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ABSTRACT

Traditional Graph Neural Networks (GNNs) assume an ideal distribution of in-
dependent and identically distributed (i.i.d) data, a rarely met condition in real-
world datasets. Therefore, how to address distribution shifts between training
and testing sets becomes paramount in GNNs. Recently, the rationale learn-
ing method has garnered much attention as a graph generalization method. It
first divides the graph into label-related rationale subgraphs and label-unrelated
non-rationale ones. Then, it creates diverse training distributions by combin-
ing different non-rationales with rationales. Finally, by exploring the invariant
rationales across training distributions, the performance of GNNs facing out-
of-distribution (OOD) graphs is boosted. However, this method still faces two
problems: (i) when combining non-rationales with rationales, it commonly ran-
domly samples a non-rationale and combines it with the rationale. This may in-
advertently produce duplicate samples. (ii) the relationship between the ratio-
nales, non-rationales and labels is not properly considered, where non-rationales
and labels should be de-correlated compared to the rationales. To address these
problems, we propose a Combine and Compare (CoCo) with non-rationales for
Graph Rationale Learning method with the conditional non-rationale sampling.
Specifically, from the framework of rationale learning, CoCo first employs the
diverse sampling method to sample non-rationales, avoiding sampling duplicate
non-rationales. Besides, we introduce a non-rationale progressive hard sampling
method to de-correlate hard non-rationales and labels, enhancing the model’s dis-
crimination ability. Extensive experiments on both benchmarks and synthetic
datasets demonstrate the effectiveness of our method for OOD graphs. Code is
released at https://anonymous.4open.science/r/CoCo-5410/.

1 INTRODUCTION

Graph neural networks (GNNs) (Li et al., 2022; Xu et al., 2019; Scarselli et al., 2008) have merged as
a fundamental model to solve realistic problems in different fields such as social networks (Fan et al.,
2019; Barabâsi et al., 2002) and biological networks (Xinyi & Chen, 2018; Eisenberg & Levanon,
2003). By leveraging the inherent graph structure, GNNs have demonstrated remarkable efficacy in
capturing the intricate relationships and dependencies in these real-world scenarios.

Despite the enormous success, incumbent works have made spectacular achievements based on the
assumption that samples across both train and test sets obey the independent and identically dis-
tributed distribution (i.i.d). However, this distribution is overly idealistic for datasets collected from
the real world. When confronted with out-of-distribution (OOD) graphs, GNNs’ performance sig-
nificantly deteriorates, thereby constraining their application in real-world scenarios (Ying et al.,
2019). Considering Figure 1, we make predictions regarding the motif type by leveraging the graph
consisting of motifs and bases subgraphs. In the training set, there are two types of frequently occur-
ring graphs (i.e. Circle-motif with Ladder-base and House-motif with Tree-base). This prevailing
Motif -Base combinations may mislead traditional GNNs (Figure 1(a)) to learn the statistical depen-
dency between motifs and bases for excellent performance, instead of exploring the real relationship
between graphs and labels. As a result, when dealing with Circle-Tree or House-Ladder (i.e., the
OOD data), the probability of predicting it to be circle or house decreases.
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Figure 1: An illustration of graph OOD problem and generalization. (a) Traditional GNNs heavily
rely on spurious correlations in the dataset to make predictions, such as the statistical dependency
(frequently occurring Circle-Ladder graphs), leading them to prone to mistakes when faced with
OOD data (Circle-Tree). (b) The rationale learning framework consisting of the Separator, Rationale
& Non-Rationale Mixture and Classifier modules. Since this method identifies invariant rationales
across diverse training distributions, it can alleviate the graph OOD problem.

To solve this problem, numerous methods have been proposed. Among them, the rationale learning
method (Chang et al., 2020; Wu et al., 2022b; Miao et al., 2022; Liu et al., 2022) (Figure 1(b)) has
received increasing attention, which extracts a subset of the graph as the rationale to best support
model prediction while keeping the rationale invariant across different data distributions. As shown
in Figure 1, the circle subgraphs in the Circle-Ladder graph are referred to the rationale.

Figure 1(b) presents the framework of rationale learning for graph generalization that involves three
modules: (1) Separator, which can be formulated as function fS(gi), extracting rationale subgraphs
ri (label-related features) from the input graph gi accompanied by the rest non-rationale subgraphs
ei (label-unrelated features). (2) Rationale & Non-Rationale Mixture, which can be formulated as
function AGG(ri, ej), combining rationale subgraphs ri with other non-rationales ej (i ̸= j) to cre-
ate multiple training distributions to increase the diversity of data. Meanwhile, since the rationales
do not change, labels of the mixed data remain unchanged. (3) Classifier, which can be formulated
as function fC(·), predicting the graph class based on both the rationale generated by Separator
and the mixed data (fC(AGG(ri, ej))). Finally, by approaching the real rationales that are invari-
ant across different distributions, this rationale learning approach can improve the generalizability
of GNNs. Although this approach is promising, it still suffers from the following two problems:

Firstly, In the Rationale & Non-Rationale Mixture, most approaches (Fan et al., 2022; Sui et al.,
2022; Liu et al., 2022) employ the non-rationale based augmentation methods to create diverse
training data, which “randomly” sample a non-rationale in a batch to combine with the rationale.
Although this approach enables the rapid creation of training distributions, there is a risk that such
randomized operations may sample similar non-rationales to the separated non-rationales. For ex-
ample, assuming Ladder is the separated non-rationale of the Circle-Ladder graph, after the ran-
domized operations, the combined non-rationale may be still Ladder. In such a setup, too many
“duplicate” samples may be created, which have the potential to reduce the effectiveness of the
model training process and further negatively affect the final results.

