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Abstract. In open quantum systems, the quantum Zeno effect consists in
frequent applications of a given quantum operation, e.g., a measurement,
used to restrict the time evolution (due, for example, to decoherence) to
states that are invariant under the quantum operation. In an abstract
setting, the Zeno sequence is an alternating concatenation of a contrac-
tion operator (quantum operation) and a C0-contraction semigroup (time
evolution) on a Banach space. In this paper, we prove the optimal conver-
gence rate O( 1

n
) of the Zeno sequence by proving explicit error bounds.

For that, we derive a new Chernoff-type
√

n-Lemma, which we believe to
be of independent interest. Moreover, we generalize the convergence result
for the Zeno effect in two directions: We weaken the assumptions on the
generator, inducing the Zeno dynamics generated by an unbounded gen-
erator, and we improve the convergence to the uniform topology. Finally,
we provide a large class of examples arising from our assumptions.
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1. Introduction

In its original form, the quantum Zeno effect is defined for closed finite quan-
tum systems. Misra and Sudarshan predicted that “an unstable particle which
is continuously observed to see whether it decays will never be found to decay!”
[30, Abst.]. In a more general setup, frequent measurements enable a change
in the time evolution and convergence to the so-called Zeno dynamics. Exper-
imentally, the Zeno effect is verified for instance in [14,24]. In addition to its
theoretical value, the quantum Zeno effect is used in error correction schemes
to suppress decoherence in open quantum systems [1,3,15,23,29]. The idea is
to frequently measure the quantum state and thereby force the evolution to
remain within the code space. With an appropriate measurement, one can even
decouple the system from its environment [5,12] and show that appropriate-
ly encoded states can be protected from decoherence with arbitrary accuracy
[7,9]. Moreover, the quantum Zeno effect has been used in commercial atomic
magnetometers [26].

Introduced by Beskow and Nilsson [4] and later named by Misra and
Sudarshan after the Greek philosopher Zeno of Elea, the quantum Zeno effect
in its simplest form can be stated as follows: given a projective measurement
P and a unitary time evolution generated by a Hamiltonian H acting on a
finite-dimensional Hilbert space H [30]: For n → ∞

(
Pe

it
n H

)n

−→ eit PHP (1)

Since the seminal works [4,30], the result was extended in many different
directions (overviews can be found in [13,24,35]). Recently, the convergence in
Eq. (1) was proven in the strong topology for unbounded Hamiltonian under
the weak assumption that PHP is the generator of a C0-semigroup [11]. Earlier
approaches used the so-called asymptotic Zeno condition [10,30,35], which
assumes (1 − P )eitHP and PeitH(1 − P ) to be Lipschitz continuous at t = 0.
This condition is natural in the sense that it is related to the boundedness
of the first moment of the Hamiltonian in the initial state and is efficiently
verifiable in practice. With the works [1,5,31], the quantum Zeno effect was
generalized to open and infinite-dimensional quantum systems equipped with
general quantum operations and uniformly continuous time evolutions. Note
that in open quantum systems, we are dealing with operators acting on the
Banach space T1(H) of trace class operators. More recently, Becker, Datta, and
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Optimal Convergence Rate in the Quantum Zeno effect

Salzmann generalized the Zeno effect further and interpreted the Zeno sequence
as a product formula consisting of a contraction M (quantum operation) and
a C0-contraction semigroup (quantum time evolution) on an abstract Banach
space. Under a condition of uniform power convergence of the power sequence
{Mk}k∈N toward a projection P and boundedness of ML and LM , they proved
a quantitative bound on the convergence rate [2]:

∥∥∥
(
Me

t
n L

)n

x − etPLP Px
∥∥∥ = O

(
n− 1

3 (‖x‖ + ‖Lx‖)
)

, (2)

for n → ∞ and all x ∈ D(L). However, the optimality of (2) was left open.1

Main contributions In this paper, we achieve the optimal convergence rate
O(n−1) of the Zeno sequence consistent with the finite-dimensional case [5] by
providing an explicit bound which recently attracted interest in finite closed
quantum systems [19, Theorem 1]. Moreover, we generalize the results of [2]
in two complementary directions:

In Theorem 5.1, we assume a special case of the uniform power conver-
gence assumption on M , that is ‖Mn−P‖ ≤ δn for some δ ∈ (0, 1), and weaken
the assumption on the semigroup to the uniform asymptotic Zeno condition
inherited from the unitary setting of [35]: for t → 0

∥∥(1 − P )etLP
∥∥

∞ = O(t) and
∥∥PetL(1 − P )

∥∥
∞ = O(t).

Therefore, we prove the convergence of a non-trivial Zeno sequence in open
quantum systems to a Zeno dynamics described by a possibly unbounded gen-
erator.
Second, Theorem 6.1 is stated under slightly weaker assumptions as Theorem
3 in [2] and improves the result to the optimal convergence rate and to the
uniform topology.

In order to achieve these results, we prove a modified Chernoff
√

n-Lemma
in Lemma 4.2, find a quantitative convergence rate for exp

(
nP (e

1
n tL − 1)P

)
P−

exp(tPLP )P as n → ∞, where PLP is possibly unbounded, and prove the
upper semicontinuity of parts of the spectrum of MetL under tight assump-
tions.

Organization of the paper In Sect. 2, we provide a short recap on bounded and
unbounded operator theory. We expose our main results in Sect. 3. Section 4
deals with the modified Chernoff

√
n-Lemma and some of its implications as

regards to Trotter–Kato’s product formula. Then, we prove our main theorems
under the weakest possible assumptions on the C0-semigroup in Sect. 5, and
under the weakest possible assumptions on M in Sect. 6. Our results are il-
lustrated by three large classes of examples in finite- and infinite-dimensional
quantum systems in Sect. 7. Finally, we discuss some remaining open questions
in Sect. 8.

1Note that we found an inconsistency in the proof of [40, Lemma 2.1] (see [41]), which
slightly reduces the convergence rate found in Eq. (2) (more details are given in Sect. 4).
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2. Preliminaries

Let (X , ‖ · ‖) be a Banach space and (B(X ), ‖ · ‖∞) be the associated space of
bounded linear operators over C equipped with the operator norm, i.e., ‖C‖∞
:= supx∈X\{0}

‖Cx‖
‖x‖ , and the identity 1 ∈ B(X ). By a slight abuse of notation,

we extend all densely defined and bounded operators by the bounded linear ex-
tension theorem to bounded operators on X [27, Theorem 2.7–11]. A sequence
(Ck)k∈N ⊂ B(X ) converges uniformly to C ∈ B(X ) if limk→∞ ‖Ck − C‖∞ = 0
and strongly if limk→∞ ‖Ckx−Cx‖ = 0 for all x ∈ X . The integral over bound-
ed vector-valued maps, e.g., [a, b] → X or [a, b] → B(X ) with a < b, is defined
by the Bochner integral, which satisfies the triangle inequality, is invariant un-
der linear transformations and satisfies the fundamental theorem of calculus if
the map is continuously differentiable [22, Sect. 3.7–8, 28, Sect. A.1–2].

We define the resolvent set of C ∈ B(X ) by ρ(C):={z ∈ C | (z −
C) bijective} and its spectrum by σ(C):=C\ρ(C). Then, we define the re-
solvent of C by R(z, C):=(z − C)−1 for all z ∈ ρ(C). Note that the resolvent
is continuous in z [25, Theorem 3.11] and thereby uniformly bounded on com-
pact intervals. A point λ ∈ σ(C) is called isolated if there is a neighborhood
V ⊂ C of λ such that V ∩ σ(C) = λ. The spectrum is separated by a curve
Γ : I → ρ(C) if σ(C) = σ1 ∪ σ2, the subsects σ1, σ2 have disjoint neighbor-
hoods V1, V2, and the curve is simple, closed, rectifiable2, and encloses one
of the neighborhoods without intersecting V1 and V2 [25, Sects. III, 6.4]. This
definition can be generalized to a finite sum of subsets separated by curves.
An example for a simple, closed, and rectifiable curve is the parametrization
of the boundary of a complex ball around the origin with radius r. We denote
the open ball by Dr and its boundary by ∂Dr.

We define the spectral projection P ∈ B(X ) with respect to a separated
subset of σ(C) enclosed by a curve Γ via the holomorphic functional calculus
[36, Theorem 2.3.1–3]

P =
1

2πi

∮

Γ

R(z, C)dz. (3)

As the name suggests, P ∈ B(X ) satisfies the projection property, P 2 = P . We
denote the complementary projection 1 − P by P⊥. If Γ encloses the isolated
one-point subset {λ} ⊂ σ(C), then CP = λP + N with the quasinilpotent
operator [36, Theorem 2.3.5]

N :=
1

2πi

∮

Γ

(z − λ)R(z, C)dz ∈ B(X ) . (4)

A quasinilpotent operator N ∈ B(X ) is characterized by limn→∞ ‖Nn‖
1
n∞ = 0.

The time evolution in the Zeno sequence is described by a C0-contraction
semigroup [8, Definition 5.1]. A family of operators (Tt)t≥0 ⊂ B(X ) is called
a C0-semigroup if the family satisfies the semigroup properties, namely: (i)
TtTs = Tt+s for all t, s ≥ 0, (ii) T0 = 1, and (iii) t �→ Tt is strongly continuous

2A simple, closed, and rectifiable curve is continuous, has finite length, joins up, and does
not cross itself.
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in 0. The generator of a C0-semigroup is a possibly unbounded operator defined
by taking the strong derivative in 0, that is

Lx := lim
h↓0

T (h)x − x

h

for all x ∈ D(L):={x ∈ X | t �→ Ttx differentiable} and is denoted by (L,D(L))
(cf. [8, Ch. II.1]). Since the generator defines the C0-semigroup uniquely, we
denote it by (etL)t≥0, although the series representation of the exponential is
not well defined (cf. [25, Sects. IX, 1]). A semigroup is called contractive if
supt≥0 ‖etL‖∞ ≤ 1. Note that the linear combination and concatenation of
two unbounded operators (K,D(K)) and (L,D(L)) is defined on D(K + L) =
D(K)∩D(L) and D(KL) = L−1(D(K)) (cf. [25, Sects. III, 5.1]). The following
lemma summarizes some properties of C0-semigroups which are used in this
work:

Lemma 2.1 ([8, Lemma II.1.3]). Let (L,D(L)) be the generator of the C0-
semigroup (etL)t≥0 defined on X . Then, the following properties hold:
(1) If x ∈ D(L), then etLx ∈ D(L) and

∂

∂t
etLx = etLLx = LetLx for all t ≥ 0 .

(2) For every t ≥ 0 and x ∈ X , one has
∫ t

0

eτLxdτ ∈ D(L) .

(3) For every t ≥ 0, one has

etLx − x = L
∫ t

0

eτLxdτ for all x ∈ X

=
∫ t

0

eτLLxdτ if x ∈ D(L).

Additionally, a general integral formulation for the difference of two semi-
groups is discussed in the following lemma (cf. [8, Cor. III.1.7]).

Lemma 2.2 (Integral equation for semigroups). Let (L,D(L)) and (K,D(K))
be the generators of two C0-semigroups on a Banach space X and t ≥ 0.
Assume D(L) ⊂ D(K) and [0, t]  s �→ esK(K − L)e(t−s)Lx is continuous for
all x ∈ D(L). Then, for all x ∈ D(L)

etKx − etLx =
∫ t

0

esK (K − L) e(t−s)Lxds.

Proof. Assume x ∈ D(L). In the first part, we follow the proof of Corollary
III.1.7 in [8]. By definition, the vector-valued maps [0, t]  s �→ esKx and
[0, t]  s �→ e(t−s)Lx are continuously differentiable and D(L) is invariant
under the second map. Then, Lemma B.16 in [8] shows

∂

∂s
esKe(t−s)Lx = esK(K − L)e(t−s)Lx.
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By assumption, the above derivative is continuous in s ∈ [0, t], so that the
fundamental theorem of calculus proves the integral equation. �

Corollary 2.3. Let (L,D(L)) be the generator of a C0-semigroup on a Banach
space X , t ≥ 0, and A ∈ B(X ). Then, the unbounded operator K = L + A
defined on (L + A,D(L)) is the generator of a C0-semigroup. If additionally
the semigroup t �→ etL is quasi-contractive, i.e., ‖etL‖∞ ≤ etw for a w ∈ R,
then

∥∥et(L+A) − etL∥∥
∞ ≤ etw(et‖A‖∞ − 1).

Proof. By Theorem 13.2.1 and the corollary afterward in [22], the operator (L+
A,D(L)) is the generator of a quasi-contractive C0-semigroup, i.e., ‖et(L+A)‖∞
≤ etw̃ with w̃ = w + ‖A‖∞. Moreover, [0, t]  s �→ esKAe(t−s)Lx is continuous
by [8, Lemma B.15] so that Lemma 2.2 shows

∥∥∥et(L+A) − etL
∥∥∥

∞
≤

∫ t

0

∥∥∥es(L+A)Ae(t−s)L
∥∥∥

∞
ds ≤ etw ‖A‖∞

∫ t

0

es‖A‖∞ds

= etw(et‖A‖∞ − 1).

