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ABSTRACT

Proteins move and deform to ensure their biological functions. Despite significant
progress in protein structure prediction, approximating conformational ensembles at
physiological conditions remains a fundamental open problem. This paper presents
a novel perspective on the problem by directly targeting continuous compact rep-
resentations of protein motions inferred from sparse experimental observations.
We develop a task-specific loss function enforcing data symmetries, including
scaling and permutation operations. Our method PETIMOT (Protein sEquence and
sTructure-based Inference of MOTions) leverages transfer learning from pre-trained
protein language models through an SE(3)-equivariant graph neural network. When
trained and evaluated on the Protein Data Bank, PETIMOT shows superior perfor-
mance in time and accuracy, capturing protein dynamics, particularly large/slow
conformational changes, compared to state-of-the-art flow-matching approaches
and traditional physics-based models.

1 INTRODUCTION

Proteins orchestrate biological processes in living organisms by interacting with their environment
and adapting their three-dimensional (3D) structures to engage with cellular partners, including other
proteins, nucleic acids, small-molecule ligands, and co-factors. In recent years, spectacular advances
in high-throughput deep learning (DL) technologies have provided access to reliable predictions of
protein 3D structures at the scale of entire proteomes (Varadi et al., 2024). These breakthroughs have
also highlighted the complexities of protein conformational heterogeneity. State-of-the-art predictors
struggle to model alternative conformations, fold switches, large-amplitude conformational changes,
and solution ensembles (Chakravarty et al., 2025).

The success of AlphaFold2 (Jumper et al., 2021) has stimulated machine-learning approaches focused
on inference-time interventions in the model to generate structural diversity. They include enabling
or increasing dropout (Raouraoua et al., 2024; Wallner, 2023), or manipulating the evolutionary
information given as input to the model (Kalakoti & Wallner, 2024; Wayment-Steele et al., 2023;
Del Alamo et al., 2022; Stein & Mchaourab, 2022). Despite promising results on specific families,
several studies have emphasised the difficulties in rationalising the effectiveness of these modifi-
cations and interpreting them (Porter et al., 2024; Bryant & Noé, 2024). Moreover, these cannot
be transferred to protein language model-based predictors that do not rely on multiple sequence
alignments. Researchers have also actively engaged in the development of deep learning frameworks
based on diffusion, or the more general flow matching, to generate conformational ensembles (Lewis
et al., 2025; Wang et al., 2025). While being several orders of magnitude cheaper than Molecular
Dynamics (MD) simulations, these models remain computationally intensive, require massive MD
training data, and are limited to sampling approximate equilibrium distributions.

This work presents a new glance at the protein conformational diversity problem. Instead of learning
and sampling from multi-dimensional empirical distributions, we propose to learn eigenspaces (the
structure) of the positional covariance matrices in collections of experimental 3D structures and
generalize these over different homology levels. The use of experimental structure collections to infer
protein dynamics through Principal Component Analysis (PCA) is well-established in the literature
(Best et al., 2006; Schneider et al., 2025; Lombard et al., 2024a; Yang et al., 2009). The diversity
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present within – even a modest number of – experimental 3D structures of the same protein or
close homologs is a good proxy for the conformational heterogeneity of proteins in solution (Best
et al., 2006) and can generally be (almost fully) explained by a small set of linear vectors, also
referred to as modes (Lombard et al., 2024a; Yang et al., 2009). Moreover, interpolation trajectories
performed in PCA space inferred from experimental structures can recapitulate intermediate functional
states (Lombard et al., 2024a). Although linear spaces may not be well-suited for capturing highly
complex non-linear motions, such as loop deformations, they offer multiple advantages. These
include faster learning due to the reduced complexity of the model, improved explainability as
the components directly correspond to interpretable data dimensions, faster inference, and the
straightforward combination or integration of multiple data dimensions.

To summarize, our main contributions are:

• We provide a novel formulation of the protein conformational diversity problem.
• We present a novel benchmark representative of the Protein Data Bank structural diversity

and compiled with a robust pipeline (Lombard et al., 2024a), along with data- and task-
specific metrics.

• We develop a SE(3)-equivariant Graph Neural Network architecture equipped with a novel
symmetry-aware loss function for comparing linear subspaces, with invariance to permu-
tation and scaling. Our model, PETIMOT, leverages embeddings from pre-trained protein
language models (pLMs), building on prior proof-of-concept work demonstrating that they
encode information about functional protein motions (Lombard et al., 2024b).

• PETIMOT is trained on sparse experimental data without any use of simulation data, in
contrast with Timewarp for instance (Klein et al., 2024). Moreover, our model does not
require physics-based guidance or feedback, unlike (Wang et al., 2025) for instance.

• Our results demonstrate the capability of PETIMOT to generalise across protein families
(contrary to variational autoencoder-based approaches) and to compare favorably in running
time and accuracy to the physics-based Normal Mode Analysis.

2 RELATED WORKS

Protein structure prediction and generating conformational ensembles. AlphaFold2 was the
first end-to-end deep neural network to achieve near-experimental accuracy in predicting protein
3D structures, even for challenging cases with low sequence similarity to proteins with resolved
structures (Jumper et al., 2021). Later works have shown that substituting the input alignment by
embeddings from a protein language model can yield comparable performance (Lin et al., 2023;
Hayes et al., 2024; Weissenow et al., 2022; Wu et al., 2022).

Beyond the single-structure frontier, several studies have underscored the limitations and potential
of protein structure predictors (PSP) for generating alternative conformations (Saldaño et al., 2022;
Lane, 2023; Bryant & Noé, 2024; Chakravarty et al., 2025). Approaches focused on re-purposing
AlphaFold2 include dropout-based massive sampling (Raouraoua et al., 2024; Wallner, 2023), guiding
the predictions with state-annotated templates (Faezov & Dunbrack Jr, 2023; Heo & Feig, 2022), and
inputting shallow, masked, corrupted, subsampled or clustered alignments (Kalakoti & Wallner, 2024;
Wayment-Steele et al., 2023; Del Alamo et al., 2022; Stein & Mchaourab, 2022). Despite promising
results, these approaches remain computationally expensive and their generalisability, interpretability,
and controllability remain unclear (Bryant & Noé, 2024; Chakravarty et al., 2025). More recent
works have aimed at overcoming these limitations by directly optimising PSP learnt embeddings
under low-dimensional ensemble constraints (Yu et al., 2025).

Another line of research has consisted in fine-tuning or re-training AlphaFold2 and other single-
state PSP under diffusion or flow matching frameworks (Jing et al., 2024; Abramson et al., 2024;
Krishna et al., 2024). More generally, diffusion- and flow matching-based models allow for efficiently
generating diverse conformations conditioned on the presence of ligands or cellular partners (Jing
et al., 2023; Ingraham et al., 2023; Wang et al., 2025; Liu et al., 2024; Zheng et al., 2024). Despite
their strengths, these techniques are prone to hallucination.

Parallel related works have sought to directly learn generative models of equilibrium Boltzmann
distributions using normalising flows (Lewis et al., 2025; Noé et al., 2019; Klein et al., 2024), or
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machine-learning force fields based on equivariant graph neural network (GNN) representations
(Wang et al., 2024a), to enhance or replace molecular dynamics (MD) simulations. The BioEmu model
(Lewis et al., 2025) predicts large and biologically meaningful conformational changes observed in
the Protein Data Bank (PDB) (Berman et al., 2000) and approximates long MD simulations.