Besides, in the Classifier, it is common to employ both the rationale and mixed data for prediction,
focusing on the invariance of the relationship between the rationale and label across various train
distributions. However, this type of approach ignores the partial order relationship between ratio-
nales and non-rationales, where non-rationales and labels should be de-correlated compared to the
rationales. Therefore, this method may result in the separated non-rationales still containing part of
the information of rationales, thereby diminishing the effectiveness of the rationale learning.

To address the above problems, in this paper, following the framework presented in Figure 1(b),
we propose the Combine and Compare (CoCo) with non-rationales for Graph Rationale Learning
method with conditional non-rationale sampling. Specifically, we first generate rationale and non-
rationale subgraphs using a Separator. Then, in the Rationale & Non-Rationale Mixture module,
we introduce a diverse sampling method for non-rationale based augmentation. Different from the
“randomized” operations, diverse sampling is to select non-rationales that significantly differ from
the anchor non-rationales to combine with rationales, avoiding sampling “duplicate” non-rationales.
Next, in the Classifier, to de-correlate non-rationales and labels, we develop a non-rationale progres-
sive hard sampling for exploiting the partial order relationship of rationales and non-rationales. It
employs a percentile-based strategy to gradually screen out a set of hard non-rationales similar to
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the anchor rationales, enhancing the model’s ability to discriminate between the two and ensuring
a stable rationale learning process. Finally, we conduct extensive experiments on both benchmarks
(Hu et al., 2020) and synthetic datasets to validate the effectiveness of CoCo on OOD graphs.

2 RELATED WORKS

Graph generalization. A foundational assumption in Graph Neural Networks (GNNs) is that train-
ing and testing set are independent and identically distributed distribution. Regrettably, this assump-
tion seldom aligns with the intricate realities of real-world scenarios, resulting in a sharp perfor-
mance degradation on OOD data. Faced with this challenge, recent research efforts have focused
on the generalization capabilities of GNNs (Garg et al., 2020; Knyazev et al., 2019). Some re-
search addressed the OOD at the node-level classification, such as EERM (Wu et al., 2022a; Fan
et al., 2022). This paper focuses on the graph-level generalization (Miao et al., 2022). Recently,
researchers utilized rationalization techniques to identify rationales subset of the input graph for
graph classification by invariant leaning (Li et al., 2022; Wu et al., 2022b) and graph augmentation
(Liu et al., 2022). DIR (Wu et al., 2022b) focuses on causal rationales that remain invariant through
controlled random interventions on the training distribution. Liu et al. (2022) augments original
graph by random removing and replacing non-rationales to strengthen the rationale representation
learning against the noise signals brought by the non-rationale subgraphs. Altough the effectiveness
of rationale learning in enhancing generalization, the random interventions on distribution or graph
data augmentation are obviously thoughtless. In the light, our work rethinks the graph rationale
learning’s objective and proposes a reasonable sampling method for the objective accordingly.

Data Sampling. One key component of our framework is to sample non-rationales in comparisons
with rationales and for non-rationale based augmentation, which is most relevant to sampling strat-
egy technology applied in some domains like natural language processing (Mikolov et al., 2013),
recommendation (Rendle & Freudenthaler, 2014), contrastive learning (Robinson et al., 2020) etc.
One classical approach is static sampling strategies which sample instances based on a predefined
distribution, such as uniform and popularity distribution corresponding to random sampling (Ren-
dle et al., 2009) and popularity-based sampling (Caselles-Dupré et al., 2018; Mikolov et al., 2013)
respectively. However, static methods cannot adjust to model training, suffering from low qual-
ity of samples. Adaptive sampling (Rendle & Freudenthaler, 2014) was proposed later, such as
DNS (Zhang et al., 2013) which dynamically selects hard samples that are difficult for the current
model to discriminate. Most work (Robinson et al., 2020; Ge et al., 2023) uses sampling methods to
select samples based on the objectives of different tasks and model training. Nonetheless, few works
have explored this issue in the study of rationale & non-rationale. In this work, we design an adap-
tive sampling strategy for non-rationale variables, considering both the rationale & non-rationale
partial order learning and non-rationale based augmentation.

3 METHODOLOGY

In this study, we employ the graph classification task to evaluate the effectiveness of our method in
addressing the OOD problem at the graph level. We first show the problem definition (Section 3.1).
Subsequently, following the rationale learning framework (Section 3.2), we provide a comprehensive
description of our conditional non-rationale sampling method (Section 3.3). Finally, we present the
optimization and inference procedures employed in our study (Section 3.4).

