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Abstract

Few-shot point cloud semantic segmentation remains a challenge in the
field of computer vision due to the limitations of the pre-training learn-
ing paradigm and insufficient local geometric structure representation. To
address this issue, we propose a novel pre-training-free Dynamic Taylor
Convolutional Neural Network, called DyTaylorCNN ingeniously, which
combines the potential of the Taylor series in local structure representa-
tion with the flexibility and adaptability of dynamic convolutions. The
core of DyTaylorCNN lies in two innovative components: the Dynamic
Taylor Convolution (DyTaylorConv) and the Interactive Prototype Refine-
ment (IPR) Module. Inspired by the Taylor series and dynamic convolution,
DyTaylorConv performs local structure fitting by collaborating between the
Low-order Convolution (LoConv) and the Dynamic High-order Convolution
(DyHiConv). LoConv is designed based on position encoding, focusing on
extracting the basic geometric information of point clouds, while DyHiConv
adaptively models complex local geometric features by learning spatial pri-
ors to generate dynamic weights. Moreover, the IPR Module effectively
reduces the domain distribution gap by learning fine-grained prototype fea-
tures, further enhancing the model’s generalization capability. Experimen-
tal results on multiple benchmark datasets demonstrate that the proposed
DyTaylorCNN significantly outperforms current state-of-the-art methods.

1 Introduction

In recent years, with the rapid development of 3D sensing technology, point cloud data
has been increasingly applied in fields such as autonomous driving (Zhao et al., 2023; Chib
& Singh, 2023), robotics (Soori et al., 2023; Goel & Gupta, 2020), and augmented reality
(Devagiri et al., 2022; Sereno et al., 2020). As a key task in 3D scene understanding, point
cloud semantic segmentation (Lai et al., 2022b) plays a crucial role in advancing these
applications. However, acquiring large-scale, high-quality annotated point cloud data often
requires substantial time and human resources, severely limiting the practical application
of traditional deep learning methods.
To alleviate the problem of data scarcity, researchers (Li et al., 2024; Xiong et al., 2024) have
begun to focus on few-shot learning strategies for point cloud segmentation tasks. These
methods aim to effectively segment new categories using only a small number of annotated
samples. Among them, Zhao et al. (Zhao et al., 2021b) first introduced few-shot learning
to point cloud semantic segmentation and proposed the AttMPTI method based on pre-
trained DGCNN (Wang et al., 2019). Subsequent works (Mao et al., 2022; Lai et al., 2022a;
Zhu et al., 2023) further improved feature extraction and prototype generation strategies,
enhancing model performance to some extent.
Nevertheless, applying few-shot learning to point cloud semantic segmentation still faces
numerous challenges. Firstly, as shown in Fig. 1a, existing methods generally rely on pre-
training learning paradigms, which not only increase time and computational costs but may
also lead to severe domain shift problems when facing unseen categories. Secondly, the
irregularity and sparsity of point cloud data make it a formidable task to effectively capture
local geometric structures, especially in few-shot scenarios where this problem becomes more
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Figure 1: (a) Top: Most existing methods are based on fine-tuning a pre-trained DGCNN,
followed by using query features to guide and align the prototype features. This two-stage
approach is not only time-consuming but also overlooks the importance of local structure
representation. Bottom: We propose a new DyTaylorCNN that requires no pre-training
and possesses strong local structure representation capabilities. Additionally, we design an
IPR module that effectively aligns query features with prototype features. (b) Our method
achieves the best results over state-of-the-art methods.

pronounced. Lastly, due to sample scarcity, the feature distribution in the support set may
significantly differ from that in the query set, affecting segmentation performance.
To address these issues, as illustrated in Fig. 1a, this paper proposes a novel Dynamic Tay-
lor Convolutional Network (DyTaylorCNN) for few-shot point cloud semantic segmentation
that requires no pre-training. Firstly, to effectively solve the problem of local structure rep-
resentation in point clouds, we designed the Dynamic Taylor Convolution (DyTaylorConv)
inspired by Taylor series (Rudin et al., 1964) and dynamic convolution (Yang et al., 2019).
This convolution views local structure representation as a polynomial fitting problem, using
Low-order Convolution (LoConv) based on position encoding to fit the flat parts of local
structures, and High-order Convolution (HiConv) to construct multiple high-dimensional
geometries in local neighborhoods to fit edges and details, thus more accurately capturing
subtle changes in local geometric information. Secondly, to effectively address the domain
difference between support and query sets, we designed the novel Interactive Prototype Re-
fining (IPR) Module. This module first learns coarse semantic category prototypes from the
support set, then enhances coarse prototypes by learning the spatial distribution of support
and query sets, and learns their common semantic space to generate more refined prototype
feature representations. This not only effectively reduces inter-domain distribution gaps but
also further improves the model’s generalization ability in few-shot scenarios. As shown in
Fig. 1b, our method achieves significant results in few-shot settings.
The main contributions of this paper can be summarized as follows:

1. We propose an novel DyTaylorCNN for few-shot point cloud semantic segmenta-
tion, which achieves excellent performance without time-consuming pre-training
processes.