Protein conformational heterogeneity manifold learning. Unsupervised, physics-based Normal
Mode Analysis (NMA) has long been effective for inferring functional modes of deformation
by leveraging the topology of a single protein 3D structure (Grudinin et al., 2020; Hoffmann &
Grudinin, 2017; Hayward & Go, 1995). While appealing for its computational efficiency, the
accuracy of NMA strongly depends on the initial topology (Laine & Grudinin, 2021), limiting its
ability to model extensive secondary structure rearrangements. Recent efforts have sought to address
these limitations by directly learning continuous, compact representations of protein motions from
sparse experimental 3D structures. These approaches employ dimensionality reduction techniques,
from classical manifold learning methods (Lombard et al., 2024a) to neural network architectures
like variational auto-encoders (Ramaswamy et al., 2021). By projecting motions onto a learned
low-dimensional manifold, these methods enable reconstruction of accurate, physico-chemically
realistic conformations, both within the interpolation regime and near the convex hull of the training
data (Lombard et al., 2024a). Additionally, they assist in identifying collective variables from
molecular dynamics (MD) simulations, supporting importance-sampling strategies (Chen et al.,
2023a; Belkacemi et al., 2021; Bonati et al., 2021; Wang et al., 2020; Ribeiro et al., 2018). Despite
these advances, such approaches are currently constrained to family-specific models.

E(3)-equivariant graph neural networks. Graph Neural Networks (GNN) have been extensively
used to represent protein 3D structures. They are robust to transformations of the Euclidean group,
namely rotations, reflections, and translations, as well as to permutations. In their simplest formulation,
each node represents an atom and any pair of atoms are connected by an edge if their distance is smaller
than a cutoff or among the smallest k interatomic distances. Many works have proposed to enrich
this graph representation with SE(3)-equivariant features informing the model about interatomic
directions and orientations (Ingraham et al., 2019; Jing et al., 2020; Dauparas et al., 2022; Krapp et al.,
2023; Wang et al., 2024b). To go beyond local 3D neighbourhoods while maintaining sub-quadratic
complexity, Chroma adds in randomly sampled long-range connections (Ingraham et al., 2023).

3 DATA REPRESENTATION AND PROBLEM FORMULATION

To generate training data, we exploit experimental protein single chain structures available in the
PDB. We first clustered these chains based on their sequence similarity. Then, within each cluster, we
aligned the protein sequences and used the resulting mapping for superimposing the 3D coordinates
(Lombard et al., 2024a). It may happen that some residues in the multiple sequence alignment do not
have resolved 3D coordinates in all conformations. To account for this uncertainty, we assigned a
confidence score wi to each residue i computed as the proportion of conformations including this
residue. The 3D superimposition puts the conformations’ centers of mass to zero and then aims at
determining the optimal least-squares rotation minimizing the Root Mean Square Deviation (RMSD)
between any conformation and a reference conformation, while accounting for the confidence scores
(Kabsch, 1976; Kearsley, 1989),

E =
1∑
i wi

∑
i

wi(r⃗ij − r⃗i0)
2, (1)

where r⃗ij ∈ R3 is the ith centred coordinate of the jth conformation and r⃗i0 ∈ R3 is the ith centred
coordinate of the reference conformation. Next, we defined our ground-truth targets as eigenspaces
of the coverage-weighted Cα-atom positional covariance matrix,

C =
1

m− 1
RcW (Rc)T =

1

m− 1
(R−R0)W (R−R0)T , (2)

where R is the 3N ×m positional matrix with N the number of residues and m is the number of
conformations, R0 contains the coordinates of the reference conformation, and W is the 3N × 3N
diagonal coverage matrix. The covariance matrix is a 3N × 3N square matrix, symmetric and real.
We decompose C as C = Y DY T , where Y is a 3N × 3N matrix with each column defining a
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coverage-weighted eigenvector or a principal component that we interpret as a linear motion. D is a
diagonal matrix containing the eigenvalues. The latter highly depend on the sampling biases in the
PDB and thus we do not aim at predicting them.

Problem formulation. For a protein of length N , let Y be 3N × K orthogonal ground-truth
deformations,

Y TY = IK . (3)

Our goal is to find coverage-weighted vectors X ∈ R3N×L whose components l approximate some
components k of the ground truth Y :

W
1
2 x̃l ≈ yk. (4)

Below, we provide three alternative formulations for this problem. PETIMOT’s loss function serves
two key purposes: it enables effective training of the network to predict subspaces representing
multiple distinct modes of deformations – i.e., with low overlap between the subspace’s individual
linear vectors, while preventing convergence to a single dominant mode.

The least-square formulation. To evaluate a predicted motion direction against a ground-truth
direction, we use a Least-Square (LS) error, which, together with Mean Absolute Error (MAE), is
among the most accepted metrics for regression tasks. Here, we have specifically adapted it to the
challenge of evaluating directional motion vectors rather than static coordinates, and scaled between
0 and 1 for better training, interpretability and usability.

For each protein of length N with a coverage W , we compute the weighted pairwise least-square
difference Lkl between ground-truth directions Y and predicted motion directions X for each pair of
a k direction in the ground truth and an l direction in the prediction as,

Lkl =
1

N

N∑
i=1

∥y⃗ik − w
1/2
i cklx⃗il∥2=

1

N
yT
k yk −

1

N

(yT
k W

1
2xl)

2

xT
l Wxl

, (5)

where we scaled the ground-truth tensors such that Y TY = NIK and we used the fact that the
optimal scaling coefficients ckl between the k-th ground truth vector and the l-th prediction are given
by

ckl =

∑N
i=1 w

1
2
i y

T
ikxil∑N

i=1 wixT
ilxil

=
yT
k W

1
2xl

xT
l Wxl

. (6)

This invariance to global scaling is motivated by the fact that we aim at capturing the relative
magnitudes and directions of the motion patterns rather than their sign or absolute amplitudes.

Linear assignment problem. We then formulate an optimal linear assignment problem to find the
minimum-cost matching between the ground-truth and the predicted directions. Specifically, we aim
to solve the following assignment problem for the least-square (LS) costs,

LS Loss = min
π∈SJ

min(K,L)∑
k=1

Lk,π(k)

subject to:

π : {1, . . . ,min(K,L)} → {1, . . . , L}, π(k) ̸= π(k′) for k ̸= k′,

(7)

where K and L are the number of ground-truth and predicted directions respectively, and π(k)
represents the index of the predicted direction assigned to the k-th ground truth direction. This
formulation ensures an optimal one-to-one matching, while accommodating cases where the number
of predicted and ground-truth directions differs. We backpropagate the loss only through the optimally
matched pairs, using scipy linear sum assignment. We have also tested a smooth version of the loss
above with continuous gradients, but it did not improve the performance.
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The subspace coverage formulation. We propose another formulation of the problem in terms
of the subspace coverage metrics (Amadei et al., 1999; Leo-Macias et al., 2005; David & Jacobs,
2011). Specifically, we sum up squared sinus (SS) dissimilarities between ground-truth and predicted
directions (formally computed as one minus squared cosine similarity),

SS Loss = 1− 1

K

K∑
k=1

K∑
l=1

(yT
k W

1
2x⊥

l )
2, (8)

where the subspace {x⊥
l } is obtained by orthogonalising the coverage-weighted predicted linear

subspace {W 1
2xl}, where xT

l Wxl = 1, using the Gram–Schmidt process. This operation ensures
that the loss ranges from zero for identical subspaces to one for mutually orthogonal subspaces and
avoids artificially inflating the SS loss due to redundancy in the predicted motions. The order in which
the predicted vectors are orthogonalised does not influence the loss, guaranteeing stable training.
Appendix A proves this statement. The SS loss is conceptually similar to the comparison of angles
between subspaces – see a few recent examples of such subspace comparison from other ML domains
in (Zhu et al., 2021; Feng et al., 2023; Chen et al., 2023b; Hawke et al., 2024; Schlaginhaufen &
Kamgarpour, 2024).