3.1 PROBLEM DEFINITION

Graph Classification with Rationalization. A graph classification task involves assigning a category
or label to a given graph based on its structural properties or attributes. Consider a set of labeled
graphs G = {(gi, yi)}ni , where gi = (V, E) represents the i-th graph, V is the set of nodes, E is the
set of edges and yi is its corresponding label. The goal of graph classification with rationalization is
first to learn a separator fS(gi) to generate the probability of each node being rationale Mi ∈ R|V|.
Then, given the graph node representation Hi which is encoded by any GNN, we can further obtain
the rationale subgraph representation as ri = Pooling(Mi ⊙ Hi). Finally, we employ a classifier
fC(ri) to yield the task results based solely on ri. For example, given a motif type graph consisting
of Circle and Ladder in Figure 1, the goal is to extract the Circle subgraph in the latent space to
make predictions.
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Graph Generalization. Given the graph training set of n instances G1 = {(gi, yi)}ni from training
distribution P1 = (g, y) and the testing set G2 from testing distribution P2 = (g, y), where P1 ̸= P2.
Note that the testing distribution is unknown during the training stage. The goal is to train a separator
fS(·) and a classifier fC(·) on training set G1 that achieve generalization on testing set G2.

f∗
S , f

∗
C = arg min

fS ,fC
Eg,y∼P2

[ℓ (fC(fS(g)), y)] . (1)

3.2 FRAMEWORK OF RATIONALE LEARNING

In this paper, we roughly follow the framework of rationale learning presented in Figure 1(b) which
consists of the Separator, Rationale & Non-Rationale Mixture and Classifier modules. Differently,
in our framework, we additionally consider the partial order relation between the rationale and the
non-rationale in the classifier.

3.2.1 RATIONALE & NON-RATIONALE SEPARATING

To acquire the rationale and non-rationale subgraphs from the input graph gi in a batch, we follow
(Liu et al., 2022) to use a node-level mask Mi ∈ R|V| indicating the probability of each node in a
graph with |V| nodes belonging to the rationale subgraph:

Mi = σ(MLP1(GNN1(gi))) ∈ R|V|×d, (2)
where σ is a sigmoid function, GNN1(·) can be any GNN encoders, such as GIN (Xu et al., 2019)
or GCN (Kipf & Welling, 2017). Conversely, the probability belonging to the non-rationale graph
can be presented as 1|V| − Mi. Then, we use another encoder GNN2 to obtain the representation
H = GNN2(·) ∈ R|V|×d of the node itself. Next, we can get the rationale and non-rationale
representation (ri and ei) in the latent space :

ri = Pooling(Mi ⊙H) ∈ Rd, ei = Pooling((1|V| −Mi)⊙H) ∈ Rd, (3)
where ⊙ is the element-wise product to get the nodes representations and Pooling (e.g., sum pool-
ing) combines them into the graph-level representation.

3.2.2 RATIONALE & NON-RATIONALE MIXTURE LEARNING

In this subsection, we illustrate the Rationale & Non-Rationale Mixture method by introducing non-
rationale based augmentation methods. The non-rationales can be viewed as spurious correlations
or noise of the graphs. In order to enhance the robustness of the model, we combine the anchor
rationale ri with all the other non-rationales ej ∈ EB = {e1, e2, ..., eB} in the batch, and we
construct the new graph representation hi:

hi = AGG(ri, ej), ej ∈ EB . (4)
The combination function AGG(·) can be any combining/pooling function, here we use the element-
wise sum pooling. Finally, we can collect a B-size batch of graph mixtures H = {h1, h2, ..., hB}.
Besides, since the rationales do not change, labels of the mixed data remain unchanged. With the
mixed data, we can obtain multiple train data and further enhance the robustness of the model.

3.2.3 CLASSIFIER AND PARTIAL ORDER LEARNING

After acquiring the rationale and non-rationale representation (ri and ei), in the classifier, the pre-
diction score ŷri and ŷei based on them are produced by the classifier fC(·):

ŷri = fC(ri), ŷei = fC(ei). (5)
Having acquiring the yi with the rationale ri, the loss function for input graphs gi in a batch can be
defined as:

LR = −
∑

ri∈RB

(yi log ŷri + (1− yi) log(1− ŷri)). (6)

Then, considering the B-size batch of graph mixtures H = {h1, h2, ..., hB}, we can train the model
with the binary cross entropy loss:

LM = − 1

B

∑
hi∈HB

(yi log ŷhi + (1− yi) log(1− ŷhi)). (7)
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Figure 2: Conditional non-rationale sampling for graph generalization.
Finally, to mine the relative poverty between rationales and non-rationales, in the classifier, we addi-
tionally design a Rationale & Non-Rationale partial order learning method. Specifically, in previous
works, rationales representations are label-related features while non-rationales representations are
label-unrelated features, so we naturally propose to learn the partial order between rationales and
non-rationales. This can be defined that the prediction score on the label by rationale ri should be
higher than arbitrary non-rationale ej : ŷri > ŷej .

As for optimization, we use a widely-used pairwise optimization in recommender systems: BPR
loss (Rendle et al., 2012; Lian et al., 2020), which maximizes the difference between the predicted
probability of a positive pair and a negative pair. Similarly, Rationale & Non-Rationale partial order
learning can be formulated in the following to maximize the predicted probability between rationale
prediction score ŷri and non-rationale prediction score ŷej :

LP = − 1

B

B∑
i=1

lnσ(ŷri − ŷej ). (8)

3.3 CONDITIONAL NON-RATIONALE SAMPLING

From the above framework, we can find in both Rationale & Non-Rationale mixture and partial
order learning, how to sample a non-rationale is quite significant. Simple “random” sampling may
introduce invalid samples, rendering this randomized operation unsuitable. Therefore, in this sub-
section, we introduce our Combine and Compare (CoCo) with non-rationales for Graph Rationale
Learning method with Conditional Non-rationale Sampling method (Figure 2), which consists of
diverse sampling and progressive sampling.