2. We design an innovative DyTaylorConv, which ingeniously combines the expressive
power of Taylor series and dynamic convolution, significantly enhancing the model’s
ability to represent local geometric structures of point clouds.

3. We introduce a IPR Module, which employs a coarse-to-fine learning strategy to
generate fine-grained prototype features and effectively bridges the domain gap
between support and query sets.
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2 Related Work

Point Cloud Semantic Segmentation. Point cloud semantic segmentation (Wang et al.,
2022; Wu et al., 2022) is a crucial task in 3D scene understanding that has witnessed sig-
nificant advancements in recent years. Pioneering works such as PointNet (Qi et al., 2017a)
and PointNet++ (Qi et al., 2017b) established the foundation by directly processing point
cloud data through multi-layer perceptrons (MLPs). Subsequent research introduced in-
novative methods leveraging graph convolution, attention mechanisms, and multi-modal
approaches. For instance, DGCNN (Wang et al., 2019) proposed the EdgeConv operation
to capture inter-point relationships via dynamically constructed local graphs. Point Trans-
former (Zhao et al., 2021a) and its variants like Stratified Transformer (Lai et al., 2022b)
and Fast Point Transformer (Park et al., 2022) incorporated self-attention mechanisms to
effectively model long-range dependencies and improve processing efficiency. RandLA-Net
(Hu et al., 2020) achieved efficient large-scale point cloud segmentation through random
sampling and local feature aggregation. PointNeXt (Qian et al., 2022) introduced a scal-
able architecture suitable for various point cloud tasks. Despite these advancements, these
methods typically demand substantial annotated data for training, limiting their practical
applications. Moreover, they primarily focus on fully supervised scenarios, lacking adapt-
ability to novel categories or data-scarce situations.
Few-shot Point Cloud Semantic Segmentation. To address the data scarcity challenge
in point cloud semantic segmentation, few-shot learning approaches (Snell et al., 2017) have
gained significant attention. Zhao et al. (Zhao et al., 2021b) pioneered the application of
prototype networks to this domain, proposing the AttMPTI method. Subsequent research
primarily focused on feature enhancement, prototype optimization, and domain adapta-
tion. Notable contributions include the Bidirectional Feature Globalization (BFG) method
by Mao et al. (Mao et al., 2022), which improved performance through feature interac-
tion between support and query sets, and the Transformer-based SCAT method by Zhang
et al. (Zhang et al., 2023a), which utilized hierarchical attention mechanisms to capture
long-range dependencies. He et al. (He et al., 2023) introduced prototype adaptation and
projection techniques to optimize prototype representations, while Xu et al. (Xu et al.,
2023) proposed a robust few-shot segmentation framework to enhance domain adaptation
capabilities. Although these methods have shown improvements, they still face challenges in
effectively capturing complex local geometric structures and addressing domain differences,
necessitating more effective solutions.
Dynamic Convolution. Dynamic convolution enhances a model’s adaptability and ex-
pressive power by generating convolution kernels dynamically based on input data. In 2D
image processing, CondConv (Yang et al., 2019) implemented dynamic convolution by com-
bining multiple expert filters, significantly improving model performance without substan-
tially increasing parameter count. ODConv (Li et al., 2022) further refined this approach,
enabling dynamic adjustments across spatial, channel, and filter dimensions. Inspired by
these successes, researchers have extended dynamic convolution to 3D point cloud process-
ing. DyCo3D (He et al., 2021) introduced dynamic context learning to better capture local
point cloud features. KPConv (Thomas et al., 2019) generated dynamic convolution kernels
by learning local geometric structures, while PAConv (Xu et al., 2021) introduced a weight
bank and ScoreNet to dynamically assemble convolution kernels, adapting to the irregular
structure of point clouds. However, existing 3D dynamic convolution methods primarily
rely on combining multiple convolution kernels through attention coefficients, leaving room
for improvement in fine-grained semantic understanding of local geometric structures.

3 Method

In this section, we first introduce the definition of few-shot 3D point cloud semantic segmen-
tation. Then, we present the definitions of Taylor series and dynamic convolution. Next, we
introduce our proposed dynamic Taylor convolution. Following that, we describe our inter-
active prototype refinement module. Finally, we present the dynamic Taylor convolutional
neural network (see Fig. 2) built upon the dynamic Taylor convolution and interactive
prototype refinement module.

3
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Figure 2: The architecture of DyTaylorCNN for few-shot point cloud semantic segmentation.
(a) The backbone network centers around DyTaylorConv, a novel local feature extraction
module inspired by the Taylor series. DyTaylorConv combines with FPS and Grouping
to form the DyTaylor Block, which is stacked with upsampling operations to construct
the encoder-decoder structure. (b) The Interactive Prototype Refinement (IPR) module,
designed to reduce the feature distribution discrepancy between query and support sets.
It consists of two key components: the Prototype Enhancement Module (PEM) and the
Prototype Refinement Module (PRM). The IPR module is parameter-efficient and can be
easily integrated into other few-shot learning frameworks as a plug-and-play component.

