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ABSTRACT

Deep reinforcement learning algorithms aim to achieve human-level intelligence
by solving practical decisions-making problems, which are often composed of
multiple sub-tasks. Complex and subtle relationships between sub-tasks make tra-
ditional methods hard to give a promising solution. We implement a first-person
shooting environment with random spatial structures to illustrate a typical rep-
resentative of this kind. A desirable agent should be capable of balancing be-
tween different sub-tasks: navigation to find enemies and shooting to kill them.
To address the problem brought by the environment, we propose a Meta Soft Hi-
erarchical reinforcement learning framework (MeSH), in which each low-level
sub-policy focuses on a specific sub-task respectively and high-level policy au-
tomatically learns to utilize low-level sub-policies through meta-gradients. The
proposed framework is able to disentangle multiple sub-tasks and discover proper
low-level policies under different situations. The effectiveness and efficiency of
the framework are shown by a series of comparison experiments. Both environ-
ment and algorithm code will be provided for open source to encourage further
research.

1 INTRODUCTION

With great breakthrough of deep reinforcement learning (DRL) methods (Mnih et al., 2015; [Silver
et al., 20165 Mnih et al.| 2016; |Schulman et al., [2015} [Lillicrap et al [2015), it is an urgent need
to use DRL methods to solve more complex decision-making problems. The practical problem in
real world is often a subtle combination of multiple sub-tasks, which may happen simultaneously
and hard to disentangle by time series. For instance, in StarCraft games (Pang et al., 2019), agents
need to consider building units and organizing battles, sub-tasks may change rapidly over the whole
game process; sweeping robots tradeoff between navigating and collecting garbage; shooting agents
should move to appropriate positions and launch attacks, etc. The relationship between sub-tasks
is complex and subtle. Sometimes they compete with each other and need to focus on one task
to gain key advantages; at other times, they need to cooperate with each other to maintain the
possibility of global exploration. It is often time consuming and ineffective to learn simply by
collecting experience and rewarding multiple objectives for different sub-tasks.

A reasonable idea is to utilize deep hierarchical reinforcement learning (DHRL) methods (Vezhn-
evets et al.l 2017} [Igl et al., |2020), where the whole system is divided into a high-level agent and
several low-level agents. Low-level agents learn sub-policies, which select atomic actions for cor-
responding sub-tasks. The high-level agent is responsible for a meta task in the abstract logic or
coarser time granularity, guiding low-level agents by giving a goal, or directly selecting among sub-
policies. However, DHRL methods face some inherent problems: due to the complex interaction
between multi-level agents, there is no theoretical guarantee of convergence, and it shows unsta-
ble experimental performance. Most DHRL methods require heavy manual design, and end-to-end
system lacks reasonable semantic interpretation. In addition, these agents are often constrained by
specific tasks and are easy to overfit. Even transferring between similar tasks, they perform poorly
and need a lot of additional adjustments.

We introduce a first-person shooting (FPS) environment with random spatial structures. The game
contains a 3D scene from human perspective. When the player defeats all enemies, the player wins
the game. When the player drops to the ground or losses all health points, the player loses the
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game. It is very risky for the player to drop to the ground, thus environment contains two key tasks:
navigation and combat. The terrain and enemies in the game are randomly generated. This ensures:
1) the agent cannot learn useful information by memorizing coordinates; 2) the possibility of over-
fitting is restrained and the generalization ability of learned policy is enhanced. The state information
is expressed in the way of raycast. This representation of environment information requires much
less computing resources than the raw image representation. It can be trained and tested even with
only CPU machines, which makes us pay more attention to the reinforcement learning algorithm
itself rather than the computing ablity related to image processing.

For this environment, we propose a Meta Soft Hierarchical reinforcement learning framework
(MeSH). The high-level policy is a differentiable meta parameter generator, and the low-level policy
contains several sub-policies, which are in the same form and differentiated automatically in the
training procedure. The high-level policy selects and combines sub-policies through the meta pa-
rameter and interacts with the environment. We find that the meta generator can adaptively combines
sub-policies with the process of the task, and have strong interpretability in semantics. Compared
with a series of baselines, the agent has achieved excellent performance in FPS environment.

The main contributions of this work are as follows:

* clarifying the complex relationship between multi-task composition.

* anovel meta soft hierarchical reinforcement learning framework, MeSH, which uses differ-
entiable meta generator to adaptively select sub-policies and shows strong interpretability.

* aseries of comparison experiments to show the effectiveness of the framework.