Independent Subspace (IS) Loss. We can substitute the orthogonalisation procedure by using an
auxiliary loss component for maximising the rank of the predicted subspace. For this purpose, we
chose the squared cosine similarity computed between pairs of predicted vectors. The final expression
for the independent subspace (IS) loss is

IS Loss =
1

K2

K∑
k=1

K∑
l=1

(xTkWxl)
2 − 1

K2

K∑
k=1

K∑
l=1

(yT
kW

1
2 xl)

2, (9)

where the predictions {xl} are normalised prior to the loss computation such that xT
l Wxl = 1 and

the scaling factor K2 ensures that the loss ranges between 0 and 1. Appendix A analyses the stability
of this formulation.
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xT
l Wxl = 1

Figure 1: PETIMOT’s architecture overview. The model processes both sequence embeddings (s)
and motion vectors (x⃗) through 15 message-passing blocks. Each block updates both representations
by aggregating information from neighboring residues. Neighbor features are computed in the
reference frame of the central residue i, ensuring SE(3) equivariance. The geometric features encoded
in the edges capture the relative spatial relationships between residue pairs. Three types of losses
(LS, SS, and IS) are computed, with prior normalization of the predictions for the IS and SS losses,
and an additional orthogonalisation of the predictions for the SS loss.

Dual-track representation. PETIMOT processes protein sequences through a message-passing
neural network that simultaneously handles residue embeddings and motion vectors in local coordinate
frames (Fig. 1). For each residue i, we define and update a node embedding si ∈ Rd initialized
from protein language model features and a set of K motion vectors {x⃗ik}Kk=1 ∈ R3×K initialized
randomly. The message passing procedure is detailed in Algorithm B.1 of Appendix B.2. The
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protein is represented as a graph where nodes correspond to the residues, and edges capture spatial
relationships. We connect each residue i to its k nearest neighbors based on Cα distances and l
randomly selected residues. This hybrid connectivity scheme ensures both local geometric consistency
and global information flow, while maintaining sparsity for computational efficiency. Indeed, our
model scales linearly with the length N of a protein. In our base model we set k = 5 and l = 10.

Node and edge features. We chose ProstT5 as our default protein language model for initialising
node embeddings (Heinzinger et al., 2023). This structure-aware pLM offers an excellent balance
between model size – including the number of parameters and embedding dimensionality – and
performance (Lombard et al., 2024b). Each residue’s backbone atoms (N, CA, C) define a local
reference frame through a rigid transformation Ti ∈ SE(3). For each residue pair (i, j), we compute
their relative transformation Tij = T−1

i ◦ Tj from which we extract the rotation Rij ∈ SO(3)

and translation t⃗ij ∈ R3. Under global rotations and translations of the protein, these relative
transformations remain invariant. Edge features eij provide an SE(3)-invariant encoding of the
protein structure through relative orientations, translational offsets, protein chain distance, and a
complete description of peptide plane positioning captured by pairwise backbone atom distances. See
Appendix B.3 for more details.

5 RESULTS

<80% seq. 

<30% seq. 

Foldseek clustering and <30% seq. id  

Train Val
a.

b. c.

d.

Figure 2: Generalisation and prediction visualisation. a. Training schemes. b. Success rates on the
test sets for PETIMOT’s default, stringent and 5folds models. c. Left: Comparison of the default and
stringent models on 734 proteins with less than 30% sequence similarity to both models’ training sets.
Right: Comparison between default and 5folds on the 473 proteins whose structures and sequences
are not significantly similar to any protein used in training the models. d. Prediction for Bacillus
subtilis xylanase A (PDB id: 3EXU, chain A). On top, the predicted and ground-truth vectors are in
blue and red, respectively (LS= 0.15). At the bottom, trajectory (5 frames) generated by deforming
the protein structure along the predicted motion.

Training and evaluation. We trained PETIMOT against linear motions extracted from all∼750,000
protein chains from the PDB (as of June 2023) clustered at 80% sequence identity and coverage. Our
full training data comprises 7 335 conformational collections, which we augmented by computing
the motions with respect to 5 reference conformations per collection. As a result, the full training set
comprises 36,675 samples. This reference dataset encompasses conformations solved by multiple
experimental techniques, including 56,866 Cryo-EM structures (30.5%) and 2,187 NMR structures
(about 1.5%). This ensures representation of diverse conformational states beyond those accessible to
X-ray crystallography. We set the numbers of predicted and ground-truth motions, K = L = 4. See
Appendices B.1 and B.4 for more details. At inference, we consider wi = 1, ∀i = 1..N . We rely
on three main evaluation metrics aimed at addressing the following questions: 1) Is PETIMOT able
to approximate at least one of the main linear motions of a given protein? For this, we rely on the
minimum LS error over all possible pairs of predicted and ground-truth vectors. A prediction with
LS≤ 0.2 almost perfectly superimposes to the ground-truth motion (Fig. 2d). We consider predictions
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with LS> 0.6 as inaccurate as they typically miss or indicate completely wrong directions for a large
part of the residues involved in the motion. By comparison, the LS errors computed for random
predictions are typically above 0.9; 2) To what extent does PETIMOT capture the main motion linear
subspace of a given protein? For this, we use the global SS error; 3) Is PETIMOT able to identify the
residues that move the most? Here, we rely on the magnitude error, 1

N

∑N
i=1(∥y⃗ik∥2−∥cklx⃗il∥2).

Robustness and generalisation. We tested PETIMOT’s generalisation capabilities using three
training protocols (Fig. 2a, see also Appendix B.4). In two of them, we randomly split the reference
dataset into 70% for training, 15% for validation and 15% for test, where any test protein has less than
80% (default) or 30% (stringent) sequence similarity to the train proteins. In addition, we conducted
5-fold cross-validation ensuring that each fold’s training set did not contain any protein chain sharing
significant structural or sequence similarity with the test set (5folds). This protocol strictly prevents
data leakage and provides robust evaluation across our complete dataset. PETIMOT’s performance
is robust and generalizable across the different data partitions, with success rates, defined as the
fractions of test proteins with min LS≤ 0.6, in the 35-45% range (Fig. 2b-c).