3.1 Taylor Series and Dynamic Convolution

Taylor Series (Rudin et al., 1964) is a local polynomial approximation of a function,
allowing precise representation of a function near a given point with a finite number of
polynomial terms. For a smooth function f(x) at position x0, the Taylor series expansion
at point x0 can be expressed as:

f(x) ≈ f(x0) +

∞∑
n=1

f (n)(x0)

n!
(x− x0)

n, (1)

where f (n)(x0) represents the n-th order derivative of f(x) at x0, and n is the order of
expansion.
Dynamic Convolution (Yang et al., 2019) aims to enhance the modeling capability of
networks by dynamically generating convolution kernels based on input data. Taking the
dynamic convolution used in PAConv (Xu et al., 2021) as an example, for a point cloud
with coordinates P = {pi|i = 1, . . . , N} ∈ RN×3 and corresponding input features F =
{fi|i = 1, . . . , N} ∈ RN×Cin , the output features after dynamic convolution are G = {gi|i =
1, . . . , N} ∈ RN×Cout , where Cin and Cout are the input and output feature channel numbers.
Thus, convolution in the point cloud domain can be expressed as:

gi = A({w(pj)fj |pj ∈ N (pi)}), (2)

where A represents the aggregation function, typically max pooling, average pooling, or
summation. N (pi) and pj denote the local neighborhood of the center point pi and neigh-
boring points, respectively. w(pj) represents the weight corresponding to the feature fj of
pj . In dynamic convolution, w(pj) is usually composed of multiple weights wt(pi), with
attention coefficients αt(pi) generated for each weight in a data-driven manner:
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w(pj) =

T∑
t=1

αt(pj)⊙ wt(pj), (3)

where ⊙ denotes element-wise multiplication. Dynamic convolution in the point cloud do-
main can be expressed as:

gi = A({
T∑

t=1

(αt(pj)⊙ wt(pj))fj |pj ∈ N (pi)}). (4)

By comparing Eq. 4 and Eq. 1, we can observe that dynamic convolution can be viewed as
a simplified version of Taylor series in representing local point cloud structures. However,
it overlooks the description of high-order term features for local point cloud details and the
importance of relative features in local structures.

3.2 Dynamic Taylor Convolution

Inspired by Taylor series (Rudin et al., 1964) and dynamic convolution (Yang et al., 2019), we
designed a novel Dynamic Taylor Convolution (DyTaylorConv) by combining their strengths
to capture local geometric structures more precisely. The dynamic Taylor convolution con-
sists of two parts: Low-order Convolution (LoConv) and Dynamic High-order Convolution
(DyHiConv). DyTaylorConv can be expressed as:

gi = gLi + gDH
i , (5)

where gLi and gDH
i represent the outputs of LoConv and DyHiConv, respectively.

Low-order Convolution. We adopt the design of PointNN (Zhang et al., 2023b), utilizing
Nonparameterless Trigonometric Functions (NTF) to encode basic local structural informa-
tion. First, we map the point cloud coordinates pi and color information ci ∈ R3 to the
same dimension as their features, then add their information and apply a non-linear trans-
formation to obtain a high-dimensional representation of basic structural information. The
LoConv can be formulated as:

gLi = A({Wlf
′
j |pj ∈ N (pi)}), (6)

f ′
j = (fp

j + f c
j + fj)/3, (7)

fp
j = [sin(αpj/β

6i
d ), cos(αpj/β

6i
d )] ∈ Rd, i = 1, · · · , d, (8)

where f c
j is obtained similarly to fp

j . α and β represent the wavelength and amplitude
hyperparameters of the trigonometric functions, respectively. Wl ∈ RCin×Cout denotes the
non-linear transformation matrix.
Dynamic High-order Convolution. To capture the details of complex local geometric
structures, we draw inspiration from dynamic convolution (Yang et al., 2019) to generate
multiple convolution weights using input information. Borrowing from the Taylor series
concept, we use different orders of neighboring points pj and center point pi to capture
different levels of information in local structures. Thus, DyHiConv (see Fig. 3(c)) can be
expressed as:

gDH
i = ϕ1g

1
i + ϕ2g

2
i + · · ·+ ϕNgVi , (9)

where gvi = A(T (fi, fj)|pj ∈ N (pi)) represents High-order Convolution(HiConv), V is the
number of HiConv, and T (fi, fj) = (

wj⊙(fj−fi)
|wj⊙(fj−fi)| )

s ⊙ |wj ⊙ (fj − fi)|p is a novel affine basis

5
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function we designed, which can simulate the high-order terms of Taylor series and is called
a high-order neuron. Here, | ⊙ | represents element-wise absolute value, s ∈ {0, 1}, and p is
a learnable parameter.
ϕn represents the attention assembly coefficient of HiConv, which is also constructed from
explicit geometric information hj , specifically:

ϕv =
exp(Wvhj)∑V
t=1 exp(Wthj)

, (10)

where Wv ∈ R10×1 denotes the non-linear transformation matrix.
Explicit Structure Introduction. We use the coordinates of neighboring points pj and
center point pi as basic geometric elements to construct the weight wj for HiConv, which can
be expressed as wj = Whhj . Here, hj = [pi, pj , pj − pi, ∥pi, pj∥] ∈ R10, and Wh ∈ R10×Cout

denotes the non-linear transformation matrix. The introduction of explicit geometric infor-
mation facilitates the learning of relative spatial layout relationships between points and
the capture of local geometric features and details.