�

3. Main Results

In this section, we list the main results achieved in the paper. Since the quan-
tum Zeno effect consists of a contraction operator M ∈ B(X ) (e.g., measure-
ment) and a C0-semigroup (e.g., quantum time evolution), the assumptions on
the contraction operator and on the C0-semigroup influence each other. We
first start with weak assumptions on the semigroup and stronger assumption
on the contraction operator:

Theorem I (stated as Theorem 5.1 in main text). Let (L,D(L)) be the gener-
ator of a C0-contraction semigroup on X , M ∈ B(X ) a contraction, and P a
projection satisfying

‖Mn − P‖∞ ≤ δn (5)

for δ ∈ (0, 1) and all n ∈ N. Moreover, assume there is b ≥ 0 so that for all
t ≥ 0

∥∥PetLP⊥∥∥
∞ ≤ tb and

∥∥P⊥etLP
∥∥

∞ ≤ tb. (6)

If (PLP,D(LP )) is the generator of a C0-semigroup, then for any t ≥ 0 and
all x ∈ D((LP )2)
∥∥∥
(
Me

t
n L

)n

x − etPLP Px
∥∥∥ ≤ c(t, b)

n

(
‖x‖ + ‖LPx‖ +

∥∥(LP )2x
∥∥)

+ δn ‖x‖

for some constant c(t, b) > 0 depending on t and b, but independent of n .
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Remark. Note that the assumption on M is a special case of the so-called u-
niform power convergence assumption (q.v. Eq. 9) and the assumption (6) on
the C0-semigroup is a generalization of the uniform asymptotic Zeno condition
which implies the convergence in the case of a unitary evolution frequently
measured by a projective measurement [35, Sect. 3.1]. Note that in that spe-
cific case, [11] recently managed to remove the asymptotic Zeno condition.
Moreover, the assumption that (PLP,D(LP )) is a generator can be relaxed
to the assumption that PLP is closeable and its closure defines a generator
(q.v. remark after Lemma 5.6). The famous Generation Theorem by Hille and
Yosida provides a sufficient condition under which PLP is a generator [8,
Theorem 3.5–3.8].

The following example confirms the optimality of the achieved conver-
gence rate.

Example 1. Let {|1〉, |2〉, |3〉} be an orthonormal basis of R3 and δ ∈ (0, 1). We
define,

L:=|1〉〈2| and M :=|1〉〈1| + δ|3〉〈3|.
Then, P = |1〉〈1|, (1 − P )M = δ|3〉〈3|, ML = LM , and L2 = 0 = LP ,
‖Mn −P‖∞ ≤ δn. Using these properties, Me

t
n L = M + t

nL and for t ∈ [0,∞)
(
Me

t
n L

)n

=
(

M +
t

n
L

)n

= δn|3〉〈3| + |1〉〈1| +
t

n
|1〉〈2|

= ((1 − P )M)n
etL + PetPLP +

t

n
PL.

Therefore, ∥∥∥
(
Me

t
n L

)n

− PetPLP
∥∥∥

∞
= max{ t

n , δn},

which shows the optimality of our convergence rate in Theorem 5.1.

Beyond the proven asymptotics, we find explicit error bounds in Lem-
mas 5.2, 5.5, and 5.6, which simplify if L is bounded to the following explicit
convergence bound depending on the generator L, the projection P , the spec-
tral gap δ, and the time t:

Proposition 3.1. Let L ∈ B(X ) be the generator of a contractive uniformly
continuous semigroup and M ∈ B(X ) a contraction satisfying

‖Mn − P‖∞ ≤ δn

for a projection P ∈ B(X ), δ ∈ (0, 1), and all n ∈ N. Then, for all t ≥ 0 and
n ∈ N,

∥∥∥
(
Me

t
n L

)n

− etPLP P
∥∥∥

∞
≤ cp

t‖L‖∞
n

+

(
cp + (1 + eb̃)(1 + c2

p)
2

)
t2‖L‖2

∞
n

+ δn +
2δ

1 − δ

e3t‖L‖∞cp

n
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where cp:=‖1 − P‖∞ and eb̃ = sups∈[0,t] ‖esPLP ‖∞.

Note that the above proposition can be easily extended to the case of
an unbounded generator with the assumption that LM and ML are densely
defined and bounded. Another advantage of our setup is the freedom it provides
for choosing the Banach space X , which allows us to treat open quantum
systems (X = T (H) the trace class operators over a Hilbert space) and closed
quantum systems (X = H a Hilbert space) on the same footing. In the case
of finite-dimensional closed quantum systems, Proposition 3.1 reduces to the
following bound, which was independently proven in [19, Theorem 1] (up to a
change of the numerical constant in the quadratic term from 5

2 to 2):

Corollary 3.2. Let H be a Hilbert space, H ∈ B(H) be a Hermitian operator,
and P ∈ B(H) a Hermitian projection. Then,

∥∥∥
(
Pe−i t

n H
)n

− e−itPHP P
∥∥∥

∞
≤ 1

n

(
t ‖H‖∞ +

5
2
t2 ‖H‖2

∞

)

To achieve the bound above, one inserts δ = 0 and L = iH in Proposi-
tion 3.1. Note that PHP is Hermitian and ‖esiPHP ‖∞ = 1 for all s ≥ 0.

Next, we consider convergence rates under a slight weakening of the con-
dition on the map M :

Corollary 3.3. Let (L,D(L)) be the generator of a C0-contraction semigroup
on X and M ∈ B(X ) a contraction satisfying

‖Mn − P‖∞ ≤ c̃ δn

for some projection P , δ ∈ (0, 1), c̃ ≥ 0 and all n ∈ N. Moreover, assume there
is b ≥ 0 so that ∥∥PetLP⊥∥∥

∞ ≤ tb and
∥∥P⊥etLP

∥∥
∞ ≤ tb.

If (PLP,D(LP )) is the generator of a C0-semigroup, then there exists a con-
stant c > 0 and n0 ∈ N so that c̃δn0=:δ̃ < 1 and for all x ∈ D((LP )2)∥∥∥

(
Mn0e

t
n L

)n

x − etPLP Px
∥∥∥ ≤ c

n

(
‖x‖ + ‖LPx‖ +

∥∥(LP )2x
∥∥)

+ δ̃n ‖x‖ .

The above corollary follows by the choice n0 such that c̃δn0 < 1 and
applying Theorem I to M̃ :=Mn0 . A more physically motivated result treating
the same generalization as the corollary above is provided in the next result:

Proposition II (stated as Proposition 5.7 in main text). Let (L,D(L)) be the
generator of a C0-contraction semigroup on X and M ∈ B(X ) a contraction
such that

‖Mn − P‖∞ ≤ c̃ δn (7)

for some projection P , δ ∈ (0, 1) and c̃ ≥ 0. Moreover, we assume that there
is b ≥ 0 so that∥∥PetLP⊥∥∥

∞ ≤ tb,
∥∥M⊥etL − M⊥∥∥

∞ ≤ tb, and
∥∥P⊥etLP

∥∥
∞ ≤ tb

(8)
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where M⊥ = (1 − P )M . If (PLP,D(LP )) generates a C0-semigroup, then
there is an ε > 0 such that for all t ≥ 0, n ∈ N satisfying t ∈ [0, nε], δ̃ ∈ (δ, 1),
and x ∈ D((LP )2)

∥∥∥
(
Me

t
n L

)n

x − etPLP Px
∥∥∥ ≤ c1(t, b, δ̃ − δ)

n

(
‖x‖ + ‖LPx‖ +

∥∥(LP )2x
∥∥)

+c2(c̃, δ̃ − δ)δ̃n ‖x‖ ,

for some constants c1, c2 ≥ 0 depending on t, b, the difference δ̃ − δ, and c̃.

As in Proposition 3.1, we also get a more explicit bound in the case of
bounded generators in the following proposition:

Proposition 3.4 Let L ∈ B(X ) be the generator of a contractive uniformly
continuous semigroup and M ∈ B(X ) a contraction satisfying

‖Mn − P‖∞ ≤ c̃δn

for a projection P ∈ B(X ), δ ∈ (0, 1), c̃ > 1, and all n ∈ N. Then, there is
ε > 0 such that for all t ≥ 0, n ∈ N satisfying t ∈ [0, nε], and δ̃ ∈ (δ, 1)

∥∥∥
(
Me

t
n L

)n

− etPLP P
∥∥∥

∞
≤ tcp‖L‖∞

n
+

cp + (1 + eb̃)(1 + c2
p)

2
t2‖L‖2

∞
n

+
2c̃

δ̃ − δ
δ̃n +

2δ̃

1 − δ̃

e
6tcpc̃‖L‖∞

δ̃−δ

n

where cp:=‖1 − P‖∞ and eb̃ = sups∈[0,t] ‖esPLP ‖∞.

Finally, we extend the assumption on M (q.v. Eqs. 5, 7) to the uniform
power convergence introduced in [2]. Let {Pj , λj}J

j=1 be a set of projections
satisfying PjPk = 1j=kPj and associated eigenvalues on the unit circle ∂D1.
Then, M is called uniformly power convergent with rate δ ∈ (0, 1) if Mn −∑J

j=1 λn
j Pj = O(δn) uniformly for n → ∞. To prove our result in this case,

we also need to assume that ML and LPΣ with PΣ:=
∑J

j=1 Pj are densely
defined and bounded (cf. [2]) and Pj is a contraction for all j ∈ {1, ..., J,Σ}:

Theorem III (stated as Theorem 6.1 in main text). Let (L,D(L)) be the gen-
erator of a C0-contraction semigroup on X and M ∈ B(X ) a contraction
satisfying the following uniform power convergence: There is c̃ > 0 so that

∥∥∥∥∥∥
Mn −

J∑
j=1

λn
j Pj

∥∥∥∥∥∥
∞

≤ c̃ δn (9)

for a set of projections {Pj}J
j=1 satisfying PjPk = 1j=kPj, eigenvalues {λj}J

j=1

⊂ ∂D1, and a rate δ ∈ (0, 1). For PΣ:=
∑J

j=1 Pj, we assume that ML and
LPΣ are densely defined and bounded by b ≥ 0 and ‖Pj‖∞ = 1 for all j ∈
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{1, ..., J,Σ}. Then, there is an ε > 0 such that for all n ∈ N, t ≥ 0 satisfying
t ∈ [0, nε], and δ̃ ∈ (δ, 1)

∥∥∥∥∥∥
(
Me

t
n L

)n

−
J∑

j=1

λn
j etPjLPj Pj

∥∥∥∥∥∥
∞

≤ c1

n
+ c2δ̃

n ,

for some constants c1, c2 ≥ 0 depending on all involved parameters except from
n.

In comparison with Theorem 3 in [2], Theorem 6.1 achieves the optimal
convergence rate and is formulated in the uniform topology under slightly
weaker assumptions on the generator.

Remark A natural way to weaken the above assumption is to assume that the
power converges is in the strong topology (cf. [2, Theorem 2]).

4. Chernoff
√
n-Lemma and Trotter–Kato’s Product Formula

In the previous works [2,31], Chernoff’s
√

n-Lemma [6, Lemma 2], which we
restate here, is used as a proof technique to approximate the Zeno product by
a semigroup (q.v. Eq. 13).

Lemma 4.1 (Chernoff
√

n-Lemma). Let C ∈ B(X ) be a contraction. Then,
(et(C−1))t≥0 is a uniformly continuous contraction semigroup and for all x ∈
X ∥∥∥Cnx − en(C−1)x

∥∥∥ ≤
√

n ‖(C − 1)x‖ .

Remark In Lemma 2.1 in [40], the dependence on n is improved to n
1
3 . This is

crucial in the proof of the convergence rate in [2, Lemmas 5.4–5.5]. Unfortu-
nately, we found an inconsistency in the proof of [40, Lemma 2.1], i.e., Inequal-
ity 2.3 is not justified. An update and more Chernoff bounds can be found in
[41]. Following the proof by Becker, Datta, and Salzmann, one can achieve a
convergence rate of order 1√

n
in the bounded generator case [2, Theorem 1]

and of order 1
4√n

in the unbounded generator case [2, Theorem 3].

In the case of the quantum Zeno effect (see Lemmas 5.5 and 6.4) for
bounded generators, the contraction C is a vector-valued map t �→ C(t) on X
satisfying ‖C( 1

n ) − 1‖∞ = O(n−1). By Chernoff’s
√

n-Lemma
∥∥∥∥Cn( 1

n ) − en(C(
1
n )−1)

∥∥∥∥
∞

≤ 1√
n

.

here we chose the bounded generator case for the sake of simplicity. Never-
theless, the argument can be extended to unbounded generator as well (see
Lemmas 5.5, 6.4, and C.1). Next, we prove a modified bound, which allows us
to achieve the optimal rate in the quantum Zeno effect.
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Lemma 4.2 (Modified Chernoff Lemma). Let C ∈ B(X ) be a contraction and
n ∈ N. Then, (et(C−1))t≥0 is a contraction semigroup and for all x ∈ X

∥∥∥
(
Cn − en(C−1)

)
x
∥∥∥ ≤ n

2

∥∥(C − 1)2x
∥∥ .

Remark At first glance, this seems to be worse than the original Chernoff
√

n-
Lemmas in [6]. However, if C is a vector-valued map satisfying ‖C( 1

n )−1‖∞ =
O(n−1), then the modified Chernoff lemma gives

∥∥∥∥C( 1
n )n − e

n
(
C

(
1
n

)
−1

)∥∥∥∥
∞

≤ n

2

∥∥C( 1
n ) − 1

∥∥2

∞ = O
(
n−1

)

which is the key idea to prove the optimal convergence rate of the quantum
Zeno effect for bounded generators and contractions M satisfying the uniform
power convergence (q.v. Lemma 5.5).