3.3.1 DIVERSE SAMPLING

In section 3.2.2, we have discussed that through replacing the originally separated non-rationale
subgraph with the other non-rationale subgraphs can enhance the model’s robustness against diverse
noise signals. However, the current common random sampling methods likely sample the non-
rationale ej which is closed to the non-rationale ei separated from the input graph gi. It will make
very few limited contributions for the classifier to successfully classify the new graph with mixture
hi. Therefore, the intention of sampling for graph augmentation is to select diverse non-rationale
subgraphs that are far from the anchor separated non-rationales. Here we give a formal definition of
Non-rationales Diversity of each sample conditional on the original non-rationale ei below:

Definition 1 (Non-rationales Diversity). Given a non-rationales set EB = {e1, e2, ..., eB}, the
diversity for the non-rationale ej is defined with the softmax of cosine similarities sim(·, ·) between
ej and ei:

q(ej |ei) = 1− sim(ei, ej)∑
ej′∈EB

sim(ei, ej′)
, (9)

where the larger q(ej |ei), the more diverse. Here, there is no need to calculate all non-rationales in a
batch. We first randomly select Kd instances into a new non-rationale set EKd

= {e1, e2, ..., eKd
}.

Then, the graph mixture set HKd
is generated by Eq.(4) for predicting the label. Finally, by con-

sidering this diversity as the confidence weight of each sample, we reformulate the augmentation
optimization Eq.(7) in the following way:

LM = −
∑

hi∈HKd

q(ej |ei) · (yi log ŷhi + (1− yi) log(1− ŷhi)), (10)

which pays more attention to diverse non-rationales. By the way, if the proposal distribution
q(ej |ei) = 1

Kd
and Kd = B, Eq.(10) is degraded back to Eq.(7).
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3.3.2 PROGRESSIVE HARD SAMPLING

In this subsection, we introduce the progressive hard sampling concerning Rationale & Non-
Rationale partial order learning. The general sample case is randomly sampling the non-rationales
separated in a batch to be negative non-rationales to the anchor rationale. However, choosing nega-
tives in the “random” manner may not be the best choice. Prior works (Formal et al., 2022; Kalan-
tidis et al., 2020) has shown the effectiveness of hard sample mining in pair-wise learning, which
is to find samples that are difficult for the current model to discriminate. Similarly, the hard non-
rationales should be close to the current rationale in the latent space. In that, we define non-rationale
hardness should be conditional on the current rationale ri as follows:

Definition 2 (Non-rationales Hardness). Given a non-rationales set EB = {e1, e2, ..., eB} and the
anchor rationale ri, the hardness for non-rationales ej is the softmax cosine similarities sim(·, ·)
between ri and arbitrary ej:

p(ej |ri) =
sim(ri, ej)∑

ej′∈EB
sim(ri, ej′)

, (11)

through the defined hardness, we screen out those non-rationales whose hardness p(ej |ri) are too
small by setting a hardness lower percentile pl ∈ [0, 100], selecting non-rationales whose hardness
meets p(ej |ri) > pl .

However, Ridnik et al. (2021); Chen et al. (2021); Ding et al. (2020) point out that sampling hard
instances still confronts a big challenge. That is when the representations tend to be unstable in
the initial learning, selecting hard ‘non-rationales’ will exclude rationale in fact. Inspired by Wu
et al. (2020a), we set a window percentile range wt = [ptl , pu] to progressively generate a hard
non-rationale set EC :

wt = [ptl , pu], p
t
l , pu ∈ [0, 100],

EC = {e1, e2, ..., eKp |p(ej |ri) ∈ wt},
(12)

where upper percentile pu is to control the non-rationale to not be too hard concerning the current
rational ri. The ptl linearly grows up with epoch number t in order to stably learn the partial order
between rationales and non-rationales from the easy to hard level.

3.4 OPTIMIZATION AND INFERENCE

During the training stage, we train final loss by the Rationales prediction, Non-rationale based Aug-
mentation, and Rationale & Non-rationale partial order learning cooperatively:

LF = LR + α · LM + β · LP , (13)

where α, β are trade-off hyper-parameters that balances these losses. By the way, the classification
loss functions is based on binary classification for illustration. In multi-class classification, we
use the Categorican Cross-entropy instead. During the inference stage, the label yri predicted by
rationale ri serves as the final predicted label.

4 EXPERIMENTS

In this section, we conduct experiments to demonstrate that CoCo can effectively alleviate the OOD
problem on graphs. Specifically, we first introduce the experimental setup (Section 4.1), followed
by the main results (Section 4.2) and the detailed analyses of our model (Section 4.3 - 4.5).

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

• Spurious-Motif (Ying et al., 2019; Wu et al., 2022b). A synthetic dataset created for the purpose
of predicting the category of motifs within each graph. Specifically, each graph consists of two
subgraphs: the motif subgraph (represented as Circle, House, Crane, with values R = 0, 1, 2),
and the base subgraph (represented as Tree, Ladder, Wheel, with values E = 0, 1, 2). Notably,
the motif subgraph is considered as the rationale at the graph label while the base subgraph can
be viewed as the non-rationale. To evaluate the effectiveness of CoCo, we manually generate
several datasets. Details are in Appendix B.1.
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• MNIST-75SP (Knyazev et al., 2019). Each graph in this dataset is converted from an image
in MNIST (LeCun et al., 1998) using super-pixels. To simulate distribution shifts in the node
features, random noises are introduced into the testing set.