3.3 Interactive Prototype Refinement Module

Due to the significant domain difference in feature distribution between support and query
sets, directly using prototypes generated from the support set for segmentation may lead
to performance degradation. To address this issue, we propose the Interactive Prototype
Refinement (IPR) Module (see Fig. 3), which consists of two key components: Prototype
Enhancement Module (PEM) and Prototype Refinement Module (PRM), which transforms
coarse prototypes into fine-graine d prototypes through two sub-modules: prototype en-
hancement and prototype refinement.
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Figure 3: IPR module. It consists of two key
components: Prototype Enhancement Mod-
ule (PEM) and Prototype Refinement Mod-
ule (PRM). IPR effectively reduces the fea-
ture distribution discrepancy between query
and support sets, enhancing the model’s few-
shot learning capability. This module is
parameter-efficient and can be easily inte-
grated into various few-shot learning frame-
works.

First, we perform local max pooling and
mapping along the point dimension of sup-
port features Fs ∈ RM×C and query fea-
tures Fq ∈ RM×C separately to learn the
statistical characteristics of each channel.
We also further map the prototype features
Fp ∈ R(K+1)×C to increase their flexibility.
The specific formulas are as follows:

Fs = MaxPooling(Fs)×W1 ∈ RM ′×C ,
(11)

Fq = MaxPooling(Fq)×W1 ∈ RM ′×C ,
(12)

Fp = Fp ×W2 ∈ RK×C , (13)

where W1 ∈ RC×C and W2 ∈ RC×C rep-
resent learnable non-linear transformation
matrices, and MaxPooling denotes local
max pooling.
Prototype Enhancement Module. First, we learn self-enhancement attention coeffi-
cients from the features of query set and support set separately, i.e., As = W3(F

T
s Fs) ∈

RC×C and Aq = W3(F
T
q Fq) ∈ RC×C , then obtain the updated prototype features

F self
p = Softmax(As)Fp + Softmax(Aq)Fp, where W3 ∈ RC×C represents a learn-

able non-linear transformation matrix. Then we obtain the enhanced prototype features
F cross
p = Softmax(Across) ⊙ Fp by learning the mutual information of support set and
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query set, where Across = FT
q Fs ∈ RC×C . Therefore, the prototype features output by the

PEM are as follows:

F e
p = F self

p + F cross
p + Fp. (14)

Prototype Refinement Module. To further utilize the difference between query set and
support set features to refine the prototypes, we calculate the delta-refinement degree of
the feature difference between query set and support set to alleviate domain bias, i.e.,
△G = FT

q Fq − FT
s Fs, then obtain F delta

p = sigmoid(△G) ⊙ F e
p . Furthermore, we obtain

the enhanced prototype features F e_cross
p = Softmax(Across) ⊙ F e

p by cross-refinement
operation, where Across = FT

q Fs ∈ RC×C . Therefore, the PRM are as follows:

F r
p = F delta

p + F e_cross
p + F e

p . (15)

The output of the PRM serves as the fine-grained prototype of the IPR module for matching
with query features.

4 Experiments

For information about the architecture and experimental details of DyTaylorCNN, please
refer to the Appendix A.

4.1 Datasets and Evaluation Metrics

We evaluate DyTaylorCNN on two widely used 3D point cloud datasets: S3DIS (Armeni
et al., 2016) and ScanNet (Dai et al., 2017).
To conduct few-shot learning experiments, we divide the categories of each dataset into two
non-overlapping subsets, denoted as S0 and S1. When one subset is designated as the test
set, the other subset serves as the training set.
Evaluation Metric : We adopt the mean Intersection over Union (mIoU), a widely used
metric for point cloud segmentation tasks, as our performance evaluation metric.