* an open-sourced environment and code to encourage further research on multi-task RL [ﬂ

In this paper, we discuss the related work in Section[2] We introduce the details of the implemented
environment in Section [3] We show our proposed framework in Section[d] We demonstrate details
of our experiments in Section[5} At last, we conclude in Section [f]

2 RELATED WORK

In decision-making problems with high-dimensional continuous state space, the agent often needs to
complete tasks that contain multiple sub-tasks. To complete taxi agent problem (Dietterich, |2000),
the agent needs to complete sub-tasks such as pickup, navigate, putdown. Menashe & Stone| (2018])
proposed Escape Room Domain, which is a testbed for HRL. The agent leaves the room from the
starting point and needs to press four buttons of different colors to leave the room. In these envi-
ronments, the agent needs to optimize several sub-tasks and minimize the mutual negative influence
between them. However, sub-tasks in these environments are timing dependent. The proposed meth-
ods above are helpless in a multi-task environment that needs to fulfill multiple tasks simultaneously.

Architectural solutions use hierarchical structure to decompose tasks into action primitives. |Sut-
ton et al.| (1999) models temporal abstraction as an option on top of extended actions, [Bacon et al.
(2017) proposes an actor-critic option method based on it. [Henderson et al.|(2017) extend the options
framework to learn joint reward-policy options. Besides, Jiang et al.| (2019) construct a composi-
tional structure with languages as abstraction or instruction. Due to specific structure design of these
methods, high-level agent is unable to execute multiple sub-policies simultaneously in any form.

Recent HRL works learn intra-goals to instruct sub-policies. |Vezhnevets et al.| (2017)) proposes a
manager-worker model, manager abstracts goals and instructs worker. This architecture uses di-
rectional goal rather than absolute update goal. |Oh et al. (2017) learns a meta controller to instruct
implementation and update of sub-tasks. [Igl et al.|(2020) presents a new soft hierarchy method based
on option, it learns with shared prior and hierarchical posterior policies. [Yu et al.|(2020) proposes a
method that projects the conflict gradient onto the normal plane to avoid some task gradients dom-
inating others. Compared with the hard hierarchy methods, these methods use the state’s natural
features to update the upper-level policy, avoiding the timing constraints of handcrafted sub-tasks.
Due to the lack of meaningful learning goals of sub-policies, the low-level policies fail to focus on
explainable sub-tasks.

'https://github.com/MeSH-ICLR/MEtaSoftHierarchy.git
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HRL has been recently combined with meta-learning. Frans et al proposes Meta-Learning Shared
Hierarchies (MLSH) (Frans et all, [2017), which updates master policy and sub-policy by meta-
learning. uses meta-learning to learn reward shaping. Rakelly et al.|(2019) extends
the idea of disentangling task inference and control to help agents leverage knowledges between
tasks. Although these methods reduced the limitation of policy structures, it is difficult to learn
multi-tasks in parallel due to the fixed time steps selected by the master policy for every sub-policy.

It is also reasonable to learn sub-tasks based on decomposition of rewards. ex-
presses behaviors as different weighted task blends by the communication between layers so that
can maintain a parallel distributed representation of tasks, but the structure is hard to abstract the
relationship between different sub-tasks. [Grimm & Singh| (2019) and [Lin et al| (2019) allocate each
state with one sub-reward function, which is a non-overlapping decomposition of spatial space. In
contrast to these approaches, our method can represent complex and subtle relationship between
multiple sub-tasks and perform them simultaneously with explainable sub-goals.

3 ENVIRONMENT

Figure 1: First-person shooting environment with random terrain.

To better understand multi-task decision-making problems, we firstly introduce a first-person shoot-
ing environment with random terrain, as shown in Figure [T} The game contains a 3D scene, which
analogy to human perspective. This makes the behavior of trained agent similar to human intelli-
gence. The real-time information is shown in Table m The condition of winning the game is to
defeat all the enemies in the game. When the player drops to the ground or losses all health points,
the game will be judged as failed. This game is very risky as it’s easy to drop. Thus the environment
contains two key tasks: navigation and combat. The terrain and enemies in the game are randomly
generated. This ensures: 1) the agent cannot learn useful information by memorizing coordinates;
2) the possibility of over-fitting is restrained and the generalization ability of learned policy is en-
hanced. The state information of the agent is expressed in the way of raycast, as shown in Figure[2}
This representation of environment information requires much less computing resources than raw
image representation. It can be trained and tested even with only CPU machines, which makes us
pay more attention to the reinforcement learning algorithm itself rather than the computing ability
related to image processing.