• Open Graph Benchmark (OGBG) (Wu et al., 2020b). It’s a widely used dataset for machine
learning on graphs, specifically focusing on molecular property prediction. We used four OGBG-
Mol datasets: MolHIV, MolBACE, MolBBBP, and MolSIDER. These datasets are divided using
default splits, ensuring that each split contains a distinct set of scaffolds.

More data statistics about the datasets are depicted in Appendix B.2.

4.1.2 IMPLEMENTATION DETAILS

We give the detailed configurations of experiments. First, we adopt the same 5-layer GNN (i.e.,
GIN (Xu et al., 2018)) with hidden dimension 32, 64 and 128 for MNIST-75SP, Spurious-Motif and
OGBG, respectively. As for the loss hyper parameter in Eq.(13), we set α = 0.3 and β = 1 for all
the datasets. Concerning sampling details, in diverse sampling, we set the Kb as 8 for MNIST-75SP
and Spurious-Motif, 16 for OGBG. In progressive hard sampling, the window lower percentile pl
and upper percentile pu are set as 10 and 90 for all the dataset1. As for the maximum training epochs,
we set 30 for MNIST-75SP and Spurious-Motif, while 400 for OGBG dataset. We train the model
with train set and evaluate on development set after every epoch, and stop training if evaluation
value does not increase for a patience epoch number. The patience is set as 10 for MNIST-75SP
and Spurious-Motif, while 40 for OGBG dataset. The batch size is set to 256. And the learning
rate of the Adam optimizer (Kingma & Ba, 2014) is initialized as 5e-3 for Spurious-Motif, 1e-2 for
MNIST-75SP while 1e-3 for OGBG dataset. All the experiments are conducted five times and the
performance is reported with the mean and standard deviations results.
4.1.3 BASELINES AND METRICS

We compare our model with a wide range of state-of-the-art approaches, as described below:
• DIR (Wu et al., 2022b) introduces an invariant learning approach that identifies causal rationales

invariant to perturbations by random interventions.
• DisC (Fan et al., 2022) is a disentangled GNN framework the learns causal and bias subgraphs

by synthesizing the counterfactual unbiased training samples.
• GREA (Liu et al., 2022) augments original graph by random removing and replacing environ-

ments to strengthen the rationale representation learning against the noise signal brought by the
environment subgraphs.

• CAL (Sui et al., 2022) addresses the issue of spurious correlations in Graph Neural Network
(GNN) by debiasing the confounding effects shortcut features in the input graph.

• GSAT (Miao et al., 2022)learn a invariant subgraphs under distribution shifts by the attention-
based inherent Graph Neural Networks (GNNs).

• DARE (Yue et al., 2022) is an advanced rationale approach applied in natural language under-
standing tasks which incorporates disentanglement to enhance the extraction of rationales. Here
we extend its application to elucidating GNNs for extensive comparisons.

Based on previous works (Miao et al., 2022), we evaluate models’ performance on MNIST-75SP
and Spurious-Mot with ACC (accuracy), and on the OGBG-class datasets with ROC-AUC.

4.2 MAIN RESULTS

The main results on Spurious-Motif and MINIST-75SP are reported in Table 1, while the results
on OGBG are illustrated in Table 2. From these tables, we find that our proposed CoCo method
outperforms all baselines in all metrics, except for GSAT on MINIST-75SP, demonstrating the ef-
fectiveness of our proposed conditional non-rationale sampling method.

More specifically, on the Spurious-Motif dataset, CoCo demonstrates a consistently superior per-
formance. Especially when the bias is 0.5, CoCo exhibits a remarkable improvement of 12.85% in
accuracy compared to the state-of-the-art baseline (i.e., DARE). When considering the performance
MNIST-75sp dataset, GAST surpasses all other methods by a large margin. This superior perfor-
mance may be attributed to the unique compatibility between GAST and the MNIST-75SP dataset,

1As we introduced in Section 3.3.2, the lower percentile pl linearly grows, i.e., ptl = pl + ( t
T
) · (pu − pl),

where t is the current epoch number, T is the maximum training epochs.
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Table 1: The graph classification accuracy (mean±std%, the best results are bolded) on MNIST-
75SP and Spurious-Motif.

Method Spurious-Motif MNIST-75SPbias = 0.5 bias = 0.7 bias = 0.9
GIN 0.4444 ± 0.0621 0.4891 ± 0.0761 0.4131 ± 0.0652 0.1201 ± 0.0042
DisC 0.4585 ± 0.0660 0.4885 ± 0.1154 0.3859 ± 0.0400 0.1262 ± 0.0113
DIR 0.3950 ± 0.0471 0.3872 ± 0.0531 0.3768 ± 0.0447 0.1893 ± 0.0458

GREA 0.4251 ± 0.0458 0.5331 ± 0.1509 0.4568 ± 0.0779 0.1172 ± 0.0021
CAL 0.4734 ± 0.0681 0.5541 ± 0.0323 0.4474 ± 0.0128 0.1258 ± 0.0123

GSAT 0.4517 ± 0.0422 0.5567 ± 0.0458 0.4732 ± 0.0367 0.2381 ± 0.0186
DARE 0.4843 ± 0.1080 0.4002 ± 0.0404 0.4331 ± 0.0631 0.1201 ± 0.0042

CoCo(Ours) 0.6128 ± 0.0585 0.5964 ± 0.0449 0.4896 ± 0.0440 0.1946 ± 0.0249

Table 2: The graph classification AUC (mean±std%, the best results are bolded) on OGBG datasets.
Method MolHIV MolBBBP MolBACE MolSIDER