4.2 Comparison with existing methods

To evaluate our method, we compared it with DGCNN (Wang et al., 2019), ProtoNet (?),
MPTI (Zhao et al., 2021b), AttMPTI (Zhao et al., 2021b), BFG (Mao et al., 2022), 2CBR
(Zhu et al., 2023), PAP3D (He et al., 2023), Seg-PN (Zhu et al., 2024).
Results analysis on the S3DIS dataset. On the S3DIS dataset, DyTaylorCNN demon-
strated exceptional performance. As shown in Table 1, in the 2-way 1-shot setting, DyTay-
lorCNN achieved an average mIoU of 71.95%, surpassing the previous best method Seg-PN
(Zhu et al., 2024) by 5.54 percentage points. In the more challenging 3-way 1-shot setting,
DyTaylorCNN reached an average mIoU of 66.26%, exceeding Seg-PN (Zhu et al., 2024)
by 6.49 percentage points. These results highlight DyTaylorCNN’s powerful feature ex-
traction and generalization capabilities even with extremely limited labeled data. Notably,
DyTaylorCNN maintained the best performance across all settings, including 5-shot scenar-
ios, demonstrating the method’s consistency and stability. These significant improvements
indicate that DyTaylorCNN can more effectively capture local geometric features of point
clouds and excel in few-shot learning tasks.
Results analysis on the ScanNet dataset. DyTaylorCNN also exhibited impressive per-
formance on the ScanNet dataset. As illustrated in Table 2, in the 2-way 1-shot setting,
DyTaylorCNN achieved an average mIoU of 71.96%, outperforming Seg-PN (Zhu et al.,
2024) by 8.22 percentage points. In the 3-way 1-shot setting, DyTaylorCNN attained an
average mIoU of 70.97%, surpassing Seg-PN (Zhu et al., 2024) by 7.40 percentage points.
Particularly noteworthy is the 3-way 5-shot setting, where DyTaylorCNN achieved an aver-
age mIoU of 72.65%, exceeding Seg-PN (Zhu et al., 2024) by 7.05 percentage points, one of
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Table 1: Few-shot Results (%) on S3DIS. Si denotes the split i is used for testing. Avg is
their average mIoU. The best results are shown in bold. The underline indicates the second
best result.

Method Param.
2-way 3-way

1-shot 5-shot 1-shot 5-shot
S0 S1 Avg S0 S1 Avg S0 S1 Avg S0 S1 Avg

DGCNN 0.62 M 36.34 38.79 37.57 56.49 56.99 56.74 30.05 32.19 31.12 46.88 47.57 47.23
ProtoNet 0.27 M 48.39 49.98 49.19 57.34 63.22 60.28 40.81 45.07 42.94 49.05 53.42 51.24
MPTI 0.29 M 52.27 51.48 51.88 58.93 60.56 59.75 44.27 46.92 45.60 51.74 48.57 50.16
AttMPTI 0.37 M 53.77 55.94 54.86 61.67 67.02 64.35 45.18 49.27 47.23 54.92 56.79 55.86
BFG - 55.60 55.98 55.79 63.71 66.62 65.17 46.18 48.36 47.27 55.05 57.80 56.43
2CBR 0.35 M 55.89 61.99 58.94 63.55 67.51 65.53 46.51 53.91 50.21 55.51 58.07 56.79
PAP3D 2.45 M 59.45 66.08 62.76 65.40 70.30 67.85 48.99 56.57 52.78 61.27 60.81 61.04
Seg-PN 0.24 M 64.84 67.98 66.41 67.63 71.48 69.56 59.11 60.42 59.77 59.48 64.72 62.10
DyTaylorCNN 0.68 M 71.17 72.70 71.95 71.57 74.10 72.84 63.52 68.99 66.26 66.72 69.64 68.18

Improvement - +6.33 +4.72 +5.54 +3.94 +2.62 +3.28 +4.41 +8.57 +7.24 +7.24 +4.92 +6.08

Table 2: Few-shot Results (%) on ScanNet. Si denotes the split i is used for testing. Avg is
their average mIoU. The best results are shown in bold. The underline indicates the second
best result.

Method Param.
2-way 3-way

1-shot 5-shot 1-shot 5-shot
S0 S1 Avg S0 S1 Avg S0 S1 Avg S0 S1 Avg

DGCNN 1.43 M 31.55 28.94 30.25 42.71 37.24 39.98 23.99 19.10 21.55 34.93 28.10 31.52
ProtoNet 0.27 M 33.92 30.95 32.44 45.34 42.01 43.68 28.47 26.13 27.30 37.36 34.98 36.17
MPTI 0.29 M 39.27 36.14 37.71 46.90 43.59 45.25 29.96 27.26 28.61 38.14 34.36 36.25
AttMPTI 0.37 M 42.55 40.83 41.69 54.00 50.32 52.16 35.23 30.72 32.98 46.74 40.80 43.77
BFG - 42.15 40.52 41.34 51.23 49.39 50.31 34.12 31.98 33.05 46.25 41.38 43.82
2CBR 0.35 M 50.73 47.66 49.20 52.35 47.14 49.75 47.00 46.36 46.68 45.06 39.47 42.27
PAP3D 2.45 M 57.08 55.94 56.51 64.55 59.64 62.10 55.27 55.60 55.44 59.02 53.16 56.09
Seg-PN 0.24 M 63.15 64.32 63.74 67.08 69.05 68.07 61.80 65.34 63.57 62.94 68.26 65.60
DyTaylorCNN 0.68 M 71.07 72.84 71.96 72.63 74.48 73.56 69.76 72.17 70.97 72.97 72.33 72.65

Improvement - +7.92 +8.52 +8.22 +5.55 +5.43 +5.49 +7.96 +6.83 +7.40 +10.03 +4.07 +7.05

the largest improvements across all settings. These results not only demonstrate DyTaylor-
CNN’s excellent performance across different datasets but also showcase its superior ability
in handling more complex scenarios and effectively utilizing additional samples. DyTaylor-
CNN’s outstanding performance on the ScanNet dataset further validates its effectiveness
and generalization capability in point cloud few-shot semantic segmentation tasks.