Proof of Lemma 4.2 Similar to Chernoff’s proof [6, Lemma 2], (et(C−1))t≥0 is
a contraction semigroup. We define Ct:=(1 − t)1 + tC = 1 + t(C − 1) for
t ∈ [0, 1], which itself is a contraction as a convex combination of contractions,
and we use the fundamental theorem of calculus so that

∥∥∥
(
Cn − en(C−1)

)
x
∥∥∥ ≤

∫ 1

0

∥∥∥∥
∂

∂t

(
Cn

t e(1−t)n(C−1)
)

x

∥∥∥∥ dt

≤ n

∫ 1

0

∥∥∥Cn−1
t e(1−t)n(C−1)

∥∥∥
∞

‖(1 − C)(1 − Ct)x‖ dt

≤ n

2

∥∥(C − 1)2x
∥∥ ,

which proves the lemma. �

In [6, p. 241], Chernoff proves the convergence of Trotter’s product formu-
la by approximating the product using the Chernoff

√
n-Lemma. For bounded

generators, Chernoff’s proof gives a convergence rate of order n− 1
2 . Following

his proof and using our modified Chernoff Lemma, we achieve the well-known
optimal convergence rate of order n−1 [20, Theorem 2.11, 32, p. 1-2]:

Proposition 4.3 ([6, Theorem 1]). Let F : R≥0 → B(X ) be a continuously dif-
ferentiable function (in the uniform topology) satisfying supt∈R≥0

‖F (t)‖∞ ≤
1. Assume that F (0) = 1 and denote the derivative at t = 0 by L ∈ B(X ).
Then, for all t ≥ 0

∥∥F
(

t
n

)n − etL∥∥
∞ ≤

∥∥n
(
F

(
t
n

)
− 1

)
− tL

∥∥
∞ +

n

2

∥∥(F
(

t
n

)
− 1)

∥∥2

∞ .

Proof The case t = 0 is clear. For t > 0, applying Lemma 4.2, we get
∥∥F

(
t
n

)n − etL∥∥
∞ ≤

∥∥∥∥F
(

t
n

)n − e
n

(
F

(
t
n

)
−1

)∥∥∥∥
∞

+
∥∥∥∥e

n
(
F

(
t
n

)
−1

)
− etL

∥∥∥∥
∞

≤ n

2

∥∥F
(

t
n

)
− 1

∥∥2

∞ +
∥∥∥∥e

n
(
F

(
t
n

)
−1

)
− etL

∥∥∥∥
∞

.
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For the second term above, we apply Lemma 2.2:
∥∥∥∥e

n
(
F

(
t
n

)
−1

)
− etL

∥∥∥∥
∞

=
∫ 1

0

∥∥∥∥e
sn

(
F

(
t
n

)
−1

) (
n

(
F

(
t
n

)
− 1

)
− tL

)
e(1−s)tL

∥∥∥∥
∞

ds

≤
∥∥n

(
F

(
t
n

)
− 1

)
− tL

∥∥
∞ ,

where we use ‖F ( t
n )‖∞ ≤ 1 and that esn(F (

t
n )−1) is a contraction semigroup.

�

Applying the proposition to the case of Trotter’s product formula, we
achieve the well-known optimal convergence rate for bounded generators on
Banach spaces [20, Theorem 2.11, 32, p. 1–2]:

Corollary 4.4 ([20, Theorem 2.11]). Let L1 and L2 be bounded generators of
two uniformly continuous contraction semigroups. Then, for n → ∞

∥∥∥
(
e

1
n L1e

1
n L2

)n

− eL1+L2

∥∥∥
∞

= O
(

1
n

)
.

Proof We define F ( 1
n ) := e

1
n L1e

1
n L2 for which

F ( 1
n ) − 1 = e

1
n L1

(
e

1
n L2 − 1

)
+ e

1
n L1 − 1

=
(
e

1
n L1 − 1

) (
e

1
n L2 − 1

)
+ e

1
n L2 − 1 + e

1
n L1 − 1

holds. Moreover,
∥∥∥e

1
n L1 − 1

∥∥∥
∞

=
1
n

∥∥∥∥
∫ 1

0

e
τ1
n L1L1dτ1

∥∥∥∥
∞

≤ 1
n

‖L1‖∞

and
∥∥∥n

(
e

1
n L1 − 1

)
− L1

∥∥∥
∞

=
1
n

∥∥∥∥
∫ 1

0

∫ 1

0

τ1e
τ1τ2

n L1L2
1dτ2dτ1

∥∥∥∥
∞

≤ 1
2n

‖L1‖2
∞ .

∥∥n
(
F ( 1

n ) − 1
)

− L1 − L2

∥∥
∞ ≤ 1

n

(
‖L1‖∞ ‖L2‖∞ + 2 ‖L1‖2

∞ + 2 ‖L2‖2
∞

)

and the statement follows from Proposition 4.3. �

5. Strongly Continuous Zeno Dynamics

We proceed with the statement and proof of our first main result, namely
Theorem 5.1, which we restate here for the sake of clarity of conciseness:

Theorem 5.1 Let (L,D(L)) be the generator of a C0-contraction semigroup on
X , M ∈ B(X ) a contraction, and P a projection satisfying

‖Mn − P‖∞ ≤ δn (10)

for δ ∈ (0, 1) and all n ∈ N. Moreover, assume there is b ≥ 0 so that for all
t ≥ 0 ∥∥PetLP⊥∥∥

∞ ≤ tb and
∥∥P⊥etLP

∥∥
∞ ≤ tb. (11)
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If (PLP,D(LP )) is the generator of a C0-semigroup, then for any t ≥ 0 and
all x ∈ D((LP )2)
∥∥∥
(
Me

t
n L

)n

x − etPLP Px
∥∥∥ ≤ c(t, b)

n

(
‖x‖ + ‖LPx‖ +

∥∥(LP )2x
∥∥)

+ δn ‖x‖

for a constant c(t, b) > 0 depending on t and b, but independent of n .

5.1. Proof of Theorem 5.1

We assume for the sake of simplicity that t = 1 and split our proof into three
parts:

∥∥∥
(
Me

1
n L

)n

x − ePLP Px
∥∥∥ ≤

∥∥∥
(
Me

1
n L

)n

x −
(
Pe

1
n LP

)n

x
∥∥∥ (12)

+
∥∥∥∥
(
Pe

1
n LP

)n

x − enP (e
1
n

L−1)P Px

∥∥∥∥ (13)

+
∥∥∥∥enP (e

1
n

L−1)P Px − ePLP Px

∥∥∥∥ (14)

for all x ∈ D((LP )2).

Upper bound on Equation (12) The following lemma uses similar proof strate-
gies as Lemma 3 in [5] and extends the result to infinite dimensions in the
strong topology.

Lemma 5.2 Let (L,D(L)) be the generator of a C0-contraction semigroup on
X and M ∈ B(X ) a contraction satisfying the assumptions in Theorem 5.1.
Then, for all x ∈ X
∥∥∥
(
Me

1
n L

)n

x −
(
Pe

1
n LP

)n

x
∥∥∥ ≤

(
δn +

b

n
+

1
n

b(2 + b)(δ − δn)
1 − δ

e2b

)
‖x‖ .

The proof of the above lemma relies on a counting method: More precisely,
we need to count the number of transitions in a binary sequence. This is
related to the urn problem, where k indistinguishable balls are placed in l
distinguishable urns [37, Chapter 1.9]. Then, there are

(
k − 1
l − 1

)
(15)

possibilities to distribute the balls so that each urn contains at least one ball.

Definition 5.3 Let S = {A,B}, j, n, k ∈ N, and n ≥ 1. We define

Sn,k:={s ∈ Sn | A appears k times in s}
N(j, n, k):=#{s ∈ Sn,k | s includes j transitions AB or BA}.

In words, N(j, n, k) counts the number of sequences consisting of k A’s
and n − k B’s with the restriction that A changes to B or vice versa j times.
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Example 2 Let S = {A,B}, n = 4, and k = 2. Then,

N(0, n, k) = #∅ = 0

N(1, n, k) = #{AABB,BBAA} = 2

N(2, n, k) = #{ABBA,BAAB} = 2

N(3, n, k) = #{ABAB,BABA} = 2.

Lemma 5.4 Let S = {A,B} and n, k, j ∈ N with k ≤ n. Then,

N(j, n, k) =

⎧
⎪⎪⎨
⎪⎪⎩

2
(
n−k−1

l−1

)(
k−1
l−1

)
if j = 2l − 1

n−2l
l

(
n−k−1

l−1

)(
k−1
l−1

)
if j = 2l

1k∈{0,n} if j = 0

for j ∈ {0, ..., 2min{k, n − k} − 12k=n}. Otherwise N(j, n, k) = 0.

Proof If j ≥ 2min{n − k, k} − 12k=n, then N(j, n, k) = 0 by Definition 5.3.
Next we assume that j = 0, the only possible sequences are An (k = n) and
Bn (k = 0) so that N(0, n, k) = 1k∈{0,n}. In the following, we assume that
1 ≤ j ≤ 2min{n − k, k} − 12k=n, then there is a s ∈ Sn,k so that s includes
exactly j transitions AB or BA so that N(j, n, k) > 0. In the odd case j = 2l−1
for l ∈ {1, ...,min{k, n − k}}, the element s is constructed by l blocks of A’s
and l blocks of B’s:

s = A...A︸ ︷︷ ︸
1

1︷ ︸︸ ︷
B...B A...A︸ ︷︷ ︸

2

B . . . A

l−1︷ ︸︸ ︷
B...B A...A︸ ︷︷ ︸

l

l︷ ︸︸ ︷
B...B,

s = B...B︸ ︷︷ ︸
1

1︷ ︸︸ ︷
A...A B...B︸ ︷︷ ︸

2

A . . . B

l−1︷ ︸︸ ︷
A...A B...B︸ ︷︷ ︸

l

l︷ ︸︸ ︷
A...A .

Identifying these blocks with distinguishable urns and the elements A and B
with indistinguishable balls (q.v. Eq. 15), the task is to count the possibilities
of placing k A’s in l urns and vice versa n−k B’s in l urns with the additional
assumption that each urn must contain at least one A or one B. By chang-
ing the roles of A and B, we get twice the number of possible combinations.
Therefore, one of the Twelvefold Ways [37, Chapter 1.9] shows

N(j, n, k) = 2
(

n − k − 1
l − 1

)(
k − 1
l − 1

)
.

In the even case j = 2l for l ∈ {1, ...,min{k, n−k}−12k=n}, we argue similarly
to the odd case. The only difference is that s is constructed by l + 1 blocks of
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A’s and l blocks of B’s or vice versa:

s = A...A︸ ︷︷ ︸
1

1︷ ︸︸ ︷
B...B A...A︸ ︷︷ ︸

2

B . . . A

l−1︷ ︸︸ ︷
B...B A...A︸ ︷︷ ︸

l

l︷ ︸︸ ︷
B...B A...A︸ ︷︷ ︸

l+1

,

s = B...B︸ ︷︷ ︸
1

1︷ ︸︸ ︷
A...A B...B︸ ︷︷ ︸

2

B . . . A

l−1︷ ︸︸ ︷
A...A B...B︸ ︷︷ ︸

l

l︷ ︸︸ ︷
A...A B...B︸ ︷︷ ︸

l+1

.

Then, the Twelvefold Ways [37, Chap. 1.9] proves the statement by

N(j, n, k) =
(

n − k − 1
l − 1

)(
k − 1

l

)
+

(
n − k − 1

l

)(
k − 1
l − 1

)

=
n − 2l

l

(
n − k − 1

l − 1

)(
k − 1
l − 1

)
. �

With the help of this counting method, we are ready to prove Lemma 5.2.
In what follows, we identify the couple (A,B) with the product AB by slight
abuse of notations.

Proof of Lemma 5.2 Assume w.l.o.g. P �= 0, then MP = PM = P because
for all n ∈ N

‖P − PM‖∞ ≤ ‖(Mn − P )M‖∞ + ‖P − Mn+1‖∞ ≤ δn + δn+1 (16)

and ‖P‖∞ ≤ 1 holds by a similar argument because for all n ∈ N

‖P‖∞ ≤ ‖Mn‖∞ + ‖P − Mn‖∞ ≤ 1 + δn. (17)

The main idea is to split M = P +M⊥ with M⊥:=P⊥M and order the terms
after expanding the following polynomial appropriately. Let A := M⊥e

1
n L and

B := Pe
1
n L so that

(
(P + M⊥)e

1
n L

)n

= Bn +
n−1∑
k=1

∑
s∈Sn,k

s + An (18)

where elements in Sn,k are identified with sequences of concatenated operators
and denoted by s. Then, we partition summands by the number of transitions
from A to B or vice versa and use

‖A‖∞ ≤ δ and ‖AB‖∞ =
∥∥∥M⊥P⊥e

1
n LPMe

1
n L

∥∥∥
∞

≤ δ
b

n
.

The number of summands with j transitions is equal to N(j, n, k) given by
Lemma 5.4 for j ∈ {1, ...,m} and m := 2min{k, n − k} − 12k=n. Then, the
inequality above shows
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∥∥∥
(
Me

1
n

L
)n −

(
Pe

1
n

L
)n∥∥∥

∞
≤ δn +

n−1∑
k=1

m∑
j=1

δkN(j, n, k)

(
b

n

)j

= δn +

n−1∑
k=1

� m
2 �∑

l=1

δk2

(
n − k − 1

l − 1

)(
k − 1

l − 1

) (
b

n

)2l−1

+

n−1∑
k=1

� m
2 �∑

l=1

δk
b(n − 2l)

nl

(
n − k − 1

l − 1

)(
k − 1

l − 1

) (
b

n

)2l−1

(1)

≤ δn +
b(2 + b)

n

� n
2 �∑

l=1

n−1∑
k=1

δk
n2l−2

(l − 1)!2

(
b

n

)2l−2

= δn +
b(2 + b)

n

δ − δn

1 − δ

� n
2 �−1∑
l=0

b2l

l!2

≤ δn +
1

n

b(2 + b)(δ − δn)

1 − δ
e2b.