GIN 0.7447 ± 0.0293 0.6584 ± 0.0224 0.8047 ± 0.0172 0.5977 ± 0.0176
DisC 0.7731 ± 0.0101 0.6963 ± 0.0206 0.8293 ± 0.0171 0.5846 ± 0.0169

GREA 0.7714 ± 0.0153 0.6953 ± 0.0229 0.8187 ± 0.0195 0.5864 ± 0.0052
DIR 0.6303 ± 0.0607 0.6460 ± 0.0139 0.7391 ± 0.0282 0.4989 ± 0.0115
CAL 0.7339 ± 0.0077 0.6582 ± 0.0397 0.7848 ± 0.0107 0.5965 ± 0.0116

GSAT 0.7524 ± 0.0166 0.6722 ± 0.0197 0.7021 ± 0.0354 0.6041 ± 0.0096
DARE 0.7836 ± 0.0015 0.6820 ± 0.0246 0.8239 ± 0.0192 0.5921 ± 0.0260

CoCo(Ours) 0.8053 ± 0.0135 0.7077 ± 0.0073 0.8275 ± 0.0129 0.6052 ± 0.0160

as its performance appears to degrade significantly when applied to other datasets. In the case of
the real-world datesets OGBG, CoCo also achieves really advanced performance, on the MolHIV,
MolBBBP and MolSider sub-datasets. These findings sufficiently prove that our proposed CoCo
method can alleviate the distribution shifts between the train set and test set.

4.3 COMPONENT EFFECTIVENESS

To validate the effectiveness of each component we designed in CoCo, we conduct experiments
on the real-word dataset OGBG with several ablated variants. Specifically, We disassemble CoCo
by removing the rationale & non-rationale mixture learning (Eq.(10), CoCo-M), and Partial order
learning (Eq.(8), CoCo-P). As illustarted in Table 3, The performance of two variants, CoCo-P and
CoCo-M, shows marked decreases, demonstrating the vital role each module plays in the overall
system. The worst performance is observed in CoCo-PM, which removes both two modules, further
validating the necessity and non-redundancy of our design. Interestingly, the performance declines
of CoCo-P and CoCo-M are close, suggesting these two sampling strategy (i.e., diversive sampling
and progressive sampling) play equally significant roles in the overall performance.

4.4 MODEL SENSITIVITY

Diverse Sampling Sensitivity. As we introduced in Section 3.3.1, we sample Kd non-rationales
in a batch for graph augmentation. In this part, we investigate the sensitivity of sample number Kd

of CoCo. Figure 3 (a) shows the CoCo’s performance on Spurious-Motif (Bias=0.7) and OGBG-
MolBBBP’s results are in Appendix C.2. The ACC/AUC performance initially increases, peaks, and
then either decreases or stabilizes. This trend can be explained by our selection of Kd non-rationale
samples in a batch. As Kd increases beyond a certain point, it introduces some samples that are not
non-rationales. This inclusion can disrupt the non-rationale based augmentation process, leading
to a potential decrease or plateau in performance. Besides, we show the performance of CoCo-
random by replacing the diversity sampling with random sampling. We find that CoCo performs
well when the sample number is small, while CoCo-random requires more non-rationale instances
to enrich graph augmentation. It verifies that the non-rationale based augmentation equipped with
diverse sampling significantly aids the learning process. In this way, CoCo can be applied to more
situations, especially when the batch size cannot scale accordingly with the dataset scales.

Table 4: The mean AUC of window upper-
percentile on Spurious-Motif dataset.

Datasets Bias=0.5 Bias=0.7 Bias=0.9
CoCo (pu=70) 0.5694 0.5556 0.4748
CoCo (pu=80) 0.5717 0.5484 0.4796
CoCo (pu=100) 0.5937 0.5285 0.4503
CoCo (pu=90) 0.6128 0.5964 0.4896

Progressive Hard Sampling Sensitivity. In pro-
gressive hard sampling part (Section 3.3.2), we set
a window percentile range [ptl , pu] to progressively
generate a hard non-rationale set, where upper per-
centile pu is to control the non-rationale to not be
too hard. In Table 4, we change the hyperparameter
pu and report the performance on the Spurious-Motif
dataset. From this table, we find that too larger or smaller pu will both lead to obvious decreases
in model performance. This observation aligns with theoretical expectations. On the one hand,
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Table 3: The mean accuracy performance of ablated variants on OGBG dataset.
Datasets MolHiv MolBBBP MolBACE MolSIDER

CoCo-PM 0.7624 ± 0.0116 0.6560 ± 0.0157 0.7892 ± 0.0031 0.5776 ± 0.0209
CoCo-P 0.7899 ± 0.0146 0.6792 ± 0.0132 0.8068 ± 0.0184 0.5825 ± 0.0224
CoCo-M 0.7845 ± 0.0254 0.6673 ± 0.0067 0.7964 ± 0.0208 0.5837 ± 0.0114
CoCo 0.8053 ± 0.0135 0.7077 ± 0.0073 0.8275 ± 0.0129 0.6052 ± 0.0160

(b) Loss Hyperparameters (d) Motif: House  Base: Tree&Wheel(a) Effects on Spurious-Motif (c) Rationale Performance

Figure 3: (a) Effects of the non-rationale number in diverse sampling; (b) Effects of parameter α and
β related to loss LM and LP ; (c)Rationale Performance on OGBG-MolBBBP; (c) Visualization of
Spurious-Motif testing dataset.