4.3 Ablation experiments

4.3.1 Ablation experiments of DyHiConv

Table 3a demonstrates a clear improvement trend as we increase HiConv from 1 to 8 in the 2-
way-1-shot setting on the S3DIS dataset. Starting with a single HiConv, the model achieves
an average mIoU of 70.10%, consistently improving to a peak of 71.95% with 8 HiConv. The
most significant improvement occurs between 1 and 2 convolutions, with a 0.73% increase
in average mIoU, suggesting that even one additional HiConv significantly enhances the
model’s ability to capture complex local geometric features. However, the improvement
rate gradually decreases beyond 4 convolutions, indicating a potential saturation effect.
The marginal gain from 6 to 8 convolutions is only 0.42%, implying diminishing returns.
This trend suggests that DyTaylorCNN effectively leverages the increased representational
power of multiple HiConv to better model intricate geometric relationships in point cloud.

4.3.2 Ablation experiments of explicit structure hj

Table 3b shows a consistent improvement as more geometric information is incorporated
into hj . With only neighboring point coordinates [pj ], the model achieves an average mIoU
of 70.70%. Adding center point coordinates [pi, pj ] increases performance to 71.32%, sug-
gesting the importance of relative positioning. Including relative displacement [pi, pj , pj−pi]
further improves mIoU to 71.77%, indicating that explicit spatial relationships benefit local

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a)

Number 2-way-1-shot
S0 S1 Avg

1 68.03 72.16 70.10
2 69.07 72.58 70.83
4 70.09 72.42 71.26
6 70.41 72.64 71.53
8 71.17 72.70 71.95

(b)

Number
2-way-1-shot

S0 S1 Avg

[pj ] 69.55 71.84 70.70
[pi, pj ] 70.42 72.21 71.32

[pi, pj , pj − pi] 70.98 72.56 71.77
[pi, pj , pj − pi, ∥pi, pj∥] 71.17 72.70 71.95

Table 3: (a) Effect of the number of HiConv on DyTaylorCNN. We report the results
(%) under 2-way-1-shot settings on S3DIS datasets. (b) Effect of explicit structure hj on
DyTaylorCNN. We report the results (%) under 2-way-1-shot settings on S3DIS datasets.

(a)

Number 2-way-1-shot
S0 S1 Avg

ABF 70.12 71.60 70.86
RBF 62.64 63.11 62.88
s=0 69.56 70.96 70.26
s=1 71.17 72.70 71.95

(b)

PEM PRM 2-way-1-shot
S0 S1 Avg

7 7 48.78 51.81 50.30
✓ 7 69.32 71.82 70.57
7 ✓ 68.44 71.66 70.05
✓ ✓ 71.17 72.70 71.95

Table 4: (a) Effect of HiConv’s Parameters on DyTaylorCNN. We report the results (%)
under 2-way-1-shot settings on S3DIS datasets. (b) Effect of different composition of IPR
on S3DIS under 2-way-1-shot settings on the S0 and S1 split.

structure understanding. The best performance (71.95% mIoU) is achieved with the most
comprehensive representation [pi, pj , pj − pi, |pi, pj |], which includes Euclidean distance be-
tween points. This configuration shows a 1.25% improvement over the baseline. These
results underscore the significance of rich geometric feature representation.

4.3.3 Ablation experiments of HiConv

Table 4a demonstrate the significance of the parameter s in shaping the model’s effectiveness.
The Affine Basis Function (ABF) configuration achieves a respectable average mIoU of
70.86%, indicating its capability in capturing local geometric features. However, the Radial
Basis Function (RBF) setup performs notably worse, with an average mIoU of 62.88%,
suggesting its limited ability to model complex point cloud structures in this context. Setting
s = 0 yields an average mIoU of 70.26%, which is competitive but not optimal. The
best performance is achieved when s = 1, resulting in an average mIoU of 71.95%. This
configuration outperforms all others, demonstrating a 1.09% improvement over ABF and a
substantial 9.07% gain over RBF. These results highlight the importance of the directional
component in HiConv when s = 1. This setting allows the model to capture both magnitude
and direction information in local point neighborhoods.

4.3.4 Ablation experiments of IPR

Table 4b presents the ablation study of the Interactive Prototype Refinement (IPR) module,
comprising the Prototype Enhancement Module (PEM) and Prototype Refinement Module
(PRM). Without PEM or PRM, the model achieves an average mIoU of 50.30%. Introducing
PEM alone significantly boosts performance to 70.57%, a 20.27% improvement, underscoring
PEM’s crucial role in enhancing prototype features. PRM alone yields a slightly lower but
still significant improvement, reaching 70.05% mIoU. This suggests PRM effectively refines
prototypes, albeit less effectively than PEM in isolation. The full IPR module, combining
both PEM and PRM, achieves the best performance with 71.95% mIoU, surpassing individ-
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Figure 4: (a) Ablation for Number of Encoder Layers in 2-way-1-shot setting on the S3DIS
dataset. (b) The visualization of different shapes of HiConv.

ual submodule performances by 1.38% and 1.90% respectively. This synergy indicates that
PEM and PRM complement each other.