The generation rules of random terrain are as follows. The maximum generated height of random
terrain is set to 5. In the initial state, there is only one parcel, which is also the place where the
player is born. We add this parcel to the parcel queue. If the parcel queue is not empty, the parcel
at the head of the queue will be taken out. When the maximum height is not reached, we expand
the parcel to four directions of the higher level with equal probability. If there is no new parcel
in the corresponding position of the higher level, a new parcel is generated. A ramp is established
between the new parcel and the current parcel and a random number of enemy is created at the
random position of the new parcel, and then the new parcel is added to the parcel queue. If there
are new parcels in the corresponding position of the higher level, the new parcels are not generated
repeatedly, and only the ramp between the two parcels is added. Repeat adding parcels until the
parcel queue is empty, then terrain generation is completed.

The FPS environment is typically a combination of two sub-tasks: navigation and combat. The
relationship between these two sub-tasks is subtle and complex. Sometimes they compete with



Under review as a conference paper at ICLR 2021

Figure 2: The raycast information. The range of the game camera is 60 degrees of vertical view, 90
degrees of horizontal view, and the interval of each ray is 5 degrees. Therefore, a total of 247 = (60 /
5+1)*(90/5 + 1) rays are emitted. The raycast return {object, distance, object, distance, - - - } as a
sequence. The object is represented by {0: none, 1: player itself, 2: mesh, 3: blood bag, 4: enemy},
and the distance representation is direct transmission value. When there is no object touched, the
distance is also 0.

Table 1: Real-time Information

Field Name  Field Type Simple Description Data Range
hp float player’s health point [0, 100]
energy float player’s firing energy [0, 16]

X float player’s x-coordinate [-30, 20]

y float player’s y-coordinate [-1, 16]

z float player’s z-coordinate [-80, 10]
rotation_x float x-coordinate of player’s orientation [0, 360]
rotation_y float y-coordinate of player’s orientation [0, 360]
rotation_z float z-coordinate of player’s orientation [0, 0]

raycast repeated int32  player’s vision for object & distance object: 0-4 distance: [0, +00]
kill int32 number of enemies killed [0, +o0]

each other, but at other times, they cooperate for a common objective. For instance, in navigation
missions, in order to explore more unseen terrain, sometimes we need to fight to clear enemies along
the way; but at other times, we have to focus on navigation to pass through narrow terrain. Similarly,
in combat missions, sometimes we need to move to get a better position to shoot; but at other times,
we need to focus on shooting to kill the enemy quickly. This environment is very representative
of practical problems, since a large number of them can be divided into several parts which are
contradictory and unified. In addition, each sub-task in this environment is simple and clear, but
the combination of them greatly increases the difficulty of solving the problem. This forces the
RL algorithm to focus more on dealing with these complex relationships, rather than the specific
techniques for solving a single problem.

4 POLICY OPTIMIZATION

4.1 FRAMEWORK

The proposed MeSH framework includes two policies: high-level policy and low-level policy, as
shown in Figure 3] The high-level policy is a differentiable meta parameter generator, and the low-
level policy contains N sub-policies, which are in the same form and correspond to N sub-tasks
respectively. The high-level policy automatically selects and combines sub-policies of the low-level
through the meta parameter generator and interacts with the environment.

In the proposed framework, firstly, shared encoder layer and RNN layer are deployed to learn the
environmental state representation s; from the observation history. Based on s;, a high-level meta-
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Figure 3: The MeSH framework.

parameter network is established to generate meta-parameters « = (a1, a9, - ,ay). And N
low-level policy networks are established to generate N different sub-policies (71,72, -+ ,7TN),
respectively. The policy 7 ultimately used to choose actions is the weighted sum of the N policies:
N
=T 1)
i=1
When the policy 7 chooses the action and interacts with the environment, the environment moves
to next state and returns corresponding rewards (Ry, Ro, - -+ , Ry). Among them, R; is the reward

for corresponding sub-tasks. The final reward R received by the agent is weighted sum of the N
rewards:

N
R= Zai . Ri. (2)
i=1

This setting has two advantages: 1) « can automatically select the weight of the corresponding
policy according to the state of the environment; 2) derive the differentiation of the N policies in an
implicit way.

