
How Does Generative Retrieval Scale to Millions of Passages?

Ronak Pradeep∗ † §, Kai Hui∗, Jai Gupta, Adam D. Lelkes, Honglei Zhuang
Jimmy Lin§, Donald Metzler, Vinh Q. Tran∗

Google Research, §University of Waterloo
rpradeep@uwaterloo.ca, {kaihuibj,vqtran}@google.com

Abstract

The emerging paradigm of generative retrieval
re-frames the classic information retrieval
problem into a sequence-to-sequence model-
ing task, forgoing external indices and encod-
ing an entire document corpus within a sin-
gle Transformer. Although many different ap-
proaches have been proposed to improve the
effectiveness of generative retrieval, they have
only been evaluated on document corpora on
the order of 100K in size. We conduct the first
empirical study of generative retrieval tech-
niques across various corpus scales, ultimately
scaling up to the entire MS MARCO passage
ranking task with a corpus of 8.8M passages
and evaluating model sizes up to 11B param-
eters. We uncover several findings about scal-
ing generative retrieval to millions of passages;
notably, the central importance of using syn-
thetic queries as document representations dur-
ing indexing, the ineffectiveness of existing
proposed architecture modifications when ac-
counting for compute cost, and the limits of
naively scaling model parameters with respect
to retrieval performance. While we find that
generative retrieval is competitive with state-
of-the-art dual encoders on small corpora, scal-
ing to millions of passages remains an impor-
tant and unsolved challenge. We believe these
findings will be valuable for the community to
clarify the current state of generative retrieval,
highlight the unique challenges, and inspire
new research directions.

1 Introduction

For the last several years, dual encoders (Gillick
et al., 2018; Karpukhin et al., 2020; Ni et al., 2022b;
Chen et al., 2022) have dominated the landscape
for first-stage information retrieval. They model
relevance by mapping queries and documents into
the same embedding space, optimized via con-
trastive learning (Hadsell et al., 2006; Gao et al.,

∗Equal Contribution.
†Work completed while a Student Researcher at Google.

2021). Dense embeddings are pre-computed for
all documents in a corpus and stored in an ex-
ternal index, enabling fast approximate nearest
neighbor search (Vanderkam et al., 2013; John-
son et al., 2021) to retrieve relevant documents.
Cross-encoders based on large Transformer mod-
els (Nogueira and Cho, 2019; Nogueira et al., 2020;
Pradeep et al., 2021b) often function on top of these
retrieved documents to further refine the top results.

Recently, the emerging paradigm of genera-
tive retrieval (De Cao et al., 2020; Tay et al.,
2022) sought to replace this entire process
with a single sequence-to-sequence Transformer
model (Sutskever et al., 2014; Vaswani et al., 2017),
showing promising results against dual encoders
given a sufficiently small corpus size. Since then,
various techniques, such as (Zhuang et al., 2022b;
Bevilacqua et al., 2022; Zhou et al., 2022; Wang
et al., 2022; Chen et al., 2023), have aimed to
improve the effectiveness of generative retrieval
models, either with alternative document identifier
formulations, architecture changes, or training ob-
jectives. Such work, however, has only evaluated
generative retrieval over relatively small corpora
on the order of 100K documents, such as Natu-
ral Questions (Kwiatkowski et al., 2019), Trivi-
aQA (Joshi et al., 2017), or small subsets of the
MS MARCO document ranking task (Nguyen et al.,
2016). Despite these research contributions, sev-
eral open questions remain unanswered, including
how well current generative retrieval techniques
work on larger corpora and which aspects of gener-
ative retrieval models proposed so far are vital as
we scale the corpora.

In this paper, we conduct the first empirical study
of generative retrieval techniques over the entire
MS MARCO passage-level corpus, evaluating its
effectiveness over 8.8M passages. We select popu-
lar approaches in recent works and evaluate them
first on Natural Questions and TriviaQA to estab-
lish a definitive ablation of techniques in a con-

trolled setup. Our experiments mainly focus on
evaluating techniques proposed by Tay et al. (2022),
Zhuang et al. (2022b), and Wang et al. (2022). We
evaluate three main design aspects in our study:

• The impact of target-space document identifiers
(DocIDs) exploring Atomic, Naive, Semantic,
and 2D Semantic DocIDs.

• Document representation, assessing the use of
document tokens, ground truth queries, and syn-
thetic queries, as per Nogueira and Lin (2019).

• Model design techniques including prefix-aware
weight-adaptive (PAWA) decoding, constrained
decoding, and consistency loss.