Biological relevance. To assess the biological relevance of PETIMOT’s predictions, we focused on
three case studies, namely open-closed transitions, fold switches, and multi-state cryo-EM resolved
structures. For open-closed transitions, we considered the well-established iMod benchmark (Lopéz-
Blanco et al., 2011) comprising a couple of tens of proteins with a wide variety of motions (hinge,
shear, allosteric, and complex motions) often associated with ligand or partner binding. PETIMOT-
5folds predicted these transitions with high accuracy, achieving a 86% success rate with an average
min LS error of 0.41 ± 0.18, average min magnitude error 0.14 ± 0.07. For fold switches, we
compiled a dataset of six metamorphic proteins from (Wayment-Steele et al., 2023). PETIMOT-
5folds achieved a success rate of 37% on these challenging cases, with a min LS error of 0.67 ±
0.17, min magnitude error 0.25 ± 0.14. Our approach performed particularly well on KaiB, also
highlighted in (Wayment-Steele et al., 2023). The min LS error is 0.45 starting from the ground
state (2QKEC) and 0.57 starting from the FS state (5JYTA). Finally, we considered the ATPase
NSF whose experimental structures correspond to ATP/ADP-bound states and 20S supercomplex
conformations from cryo-EM studies (Zhao et al., 2015; White et al., 2018). The functionally relevant
motions involve large-amplitude rigid-body domain movements and loop rearrangements. The first
linear PCA mode explains 57% of the variance and 4 modes are required to explain 90%. PETIMOT
successfully captures this complex motion subspace with min LS error as low as 0.32 and global SS
error of 0.30, demonstrating its ability to predict not just single motions but biologically meaningful
motion subspaces.

Comparison with other methods. We primarily compare PETIMOT with the NMA, a cost-
effective approach for predicting the motion directions energetically accessible to a protein 3D
structure. On the whole dataset, PETIMOT outperformed the NMA according to all evaluation
metrics (Table 1). PETIMOT produced acceptable predictions for almost 40% of the dataset while

Table 1: Comparison of PETIMOT’s performance with other methods. Left: PETIMOT-5folds
is compared with the Normal Mode Analysis (NMA) on the full dataset ( 37k samples). Right:
PETIMOT-default is compared with the AlphaFlow and the NMA on 824 test proteins it has not
seen during training Min. stands for the best matching pair of predicted and ground-truth vectors.
OLA refers to the optimal linear assignment between all predicted and ground-truth vectors. Arrows
indicate whether higher (↑) or lower (↓) metrics values are better. Best results are shown in bold.

Metrics PETIMOT NMA PETIMOT AlphaFlow NMA

Success Rate (%) ↑ 38.98 24.40 43.57 31.80 24.88

Min. LS Error ↓ 0.64 ± 0.20 0.72 ± 0.20 0.61 ± 0.22 0.68 ± 0.21 0.72 ± 0.20
Min. Magnitude Error ↓ 0.23 ± 0.12 0.27 ± 0.14 0.21 ± 0.12 0.24 ± 0.12 0.27 ± 0.14

OLA LS Error ↓ 0.84 ± 0.09 0.88 ± 0.09 0.83 ± 0.10 0.86 ± 0.10 0.88 ± 0.10
OLA Magnitude Error ↓ 0.41 ± 0.13 0.47 ± 0.15 0.41 ± 0.14 0.43 ± 0.14 0.48 ± 0.15

Global SS Error ↓ 0.75 ± 0.13 0.79 ± 0.14 0.73 ± 0.14 0.78 ± 0.14 0.79 ± 0.14
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Figure 3: Cumulative error curves computed on the test proteins. a-b. Comparison between
PETIMOT base model and three other methods. c-d. Comparison between different losses imple-
mented in PETIMOT. The loss of the base model is LS + SS. a,c. Minimum LS error corresponding
to the best matching pair of predicted and ground-truth motions. b,d. SS error computed between the
entire predicted and ground-truth subspaces.

the NMA’s success rate is 25%, and PETIMOT achieved lower errors than the NMA in two thirds of
the proteins. The NMA success cases are enriched in collective motions and depleted in localised
motions. PETIMOT does not share this limitation and tends to approximate localised motions
better than the NMA. Furthermore, PETIMOT was 2.75 times faster at inference – 15.82s versus
43.59s on a subset of 800 proteins, as measured on an Intel(R) Xeon(R) W-2245 CPU @ 3.90GHz
equipped with GeForce RTX 3090. In addition, we considered the flow matching-based AlphaFlow
method, specifically the model trained solely on the PDB, like PETIMOT. However, AlphaFlow
does not directly predict motion directions but generates conformational ensembles. We generated
50 conformations and estimated their distributional accuracy by extracting principal components
and comparing them with our reference components, similarly to what was done in the AlphaFlow
publication (Jing et al., 2024). On a test set of 824 proteins, PETIMOT-default better approximated
the reference motions than AlphaFlow (Table 1 and Fig. 3a-b). The ESM-based version displayed
slightly lower performance, compared to the AlphaFold-based one (Fig. 3a-b). PETIMOT min LS
error is lower than AlphaFlow in 65% of the cases, than ESMFlow in 67% and than NMA in 69%.
There are only 5, 4 and 2 cases, respectively, where PETIMOT produces highly inaccurate predictions
(min LS loss above 0.7) and AlphaFlow, ESMFlow and the NMA, respectively, are clearly successful
(min LS loss below 0.4). A couple of cases exhibit a highly localised loop motion (the peptidoglycan
peptidase, 6JN8A, AlphaFlow better) or a rigid-body domain motion (the chromosomal replication
initiator protein dnaA, 2HCBC, NMA better) involved in the function of the protein, but the majority
exhibit large amplitude motions at the protein extremity, sometimes induced by insertions/deletions
across the members of the collection, casting doubt on their functional relevance.

Comparison of problem formulations. Our base model combining the LS and SS loses with
equal weights outperforms all three individual losses, LS, SS, and LS (Fig. 3c-d). It strikes an
excellent balance between approximating individual motions with high accuracy (Fig. 3c) and
globally covering the motion subspaces (Fig. 3d). By comparison, the SS and IS losses tend
to underperform on individual motions while the LS loss tends to provide lower coverage of the
ground-truth subspaces. See Appendix C for additional results.
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Contribution of sequence and structure features. We performed an ablation study to assess the
contribution of sequence and structure information to our architecture. Our results show that ProstT5
slightly outperforms the more recent and larger pLM, ESM-Cambrian 600M (ESM Team, 2024) (Fig.
B.2). Geometrical information about protein structure provides the most significant contribution, as
replacing ProstT5 embeddings with random numbers has only a small impact on network performance.
Conversely, the network’s performance without structural information strongly depends on the chosen
pLM. While the structure-aware embeddings from ProstT5 partially compensate for missing 3D
structure information, relying solely on ESM-C embeddings results in poor performance (Fig. B.2).
Moreover, connecting each residue to its 15 nearest neighbours (sorted according to Cα-Cα distances)
in the protein graph results in lower performance compared to introducing randomly chosen edges or
even fully relying on random connectivity (Fig. B.4).

Generalisation to MD data. To further assess PETIMOT’s robustness, we evaluated it on MD
trajectories from the ATLAS dataset (Vander Meersche et al., 2024). We identified 400 protein chains
common to both the ATLAS set and our dataset, providing an independent MD benchmark (see
Appendix B.6). To ensure rigorous evaluation without data leakage, for each ATLAS protein chain
we used the corresponding PETIMOT-5folds model trained on the fold where that specific chain was
held out from training (ensuring no training exposure). PETIMOT-5folds achieved a 60% success
rate on this MD data – with a min LS error 0.55 ± 0.19, min magnitude error 0.17 ± 0.11, and global
SS error 0.60 ± 0.16. These performance metrics are significantly better than those obtained on
experimental structures. Moreover, the association between min LS error and SS error is higher –
Adjusted R-squared of 0.71 versus 0.60 on the PDB dataset (Fig. B.5). These results demonstrate
that PETIMOT generalises to MD data without re-training nor fine-tuning.