In (1) above, we used the upper bound
(
n
k

)
≤ nk

k! to show
(

n − k − 1
l − 1

)(
k − 1
l − 1

)
≤ n2l−2

(l − 1)!2
.

Additionally, we increase the upper index to �n
2 � and upper-bound

2 +
b(n − 2l)

nl
≤ 2 + b.

Applying the assumptions again to
(
Pe

1
n L

)n

x −
(
Pe

1
n LP

)n

x =
(
Pe

1
n LP

)n−1

Pe
1
n LP⊥x

finishes the lemma:
∥∥∥
(
Me

1
n L

)n

x −
(
Pe

1
n LP

)n

x
∥∥∥ ≤

(
δn +

b

n
+

1
n

b(2 + b)(δ − δn)
1 − δ

e2b

)
‖x‖ .

�

Remark By the counting method introduced above, we can approximate
(Me

1
n L)n by (Pe

1
n LP )n, which is independent of M⊥. In the previous works

[2,31], the operators considered in similar proof steps as Eqs. (13) and (14)
depended on M⊥.

Upper bound on Eq. (13): In the next step, we apply our modified Chernoff
Lemma 4.2:

Lemma 5.5 Let (L,D(L)) be the generator of a C0-contraction semigroup on
X and P ∈ B(X ) be a projection. Assume that both operators satisfy the same
assumption as in Theorem 5.1. Then, for all x ∈ D((LP )2)∥∥∥∥

(
Pe

1
n LP

)n

x − enP (e
1
n

L−1)P Px

∥∥∥∥ ≤ 1
2n

(
b2 ‖x‖ + b ‖LPx‖ +

∥∥(LP )2x
∥∥)

.
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Proof The proof relies on the modified Chernoff Lemma (q.v. Lemma 4.2)
applied to the contraction C( 1

n ) = Pe
1
n LP on PX . Then, for all x ∈ X

∥∥∥∥
(
Pe

1
n LP

)n

x − enP (e
1
n

L−1)P Px

∥∥∥∥ ≤ n

2

∥∥∥∥
(
P

(
e

1
n L − 1

)
P

)2

x

∥∥∥∥ .

Moreover, the asymptotic Zeno condition (11) and the continuity of the norm
imply

∥∥P⊥LPx
∥∥ = lim

h→0

1
h

∥∥P⊥ehLPx
∥∥ ≤ b ‖x‖

for all x ∈ D(LP ). Hence, P⊥LP is a bounded operator with ‖P⊥LP‖∞ ≤ b.
Next, given x ∈ D(LP ), the C0-semigroup properties (q.v. Lemma 2.1) imply

n

∥∥∥∥
(
P

(
e

1
n L − 1

)
P

)2

x

∥∥∥∥ =
∥∥∥∥P

(
e

1
n L − 1

)
P

∫ 1

0

e
τ1
n L(1 − P + P )LPxdτ1

∥∥∥∥

≤
∥∥∥∥P

(
e

1
n L − 1

)
P

∫ 1

0

e
τ1
n LPLPxdτ1

∥∥∥∥

+ 2
∫ 1

0

∥∥∥Pe
τ1
n LP⊥

∥∥∥
∞

dτ1

∥∥P⊥LP
∥∥

∞ ‖x‖ .

Note that
∫ 1

0
e

τ1
n LPLPx belongs to D(L) by Lemma 2.1, but not necessarily

to D(LP ). However, for all x ∈ D((LP )2)

n

∥∥∥∥
(
P

(
e

1
n L − 1

)
P

)2

x

∥∥∥∥ ≤
∥∥∥∥P

(
e

1
n L − 1

)
P

∫ 1

0

e
τ1
n LPLPxdτ1

∥∥∥∥ +
b2

n
‖x‖

≤
∥∥∥∥P

(
e

1
n L − 1

) ∫ 1

0

e
τ1
n LPLPxdτ1

∥∥∥∥

+
b2

n
‖x‖ +

∥∥∥Pe
1
n LP⊥

∥∥∥
∞

‖LPx‖

≤ 1
n

∥∥∥∥P

∫ 1

0

e
τ2
n LL

∫ 1

0

e
τ1
n LPLPxdτ1dτ2

∥∥∥∥

+
b2

n
‖x‖ +

b

n
‖LPx‖

≤ 1
n

(
b2 ‖x‖ + b ‖LPx‖ +

∥∥(LP )2x
∥∥)

,

which proves Lemma 5.5. �

Remark As regards to the convergence rate of the quantum Zeno effect, Lemma
5.5 constitutes our main improvement compared to the work [2]. The modified
Chernoff lemma allows to improve the convergence rate to n−1.

Upper bound on Eq. (14): Finally, we prove an upper bound on Equation (14),
which can be interpreted as a modified Dunford–Segal approximation [18].
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Lemma 5.6 Let (L,D(L)) be the generator of a C0-contraction semigroup on
X and P ∈ B(X ) be a projection. Assume that both operators satisfy the as-
sumptions of Theorem 5.1. Then, for all x ∈ D((LP )2)

∥∥∥∥e
nP

(
e

1
n

L−1
)
P

Px − ePLP Px

∥∥∥∥ ≤ eb̃

2n

(
b2 ‖x‖ +

∥∥(LP )2x
∥∥)

with eb̃:= sups∈[0,1] ‖esPLP P‖∞ < ∞.

Proof The proof relies on the integral equation for semigroups from Lem-
ma 2.2. We start by proving the continuity of

[0, 1]  s �→ −esPLP P
(
nP (e

1
n L − 1)P − PLP

)
e(1−s)nP (e

1
n

L−1)P Px.

(19)

Since for all s ∈ [0, 1] and x ∈ D(LP )

esnP (e
1
n

L−1)PPLPx = lim
h→0

PesnP (e
1
n

L−1)P P (ehL − 1)P

h
x

= lim
h→0

P (ehL − 1)P

h
esnP (e

1
n

L−1)PPx = PLPesnP (e
1
n

L−1)PPx,

the vector-valued function defined in Equation (19) is equal to

−esPLP Pe(1−s)nP (e
1
n

L−1)P
(
nP (e

1
n L − 1)P − PLP

)
x.

and, thereby, well defined and continuous in s. Therefore, Lemma 2.2 gives for
all x ∈ D(LP )

enP (e
1
n

L−1)P Px − ePLP Px

= −
∫ 1

0

esPLP Pe(1−s)nP (e
1
n

L−1)P
(
nP (e

1
n L − 1)P − PLP

)
xds.

Moreover, for all x ∈ D((LP )2)

nP (e
1
n L − 1)Px − PLPx = P

∫ 1

0

e
τ1
n LLPxdτ1 − PLPx

=
1
n

P

∫ 1

0

∫ 1

0

τ1e
τ1τ2

n L(LP )2xdτ2dτ1

+ P

∫ 1

0

e
τ1
n LP⊥LPxdτ1.

(20)

Finally, we use sups∈[0,1] ‖esPLP P‖∞ < ∞, which holds by the princi-
ple of uniform boundedness (q.v. proof of Proposition 4.3), the property that

(esnP (e
1
n

L−1)P )s≥0 is a contraction, and the upper bounds ‖P⊥LP‖∞ ≤ b and
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‖PesLP⊥‖∞ ≤ sb so that
∥∥∥∥enP (e

1
n

L−1)P Px − ePLP Px

∥∥∥∥ ≤ eb̃

∫ 1

0

∥∥∥
(
nP (e

1
n L − 1)P − PLP

)
x
∥∥∥ ds

≤ eb̃

2n

(
b2‖x‖ + ‖(LP )2x‖

)

for all x ∈ D((LP )2) and eb̃ = sups∈[0,1] ‖esPLP P‖∞. �

The above approximation of ePLP by enP (e
1
n

L−1)P is similar to the
Dunford–Segal approximation, which would be given by exp

(
n(exp( 1

nPLP )
− 1)

)
: for the generator (K,D(K)) of a bounded C0-semigroup, Gomilko and

Tomilov proved [18, Corollary 1.4]
∥∥∥∥e

nt
(
e

1
n

K−1
)
x − etKx

∥∥∥∥ ≤ 8b̃
t

n

∥∥K2x
∥∥

for all x ∈ D(K2) and b̃:= supt≥0 ‖etK‖∞. In our case, it is not clear whether
(esPLP )s≥0 is uniformly bounded.

Remark The specificity of the last step stems from the fact that (L,D(L))
is unbounded. In the previous works [2,31], a similar step exits but in both
papers L was assumed to be bounded. Moreover, Equation (20) is the only
step in the proof of Theorem 5.1, which deals with the operator PLP . If PLP
is closable, PLPx = PLPx for all x ∈ D(LP ) so that it is enough to ask
for the closure of PLP to define a generator. The same reasoning works for
Proposition 5.7 and Corollary 3.3.

End of the proof of Theorem 5.1: We combine Lemmas 5.2, 5.5, and 5.6 to
prove Theorem 5.1.

Proof of Theorem 5.1 Let x ∈ D((LP )2). Then,
∥∥∥
(
Me

1
n

L
)n

x − ePLPPx
∥∥∥ ≤

(
δn +

b

n
+

1

n

b(2 + b)(δ − δn)

1 − δ
e2b

)
‖x‖ (Lemma 5.2)

+
1

2n

(
b2 ‖x‖ + b ‖LPx‖ +

∥∥∥(LP )2x
∥∥∥
)

(Lemma 5.5)

+
eb̃

2n

(
b2 ‖x‖ +

∥∥∥(LP )2x
∥∥∥
)

(Lemma 5.6).

Redefining L by tL and b by tb, we achieve
∥∥∥
(
Me

t
n L

)n

x − etPLP Px
∥∥∥ ≤ c

n

(
‖x‖ + ‖LPx‖ +

∥∥(LP )2x
∥∥)

+ δn ‖x‖

with an appropriate constant c > 0 and eb̃ = sups∈[0,t] ‖esPLP ‖∞. �

Remark The upper bound in Theorem 5.1 can be formulated for all x ∈
D(LP ). For this, one must stop at an earlier stage of the proof and express
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the error terms by appropriate integrals. One possible bound would be the
following:

‖
(
Me

1
n L

)n

x − ePLP Px‖

≤
(

δn +
b

n
+

1
n

b(2 + b)(δ − δn)
1 − δ

e2b

)
‖x‖

(Lemma 5.2)

+
1
2n

(
b2 ‖x‖ + b ‖LPx‖ +

∥∥∥∥P

∫ 1

0

∫ 1

0

Le
τ1+τ2

n LPLPxdτ1dτ2

∥∥∥∥
)

(Lemma 5.5)

+
eb̃

2n

(
b2 ‖x‖ + 2

∥∥∥∥P

∫ 1

0

∫ 1

0

τ1Le
τ1τ2

n LPLPxdτ2dτ1

∥∥∥∥
)

(Lemma 5.6).

5.2. Proof of Proposition 3.1 and Corollary 3.2

Proof of Proposition 3.1 Since ‖P‖∞ ≤ 1 (17) and t �→ etL is a uniformly
continuous contraction semigroup, the generator is defined on X and bounded,
i.e., ‖L‖∞ < ∞, so that

∥∥PetL(1 − P )
∥∥

∞ =
∥∥P (etL − 1)(1 − P )

∥∥
∞ ≤ t

∥∥∥∥L
∫ 1

0

etsL(1 − P )ds

∥∥∥∥
∞

≤ t ‖L‖∞ cp.

where cp:=‖1− P‖∞ ≤ 2. Then, we simplify the bounds found in Lemma 5.2,
5.5, and 5.6 to
∥∥∥
(
Me

1
n L

)n

− ePLP P
∥∥∥

∞
≤ δn +

1
n

(
b +

2δ

1 − δ
e3b +

b2

2
+

b

2
‖L‖∞ +

1
2

‖L‖2
∞

+
eb̃b2

2
+

eb̃

2
‖L‖2

∞

)
,

where eb̃ = sups∈[0,t] ‖esPLP ‖∞. By redefining L by tL, b by tb, and using
b ≤ ‖L‖∞cp,

∥∥∥
(
Me

t
n L

)n

− etPLP P
∥∥∥

∞
≤ cp

t‖L‖∞
n

+

⎛
⎝cp +

(
1 + eb̃

) (
1 + c2

p

)

2

⎞
⎠ t2‖L‖2

∞
n

+ δn +
2δ

1 − δ

e3t‖L‖∞cp

n

which proves the statement. �

Proof of Corollary 3.2 In closed quantum systems X = H equipped with the
operator norm induced by the scalar product, which shows ‖U‖∞ = 1 for
all unitaries U ∈ B(H). Particularly, eb̃ = sups∈[0,t] ‖esPLP ‖∞ = 1 because
‖P‖∞ = 1 is equivalent to P = P † [36, Theorem 2.1.9] so that PHP is
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Hermitian. Moreover, P = P † implies (1 − P )† = (1 − P ) which shows cp =
‖1 − P‖∞ ≤ 1. Finally, the choice M = P implies δ = 0 which proves the
corollary by inserting the constants into Proposition 3.1. �

5.3. Proof of Proposition 5.7

In this subsection, we weaken the assumptions (10) on the contraction M at
the cost of stronger assumptions on the C0-semigroup. For that, we combine
techniques from holomorphic functional calculus with the semicontinuity of
the spectrum of M perturbed by the semigroup under certain conditions. We
refer to Appendix A for details on the tools needed to prove the main result
of this section.