We then scale up the corpus size leveraging the
MS MARCO passage ranking task, beginning with
a subset of 100K passages before increasing the
count to 1M and 8.8M passages (the entire set). In-
crementally doing so allows us to establish which
techniques remain effective as corpus size and dif-
ficulty scale.

Finally, to explore the effect of model scaling on
retrieval effectiveness on large corpora, we evalu-
ate a set of techniques with promising results at the
T5.1.1-Base (220M) scale (Raffel et al., 2020) and
modify the parameterization to consider up to 11B
parameters. As the parameter distributions vary be-
tween methods, for instance, Atomic DocIDs result
in additional parameters equal to the embedding di-
mension times corpus size, while the Naive DocIDs
do not cost anything beyond the core Transformer
model, we aim to provide some insight into the
trade-off of different parameter allocations on a
large corpus.

While our experimental findings are nuanced,
we summarize the main findings as follows:

1. Of the methods considered, we find synthetic
query generation to be the single most critical
component as corpus size grows (other than
model scaling.) That is, defining the task of
generative retrieval as solely mapping from
synthetic queries to DocIDs is the most ef-
fective modeling strategy, with others largely
unnecessary.

2. As corpus size increases, discussion of com-
pute cost is crucial. Methods that expand the
parameter count beyond what is used by the
original pre-trained T5 checkpoint are more
effective. We find this crucial detail unstated

in prior work like Wang et al. (2022). How-
ever, the effectiveness improvements vanish
as we scale up the naive approach to simi-
lar parameter sizes. Following Dehghani et al.
(2022), we note that the parameter count is not
the entire story and provide more discussion
regarding model comparisons and trade-offs
in Section A.3.2.

3. Increasing the model size is necessary for
improved generative retrieval effectiveness.
However, for the best Sequential DocIDs, ef-
fectiveness does not improve past a certain
point — peaking at XL (3B) with a slightly
worse score using XXL (11B) under fixed
experimental settings. We find this counter-
intuitive to the common conception that model
capacity limits the success of generative re-
trieval in prior studies of generative retrieval.

In the MS MARCO passage ranking task, we
found that a scaled model, trained only on synthetic
queries and leveraging Naive DocIDs, outperforms
all other techniques we considered. On a small
subset of 100K passages, a T5-Base model trained
with this strategy achieves 82.4 MRR@10 (Sec-
tion A.3.1), competitive with GTR-Base (Ni et al.,
2022b) at 83.2 MRR@10. However, on the setting
with 8.8M passages, a T5-XL model trained with
this approach achieves only 26.7 MRR@10.

The field of generative retrieval is rapidly evolv-
ing, yet matching the effectiveness of top-tier dense
retrieval models at scale remains a significant, un-
resolved challenge. Our results suggest the need
for continued research into generative retrieval and
more fundamental advances to the paradigm be-
fore we can fully leverage the power of scaling
up model parameters. We believe our findings
will help the research community better understand
the challenges faced while applying generative re-
trieval models to larger corpora and inspire new
research in this field.

2 Methods

We revisit the design details of the generative re-
trieval method, using the Differentiable Search In-
dex (DSI) (Tay et al., 2022) as the baseline, and
describe multiple techniques introduced in subse-
quent works that we ablate and study in this work.
For a comprehensive review of related work, we
refer the reader to Section A.1 in the Appendix.

2.1 Background
DSI (Tay et al., 2022) transforms the retrieval task
into sequence-to-sequence (seq2seq) modeling, us-
ing queries as inputs and relevant document iden-
tifiers (DocIDs) as generation targets. The corpus,
namely the mapping between the document’s con-
tent and its identifier, is encoded using the parame-
ters of the LLM. DSI achieves this by leveraging
two seq2seq tasks: indexing and retrieval. During
training, the model learns to generate the DocID
given the document content (indexing task) or a
relevant query (retrieval task). At inference, the
model processes a query and generates a ranked
list of identifiers as retrieval results.

2.2 Inputs and Targets
In the framework discussed, DSI learns to encode
the mapping between the long-form textual rep-
resentation of a document and its identifier in its
parameters while also learning to fetch the same
identifier when it receives a relevant query as input.

Two crucial design choices are how documents
are represented (i.e., the inputs in the indexing task)
and how document identifiers (DocIDs) are repre-
sented (i.e., the targets in both indexing and re-
trieval tasks). One primary consideration is the
challenge of encoding long textual sequences with
a Transformer (Vaswani et al., 2017)-based LLM,
making it hard to index entire documents. Another
is that naive identifiers from existing datasets could
be sub-optimal due to their lack of semantic mean-
ing.