Conformation generation. PETIMOT allows straightforwardly generating conformational en-
sembles or trajectories by deforming an initial protein 3D structure along one or a combination of
predicted motions. We showcase this functionality on the xylanase A from Bacillus subtilis (Fig.
2d). We used PETIMOT predictions to generate physically realistic conformations representing the
open-to-closed transition of xylanase A thumb. More broadly, PETIMOT-generated structures, while
not being accurate in a thermodynamic sense, can help practitioners quickly assess possible dynamics
or seed other workflows like heterogeneous cryo-EM reconstruction.

Limitations. PETIMOT’s relatively modest success rate may be partially explained by incomplete
and biased functional state sampling in the PDB, where predicted motions through evolutionary
transfer may correspond to functionally relevant conformational states that have not been structurally
resolved, and experimental artifacts (e.g., of crystallographic origin, or due to sequence engineering).
Our working hypothesis is that a part of the conformational manifold represents functionally relevant
motions. To address this challenge, we designed our training loss function specifically to evaluate
submanifolds by calculating the minimum error between each reference motion and the set of
predicted motions, allowing the model to capture conformational diversity while mitigating the
impact of potential artefacts. By comparison, the Atlas MD trajectories represent an easier case
but they are limited to equilibrium distributions of monomeric proteins and do not account for
conformational changes induced by partner or ligand binding. In addition, our approach is limited
to modeling protein motions as linear displacement vectors. While this approximation is sufficient
to describe most of the observed conformational heterogeneity, it remains inadequate for modeling
highly complex non-linear deformations. Furthermore, deforming proteins structures along linear
motion direction may produce unrealistic conformations at large amplitudes. A possible solution yet
to be investigated would be nonlinear extrapolation techniques widely used in molecular mechanics
(Lopéz-Blanco et al., 2011; Hoffmann & Grudinin, 2017).

6 CONCLUSION

In this work, we have proposed a new perspective on the problem of capturing protein continuous
conformational heterogeneity. Our approach directly infers compact and continuous representations
of protein motions. Our comprehensive analysis of PETIMOT’s predictive capabilities demonstrates
its performance and utility for understanding how proteins deform to perform their functions. Our
work opens ways to future developments in protein motion manifold learning, with exciting potential
applications in protein engineering and drug development.
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Ethics statement. This paper is about machine learning models for structural biology. The research
is entirely computational and does not involve human subjects, animals, or sensitive data. All the
data is public. We do not anticipate any direct societal, ethical, or environmental risks arising from
this work.

Reproducibility statement. We ensure the reproducibility of this work through the following key
points:

• Our code and protocols are available in an anonymous repository. We will share the link in
the discussion forum.

• The problem formulation is provided in section 3 with the proofs in Appendix A.

• A complete description of the data processing steps is provided in Appendix B.1.

• The architecture and the training protocol are detailed in Appendices B.2, B.3, B.4.

• Evaluation procedures, and baselines’ parameters are explained in Appendices B.4, B.5,
B.6.

• Additional experiments and ablation studies are detailed in Appendices B.6 and C.
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Zineb Belkacemi, Paraskevi Gkeka, Tony Lelièvre, and Gabriel Stoltz. Chasing collective variables
using autoencoders and biased trajectories. Journal of chemical theory and computation, 18(1):
59–78, 2021.

Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig,
Ilya N Shindyalov, and Philip E Bourne. The protein data bank. Nucleic acids research, 28(1):
235–242, 2000.

Robert B Best, Kresten Lindorff-Larsen, Mark A DePristo, and Michele Vendruscolo. Relation
between native ensembles and experimental structures of proteins. Proceedings of the National
Academy of Sciences, 103(29):10901–10906, 2006.

Luigi Bonati, GiovanniMaria Piccini, and Michele Parrinello. Deep learning the slow modes for rare
events sampling. Proceedings of the National Academy of Sciences, 118(44):e2113533118, 2021.
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APPENDICES

A INVARIANCE OF THE PROPOSED LOSSES

Theorem A.1. SS Loss is invariant under unitary transformations of X and Y subspaces.

Proof. Without loss of generality, let us assume that we apply a unitary transformation U ∈ RK×K

to a subspace X⊥ ∈ R3N×K , such that the result X ′ = X⊥U , with X ′ ∈ R3N×K , spans the same
subspace as X⊥, as it is a linear combination of the original basis vectors from X⊥. Then, let us
rewrite the SS loss as

SS Loss = 1− 1

K

K∑
k=1

K∑
l=1

(yT
k W

1
2x⊥

l )
2 = 1− 1

K
||Y TW

1
2X⊥||2F . (A.1)

As the Frobenius matrix norm is invariant under orthogonal, or more generally, unitary, transforma-
tions, ||Y TW

1
2X⊥U ||2F= ||Y TW

1
2X⊥||2F , which completes the proof.

Corollary A.1.1. The SS loss is invariant to the direction permutations in the Gram-Schmidt
orthogonalization process.

Proof. Let us consider two linear subspaces X⊥
1 and X⊥

2 resulting from the Gram-Schmidt orthogo-
nalization of X , where we arbitrarily choose the order of the orthogonalization vectors. Both X⊥

1
and X⊥

2 will span the same subspace as X , and since both X⊥
1 and X⊥

2 are also orthogonal, one is a
unitary transformation of the other, X⊥

2 = X⊥
1 U , which completes the proof.

Theorem A.2. IS Loss is invariant under unitary transformations of X and Y subspaces.

Proof. Following the previous proof, without loss of generality, let us assume that we apply an
orthogonal (unitary) transformation U ∈ RK×K to a subspace X ∈ R3N×K , such that the result
X ′ = XU , with X ′ ∈ R3N×K , spans the same subspace as X . Then, let us rewrite the IS loss as

IS Loss =
1

K2

K∑
k=1

K∑
l=1

(xT
kWxl)2−

1

K2

K∑
k=1

K∑
l=1

(yT
kW

1
2 xl)

2 =
1

K2
||XTWX||2F−

1

K2
||Y TW

1
2X||2F .

(A.2)
As the Frobenius matrix norm is invariant under orthogonal transformations, ||Y TW

1
2XU ||2F=

||Y TW
1
2X||2F , and ||UTXTWXU ||2F= ||XTWX||2F , which completes the proof.

B METHODS DETAILS

B.1 TRAINING DATA

Conformational collections. To generate the training data, we utilized DANCE (Lombard et al.,
2024a) to construct a non-redundant set of conformational collections representing the entire PDB as
of June 2023. Wherever possible, we enhanced the data quality by replacing raw PDB coordinates
with their updated and optimized counterparts from PDB-REDO (Joosten et al., 2014). Each
conformational collection was designed to include only closely related homologs, ensuring that any
two protein chains within the same collection shared at least 80% sequence identity and coverage.
Collections with insufficient data points were excluded as we require at least 5 conformations. To
simplify the data, we retained only Cα atoms (option -c) and accounted for coordinate uncertainty
by applying weights (option -w).