smaller pu excludes these challenging non-rationale examples, thereby limiting the model’s capac-
ity to reach its full potential. On the other hand, a significantly larger pu may introduce excessively
difficult samples prematurely, which may be rationales in reality according to hard sampling re-
searches (Robinson et al., 2020; Chen et al., 2021) and disrupt the model’s training process.
Loss Hyper-parameter Sensitivity. We further analyze the CoCo’s performance along with the
hyperparameter α and β in the objective function ( Eq.(13)). Specifically, we fix one hyper parameter
while investigating the effect of the other. The results are illustrated in Figure 3(b). We observe both
α and β significantly affect the final performance, as they modulate the weights of the two losses,
thus directly impacting the learning process. In the experiments, we tune them on the development
set to obtain the best settings (α=0.3, β=1.0), which is consistent with the results in Figure 3.

4.5 RATIONALE ANALYSIS

Rationale Performance. To demonstrate the CoCo’s ability to separate rationales from non-
rationales, we draw the accuracy score using the rationale features (yri in Section 3.2.3) with the
increasing of the epoch number on OGBG dataset. As shown in Figure 3(c) , we further make
comparisons with GREA (Liu et al., 2022) used the similar paradigm. This method designs ran-
dom sampling strategy to empower the rationale learning process. From this figure, we find that,
compared with GREA, CoCo not only achieves higher AUC earlier (except a short period of lag),
but also ultimately achieves a better performance. It is reasonable as, in the initial stage, these two
sampling methods (diverse sampling and progressive hard sampling) haven’t worked well due to the
not good enough representations. As the training progresses, two sampling methods come to play
roles in rationale learning, and finally contribute to the better performance compared to GREA. This
demonstrates CoCo’s excellent ability of separating rationales from the input graphs.
Visualization. To better illustrate the effectiveness of rationale learning, we show three visual-
ization cases from Spurious-Motif testing datasets in Figure 3(d) and Figure 5 in Appendix C.2.
Specifically, the nodes and edges highlighted by green colors belong to the recognized rationale sub-
graphs. We can observe that CoCo exhibits excellent ability for identifying the rationale subgraphs
even combined with diverse non-rationales. For instance, the Motif House subgraph is standout in
both the Base Tree and Wheel (Figure 3(d)). This proves that our method can enhance the separator’s
ability to extract the rationale, even in the face of unseen disturbances.

5 CONCLUSION

In this paper, to solve the graph out-of-distribution (OOD) problem, we proposed a Combine and
Compare (CoCo) with non-rationales for graph rationale learning method with conditional non-
rationale sampling. Specifically, CoCo first employed a separator to decompose the input graph into
rationale and non-rationale subgraphs. Then, we introduced a diverse sampling method to sample
non-rationales and combined them with the rationale to achieve non-rationale based augmentation.
Further, multiple training data could be obtained. Finally, CoCo yielded the prediction results based
on both rationales and combined data. Meanwhile, considering the partial order relationship of
rationales and non-rationales, we developed a progressive hard sampling to detect the negative non-
rationales to the anchor rationale, enhancing the model’s ability to discriminate them. Extensive
experiments on both benchmarks and synthetic datasets validated the effectiveness of CoCo.
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A PSEUDO CODE OF CONDITIONAL NON-RATIONALE SAMPLING METHOD

Here we show the pseudo code of conditional non-rationale sampling method in the training stage.

Algorithm 1 Conditional Non-Rationale Sampling in Graph Rationale Learning
Input: Training set of labeled graphs G = {(gi, yi)}ni
Output: Prediction ŷr with graph rationalization
Initialize parameters of separator fS(·) and classifier fC(·) randomly;

1: while not converge do
2: Sample a batch of graph GB ∈ G of size B.
3: Separate the input graph GB = {gi}Bi into the rationale RB = {ri}Bi and environment

EB = {ei}Bi in the latent space through separator fS(·). (Eq.(2) and (3))
4: for each rationale representation ri ∈ RB do
5: Get the rationale prediction ŷri and Calculate the loss LR with Eq.(6)

# Non-rationale based augmentation with diverse sampling
6: Get non-rationale set EKd

= {ej}Kd
j for augmentation

7: Construct a new graph hi by combining the anchor rationale ri and non-rationale ej
8: Calculate the diversity of ej conditional in the complement environment ei of the anchor

rationale ri based on Eq.(9)
9: Get the diversity weighted loss LM with Eq.(10)

# Rationale & non-rationale partial order learning with progressive hard sampling
10: Calculate the hardness p(ej |ri) of non-rationale ej conditional on the anchor rationale ri

based on Eq.(11)
11: Set a window percentile range wt = [ptl , pu] to generate the non-rationale set EC for partial

order learning based on Eq.12
12: Get the partial order loss LP with Eq.(8)
13: Update parameters w.r.t. the final loss Eq.(13)
14: end for
15: end while

B DATA DESCRIPTION

B.1 DATA SYNTHESIZATION OF SPURIOUS-MOTIF

When creating the Spurious-Motif dataset, we initially generate the training dataset by uniformly
sampling each motif while controlling the distribution of the base. This distribution, denoted as
P(E), is determined by the bias parameter b, and it is defined as follows: P (E) = b × I(E =
R) + (1 − b)/2 × I(E ̸= R), where b regulates the degree of spurious correlation. In this study,
we used b values of 0.5, 0.7, and 0.9 in the training dataset. For the test dataset, we randomly pair
motifs and bases, with b set to 1/3.