In the training process, we use IMPALA (Espeholt et al | [2018) as the basic framework of large-scale
distributed reinforcement learning. Since the process of sample collection and parameter updating
are decoupled, learning is off-policy and V-trace technique is used to reduce this difference. The
Loss of the framework is

Loss = ¢1 - min(clip(p) - A, p- A) + ca - MSE(v,vs) + ¢35 - Entropy. (3)
where A and vs are advantages and target V' -value estimated by V-trace.

Due to the complexity of composite tasks, it is usually difficult to obtain positive reward from naive
policy. We utilize the idea of self-imitation learning (SIL) (Oh et al., 2018)) to speed up the learning
of positive behaviors. Specifically, the original SIL algorithm has not been adopted. Only those
samples whose return exceeds the current value estimation are saved in a special buffer, from which
a mini-batch data is extracted and learned together with the normal samples in every update step.

4.2 META-GRADIENT

We divide the extracted buffer into two parts to calculate the loss to be optimized respectively, which
is denoted as L4, and L,4;. Both losses are determined not only by meta-parameter « but also
the parameters of policy networks w. This implies a bilevel optimization problem with « as the
upper-level variable and w as the lower-level variable (Liu et al., 2018):

min L,q(w*(a), a),

“4)

s.t. w* (@) = argmin Lypgin(w, @).
w
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Due to the expensive inner optimization of evaluating the gradient exactly, we use the approximation
scheme as follows:

VQLval(W*(a)v a) ~ Valyal (w —€Vuw Ltrain(wa a)7 Oé). @)

where w denotes the current policy weights, and ¢ is the learning rate for a step of inner optimization.
The idea is to approximate w*(«) by adapting w using only a single training step, without solving
the inner optimization completely. Denote @ = w — £ /4, Ltrain(w, ), we can approximate (5) by

Va Lvai(w™(a), @)
~Vw Lval(djv a) : (_g Vw,a Ltrain(wy O[)) + VQLval(wa O[) (6)
S

~ Y w Lval(d)a CK) : 7276 . (VaLtrain(w + €, a) - ngtrain(w + €, a)) + VQLval (djv O[).

4.3 TRAINING ALGORITHM

Our hierarchical framework is end-to-end, and the influence of high-level on low-level is realized
by differentiable meta parameters. Therefore, in the process of forward inference, we regard the
whole framework as a whole, and no longer emphasize the concept of hierarchy. Only in the process
of backward update, we need to use meta-gradient to update the meta parameters cv. Thus we will
distinguish the different levels of the framework.

Algorithm 1 Meta Soft Hierarchical reinforcement learning framework (MeSH).

1: Initialize parameters w and a.

2: Initialize replay buffer Dy and SIL buffer Dg.
3: Initialize t < 0

4: while T'rue do

5: //Stage 1. Transition Generating Stage.

6.

7

8

Sample A; ~ 7(A¢|St, w, @).
Generate St+1, th, ceey RNt ~ p(St+la th, ) RNt|St7 At)
: Calculate R; by (2).
9: Store (St,At,Rt,St+1) in DN.
10: //Stage 2. Parameter updating stage.

11: Sample mini-batch of transitions from Dy and Dg.
12: Update w by minimizing (3).
13: Compute and accumulate meta-gradient of « by ().

14: Update SIL buffer Dg.

15: if t = 0(mod c) then

16: Apply meta-gradient of a.
17: end if

18: t—t+1

19: end while

5 EVALUATION

In this section, we conduct a series experiments in the proposed first-person shooting environment.
There are two questions we mainly focus on: 1) how the proposed framework performs compared
to representative baselines; and 2) whether the proposed framework can learn different meaningful
sub-policies and combine them appropriately.

5.1 EXPERIMENTAL SETUP

In the training process, we use IMPALA as the basic framework of large-scale distributed reinforce-
ment learning. Four CPU-only machines are used as workers, responsible for interacting with the
game environment and collecting the transition sequences. A machine with GPU serves as a learner,
receives the transition sequences transmitted by the worker and updates the parameters. Since the
proposed first-person shooter environment is typically a combination of two sub-tasks (navigation
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and combat), we set the number of sub-policies as N = 2. The rewards for navigation R; are
set as 0.01 per step on the level, and 2.0 per meter on the ramps. The reward for combat R is
set as 10.0 per enemy killed. Thus we hope that 7; to learn the navigation sub-policy and 73 to
learn the combat sub-policy. We set the discount factor v = 0.997. We use the Adam optimizer
to minimize the losses, and the initial learning rate is set to 10~3 with linear decay. The time in-
terval for meta-gradient update is set as ¢ = 8. The batch size for normal buffer and SIL buffer
is 512 and 64 respectively with the sequences’ length set as 40. All experiments in this work use
the same state encoder layer and RNN layer with LSTM units. To ensure the stability of training
LSTM in the dynamic environment, we utilize the previous hidden state as initial state as introduced
in R2D2 (Kapturowski et al.,[2018). In addition, SIL buffer is also implemented in all experiments
to accelerate the learning speed of behaviors with sparse but large reward.