Proposition 5.7 Let (L,D(L)) be the generator of a C0-contraction semigroup
on X and M ∈ B(X ) a contraction such that

‖Mn − P‖∞ ≤ c̃ δn (21)

for some projection P , δ ∈ (0, 1) and c̃ ≥ 0. Moreover, we assume that there
is b ≥ 0 so that

∥∥PetLP⊥∥∥
∞ ≤ tb,

∥∥M⊥etL − M⊥∥∥
∞ ≤ tb, and

∥∥P⊥etLP
∥∥

∞ ≤ tb

(22)

where M⊥ = (1 − P )M . If (PLP,D(LP )) generates a C0-semigroup, then
there is ε > 0 such that for all t ≥ 0, n ∈ N satisfying t ∈ [0, nε], δ̃ ∈ (δ, 1),
and x ∈ D((LP )2)

∥∥∥
(
Me

t
n L

)n

x − etPLP Px
∥∥∥ ≤ c1(t, b, δ̃ − δ)

n

(
‖x‖ + ‖LPx‖ +

∥∥(LP )2x
∥∥)

+ c2(c̃, δ̃ − δ)δ̃n ‖x‖ ,

for some constants c1, c2 ≥ 0 depending on t, b, the difference δ̃ − δ, and c̃.

The only difference to the proof of Theorem 5.1 is summarized in the
question: How can we upper-bound ‖(M⊥e

t
n L)k‖∞ for all k ∈ {1, ..., n} with

the weaker assumption (21) on M? For that, we replace the argument in the
proof of Lemma 5.2, which only works for the case c̃ = 1.

Proof Since the bounds found in Lemmas 5.5 and 5.6 are independent of the
value of c̃, it is enough to improve Lemma 5.2:
∥∥∥
(
Me

t
n

L
)n

x − etPLPPx
∥∥∥ ≤

∥∥∥
(
Me

t
n

L
)n

x −
(
Pe

t
n

LP
)n

x
∥∥∥

+
t2

2n

(
b2 ‖x‖ + b ‖LPx‖ +

∥∥∥(LP )2x
∥∥∥
)

(Lemma 5.5)

+
eb̃t2

2n

(
b2 ‖x‖ +

∥∥∥(LP )2x
∥∥∥
)

(Lemma 5.6)

with eb̃ = sups∈[0,t] ‖esPLP ‖∞ < ∞. Since the assumption (21) on M is a
special case of the uniform power convergence (q.v. Eq. (26)), Proposition B.1
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shows the equivalence of the uniform power convergence of M to the spectral
gap assumption, that is

σ(M) ⊂ Dδ ∪ {1},

where the quasinilpotent operator corresponding to the eigenvalue 1 vanish-
es. Therefore, the eigenprojection P w.r.t. 1 satisfies MP = PM = P and
the curve γ : [0, 2π] → C, ϕ �→ δ̃eiϕ encloses the spectrum of M⊥:=MP⊥

(q.v. Fig. 1). Together with the second bound in (22), Lemma A.2 shows that
there exists ε > 0 so that the spectrum of M⊥esL can be separated by γ for all
s ∈ [0, ε]. Therefore, the holomorphic functional calculus (q.v. Proposition A.1)
shows for all t ∈ [0, nε], k ∈ N

(
M⊥e

t
n L

)k

=
1

2πi

∮

γ

zkR(z,M⊥e
t
n )dz. (23)

Let t ≥ 0, n ∈ N so that t ∈ [0, nε]. By the principle of stability of bounded
invertibility [25, Theorem IV.2.21], R(z,M⊥esL) is well defined and bounded
for all z ∈ γ and s ∈ [0, ε]. More explicitly, using the second Neumann series
for the resolvent [25, p. 67], we have

∥∥R(z,M⊥esL)
∥∥

∞ =

∥∥∥∥∥R(z,M⊥)
∞∑

p=0

(
(M⊥esL − M⊥)R(z,M⊥)

)p

∥∥∥∥∥
∞

≤
∥∥R(z,M⊥)

∥∥
∞

∞∑
p=0

(
sb

∥∥R(z,M⊥)
∥∥

∞
)p

≤ sup
z∈γ

∥∥R(z,M⊥)
∥∥

∞
2 + 2δ̃2

1 + 2δ̃2
=: c2,

(24)

where we have applied the assumption (22) and the following upper bound on
s (q.v. Eq. 50):

s ≤ ε <
1
2b

(1 + δ̃2)−1

(
1 + sup

z∈γ

∥∥R(z,M⊥)
∥∥2

∞

)− 1
2

≤ 1
2b

(1 + δ̃2)−1

(
sup
z∈γ

∥∥R(z,M⊥)
∥∥

∞

)−1

,

to compute the geometric series. Combining Eqs. (23) and (24) shows for all
k ∈ {1, ..., n}

∥∥∥∥
(
M⊥e

t
n L

)k−1
∥∥∥∥

∞
≤ 1

2π

∮

γ

|z|k−1
∥∥∥R(z,M⊥e

t
n L)

∥∥∥
∞

dz ≤ c2δ̃
k. (25)

Next, we define A:=M⊥e
t
n L and B:=Pe

t
n L and expand

(
Me

t
n L

)n

=
(
PMe

t
n L + M⊥e

t
n L

)n

= (B + A)n.

The above nth power can be expanded in terms of sequences of the form

A...AB...BA...AB... or B...BA...AB...BA...
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Figure 1. .

Similar to Lemma 5.2, we can upper-bound every sequence w.r.t. the number
of transitions AB or BA using the assumptions (22) on the C0-semigroup as
well as the inequality (25). The only difference to the proof of Lemma 5.2 is
the constant c2 in the inequality so that

∥∥∥
(
Me

t
n L

)n

−
(
Pe

t
n L

)n∥∥∥
∞

≤ c2δ̃
n +

n−1∑
k=1

m∑
j=1

δ̃kN(j, n, k)
(

tbc2

n

)j

≤ c2δ̃
n +

b

n
+

1
n

bc2(2 + bc2)(δ̃ − δ̃n)
1 − δ̃

e2bc2 ,

where m := 2min{k, n − k} − 12k=n. Then, for all x ∈ D((LP )2) and an ap-
propriate c1 ≥ 0

∥∥∥
(
Me

t
n L

)n

x − etPLP Px
∥∥∥ ≤ c1

n

(
‖x‖ + ‖LPx‖ +

∥∥(LP )2x
∥∥)

+ c2δ̃
n ‖x‖ .

�

Proof of Proposition 3.4 Similar to Proposition 3.1,

∥∥∥
(
Me

t
n L

)n

− etPLP P
∥∥∥

∞
≤ c2δ̃

n +
tcp‖L‖∞

n
+

cp + (1 + eb̃)(1 + c2
p)

2
t2‖L‖2

∞
n

+
2δ̃

1 − δ̃

e3tcpc2‖L‖∞

n

where eb̃ = sups∈[0,t] ‖esPLP ‖∞ and c2:= supz∈γ

∥∥R(z,M⊥)
∥∥

∞
2+2δ̃2

1+2δ̃2 (see Eq.
(24)). The constant c2 can be bounded with the help of the first von Neumann
series [25, p. 37] and the geometric series:

2 + 2δ̃2

1 + 2δ̃2
sup
z∈γ

∥∥R(z,M⊥)
∥∥

∞ = 2 sup
z∈γ

‖
∞∑

k=0

z−(k+1)(M⊥)k‖∞ ≤ 2
c̃

δ̃

∞∑
k=0

δ̃−kδk

=
2c̃

δ̃ − δ
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so that

∥∥∥
(
Me

t
n L

)n

− etPLP P
∥∥∥

∞
≤ tcp‖L‖∞

n
+

cp +
(
1 + eb̃

) (
1 + c2

p

)

2
t2‖L‖2

∞
n

+
2c̃

δ̃ − δ
δ̃n +

2δ̃

1 − δ̃

e
6tcpc̃‖L‖∞

δ̃−δ

n

which finishes the proof of the proposition. �

6. Uniform Power Convergence with Finitely Many Eigenvalues

In this section, we weaken the assumption on M to the uniform power conver-
gence assumption (q.v. Eq. 26), that is we allow for finitely many eigenvalues
{λj}J

j=1 and associated projections {Pj}J
j=1 satisfying PjPk = 1j=kPj . Simi-

lar to Theorem 3 in [2], we strengthen the assumptions on the C0-semigroup to
ML and LPΣ being densely defined and bounded by b ≥ 0, where PΣ:=

∑J
j=1 Pj .

Under those assumptions, we can prove the Zeno convergence in the uniform
topology:

Theorem 6.1 Let (L,D(L)) be the generator of a C0-contraction semigroup
on X and M ∈ B(X ) a contraction satisfying the following uniform power
convergence: There is c̃ > 0 so that

∥∥∥∥∥∥
Mn −

J∑
j=1

λn
j Pj

∥∥∥∥∥∥
∞

≤ c̃ δn (26)

for a set of projections {Pj}J
j=1 satisfying PjPk = 1j=kPj, eigenvalues {λj}J

j=1 ⊂
∂D1, and a rate δ ∈ (0, 1). For PΣ:=

∑J
j=1 Pj, we assume that ML and

LPΣ are densely defined and bounded by b ≥ 0 and ‖Pj‖∞ = 1 for all j ∈
{1, ..., J,Σ}. Then, there is an ε > 0 such that for all n ∈ N, t ≥ 0 satisfying
t ∈ [0, nε], and δ̃ ∈ (δ, 1)

∥∥∥∥∥∥
(
Me

t
n L

)n

−
J∑

j=1

λn
j etPjLPj Pj

∥∥∥∥∥∥
∞

≤ c1

n
+ c2δ̃

n ,

for some constants c1, c2 ≥ 0 depending on all involved parameters except from
n.

6.1. Proof of Theorem 6.1

Similar to the papers [31] and [2], we use the holomorphic functional calculus to
separate the spectrum of the contraction MetL appearing in the Zeno sequence.
In contrast to [2] where the C0-semigroup is approximated by a sequence of
uniformly continuous semigroups, we instead crucially rely upon the uniform

1640



Optimal Convergence Rate in the Quantum Zeno effect

continuity of the perturbed contraction to recover the optimal convergence
rate. We upper-bound the following terms:
∥∥∥∥∥∥
(
Me

t

n
L

)n −
J∑

j=1

λ
n
j e

tPjLPj Pj

∥∥∥∥∥∥
∞

≤
∥∥∥
(
Me

t

n
L

)n −
(
PΣMe

t

n
L

PΣ

)n∥∥∥
∞

(27)

+

∥∥∥∥∥∥
(
PΣMe

t

n
L

PΣ

)n −
J∑

j=1

λ
n
j e

n
(
Cj(

t
n )−Pj(

t
n )

)
Pj(

t
n )

∥∥∥∥∥∥
∞

(28)

+

∥∥∥∥∥∥
J∑

j=1

λ
n
j e

n
(
Cj(

t
n )−Pj(

t
n )

)
Pj(

t
n ) −

J∑
j=1

λ
n
j e

tPjLPj Pj

∥∥∥∥∥∥
∞

(29)

where the definitions of the perturbed spectral projection Pj( t
n ) and the Cher-

noff contraction Cj( t
n ) are postponed to Lemma 6.4.

Approximation of the Perturbed Spectral Projection In the following result, we
consider an operator A uniformly perturbed by a vector-valued map t �→ B(t)
in the following way:

t �→ A + tB(t).

Under certain assumptions on the perturbation controlled by t, we construct
the associated perturbed spectral projection for which we obtain an approxi-
mation bound (cf. [2, Lemma 5.3]). The key tools are the holomorphic func-
tional calculus and the semicontinuity of the spectrum under uniform pertur-
bations. The statements are summarized in Proposition A.1 and Lemma A.2.

Lemma 6.2 Let A ∈ B(X ), t �→ B(t) be a vector-valued map on B(X ) which is
uniformly continuous at t = 0 with supt≥0 ‖B(t)‖∞ ≤ b, and Γ : [0, 2π] → ρ(A)
be a curve separating σ(A). Then, there exists an ε > 0 so that for all t ∈ [0, ε]

P (t):=
1

2πi

∮

Γ

R(z,A + tB(t))dz

defines a projection with ‖P (t)‖∞ ≤ d|Γ|
2π and derivative at t = 0 given by

P ′:= lim
t→0

P (t) − P (0)
t

=
1

2πi

∮

Γ

R(z,A)B(0)R(z,A)dz. (30)

with ‖P ′‖∞ ≤ R2b|Γ|
2π . The zeroth-order approximation of t �→ P (t) can be

controlled by

‖P (t) − P‖∞ ≤ tRbd|Γ|
2π

(31)

and the first-order approximation by

‖P (t) − P − tP ′‖∞ ≤ tR2|Γ|
2π

(
tb2d + ‖B(t) − B(0)‖∞

)
. (32)

Above |Γ| denotes the length of the curve Γ, P abbreviates the unperturbed spec-
tral projection P (0), R:= supz∈Γ ‖R(z,A)‖∞ < ∞, and d = R infz∈Γ

2+2|z|2
1+2|z|2 .
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Proof Since t �→ B(t) is uniformly continuous at t = 0, the vector-valued map
t �→ A + tB(t) is uniformly continuous as well. Then, Lemma A.2 states that
there exists an ε > 0 such that σ(A + tB(t)) is separated by Γ for all t ∈ [0, ε]
and Proposition A.1 shows that

P (t) =
1

2πi

∮

Γ

R(z,A + tB(t))dz

defines a projection on X for all t ∈ [0, ε]. Let R:= supz∈Γ ‖R(z,A)‖∞ < ∞,
then using the same steps as in Eq. (24), we have that for all η ∈ Γ

‖R(η,A + tB(t))‖∞ ≤ R inf
z∈Γ

2 + 2|z|2
1 + 2|z|2 =:d . (33)

Therefore, the perturbed resolvent is uniformly bounded. To prove the explicit
representation of the derivative and the quantitative approximation, we follow
the ideas of [2, Lemma 5.2–5.3]:

P (t) − P (0)
t

=
1

t2πi

(∮

Γ

R(z,A + tB(t))dz −
∮

Γ

R(z,A)dz

)

=
1

2πi

∮

Γ

R(z,A + tB(t))B(t)R(z,A)dz,

which uses the second resolvent identity, i.e., R(z,A + tB(t))tB(t)R(z,A) =
R(z,A) − R(z,A + tB(t)) for all z ∈ Γ and t ∈ [0, ε] and proves Equation (30)
by Lebesgue’s dominated convergence theorem [22, Theorem 3.7.9]. Moreover,
the above equation proves Eq. (31). Finally,

‖P (t) − P − tP ′‖∞ ≤ t

2π

∥∥∥∥
∮

Γ

(R(z,A + tB(t)) − R(z,A))B(t)R(z,A)dz

∥∥∥∥
∞

+
t

2π

∥∥∥∥
∮

Γ

R(z,A) (B(t) − B(0))) R(z,A)dz

∥∥∥∥
∞

≤ t

2π

∥∥∥∥
∮

Γ

R(z,A + tB(t))tB(t)R(z,A)B(t)R(z,A)dz

∥∥∥∥
∞

+
t

2π

∥∥∥∥
∮

Γ

R(z,A) (B(t) − B(0))) R(z,A)dz

∥∥∥∥
∞

≤ tR2|Γ|
2π

(
tb2d + ‖B(t) − B(0)‖∞

)

(34)

where |Γ| denotes the length of the curve Γ. �

Now, we are ready to prove Theorem 6.1.
Upper bound on Equation (27):

Lemma 6.3 Let (L,D(L)) be the generator of a C0-contraction semigroup on
X and M ∈ B(X ) a contraction with the same assumption as in Theorem 6.1
and cp:=‖1− PΣ‖∞. Then, there is an ε1 > 0 and c2 ≥ 0 so that for all t ≥ 0
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and n ∈ N satisfying t ∈ [0, nε1]∥∥∥
(
Me

t
n L

)n

−
(
PΣMe

t
n LPΣ

)n∥∥∥ ≤ c2δ̃
n +

tb

n

+
1
n

tbcpc2(2 + tbcpc2)(δ̃ − δ̃n)
1 − δ̃

e2tbcpc2 .

Proof As in the proof of Proposition 5.7, B.1 shows that the uniform power
convergence assumption (26), that is ‖Mn−

∑J
j=1 λn

j Pj‖∞ ≤ c̃ δn for all n ∈ N,
is equivalent to the spectral gap assumption (q.v. Appx. B),

σ(M) ⊂ Dδ ∪ {λ1, ..., λJ},

with corresponding quasinilpotent operators being zero. Therefore, the curve
γ : [0, 2π] → C, ϕ �→ δ̃eiϕ, with δ̃ ∈ (δ, 1), encloses the spectrum of M⊥:=MP⊥

Σ =
P⊥

Σ M , where PΣ =
∑J

j=1 Pj and P⊥
Σ = 1 − PΣ (q.v. Fig. 2). By Lemma 2.1

∥∥M⊥esL − M⊥∥∥
∞ = s

∥∥∥∥M⊥L
∫ 1

0

eτsLdτ

∥∥∥∥
∞

≤ scpb

with cp:=‖P⊥
Σ ‖∞. Therefore, M⊥esL converges uniformly to M⊥ for s ↓ 0.

Hence, Lemma A.2 shows that there exists an ε1 > 0 such that the spectrum
of M⊥esL can be separated by γ for all s ∈ [0, ε1]. Therefore, we can apply
the holomorphic functional calculus (Proposition A.1) to conclude that for all
t ∈ [0, nε1] (

M⊥e
t
n L

)k

=
1

2πi

∮

γ

zkR(z,M⊥e
t
n )dz,

where k ∈ {1, .., n}. By Equation (24) and with c2:= supz∈γ ‖R(z,M⊥)‖∞ 2+2δ̃2

1+2δ̃2 ,

∥∥∥∥
(
M⊥e

t
n L

)k−1
∥∥∥∥

∞
≤ 1

2π

∮

γ

|z|k−1
∥∥∥R(z,M⊥e

t
n )

∥∥∥
∞

dz ≤ c2δ̃
k.

Moreover, by the assumptions ‖PΣ‖∞ = 1, ‖ML‖∞ ≤ b, ‖LPΣ‖∞ ≤ b, and
Lemma 2.1∥∥MPΣetLP⊥

Σ M
∥∥

∞ ≤ tb and
∥∥MP⊥

Σ etLPΣM
∥∥

∞ ≤ tcpb.

By the same expansion of (Me
t
n L)n = (PΣMe

t
n L + M⊥e

t
n L)n as in the proof

of Proposition 5.7,

∥∥∥
(
Me

t
n L

)n

−
(
PΣMe

t
n L

)n∥∥∥
∞

≤ c2δ̃
n +

1
n

tbcpc2(2 + tbcpc2)
(
δ̃ − δ̃n

)

1 − δ̃
e2tbcpc2 .

Finally, Lemma 2.1 shows
∥∥∥PΣMe

t
n L(1 − PΣ)

∥∥∥
∞

=
t

n

∥∥∥∥PΣML
∫ 1

0

eτ t
n L(1 − PΣ)dτ

∥∥∥∥
∞

≤ tbcp

n

so that

∥∥∥
(
Me

t
n

L
)n −

(
PΣMe

t
n

LPΣ

)n∥∥∥ ≤ c2δ̃
n +

tb

n
+

1

n

tbcpc2(2 + tbcpc2)
(
δ̃ − δ̃n

)

1 − δ̃
e2tbcpc2 ,
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Figure 2. .

which finishes the proof. �

Upper bound on Eq. (28) As in Lemma 5.5, we apply the modified Chernoff
Lemma (4.2) to upper-bound the second term (28). However, our proof strat-
egy includes two crucial improvements compared to Theorem 3 in [2]. Firstly,
we show that the spectrum of the perturbed contraction is upper semicontin-
uous under certain assumptions on M and the C0-semigroup. Therefore, we
can use the holomorphic functional calculus and apply the modified Chernoff
Lemma with respect to each eigenvalue separately, which allows us to achieve
the optimal convergence as in Lemma 5.5.

Lemma 6.4 Let (L,D(L)) be the generator of a C0-contraction semigroup on
X and M ∈ B(X ) a contraction satisfying the same assumption as in The-
orem 6.1. Then, there is an ε2 > 0, and a d̃1 ≥ 0 so that for all t ≥ 0 and
n ∈ N satisfying t ∈ [0, nε2]∥∥∥∥∥∥

(
PΣMe

t
n LPΣ

)n

−
J∑

j=1

λn
j e

n
(
Cj

(
t
n

)
−Pj

(
t
n

))
Pj( t

n )

∥∥∥∥∥∥
∞

≤ J

n
etd̃1

where Cj( 1
n ):=λ̄jPj( 1

n )PΣMe
1
n LPΣPj( 1

n ) and PΣ:=
∑J

j=1 Pj.

Proof By Proposition B.1, the uniform power convergence (26) shows that
the Pj ’s are the eigenprojections of M so that PΣM = MPΣ =

∑J
j=1 λjPj

and the spectrum σ(PΣM) consists of J isolated eigenvalues on the unit circle
separated by the curves Γj : [0, 2π] → C, φ �→ λj + reiφ (q.v. Sect. 2 and
Fig. 3) with radius

r:= min
i�=j

{
|λi − λj |

3

}
. (35)

Note that we use the curve interchangeably with its image and denote the
formal sum of all curves around the eigenvalues {λj}J

j=1 by Γ. In the following,
we define the vector-valued function:

s �→ PΣM + sB(s) :=PΣM + sPΣML
∫ 1

0

esτLPΣdτ

= PΣMesLPΣ .

(36)
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Figure 3. .

Since ML is bounded, the defined vector-valued map converges in the
uniform topology to PΣM . Moreover, Lemma 2.1 shows that s �→ B(s) is
uniformly bounded and continuous in s = 0 because

‖B(s) − B(0)‖∞ = s

∥∥∥∥PΣML
∫ 1

0

∫ 1

0

τ1e
τ1τ2sLLPΣdτ2dτ1

∥∥∥∥
∞

≤ s
b2

2
(37)

where we have used the assumption ‖PΣ‖∞ ≤ 1. Then, we can apply Lem-
ma 6.2 which shows that there exists an ε2 > 0 such that for all s ∈ [0, ε2]

Pj(s) :=
1

2πi

∮

Γj

R(z, PΣM + sB(s))dz

defines the perturbed spectral projection w.r.t. λj . Next, let t ≥ 0, n ∈ N such
that t ∈ [0, nε2]. By Lemma 6.2 and Equation (37), the perturbed spectral
projection can be approximated by

∥∥Pj( t
n ) − Pj

∥∥
∞ ≤ t

n
Rjb

(
dj − 1

2

)
r ≤ t

n
Rjbdjr=:

t

n
vj (38)

∥∥Pj( t
n ) − Pj − t

nP ′
j

∥∥
∞ ≤ t2

n2
R2

jb
2rdj (39)

where Rj := supz∈Γj
‖R(z, PΣM)‖∞, dj :=Rj infz∈Γj

2+2|z|2
1+2|z|2 + 1

2 , and we use
that |Γj | = 2πr. Note that the defined dj is not exactly the d in Lemma 6.2.
Moreover, note that ‖Pj( t

n )‖∞ ≤ djr and ‖P ′
j‖∞ ≤ R2

jbr. By the spectral
decomposition,

(
PΣMe

t
n LPΣ

)n

=
J∑

j=1

(
Pj

(
t
n

)
PΣMe

t
n LPΣPj

(
t
n

))n

. (40)

Next, we aim at applying the modified Chernoff Lemma 4.2 to Cj( t
n ):=λ̄jPj( t

n )
PΣMe

1
n LPΣPj( 1

n ) for all j ∈ {1, .., J}, which has to be adapted since it is no
longer clear that ‖Cj( 1

n )‖∞ = 1. We start by bounding the difference in norm
between Ct( t

n ) and Pj( t
n ). By the fundamental theorem of calculus and the
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facts ‖Pj( t
n )‖∞ ≤ djr, ‖PΣML‖∞ ≤ b, ‖esL‖∞ ≤ 1, |λj | = 1

∥∥Cj( t
n ) − Pj( t

n )
∥∥

∞ ≤ t

n

∥∥∥∥λ̄jPj( t
n )PΣML

∫ 1

0

e
st
n LPΣPj( t

n )ds

∥∥∥∥
∞

+
∥∥Pj( t

n )PΣMPj( t
n ) − Pj( t

n )
∥∥

∞

≤ t

n
bd2

jr
2 +

∥∥λ̄jPj( t
n )PΣMPj( t

n ) − Pj( t
n )

∥∥
∞ . (41)

In the next step, we focus on the second term and prove a higher-order approx-
imation then needed because in Lemma 6.5 we will reuse this calculation. In
the following calculation, we use the bounds from above, in particular Equa-
tions (38) and (39). Moreover, we use the product rule for derivatives, which
shows P ′

j = PjP
′
j + P ′

jPj by ∂
∂sPj(s) = ∂

∂sPj(s)2 (cf. [31, Lemma 3]).

∥∥λ̄jPj( t
n )PΣMPj

(
t
n

)
− Pj

(
t
n

)∥∥
∞

=
∥∥(

Pj( t
n ) − Pj − t

nP ′
j

)
PΣMPj( t

n )
∥∥

∞

+
∥∥∥∥PjPj( t

n ) +
t

n
P ′

jPΣMPj( t
n ) − Pj( t

n )
∥∥∥∥

∞

≤ t2

n2
R2

jb
2r2d2

j +
∥∥∥∥Pj

(
Pj( t

n ) − Pj − t

n
P ′

j

)∥∥∥∥
∞

+
t

n

∥∥P ′
jPΣM

(
Pj( t

n ) − Pj

)∥∥
∞

+
∥∥∥∥Pj +

t

n

(
PjP

′
j + P ′

jPj

)
− Pj( t

n )
∥∥∥∥

∞

≤ t2

n2
R2

jb
2r2d2

j + 2
t2

n2
R2

jb
2rdj +

t2

n2
R3

jb
2djr

2

≤ t2

n2
R2

jb
2djr (djr + Rjr + 2)

(42)

Combining Eqs. (41), (42), and t
n ≤ ε2 shows

∥∥Cj( t
n ) − Pj( t

n )
∥∥

∞ ≤ t

n
bd2

jr
2 +

t2

n2
R2

jb
2djr (djr + Rjr + 2)

≤ t

n
bdjr

(
djr + ε2R

2
jb (djr + Rjr + 2)

)
=:

t

n
wj (43)

In Eqs. (38) and (44), we have proven that ‖Pj( t
n ) − Pj‖ ≤ t

nvj , ‖Cj( t
n ) −

Pj( t
n )‖ ≤ t

nwj and note that ‖Pj‖∞ = 1, Pj( t
n )Cj( t

n ) = Cj( t
n )Pj( t

n ) = Cj( t
n )

holds by definition. Then, we can apply the approximate version of the modified
Chernoff Lemma C.1 to Cj( t

n ). This shows

∥∥∥∥Cj( t
n )n − en

(
Cj

(
t
n

)
−Pj

(
t
n

))
Pj

(
t
n

)∥∥∥∥
∞

≤
t2w2

j

2n
et

(
vj+wj

)
≤ 1

n
et

(
vj+2wj

)
.