4.3.5 Ablation experiments of different numbers of Encoder Layers

Figure 4a illustrates the performance of Seg-PN and DyTaylorCNN across different numbers
of encoder layers on the S3DIS dataset. DyTaylorCNN achieves its peak performance with
three encoder layers, reaching an mIoU of 71.17%. This suggests that three layers provide an
optimal balance between feature learning capacity and model complexity for DyTaylorCNN.
The performance slightly decreases with four layers (70.61% mIoU) and further declines with
five layers (69.54% mIoU), possibly due to overfitting or the vanishing gradient problem in
deeper networks.Seg-PN shows a similar trend, but it also fails to achieve the high perfor-
mance levels of DyTaylorCNN. This consistent superiority highlights DyTaylorCNN’s more
effective architecture for capturing local point cloud structures.

4.4 Visualization of Geometric Structure of HiConv

Fig. 4b illustrates the geometric versatility of HiConv under various parameter settings.
When s = 0, p = 1 and fi = 0, HiConv functions as an Affine Basis Function (ABF),
representing a hyperplane (Fig. 4b(g)). With s = 0 and p = 2, it becomes a Radial Basis
Function (RBF), forming an isotropic closed hypersphere (Fig. 4b(d)). The parameter s
influences output feature directionality and Signed Cosine Power (HiConv) closure, while p
determines neuron morphology. As p increases from 1/3 to 4 (Figs. 4b(a-c, e)), the shape
evolves from concave to convex. Fig. 4b(f) shows the neuron’s response when fi = 0,
and Fig. 4b(h) demonstrates HiConv’s ability to model complex, asymmetric relationships.
This adaptability allows HiConv to flexibly fit various geometric structures in point clouds,
enabling more nuanced feature extraction for tasks like semantic segmentation by fine-tuning
s and p and learning appropriate wj from local geometric priors.

5 Conclusion

This paper introduces the DyTaylorCNN for few-shot point cloud semantic segmentation,
addressing domain gap and insufficient local geometric structure representation challenges.
DyTaylorCNN’s core innovations lie in the DyTaylorConv and the IPR module. DyTaylor-
Conv captures geometric features through LoConv and DyHiConv, while the IPR Module
reduces domain distribution gaps between support and query sets. Extensive experiments
demonstrate our method’s superior performance across various few-shot settings. Despite
significant progress, limitations remain, such as the computational cost of power exponent
operations in HiConv. Future work will focus on exploring more efficient model architectures,
extending DyTaylorCNN to larger-scale point cloud, integrating with other modalities, and
investigating potential applications in other point cloud understanding tasks.
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A Appendix

A.1 Problem Definition

In this study, we focus on the few-shot 3D point cloud semantic segmentation task, adopting
the episodic learning paradigm to divide the dataset into seen classes Cseen and unseen
classes Cunseen. Each few-shot task is constructed as an N-way K-shot problem, comprising
a support set S and a query set Q. The support set S consists of K labeled point cloud
samples for each of the N categories, where each sample Pn,k

s ∈ RL×(3+f0) is accompanied
by its binary mask Mn,k

s ∈ RL×1. The query set Q contains H point cloud samples P i
q ∈

RL×(3+f0) to be segmented. L represents the number of point clouds. f0 represents the
dimension of the point feature. Our objective is to leverage the limited annotations in
the support set to accurately segment the query set point clouds, classifying them into N
target classes and 1 background class. To achieve this, we transform the task into a point-
level similarity matching problem, employing feature encoding, prototype generation, and
similarity calculation to perform segmentation.

A.2 The details of Dynamic Taylor Convolutional Neural Network

First, we adopt the SegNN (Zhu et al., 2024) approach to perform a parameterless high-
dimensional mapping of the initial input features through trigonometric function encoding,
mapping them to a high-dimensional space of dimension 60. Then we construct the dy-
namic Taylor Block with farthest point sampling-grouping-dynamic Taylor convolution as
the basic component. We then stack three dynamic Taylor Blocks as the encoder of the
dynamic Taylor convolutional neural network, with dimensions of 120, 240, 480 for each
encoder. The decoder uses reverse interpolation algorithm to restore the resolution of the
point cloud. Between the encoder and decoder, we adopt a skip connection structure similar
to Unet, fully utilizing contextual information. The support set and query set pass through
the encoder and decoder separately to obtain the corresponding features Fs and Fq. Then,
we use masked average pooling on the support set features Fs to generate coarse prototypes
Fp for K+1 classes. Next, we pass these prototypes through the interactive prototype refine-
ment module to obtain fine-grained prototype features F r

p . Finally, we perform similarity
matching between the query set features Fq and F r

p to accurately segment points that the
model has not seen before.