B.2 DATA STATISTICS

The following tables are the statistics of experimental datasets we use for validating the effectiveness
of CoCo, including one synthetic datasets (i.e., Spurious-Motif) and two real-word datasets (i.e.,
MNIST-75SP and OGBG).

Table 5: The statistics of Spurious-Motif and MNIST-75SP datasets.

Datasets Spurious-Motif MNIST-75SPbias = 0.5 bias = 0.7 bias = 0.9

#Graphs(Train/Val/Test) 3,000/3,000/6,000 3,000/3,000/6,000 3,000/3,000/6,000 5,000/1,000/1,000
Avg #nodes 29.6 30.8 29.4 66.8
Avg #edges 42.0 45.9 42.5 600.2

Classes 3 3 3 10
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Table 6: The statistics of OGBG datasets.
Datasets OGBG

MolHIV MolBBBP MolBACE MolSIDER

#Graphs(Train/Val/Test) 32,901/4,113/4,113 1,631/204/204 1,210/151/152 1,141/143/143
Avg #nodes 25.5 34.12 24.1 33.6
Avg #edges 27.5 26.0 36.9 35.4

Classes 2 2 2 27

C MORE EXPERIMENTAL RESULTS

C.1 RESULTS ON GCN BACKBONE

As introduced in Section 4.1, we adopt the GIN (Xu et al., 2018) as the backbone of our CoCo model.
In this section, we replace GIN with GCN (Kipf & Welling, 2017) and report the main results in
Table 7 and 8. From these results, The GCN-based CoCo also achieves the optimal performance
in most cases, further underscoring the superiority of our design. This observation aligns with the
analyses presented in Section 4.2, which substantiates the robust generalization capability of the
proposed CoCo model architecture.

Table 7: The graph classification accuracy (mean±std%, the best results are bolded) on testing sets
of MNIST-75SP and Spurious-Motif.

Method MNIST-75SP Spurious-Motif
bias = 0.5 bias = 0.7 bias = 0.9

GCN 0.1201 ± 0.0042 0.4281 ± 0.0520 0.4471 ± 0.0312 0.4588 ± 0.0840
DisC 0.1262 ± 0.0113 0.4698 ± 0.0408 0.4312 ± 0.0358 0.4713 ± 0.1390

GREA 0.1172 ± 0.0021 0.4687 ± 0.0855 0.5467 ± 0.0742 0.4651 ± 0.0881
DIR 0.1283 ± 0.1283 0.4281 ± 0.0520 0.4471 ± 0.0312 0.4588 ± 0.0840
CAL 0.1258 ± 0.0123 0.4091 ± 0.0398 0.3772 ± 0.0763 0.3566 ± 0.0323

GSAT 0.2381 ± 0.0186 0.3630 ± 0.0444 0.3601 ± 0.0419 0.3929 ± 0.0289
DARE 0.1231 ± 0.0062 0.4609 ± 0.0648 0.5035 ± 0.0247 0.4494 ± 0.0526

CoCo-GCN(Ours) 0.2031 ± 0.0642 0.5764 ± 0.0989 0.5804 ± 0.0792 0.4993 ± 0.1154

Table 8: The graph classification AUC (mean±std%, the best results are bolded) on testing sets of
OGBG datasets.

Method OGBG
MolHIV MolBBBP MolBACE MolSIDER

GCN 0.7128 ± 0.0188 0.6665 ± 0.0242 0.8135 ± 0.0256 0.6108 ± 0.0075
DisC 0.7791 ± 0.0137 0.7061 ± 0.0105 0.8104 ± 0.0202 0.6110 ± 0.0091

GREA 0.7816 ± 0.0079 0.6970 ± 0.0089 0.8044 ± 0.0063 0.6133 ± 0.0239
DIR 0.4258 ± 0.1084 0.5069 ± 0.1099 0.7002 ± 0.0634 0.5224 ± 0.0243
CAL 0.7501 ± 0.0094 0.6635 ± 0.0257 0.7802 ± 0.0207 0.5559 ± 0.0151

GSAT 0.7598 ± 0.0085 0.6437 ± 0.0082 0.7141 ± 0.0233 0.6179 ± 0.0041
DARE 0.7523 ± 0.0041 0.6823 ± 0.0068 0.8066 ± 0.0178 0.6192 ± 0.0079

CoCo-GCN(Ours) 0.7992 ± 0.0084 0.7075 ± 0.0081 0.8167 ± 0.0233 0.6199 ± 0.0063

C.2 EFFECTS OF SAMPLE NUMBER ON OGBG-MOLBBBP

Figure 4 shows that the real-world dataset OGBG-MolBBBP achieves high and stable performance
when the sample number Kd increased.
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Figure 4: The effects of sample number on OGBG-MolBBBP

C.3 MORE VISUALIZATIONS ON SPURIOUS-MOTIF TESTING DATASET

Besides examples in Figure 3, we demonstrate more visualizations cases here. Both the Motif Circle
and Crane rationale subgraphs are extracted out from Base Tree and Wheel successfully, further
validating separator’s CoCo strong ability to extract the rationales.

(a) Motif: Circle  Base : Tree&Wheel (b) Motif: Crane  Base : Tree&Wheel

Figure 5: Visualizations of CoCo rationales in Spurious-Motif testing dataset, where the recognized
rationales are highlighted by green colors.
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