Handling missing data. The conformations in a collection may have different lengths reflected
by the introduction of gaps when aligning the amino acid sequences. We fill these gaps with the
coordinates of the conformation used to center the data. In doing so, we avoid introducing biases
through reconstruction of the missing coordinates. Moreover, to explicitly account for data uncertainty,
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we assign confidence scores to the residues and include them in the structural alignment step and the
eigen decomposition. The confidence score of a position i reflects its coverage in the alignment,

wi =
1

m

∑
S

1aS
i ̸=”X”, (B.1)

where ”X” is the symbol used for gaps and m is the number of conformations. The structural
alignment of the jth conformation onto the reference conformation amounts to determining the
optimal rotation that minimises the following function (Kabsch, 1976; Kearsley, 1989),

E =
1∑
i wi

∑
i

wi(r
c
ij − rci0)

2, (B.2)

where rcij is the ith centred coordinate of the jth conformation and rci0 is the ith centred coordinate of
the reference conformation. The resulting aligned coordinates are then multiplied by the confidence
scores prior to the PCA, as we explain below.

Eigenspaces of positional covariance matrices. The Cartesian coordinates of each conformational
ensemble can be stored in a matrix R of dimension 3N ×m, where N is the number of residues (or
positions in the associated multiple sequence alignment) and n is the number of conformations. Each
position is represented by a C-α atom. We compute the coverage-weighted (to account for missing
data, as explained above) covariance matrix as in Eq. 2. The covariance matrix is a 3N × 3N square
matrix, symmetric and real.

We decompose C as C = V DV T , where V is a 3N × 3N matrix with each column defining a
sqrt-coverage-weighted eigenvector or a principal component that we interpret as a linear motion.
D is a diagonal matrix containing the eigenvalues. Specifically, the kth principal component was
expressed as a set of 3D (sqrt-coverage-weighted) displacement vectors x⃗GT

ik , i = 1, 2, ...L for the L
Cα atoms of the protein residues. To enable cross-protein comparisons, the vectors were normalized
such that

∑
i = 1L|x⃗GT

ik |2= L. The sum of the eigenvalues
∑3m

k=1 λk amounts to the total positional
variance of the ensemble (measured in Å2) and each eigenvalue reflects the amount of variance
explained by the associated eigenvector.

Data augmentation. The reference conformation used to align and center the 3D coordinates
corresponds to the protein chain with the most representative amino acid sequence. To increase
data diversity, four additional reference conformations were defined for each collection. At each
iteration, the new reference conformation was selected as the one with the highest RMSD relative to
the previous reference. This iterative strategy maximizes the variability of the extracted motions by
emphasizing the impact of changing the reference.

B.2 MESSAGE PASSING

The node embeddings and predicted motion vectors are updated iteratively according to the following
algorithm.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm B.1 PETIMOT Message Passing Block
1: function MESSAGEPASSING({si}, {x⃗i}, {N eigh(i)}, {Rij , eij}):
2: # {si}Ni=1 ▷ Node embeddings
3: # {x⃗i}Ni=1 ▷ Motion vectors in local frames
4: # {N eigh(i)}Ni=1 ▷ Node neighborhoods
5: # {Rij , eij} ▷ Relative geometric features
6: for i = 1 to N do
7: for j ∈ N eigh(i) do
8: x⃗i

j ← Rij x⃗j ▷ Project motion in frame i

9: mij ← MessageMLP(si, sj , x⃗i, x⃗
i
j , eij)

10: end for
11: mi ← Meanj(mij) ▷ Aggregate messages
12: si ← si + LayerNorm(mi) ▷ Update embedding
13: x⃗i ← x⃗i + Linear([si, x⃗i]) ▷ Update motion
14: end for
15: return {si}Ni=1, {x⃗i}Ni=1
16: end function

B.3 SE(3)-EQUIVARIANT FEATURES

We represent protein structures as attributed graphs. The node embeddings are computed with the
pre-trained protein language model ProstT5 (Heinzinger et al., 2023). It is a fine-tuned version of the
sequence-only model T5 that translates amino acid sequences into sequences of discrete structural
states and reciprocally.

The edge embeddings are computed using SE(3)-invariant features derived from the input backbone,
similarly to prior works (Ingraham et al., 2023; Dauparas et al., 2022; Ingraham et al., 2019).
Specifically, the features associated with the edge eij from node (atom) i to node (atom) j are:

• Quaternion representation: A 4-dimensional quaternion encoding the relative rotation Rij

between the local reference frames of residues i and j.

• Relative translation: A 3-dimensional vector representing the translation t⃗ij between the
local reference frames.

• Chain separation: The sequence separation between residues i and j, encoded as log(|i−
j|+1).

• Spatial separation: The logarithm of the Euclidean distance between residues i and j,
computed as log(∥t⃗ij∥+ϵ), where ϵ = 10−8.

• Backbone atoms distances: Distances between all backbone atoms (N, Cα, C, O) at
residues i and j, encoded through a radial basis expansion. For each pairwise distance dab,
we compute:

fk(dab) = exp

(
− (dab − µk)

2

2σ2

)
, (B.3)

where {µk}20k=1 are centers spaced linearly in [0, 20] Å and σ = 1 Å. This creates a 16 ×
20 = 320 dimensional feature vector, as we have 16 pairwise distances (4 × 4 atoms) each
expanded in 20 basis functions.

B.4 TRAINING PROCEDURE

For the default version, we randomly split the 7,335 conformational collections defined with DANCE
into training, validation, and test sets with a ratio 70:15:15. The data augmentation procedure resulted
in 5,119 × 5 = 25,595 training samples and 1,099 × 5 = 5,495 validation samples.

For the stringent version, we considered clusters of protein chains defined at 30% sequence identity
and 80% sequence coverage using MMseqs2 (Steinegger & Söding, 2017). These clusters define
distant protein families and we refer to them as clus-30 in the following. We kept the test proteins
used PETIMOT-default as is and we removed all collections belonging to the same clus-30 clusters
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as these proteins from the training and validation sets. Then, we re-defined a training-validation
random split at the level of the clus-30 clusters with a 9:1 ratio. This operation ensures that any pair of
training-validation, training-test or validation-test collections do not share more than 30% sequence
identity. Finally, for each training or validation clus-30 cluster, we randomly drew 5 samples. This
step ensures that each protein family is evenly represented in the training and validation sets.

For the 5fold version, we conducted a 5-fold cross-validation experiment with strict similarity filtering.
We ensured a two-stage similarity filtering process:

1. Structural similarity removal: First, we used FoldSeek (Van Kempen et al., 2024) to
cluster protein chains using an e-value threshold of 1e-2. Any two chains belonging to two
different clusters do not share significant structural similarity.

2. Sequential similarity removal: We randomly partitioned the dataset into 5 folds and
applied a cross-validation procedure. We implemented an additional sequence similarity-
based filtering using MMseqs2. Specifically, for each fold, we removed from the training
set (80% of the data) the protein chains sharing more than 30% sequence identity with any
of the chains from the test set (20%).

The models were optimized using AdamW (Loshchilov & Hutter, 2019) with a learning rate of 5e-4
and weight decay of 0.01. We employed gradient clipping with a maximum norm of 10.0 and mixed
precision training with PyTorch’s Automatic Mixed Precision. The learning rate was adjusted using
torch’s ReduceLROnPlateau scheduler, which monitored the validation loss, reducing the learning
rate by a factor of 0.2 after 10 epochs without improvement. Training was performed with a batch
size of 32 for both training and validation sets. We implemented early stopping with a patience of 50
epochs, monitoring the validation loss. The model achieving the best validation performance was
selected for final evaluation. We trained the model on a single NVIDIA A100-SXM4-80GB GPU.
One epoch took about 9 minutes of real time.