A.3 Datesets

S3DIS dataset (Armeni et al., 2016) comprises 3D RGB point clouds from 272 rooms
across 6 indoor environments. Each point is annotated with one of 13 semantic labels (12
semantic categories plus clutter). Following the setup in (Zhao et al., 2021b), we divide each
point cloud scene into 1m × 1m blocks and randomly sample 2048 points from each block.
The final S3DIS dataset is partitioned into 7547 blocks.
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ScanNet dataset (Dai et al., 2017) contains a total of 1513 scanned scenes. All points,
except for unannotated spaces, are labeled with one of 20 semantic categories. Following
the processing method in (Zhao et al., 2021b), the ScanNet dataset is divided into 36350
blocks, each containing 2048 points.
Table 5 provides a list of class names for the S0 and S1 splits of both the S3DIS and ScanNet
datasets.

Table 5: Seen and Unseen Classes Split for S3DIS and ScanNet. We follow Zhao et al.
(2021b) to evenly assign categories to S0 and S1 splits.

S0 S1

S3DIS beam, board, bookcase,
ceiling, chair, column

door, floor, sofa,
table, wall, window

ScanNet

bathtub, bed, bookshelf,
cabinet, chair, counter,

curtain, desk, door,
floor

other furniture, picture,
refrigerator, show curtain,

sink, sofa, table,
toilet, wall, window

A.4 Implementation Details

We implement our method using the PyTorch framework, with all experiments conducted
on a single NVIDIA GeForce RTX 4090 GPU. The experiments are performed under the N-
way K-shot setting, where N takes values from {2, 3} and K from {1, 5}. For each setting,
we randomly sample 100 test episodes and report the average mIoU results. Training is
conducted on the seen category set Cseen, while testing is performed on the unseen category
set Cunseen to evaluate the model’s generalization capability.
For N-way K-shot tasks, we generate K prototypes for each category and use their average
as the final prototype for that category. In the dynamic Taylor convolution, we set α = 2π
and β = 30 for the LoConv, and initialize the learnable power exponent p to 1 for the
HiConv. The local neighborhood is constructed using the k-NN algorithm, selecting 16
nearest neighbors. In the IPR module, the stride for local max pooling is set to 32.
We adopt the episodic learning paradigm for training. In each training batch, we construct
an episode containing a support set and a query set. The support set is randomly selected
from N-way K-shot samples, while the query set is randomly drawn from N samples of
unseen categories. To optimize model parameters, we employ the cross-entropy loss function
to calculate the difference between query set predictions and ground truth labels. We use
the AdamW optimizer (β1= 0.9, β2 = 0.999) to update network parameters, with an initial
learning rate of 0.001, which is halved every 7000 iterations.

A.5 The impact of the number of input point clouds

Table 6: Robustness of DyTaylorCNN with different number of point clouds.

Number of points 1024 2048 4096 6092
DyTaylorCNN 66.48 71.17 70.02 63.87

Table 6 demonstrates the performance variations of DyTaylorCNN under different point
cloud densities. The model shows a notable increase in performance from 1024 to 2048
points, with mIoU improving from 66.48% to a peak of 71.17%. This significant boost sug-
gests that DyTaylorCNN benefits from the increased geometric information provided by a
moderate increase in point density. However, as the number of points further increases to
4096, there’s a slight performance decline to 70.02%, indicating that the model maintains
robust performance even with higher point densities. A more substantial drop is observed
at 6092 points, where the mIoU decreases to 63.87%. This trend suggests that while Dy-
TaylorCNN can effectively utilize additional point information up to a certain threshold,
extremely high point densities may introduce challenges in feature extraction or increase
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model complexity beyond optimal levels. The model’s peak performance at 2048 points
indicates an ideal balance between information richness and computational efficiency.

A.6 Ablation Experiment on Hyperparameters of NTF

Table 7 presents the ablation study for the parameter β in the Nonparameterless Trigono-
metric Functions (NTF) used in the LoConv of DyTaylorCNN. The results demonstrate the
significant impact of β on the model’s performance. The model’s performance exhibits a
non-linear relationship with β. Starting from a lower value of 10, the mIoU increases as β
grows, reaching a peak of 71.17% at β = 30. This optimal value suggests that a moder-
ate amplitude in the trigonometric functions provides the best encoding of local structural
information.
Performance decreases for values both below and above the optimal β = 30. Lower values
(10, 20) may result in insufficient feature discrimination, while higher values (40, 60) could
lead to overfitting or loss of fine-grained details. Interestingly, very high β values (80, 100)
show a slight performance recovery, possibly due to the capture of larger-scale structures.
The 4.35% mIoU difference between the best (β = 30) and worst (β = 10) performances
underscores the critical role of β in NTF. This sensitivity highlights the importance of careful
tuning for optimal point cloud feature encoding in DyTaylorCNN, balancing between local
detail preservation and global structure capture.

Table 7: Ablation for Parameter β in NTF.

β 10 20 30 40 60 80 100
DyTaylorCNN 66.82 67.63 71.17 68.79 67.65 69.45 69.07
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