−4.

tPatchGNN (Zhang et al., 2024) processes IMTS into patches and use graph neural networks for IMTS forecasting.
The patch lengths are 12, 360, 6, 300, and 10 for MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN,
respectively. The number of heads in attention is 1. The learning rate is 1× 10−3.

Warpformer (Zhang et al., 2023a) uses warping for multiscale modeling in IMTS classification. The hidden dimension is
64. The number of heads is 1. The dropout rate is 0. The number of layers is 3. The learning rate is 1× 10−3.

GraFITi (Yalavarthi et al., 2024) uses bipartite graphs for IMTS forecasting. The latent dimension is 128. The number of
heads in attention is 4. The numeber of layers is 2. The learning rate is 1× 10−3.

17