(44)
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Combining Eqs. (40) and (44) and writing out the constants vj and wj gives
∥∥∥∥∥∥
(
PΣMe

t
n LPΣ

)n

−
J∑

j=1

λn
j e

n
(
Cj

(
t
n

)
−Pj

(
t
n

))
Pj

(
t
n

)
∥∥∥∥∥∥

∞

≤ J max
j∈{1,..,J}

∥∥∥∥λn
j

(
Cj( t

n )
)n − λn

j e
n

(
Cj

(
t
n

)
−Pj

(
t
n

))
Pj

(
t
n

)∥∥∥∥
∞

≤ J

n
et(vj+2wj)

Finally, we define d̃1 = maxj∈{1,...,J} vj + 2wj , which finishes the proof. �

Upper bound on Eq. (29):

Lemma 6.5 Let (L,D(L)) be the generator of a C0-contraction semigroup on
X and M ∈ B(X ) a contraction with the same assumption as in Theorem 6.1.
Then, there exists a constant d̃2 ≥ 0 such that
∥∥∥∥∥∥

J∑
j=1

λn
j e

n
(
Cj(

t
n )−Pj(

t
n )

)
Pj(

t
n ) −

J∑
j=1

λn
j etPjLPj Pj

∥∥∥∥∥∥
∞

≤ J

n
etd̃2 max

s∈[0,1]

∥∥∥estPjLPj

∥∥∥
∞

.

Proof For ease of notation, we absorb the time parameter t into the generator
L and b. In order to prove the convergence of the generator, Equation (42)
proves:
∥∥n

(
Cj(

1
n
) − Pj(

1
n
)
) − PjLPj

∥∥
∞ ≤

∥∥∥∥λ̄jPj(
1
n
)PΣML

∫ 1

0

e
s
n

LPΣPj(
1
n
)ds − PjLPj

∥∥∥∥
∞

+
1

n
R2

jb
2djr (djr + Rjr + 2) ,

where Rj := supz∈Γj
‖R(z, PΣM)‖∞, dj :=Rj infz∈Γj

2+2|z|2
1+2|z|2 + 1

2 , and r is the
radius of the curves Γj defined in Equation (35). Then, we apply Lemmas 2.1
and 6.2 on the first term:

∥∥∥∥λ̄jPj(
1
n )PΣML

∫ 1

0

e
τ1
n

LPΣPj(
1
n )dτ1 − PjLPj

∥∥∥∥
∞

≤ 1

n

∥∥∥∥λ̄jPj(
1
n )PΣML

∫ 1

0

∫ 1

0

τ1e
τ1τ2

n
LLPΣPj(

1
n )dτ2dτ1

∥∥∥∥
∞

+
∥∥λ̄jPj(

1
n )PΣMLPΣPj(

1
n ) − PjLPj

∥∥
∞

≤ 1

2n
b2d2

jr
2 +

∥∥(
Pj(

1
n ) − Pj

)
PΣMLPΣPj(

1
n )

∥∥
∞ +

∥∥PjL
(
Pj(

1
n ) − Pj

)∥∥

≤ 1

n
b2djr

(
1

2
djr + Rjdjr + Rj

)
,

where we used Equation (38) in the last step and the assumption that ML
and LPΣ are bounded by b and all the inequalities discussed before Equation
(43). In combination with Lemma 2.2
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∥∥∥∥e
n

(
Cj

( 1
n

)
−Pj

( 1
n

))
− ePjLPj

∥∥∥∥
∞

≤ max
s∈[0,1]

∥∥esPjLPj
∥∥

∞

∥∥∥∥e
(1−s)n

(
Cj

( 1
n

)
−Pj

( 1
n

))∥∥∥∥
∞

∥∥n
(
Cj

( 1
n

) − Pj

( 1
n

)) − PjLPj

∥∥
∞

≤ 1

n
max

s∈[0,1]

∥∥esPjLPj
∥∥

∞ ewj b2djr

(
R2

j (djr + Rjr + 2) +
1

2
djr + Rjdjr + Rj

)

for all j ∈ {1, ..J} and where wj is defined in Equation (43). With one more
application of Equation (38), this shows
∥∥∥∥∥∥

J∑
j=1

λn
j e

n
(
Cj(

1
n )−Pj(

1
n )

)
Pj( 1

n ) −
J∑

j=1

λn
j ePjLPj Pj

∥∥∥∥∥∥
∞

≤ J

n
etd̃2 max

s∈[0,1]

∥∥estPjLPj
∥∥

∞

where we choose d̃2 ≥ 0 appropriately and redefine L by tL and b by bt. �

End of the Proof of Theorem 6.1 Finally, we combine the upper bounds
found in the lemmas in order to finish the proof of Theorem 6.1.

Proof of Theorem 6.1 Lemmas 6.3, 6.4, and 6.5 show for all t ∈ [0, nε] with
ε:= min{ε1, ε2}∥∥∥∥∥∥
(
Me

t
n

L
)n −

J∑
j=1

λn
j etPjLPj Pj

∥∥∥∥∥∥
∞

≤ c2δ̃
n +

tb

n
+

tb

n

cpc2(2 + tbcpc2)(δ̃ − δ̃n)

1 − δ̃
e2tbcpc2

(Lemma 6.3)

+
J

n
etd̃1

(Lemma 6.4)

+
J

n
etd̃2 max

s∈[0,1]

∥∥∥estPjLPj

∥∥∥
∞

(Lemma 6.5).

For an appropriate constant c1 ≥ 0, we finish the proof of Theorem 6.1. �

7. Examples

In this section, we present two classes of examples, which illustrate the range
of applicability of our results. In the examples, we denote by ρ, σ quantum
states.

Example 3 (Finite-dimensional quantum systems). We choose X = B(H) to
be the algebra of linear operators over a finite-dimensional Hilbert space H
endowed with the trace norm ‖x‖1 = tr|x|, M : B(H) → B(H) a quantum
channel, i.e., a completely positive, trace preserving linear map, and L the gen-
erator of a semigroup of quantum channels over B(H), also known as a quan-
tum dynamical semigroup. In finite dimension, it is know that every quantum
channel is a contraction [38, Cor. 3.40], the spectrum includes the eigenvalue
1 [39, Theorem 3], and every linear operator in finite dimension has a discrete
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spectrum. Moreover, the nilpotent part of a quantum channel is zero [21, Lem-
ma A.1]. Therefore, there exist δ ∈ (0, 1), c̃ > 0, and a set of eigenvalues and
projections {λj , Pj}J

j=1 such that for all n ∈ N
∥∥∥∥∥∥
Mnx −

J∑
j=1

λjPjx

∥∥∥∥∥∥
1

≤ c̃δn ‖x‖1

Note that the assumptions on the semigroup are satisfied due to the finite-
ness of the system and the contraction property of the Pj must be assumed
additionally.

In the following example class, we calculate δ directly.

Example 4 (Power convergence via strong data processing inequalities). As
in Example 3, we define X = B(H) endowed with the trace norm ‖x‖1,
M : B(H) → B(H) a quantum channel, and L the generator of a quantum
dynamical semigroup. Here, we further assume the existence of a projection
P : B(H) → N onto a subalgebra N ⊂ B(H) with MP = PM and such that
the following strong data processing inequality holds for some δ̂ ∈ (0, 1): for all
states ρ ∈ X ,

D(M(ρ)‖M ◦ P (ρ)) ≤ δ̂ D(ρ‖P (ρ)) , (45)

where we recall that the relative entropy between two quantum states, i.e., pos-
itive, trace-one operators on H, is defined as D(ρ‖σ) := tr[ρ log ρ − ρ log σ],
whenever supp(ρ) ⊆ supp(σ). Equation (45) was recently shown to hold under
a certain detailed balance condition for M in [16]: There exists a full-rank state
σ such that for any two x, y ∈ B(H),

tr[σ x∗M∗(y)] = tr[σ M∗(x∗)y].

Here, x∗, resp. M∗, denotes the adjoint of x w.r.t. the inner product on H,
resp. the adjoint of M w.r.t. the Hilbert–Schmidt inner product on B(H). In
finite dimensions, the quantity supρ D(ρ‖P (ρ)) < ∞ is called the Pimsner–
Popa index of P [33]. Using Pinsker’s inequality, we see that the assumption
of Theorem 6.1 is satisfied: for all x = x∗ ∈ B(H) with ‖x‖1 ≤ 1 and decompo-
sition x = x+ − x− into positive and negative parts and corresponding states
ρ± = x±/tr[x±],

‖(Mn − Mn ◦ P )(x)‖1 ≤ tr[x+] ‖(Mn − Mn ◦ P )(ρ+)‖1

+ tr[x−] ‖(Mn − Mn ◦ P )(ρ−)‖1

= ‖x‖1
√
2 max

ρ∈{ρ+,ρ−}
D(Mn(ρ)‖Mn ◦ P (ρ))

1
2

≤
√
2 sup

ρ
D(ρ‖P (ρ))

1
2 δ̂

n

2 =:c̃ δn .

Then, we can apply Proposition 3.4 which proves that there is an ε > 0 such
that for all n ∈ N, t ∈ [0, nε], and δ̃ ∈ (δ, 1)

∥∥∥
(
Me

t
n L

)n

− etPLP P
∥∥∥

∞
= O

(
et‖L‖∞

n
+

δ̃

n
e

8c̃t‖L‖∞
δ̃−δ

)
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for n → ∞.

Example 5 (Infinite-dimensional quantum systems and unbounded generators).
Here, we pick H = L2(R), denote by I the identity operator on H, let σ be a
quantum state on H and M a generalized depolarizing channel of depolarizing
parameter p ∈ ( 1

2 , 1) and fixed point σ:

M(ρ) := (1 − p)ρ + ptr(ρ)σ . (46)

It is clear by convexity that M satisfies the uniform strong power convergence
with projection P (ρ) = tr(ρ)σ and parameter δ = 2(1 − p) < 1,

‖M(ρ) − P (ρ)‖1 = (1 − p) ‖ρ − tr(ρ)σ‖1 ≤ 2(1 − p) ‖ρ‖1 .

Let L be a generator of a C0-contraction semigroup such that σ ∈ D(L). For
example, let H be the Fock space spanned by the Fock basis {|0〉, |1〉, |2〉, ...},
a and a† be the annihilation and creation operator defined by a|0〉 = 0, a|j〉 =√

j|j−1〉 for all j ∈ N≥1, and a†|j〉 =
√

j + 1|j+1〉 for all j ∈ N≥0. Then, define
etL(ρ):=e−itHρeitH where H = a†a + 1

2 (H = −Δ + x2) is the Hamiltonian of
the harmonic oscillator as in [2] and

σ =
1
3
(|0〉〈0| + |1〉〈1| + |2〉〈2|) +

1
10

(|0〉〈1| + |1〉〈0|).

Then, we have that for all t ≥ 0:

‖(1 − P )etLP‖1→1 = sup
‖x‖1≤1

|tr(x)| ‖etL(σ) − σ‖1 ≤ t ‖L(σ)‖1 . (47)

Moreover, by duality and the unitality of the maps etL∗
we have that

‖PetL(1 − P )‖1→1 = ‖(1 − P )∗etL∗
P ∗‖∞→∞

= sup
‖y‖≤1

|tr(σy)|‖(1 − P )(I)‖ = 0 , (48)

Therefore, the assumptions of Theorem 5.1 are satisfied and we find the con-
vergence rate O(n−1). Interestingly, this answers a conjecture of [2, Ex. 3, 5]
for the Hamiltonian evolution generated by the one-dimensional harmonic os-
cillator. There, the authors had numerically guessed the optimal rate which
we prove here. However, their analytic bounds could only provide a decay of
order O(n− 1

4 ) (q.v. remark after Lemma 4.1) and for a restriction of H to a
finite-dimensional stable subspace, which effectively assumed the boundedness
of the generator.

The depolarizing noise considered in the previous example is artificial. In
an infinite-dimensional bosonic system, a more natural model of noise is the
photon loss channel, which we consider in the next example.

Example 6 (Bosonic beam splitter). We define the bosonic one-mode system
by the algebra generated by the creation and annihilation operators a∗ and a
which satisfy the canonical commutation relation (CCR):

[a, a∗] = 1 .
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The associated Fock basis {|0〉, |1〉, |2〉, ...} is orthonormal and defined by

a∗|j〉 =
√

j + 1|j + 1〉 and a|j〉 =
√

j|j − 1〉
where the vacuum state |0〉 satisfies a|0〉 = 0. The Fock basis spans a Hilbert
space called Fock space on which the operators from the CCR algebra are de-
fined. A bosonic quantum state is a semidefinite operator in the CCR algebra
with trace 1. A bosonic 2-mode system is defined by the CCR algebra gener-
ated by {a, b, a∗, b∗}, which satisfy, additionally to the canonical commutation
relation, [a, b] = 0. Next, we consider the quantum beam splitter for λ ∈ [0, 1)

Mλ(y):=tr2[Uλy ⊗ σU∗
λ ] ,

where tr2 denotes the partial trace over the second register, Uλ:=
e(a∗b−b∗a) arcos(

√
λ), an environment state σ, and y an element in the CCR al-

gebra generated by {a∗, a}. Moreover, P (y):=tr[y]σ defines a projection which
satisfies PMλ = MλP = P with the adjoint P ∗(x) = tr[σx]1.

In order to establish, for example, the uniform power convergence of
Theorem 5.1 in the topology of the trace distance, we would need to consider
a convergence in the form of ‖Mn

λ (ρ) − σ‖1 → 0 in the limit of large n and
uniformly in the initial state ρ. Such property is notoriously hard to prove even
in the classical setting [34]. Instead, we will consider a different metric on the
set of quantum states which turns out to be more easy to work with.