Comparison with the Normal Mode Analysis. We compared our approach with the physics-based
unsupervised Normal Mode Analysis (NMA) method (Hayward & Go, 1995). The NMA takes as
input a protein 3D structure and builds an elastic network model where the nodes represent the atoms
and the edges represent springs linking atoms located close to each other in 3D space. The four lowest
normal modes are obtained by diagonalizing the mass-weighted Hessian matrix of the potential energy
of this network. We used the highly efficient NOLB method, version 1.9, downloaded from https:
//team.inria.fr/nano-d/software/nolb-normal-modes/ (Hoffmann & Grudinin,
2017) to extract the first K normal modes from the test protein 3D conformations. Specifically, we
used the following command

NOLB INPUT.pdb -c 10 -x -n 4 --linear -s 0 --format 1 --hetatm

We retained only the Cα atoms and defined the edges in the elastic network using a distance cutoff of
10 Å.

Comparison with AlphaFlow and ESMFlow. We compared our approach with the flow-matching
based frameworks AlphaFlow and ESMFlow on a subset of 824 proteins out of a total of 1 117
comprised in the test set of PETIMOT-default. The 293 protein we excluded were too long (>450
amino acids) to be handled by AlphaFlow and ESMFlow in a reasonable amount of time using our
computing resources. We downloaded the distilled ”PDB” models from https://github.com/
bjing2016/alphaflow. We executed AlphaFlow using the following command,

python predict.py --noisy_first --no_diffusion --mode alphafold
--input_csv seqs.csv --msa_dir msa_dir/
--weights alphaflow_pdb_distilled_202402.pt --samples 50
--outpdb output_pdb/

AlphaFlow relies on OpenFold (Ahdritz et al., 2024) to retrieve the input multiple sequence alignment
(MSA). ESMFlow was launched using the same command with an additional --mode esmfold
flag and its corresponding weights. We used AlphaFlow and ESMFlow to generate 50 conformations
for each test protein and then we treated each ensemble as a conformational collection. We then
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aligned all members of the created collections to the reference conformations of the ground-truth
collections. We used the identity coverage weights here. Finally, from the aligned collections, we
extracted the principal linear motions. We shall additionally mention that we did not filter or adapt
our test set to the AlphaFlow and ESMFlow methods. In other words, there can be certain data
leakage between AlphaFlow/ESMFlow train data and our test examples.

B.5 ABLATION STUDIES

To understand the impact of different components on the performance of our model, we carried out
ablation studies. We list them blow.

Model architecture variations.

• Network depth: We experimented with different numbers of message-passing layers (5 and
10 layers compared to our default value of 15 layers).

• Layer sharing: We tested a variant where all message-passing layers share the same parame-
ters, as opposed to our default where each layer has unique parameters.

• Reduced internal embedding dimension: We tested a model with a smaller internal embed-
ding dimension of 128 instead of the default 256.

Figure B.1 shows the evaluation of these modifications. A shallow 5-layers network underperforms
on all evaluation metrics. The difference between other variants is not very significant.

Structure and sequence information ablation.

• Structure ablation: We removed all structural information from the model to assess the
importance of geometric features and the performance with the PLM embeddings only. We
did it by removing the edge attributes of the input of the message passing MLP.

• Sequence ablation: We ablated sequence information by replacing protein language model
embeddings with random embeddings, testing them both with and without structural infor-
mation.

• Embedding variants: We evaluated a different protein language model (ESMC-600M), both
with and without structural tokens.

The evaluation results are shown in Fig. B.2. The results demonstrate that while both ProstT5 and
ESM-Cambrian 600M perform similarly when combined with structural information, removing
structural features leads to markedly different outcomes. ProstT5 embeddings partially compensate
for the missing structural information, likely due to their structure-aware training, while relying solely
on ESM-C embeddings results in poor performance.

Problem formulation ablation. We analyzed different combinations of our loss terms (compared
to our default balanced weights of LS + SS):

• Least Square loss (LS): Using only the LS loss (weight 1.0).

• Squared Sinus loss (SS): Using only the SS loss (weight 1.0).

• Independent Subspaces (IS): Using only the IS loss (weight 1.0).

Figure B.3 compares three individual losses with the default option. The IS problem formulation
underperforms on all the metrics. The default LS + SS formulation performs slightly better than those
with individual loss components.

Graph connectivity ablation. We investigated different approaches to constructing the protein
graph:

• Nearest neighbor-only: Using 15 nearest neighbors (sorted according to the corresponding
Cα-Cα distances) without random edges.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Minimum LS Error

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 te

st
 p

ro
te

in
s

a.
PETIMOT
5 Layers
10 Layers
15 Shared Layers
Reduced s dimension (128)

0.0 0.2 0.4 0.6 0.8 1.0
Optimal Assignment LS Error

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 te

st
 p

ro
te

in
s

b.
PETIMOT
5 Layers
10 Layers
15 Shared Layers
Reduced s dimension (128)

0.0 0.2 0.4 0.6 0.8 1.0
Minimum Magnitude Error

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 te

st
 p

ro
te

in
s

c.

PETIMOT
5 Layers
10 Layers
15 Shared Layers
Reduced s dimension (128)

0.0 0.2 0.4 0.6 0.8 1.0
Optimal Assignment Magnitude Error

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 te

st
 p

ro
te

in
s

d.

PETIMOT
5 Layers
10 Layers
15 Shared Layers
Reduced s dimension (128)

0.0 0.2 0.4 0.6 0.8 1.0
SS Error

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 te

st
 p

ro
te

in
s

e.
PETIMOT
5 Layers
10 Layers
15 Shared Layers
Reduced s dimension (128)

Figure B.1: Network depth ablation. We report cumulative curves for LS error (a-b), magnitude
error (c-d), and SS error (e). For each protein, we computed the error either for the best-matching
pair of predicted and ground-truth vectors (a,c) or for the best combination of four pairs of predicted
and ground-truth vectors (b,d). We vary the number of layers in the network and the embedding
dimension.

• Random connections-only: Using 15 random edges without nearest neighbors. This set is
updated between every layer at each epoch.

• Static connectivity: Using a fixed set of random neighbors between the layers. This set is
updated at each epoch.

Figure B.4 shows the ablation results. We can see that the nearest neighbor-only setup underperforms
on all the metrics. Among other options, the random connectivity-only option gets lower results
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Figure B.2: Structure and sequence information ablation study. We report cumulative curves for
LS error (a-b), magnitude error (c-d), and SS error (e). For each protein, we computed the LS and
magnitude errors either for the best-matching pair of predicted and ground-truth vectors (a,c) or for
the best combination of four pairs of predicted and ground-truth vectors (b,d).

at higher metrics values. The default option performs on par with the static connectivity, showing
slightly better results on the optimal assignment magnitude error metrics.

B.6 ADDITIONAL VALIDATION ON ATLAS MOLECULAR DYNAMICS DATA

To further assess our model’s generalization capabilities, we conducted an additional validation ex-
periment using molecular dynamics (MD) data from the ATLAS database. This experiment provided
an independent test of PETIMOT’s performance on high-quality data with distinct characteristics
from our training data.

The ATLAS MD dataset underwent a systematic preprocessing pipeline. First, we extracted the
principal components from the MD trajectories. Subsequently, we assigned samples to appropriate
cross-validation folds, ensuring strict exclusion of both structural and sequential similarity between
training and test sets. This rigorous assignment process yielded 400 samples suitable for evalua-
tion. The inference was then performed by applying our trained PETIMOT models to predict the
conformational motions for each sample.
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Figure B.3: Performance comparison of different problem formulations. We report cumulative
curves for magnitude error (a,b) and LS error (c). For each protein, we computed the error either for
the best-matching pair of predicted and ground-truth vectors (a) or for the best combination of four
pairs of predicted and ground-truth vectors (b,c).