5.2 PERFORMANCE

5.2.1 BASELINES

To verify the effectiveness of our proposed framework, two types of baselines are chosen for compar-
ison. The first is the classical methods in reinforcement learning (a ’+’ indicates that a SIL module
is added to the original method) and the second is the variant of the framework to show its ablation
performance. To construct a fair comparison, we also do parameter-tuning for all baselines.

* IMPALA+: A typical distributed reinforcement learning framework with high throughput,
scalability, and data-efficiency.

* FuNs+: A goal-based hierarchical reinforcement learning framework with abstract goal
generated by the high-level agent and guiding the behaviors of low-level agent.

* HardHrl: A variant of our proposed framework with meta-parameter « constrained as the
form of one-hot encoding, only one sub-policy is executed per step.

5.2.2 PERFORMANCE COMPARISON

Average Return Maximum Return
1201 vpaLA+ 250 —— IMPALA+
100 FuNs+ FuNs+
HardHrl 200 HardHrl
0 MeSH MeSH
= = 150
s 60 E
S &
1001
40
20 50 e L
AR B it ———
0 e - ol © o
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Steps Steps
Figure 4: Average Return in Training. Figure 5: Maximum Return in Training.

Figure [ and Figure [5|show the average and maximum return of the collected buffer in the training
process. Only the proposed framework MeSH achieves good performance, which can acquire high
return in both navigation and combat sub-tasks. Other methods perform poorly. Among them,
HardHrl performs slightly better than IMPALA+. From the observation of rollout result, HardHrl
can execute both navigation and combat sub-tasks in a lower-level. While IMPALA+ can only
execute navigation task with none of enemy killed, which shows that a single policy cannot handle
multiple sub-tasks at the same time. FuNs+ has hardly learned any reasonable behavior, which
indicates that abstract goal can hardly deal with the complex relationship between multiple sub-
tasks simultaneously.

5.3 DISCUSSION ON DEALING WITH COMPLEX RELATIONSHIP

Figure [6] shows a fragment in an episode in the test process. We can observe that when the agent
execute navigation sub-task, the value of ay is small, which indicates that the current behavior is
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Figure 6: Test Procedure. The green dashed line indicates the time step when an enemy is killed.
We record as (solid blue line, the second component of meta-parameter «, representing the weight
of the combat sub-policy m2) and JS divergence between the two learned sub-policies (solid red line)
with the test process.

more influenced by the navigation policy 71; when the agent execute combat sub-task, the value
of as increases rapidly and approaches 1.0, which indicates that the current behavior is almost
controlled by the combat policy ma. Therefore, o can combine different sub-policies appropriately
to adapt to complex conditions.

The JS divergence shows the difference between the two sub-policies. We can observe that when
o is significantly small or large (inclined to one sub-policy), the JS divergence is larger; while as
is close to 0.5 (influenced by the two sub-policies equally), the JS divergence is small. Besides,
we performed single sub-policy in rollout test. The agent with only executing 71 can move flexibly
without shooting any enemy, while the agent with only executing 75 can kill the enemies but fall
easily. Therefore, the framework has learned different meaningful sub-policies without specify the
objectives of each sub-policy artificially.

In addition, we also observed that agent has learned a variety of combat policies. The agent tends to
shoot at long distances when facing a single enemy. When facing multiple enemies at the same time,
the agent are more inclined to close combat. On the one hand, it can avoid being attacked intensively
by moving. On the other hand, it can get health point packets while fighting to supplement its own
consumption, so as to ensure continuous combat.

6 CONCLUSION

In order to research on practical problems with multi-task combination, we implement a first-person
shooting environment with random terrain, which is a typical representative of such problems. To
deal with complex and subtle relationships between multiple sub-tasks, we propose a Meta Soft Hier-
archical reinforcement learning agent, in which the high-level policy learns to combine the low-level
sub-policies end-to-end through meta-gradients. Experiments show that the proposed framework
outperforms state-of-art baselines and learns different meaningful sub-policies and combine them
appropriately. We provide the open-sourced environment and code to encourage further research.
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