We write BN for the linear space of all N -bounded operators, where
N = a†a corresponds to the photon number operator. That is the vector space
of linear operators X on L2(R) such that for any |ψ〉 ∈ dom(N), |ψ〉 ∈ dom(X)
and there are some positive constants a, b such that

‖X|ψ〉‖ ≤ a‖N |ψ〉‖ + b‖ψ‖ .

We define the Bosonic Lipschitz constant of a X ∈ BN as [17]

‖∇X‖2 := sup
|ψ〉,|ϕ〉

|〈ψ|[a,X]|ϕ〉|2 + |〈ψ|[a∗,X]|ϕ〉|2 ,

where the suppremum is over all pure states |ψ〉, |ϕ〉 ∈ dom(N) of norm 1. By
duality, we then define the Bosonic Wasserstein norm of a linear functional f
over BN with f(1) = 0 as

‖f‖W1 := sup
‖∇X‖≤1

∣∣f(X)
∣∣ .

where the supremum is over all N -bounded, self-adjoint operators X. We then
choose our Banach space X as the closure of the set of such linear functionals
such that ‖f‖W1 < ∞. In particular, whenever f ≡ fρ−σ is defined in terms of
the difference between two quantum states ρ, σ as fρ−σ(X) = tr((ρ−σ)X), we
denote the Wasserstein distance associated with the norm ‖.‖W1 as (see also
[17]):

W1(ρ, σ) := ‖fρ−σ‖W1 .

These definitions extend the classical Lipschitz constant ‖∇f‖ := supx∈R2 |∇f(x)|
of a real, continuously differentiable function f of 2 variables as well as the
dual Wasserstein distance over probability measures on R

2.
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In order to relate the Wasserstein distance to the statistically more mean-
ingful trace distance, we seek for an upper bound on the trace distance in terms
of W1. By duality of both metrics, this amounts to finding an upper bound on
the Lipschitz constant ‖∇X‖ of any bounded operator X in terms of its oper-
ator norm ‖X‖∞. However, a bound of that sort does not exist (as classically,
one can easily think of bounded observables which are not smooth). In the
classical setting, the problem can be handled by first smoothing the function
f , e.g., by convolving it with a Gaussian density g. In that case, one proves
that there exists a finite constant C > 0 such that ‖∇(f ∗ g)‖ ≤ C‖f‖∞. In
analogy with the classical setting, we can prove that for any two states ρ1, ρ2

and λ ∈ [0, 1) (see also [17, Proposition 6.4]),

‖Mλ(ρ1 − ρ2)‖1 ≤ C W1(ρ1, ρ2) , (49)

where C2 := (‖[a, σ]‖2
1 + ‖[a∗, σ]‖2

1)λ(1 − λ)−1.
With a slight abuse of notations, we also write Mλ(f) for f◦B∗

λ. It remains
to prove the uniform power convergence. Proposition 6.2 from [17] gives

‖Mλ(f)‖W1
= sup

‖∇X‖≤1

|f ◦ M∗
λ(X)|

= sup
‖∇X‖≤1

|f
(

M∗
λ(X)

‖∇M∗
λ(X)‖

)
|‖∇M∗

λ(X)‖

= sup
‖∇X‖≤1

|f(X)|
√

λ

=
√

λ ‖f‖W1

The uniform power convergence follows by P (f)(X) ≡ f◦P ∗(X) = tr(σX)f(1)
= 0. Moreover, the asymptotic Zeno condition (11) is satisfied if σ ∈ D(L) so
that Theorem 5.1 is applicable.

As illustrated here, our asymptotic Zeno condition is easily verifiable
and provides a rich class of examples. More examples for which our optimal
convergence rate holds can be found in [2].

8. Discussion and Open Questions

In this paper, we proved the optimal convergence rate of the quantum Zeno
effect in two results: Theorem 5.1 focuses on weakening the assumptions of the
C0-semigroup to the so-called asymptotic Zeno condition. Hence, Theorem 5.1
allows strongly continuous Zeno dynamics which is novel for open systems. In
Theorem 6.1 instead, we weaken the assumption on M to the uniform pow-
er convergence as in [2, Theorem 3]. Additionally, we presented an example
which shows the optimality of the achieved convergence rate. This brings up
the question whether our assumptions are optimal and how the assumption on
the contraction correlates with the assumption on the C0-semigroup. For ex-
ample, is it possible to weaken the uniform power convergence in Theorem 5.1
or Proposition 5.7 to finitely many eigenvalues on the unit circle without as-
suming stronger assumption on the semigroup? Following our proof strategy
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(q.v. Lemma 5.2), this question is related to the conjecture of a generalized
version of Trotter’s product formula for finitely many projections under certain
assumptions on the generator,∥∥∥∥∥∥

⎛
⎝

J∑
j=1

λjPje
1
n L

⎞
⎠

n

x −
J∑

j=1

(
λjPje

1
n L

)n

x

∥∥∥∥∥∥
?= O

(
1
n

(‖x‖ + ‖Lx‖ + ‖L2x‖)
)

.

Another line of generalization would be to weaken the assumption on M to
the strong topology as in Theorem 2 in [2]. There, the authors assume that
Mn converges to P in the strong topology and that the semigroup is uni-
formly continuous. It would be interesting to know whether an extension to
C0-semigroups is possible. Finally, another important line of generalization
would be to extend our results to time-dependent semigroups as in [31].
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Appendix A. Holomorphic Functional Calculus and
Semicontinuous Spectra

In this section, we introduce the holomorphic functional calculus and consid-
er some continuity properties of the spectrum of perturbed operators. These
two methods are used in Proposition 5.7 and Theorem 6.1 in the main text.
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Let’s start with the holomorphic functional: To be precise, the holomorphic
functional calculus defines f(A) for A ∈ B(X ) and a function f : C → C
holomorphic on a neighborhood of σ(A) in such a way that, if the spectrum is
separated into two sets, then the functions restricted to the separated subsets
can be treated independently. This in turn is used to define spectral projec-
tions of A. More details on this topic can be found in Section 2.3 of [36]. We
use the holomorphic functional calculus to introduce an integral representa-
tion of f(A) for a holomorphic function f , as well as its associated spectral
projections:

Proposition A.1 (Holomorphic Functional Calculus [36, Theorem 2.3.1–3]).
Let A ∈ B(X ), Γ : [0, 2π] → C be a curve around σ(A), and f be a func-
tion that is holomorphic in the neighborhood of σ(A). Then,

f(A):=
1

2πi

∮

Γ

f(z)R(z,A)dz

is independent of Γ. If a subset σ̃ of the spectrum is separated by a curve Γ,
the spectral projection w.r.t. the enclosed subset is defined as

P :=
1

2πi

∮

Γ

R(z,A)dz

and satisfies P 2 = P and PA = AP . If σ̃ = {λ0} is an isolated eigenvalue,
the following nilpotent operator

N :=
1

2πi

∮

Γ

(z − λ0)R(z,A)dz,

satisfies NP = PN = N and AP = λ0P + N .

In our case, M has finitely many isolated eigenvalues on the unit circle.
However, if the semigroup perturbs those eigenvalues, the following lemma
states a condition under which the separation of the spectrum is maintained.

Lemma A.2 (Semicontinuous Spectra [25, Sect. IV.3.1]). Let b ≥ 0 and M :
R≥0 → B(X ) be a vector-valued function which satisfies

‖M(t) − M(0)‖∞ ≤ tb.

Moreover, assume that σ(M(0)) = σ1 ∪ σ2 is a disjoint union separated by a
curve γ : [0, 2π] → ρ(M(0)). For ε > 0 satisfying

ε <
1
2b

inf
z∈γ

(1 + |z|2)−1

(
1 + sup

z∈γ
‖R(z,M(0))‖2

∞

)− 1
2

, (50)

the spectrum of σ(M(t)) is separated by γ for all t ∈ [0, ε].

Proof Firstly, we show that Equation (50) is well defined—i.e., the value ε > 0
exists. The compactness of the image of γ and the continuity of the resolvent
[25, Theorem II.1.5] show that supz∈γ ‖R(z,M(0))‖∞ < ∞ and ε > 0 exist-
s. Then, we can apply Theorem 3.16 from [25, Sect. IV], which proves the
lemma. �
Remark It is possible to generalize the lemma above to uniformly continuous
vector-valued maps. This case, however, we loose the explicit bound on ε.
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Appendix B. Spectral Gap Assumption

In the proofs of Proposition 5.7 and Theorem 6.1, we use the equivalence [2,
Prop. 3.1] of the uniform power convergence and the spectral gap assump-
tion with corresponding quasinilpotent operators being zero, that is there are
eigenvalues {λj}J

j=1 ⊂ ∂D1 and a gap δ ∈ (0, 1) so that

σ(M) ⊂ Dδ ∪ {λj}J
j=1.

Moreover, the quasinilpotent operators are assumed to be zero, that is

Nj =
1

2πi

∮

Γj

(z − λj)R(z,M)dz = 0

for Γj : [0, 2π)  ϕ �→ λj + 1
2 mink,l∈{1,..,J}{|λk − λl|, 1 − δ}eiϕ (q.v. Eq. 4).

Additionally, the projections defined in the uniform power convergence are
equal to the spectral projections

Pj =
1

2πi

∮

Γλj

R(z,M)dz

for all j ∈ {1, ..., J} (q.v. Eq. 3). Since Nj = 0, PjM = MPj = λjPj [36,
Theorem 2.3.5]. The equivalence between the uniform power convergence and
the spectral gap assumption with corresponding quasinilpotent operators being
zero is given in [2, Proposition 3.1].

Proposition B.1 ([2, Proposition 3.1]). Let M ∈ B(X ) be a contraction, J ∈ N,
δ ∈ (0, 1), and {λ}J

j=1 ⊂ ∂D1. Then, the following statements are equivalent:

(1) The contraction M satisfies the spectral gap assumption w.r.t. {λj}J
j=1,

the gap δ, and the corresponding quasinilpotent operators being zero.
(2) There are projections {Pj}J

j=1, δ ∈ (0, 1) and c̃ ≥ 0 such that MPj = λjPj

for all j = {1, ..., J} and
∥∥∥∥∥∥
Mn −

J∑
j=1

λn
j Pj

∥∥∥∥∥∥
∞

≤ c̃ δn.

(3) There are contractions {Cj}J
j=1 so that limn→∞ ‖Mn −

∑J
j=1 λn

j Cj‖∞ =
0.

If any of the conditions above holds true, Cj = Pj and Pj are the eigenprojec-
tors w.r.t. to the eigenvalue λj.

Appendix C. Approximate Modified Chernoff
√
n Lemma

Lemma C.1 (Approximate Modified Chernoff Lemma). Let ε > 0, P ∈ B(X )
a projection with ‖P‖∞ = 1, and [0, ε]  t �→ P (t) ∈ B(X ), [0, ε]  t �→
C(t) ∈ B(X ) be two vector-valued maps with the properties P (t)2 = P (t),
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P (t)C(t) = C(t)P (t) = C(t), ‖P (t) − P‖∞ ≤ tv, and ‖C(t) − P (t)‖∞ ≤ tw
for some v, w ≥ 0 and all t ∈ [0, ε]. Then, for all n ∈ N with 1

n ∈ [0, ε]
∥∥∥∥C( 1

n )n − en(C(
1
n )−P (

1
n ))P ( 1

n )
∥∥∥∥ ≤ n

2
ev+w

∥∥∥(
C( 1

n ) − P ( 1
n )

)2
∥∥∥ ≤ w2

2n
ev+w.

Proof Similar to the proof of Lemma 4.2, we define Ct( 1
n ):=P ( 1

n ) + t(C( 1
n ) −

P ( 1
n )) for t ∈ [0, 1] and n ∈ N and we use the fundamental theorem of calculus

so that

∥∥∥∥C
( 1

n

)n − e
n

(
C

( 1
n

)
−P

( 1
n

))
P

( 1
n

)∥∥∥∥
∞

≤
∫ 1

0

∥∥∥∥
∂

∂t

(
Ct

( 1
n

)n
e
(1−t)n

(
C

( 1
n

)
−P

( 1
n

)))∥∥∥∥
∞

dt

≤ n

∫ 1

0
t

∥∥∥∥Ct(
1
n
)n−1e(1−t)n(C( 1

n
)−P ( 1

n
))

∥∥∥∥
∞∥∥(P ( 1

n
) − C( 1

n
))2

∥∥
∞ dt

≤ n
∥∥∥(

C( 1
n
) − P ( 1

n
)
)2∥∥∥

∞

∫ 1

0
t
∥∥Ct(

1
n
)
∥∥n−1

∞

e
(1−t)n

∥∥∥C( 1
n

)−P ( 1
n

)
∥∥∥

∞dt

≤ n
∥∥∥(

C( 1
n
) − P ( 1

n
)
)2∥∥∥

∞

∫ 1

0
tev+twe(1−t)wdt

(51)

=
n

2
ev+w

∥∥∥(
C( 1

n
) − P ( 1

n
)
)2∥∥∥

∞

≤ w2

2n
ev+w.

In the fourth inequality (51), we used
∥∥Ct( 1

n )
∥∥n−1

∞ =
∥∥P + P ( 1

n ) − P + t(C( 1
n ) − P ( 1

n ))
∥∥n−1

∞
≤

(
1 +

∥∥P ( 1
n ) − P

∥∥
∞ + t

∥∥C( 1
n ) − P ( 1

n )
∥∥

∞
)n−1

≤
(

1 +
v + tw

n

)n

≤ ev+tw

which proves the lemma. �
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[16] Gao, L., Rouzé, C.: Complete entropic inequalities for quantum Markov chains.
Arch. Ration. Mech. Anal. (2022). https://doi.org/10.1007/s00205-022-01785-1
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