C ADDITIONAL RESULTS

Figure C.1 evaluates PETIMOT against NMA, ESMFlow and AlphaFlow approaches using additional
metrics. These include the minimum magnitude error, the optimal assignment magnitude error, and
the optimal assignment LS error. On all the metrics we see that PETIMOT outperforms the three
other tested approaches.

We also experimented with a different number of predicted components, while maintaining the
number of ground-truth components fixed at L = 4. For these experiments, we trained additional
models with the LS loss only:

• Single component prediction (1 mode).
• Reduced component prediction (2 modes).
• Extended component prediction (8 modes).

We compare these with our default setting of K = 4 predicted components. Figure C.2 shows
the results. The key insight is that minimum-based metrics (Fig. C.2a,c) and assignment-based
metrics (Fig. C.2b,d) measure different aspects of subspace quality: Minimum metrics measure
the best possible match between any predicted and ground-truth component. These improve with
more predicted components (from 1 to 8) because having more candidates increases the likelihood
of finding at least one good match with each ground-truth component. Optimal assignment metrics
measure overall subspace alignment by finding the best one-to-one matching between predicted
and ground-truth components. Here, models with fewer predicted components (1-2) perform better
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Figure B.4: Graph connectivity ablation. We report cumulative curves for LS error (a-b), magnitude
error (c-d), and SS error (e). For each protein, we computed the error either for the best-matching
pair of predicted and ground-truth vectors (a,c) or for the best combination of four pairs of predicted
and ground-truth vectors (b,d). Only Random Neighbors: each residue (node) is connected to 15
randomly chosen residues and the connectivity changes after each layer. Only Nearest Neighbors:
each residue (node) is connected to its 15 nearest neighbors in the input 3D structure. Fixed Random
Connectivity: each residue (node) is connected to 15 residues randomly chosen at the beginning.

because they face fewer constraints in the assignment problem - each predicted component can be
matched to the best available ground-truth component without competition. The 8-component model
maintains the best performance overall, as having more candidate vectors provides flexibility while
still capturing the 4-dimensional ground-truth subspace effectively.
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Figure B.5: SS error in function of min LS error. Blue dots are samples from our PDB dataset
while red dots correspond to the ATLAS MD samples.

Figure C.3 compares the accuracy of the predicted test proteins (minimum LS loss) with the structural
(TM-score) and sequence (sequence identity) distances to the training set. We do not see a clear
correlation between the prediction accuracy and the similarity to the training examples. Please also
see Fig. 2b-c for comparison.

Figure C.4 further assesses PETIMOT’s generalisation capability across protein families. To do
so, we implemented a more stringent train-validation-test split using a 30% sequence similarity
threshold (see main text and Appendix B.4). When trained under this stringent protocol, PETIMOT
still substantially outperforms all baseline methods according to minimum L and SS metrics (Fig.
C.4a-b). Moreover, we observe a slight generalisation improvement of PETIMOT-stringent over
PETIMOT-default on a test set of 474 proteins evolutionary distant from any protein used for training
or validation of any of the two model versions (Fig. C.4c-d).

Figures C.5 and C.6 show predicted (blue arrows) and ground-truth (red arrows) motion vectors for
the xylanase A from Bacillus subtilis and the periplasmic domain of Gliding motility protein GldM
from Capnocytophaga canimorsus, respectively.

D LICENSES FOR USED RESOURCES

In this work, we utilize several existing resources. The protein structures were obtained from
the Protein Data Bank (PDB, https://www.rcsb.org/, version accessed on June 2023) which is dis-
tributed under the CC0 1.0 Universal Public Domain Dedication license (CC0 1.0). We com-
plemented PDB data with data from PDB-redo (accessed June 2023) developed by Joosten et
al. (Joosten et al., 2014), available at https://pdb-redo.eu under the licence specified at
https://pdb-redo.eu/license. For protein language modeling, we employed ProstT5
developed by Heinzinger et al. (Heinzinger et al., 2023), available under the MIT license at
https://huggingface.co/Rostlab/ProstT5, and ESM-Cambrian 600M (verison esmc-
600m-2024-12) developed by the EvolutionaryScale Team (ESM Team, 2024), available under the
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Figure C.1: Performance comparison with other methods on the test proteins. We report
cumulative curves for magnitude error (a,b) and LS error (c). For each protein, we computed the error
either for the best-matching pair of predicted and ground-truth vectors (a) or for the best combination
of four pairs of predicted and ground-truth vectors (b,c).

Cambrian Non-Commercial License at https://huggingface.co/EvolutionaryScale/
esmc-600m-2024-12. Additional resources include the DANCE method (version of Oct 8,
2024) developed by Lombard et al., available under the MIT license at https://github.com/
PhyloSofS-Team/DANCE. As baselines, we ran the NOLB method (version 1.9) developed by
Hoffmann et al. (Hoffmann & Grudinin, 2017) and available at https://team.inria.fr/
nano-d/software/nolb-normal-modes/, and the AlphaFlow (version AlphaFlow-PDB
distilled) and ESMFlow (version ESMFlow-PDB distilled) models developed by Jing et al. (Jing et al.,
2024) and available at https://github.com/bjing2016/alphaflow. We used TM-align
(version 20220412) developed by Zhang and Skolnick (Zhang & Skolnick, 2005) and available at
https://zhanggroup.org/TM-align/ to perform all-to-all pairwise structural alignments
between train and test protein conformations and compute TM-scores.
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Figure C.2: Impact of the number of predicted components. We report cumulative curves for
LS error (a-b) and magnitude error (c-d). For each protein, we computed the error either for the
best-matching pair of predicted and ground-truth vectors (a,c) or for the best combination of all pairs
of predicted and ground-truth vectors using optimal linear assignment (b,d). We compare models
trained to predict different numbers of components (modes): 1, 2, 4, or 8, using only the LS loss.
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Figure C.3: Relationship between PETIMOT’s prediction accuracy and structural/sequence
similarity with the training set. The minimum LS error is plotted against the maximum TM-score
between each test protein and any protein in the training set. Points are colored by the maximum
sequence identity to the training samples.
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Figure C.4: Cumulative error curves computed on the test proteins. a-b. Comparison between
PETIMOT-stringent model and three other methods on a non-redundant set of 734 test proteins.
PETIMOT-stringent was trained on a stringent and non-redundant training-validation-test split defined
using a 30% sequence identity threshold. c-d. Comparison between PETIMOT-default, PETIMOT-
stringent and three other methods on 474 test proteins that share less than 30% sequence similarity
with any protein used in training or validation of either model. a,c. Minimum LS error corresponding
to the best matching pair of predicted and ground-truth motions. b,d. SS error computed between the
entire predicted and ground-truth subspaces.
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Figure C.5: Visualization of predicted (blue arrows) and ground-truth (red arrows) motion
vectors for PDB structure 3EXU (chain A), with LS error of 0.20. The predicted deformation was
used to generate the interpolated conformations shown in Fig. 2b.

Figure C.6: Visualization of predicted (blue arrows) and ground-truth (red arrows) motion
vectors for PDB structure 7SD2, with LS error of 0.18. The predicted deformation was used to
generate the interpolated conformations shown in Fig. 2c.
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