2.2.1 Document Representations
One straightforward idea is to pick a text span
from the document as a representation. DSI con-
siders the first 64 tokens (FirstP) in each docu-
ment, whereas Wang et al. (2022) leverages ten
randomly selected chunks of 64 consecutive to-
kens, a technique they call Document As Query
(DaQ). We evaluate the FirstP and DaQ approaches
individually and in conjunction when working with
lengthy documents in Natural Questions and Trivi-
aQA datasets. In the case of MS MARCO, which
has short passages, FirstP and DaQ are essentially
the same, assuming sufficient context length.

2.2.2 Synthetic Query Generation
In training the model for retrieval tasks, the natu-
ral baseline uses existing labeled data, i.e., queries
from the retrieval dataset as inputs and the Doc-
IDs labeled as relevant as targets. However, as

argued in Zhuang et al. (2022b) and Wang et al.
(2022), there are two kinds of gaps between the
index and retrieval tasks. First is the data distribu-
tion gap: queries for the retrieval task are short and
request specific information, while the documents
for the indexing task are long and convey infor-
mation. Second is the coverage gap: the model
is exposed to the entire corpus during the training
of the indexing task, while only positive examples
have associated queries in the retrieval task. The
latter problem is exacerbated in the MS MARCO
passage ranking task as only 550K passages have
an associated query for training the retrieval task,
while the indexing task has to learn to encode all
8.8M passages in the corpus.

To mitigate this gap, they propose generating
synthetic queries for each document using mod-
els like docT5query (Nogueira and Lin, 2019).
They then trained a generative retrieval model to
predict the DocIDs given the corresponding syn-
thetic queries. We can also think of these synthetic
queries as alternative document representations.

2.2.3 Document Identifiers
In this work, we consider four kinds of different
identifiers: the three kinds of document identifiers
from DSI (Tay et al., 2022): unstructured atomic
identifiers (Atomic DocIDs), naive string iden-
tifiers (Naive DocIDs), semantically structured
identifiers (Semantic DocIDs), and the 2D Seman-
tic DocIDs from Wang et al. (2022).

Atomic DocIDs. We treat each DocID as a
single, or “atomic” token in this setting. The
decoder, then, only needs to run for a single
decoding step; we then sort the logits of the
DocIDs to obtain the ranked document list. Here,
each document requires an additional unique token
in the model vocabulary. As a result, the model’s
parameters increase by the corpus size times
the embedding dimension, becoming potentially
expensive for large corpora. When considering
millions of documents, we apply two optimizations
to make the implementation more feasible. First,
the embedding table of the encoder is adjusted to
include only the standard T5 vocabulary, while the
output projection of the decoder corresponds to
DocIDs. Second, we take special care to ensure
the output projection is properly sharded across
cores to distribute memory cost to allow scaling.
We achieve this by setting partitioning rules in the
t5x framework (Roberts et al., 2022).

Naive DocIDs. Here, the original document
identifier from a corpus is directly used and treated
as a textual string. For example, a five-digit
number “42915” is treated as a string and passed
through the SentencePiece vocabulary of T5.
Note that Naive DocIDs might sometimes capture
semantics influenced by the curation pipelines that
may reflect inherent relatedness.

Semantic DocIDs. Following Tay et al. (2022),
Semantic DocIDs aim to imbue document identi-
fiers with hierarchical semantic information instead
of relying on predefined identifiers. Specifically,
after encoding documents into dense vectors, a
hierarchical k-means algorithm recursively clusters
the space into k clusters until individual clusters
include no more than c documents. Consequently,
all document identifiers form a tree, where non-leaf
nodes correspond to superclusters, and leaf-node
clusters with at most c documents each. Semantic
DocIDs are formed by composing these cluster
identifiers, each from 0 to k − 1, tailed by an
identifier in the leaf nodes between 0 and c − 1.
In this work, we use the identifiers generated
by Wang et al. (2022) for NQ and TriviaQA to
perform a fair comparison. They achieve this
with a 12-layer BERT model. For MS MARCO,
we use SentenceT5-Base (Ni et al., 2022a), and
c = 100. Since the passage-level corpus is in the
order of millions, if a cluster ends up with more
than 1M documents, we sample 100K documents
first, when computing centroids. We used k = 10
clusters at each level, corresponding to the ten
digits (0 . . . 9).

2D Semantic DocIDs. In the Semantic DocID
setting, the same tokens represent different
semantic meanings at different positions: we
use the same set of tokens between 0 to k − 1
for all identifiers, but they represent semantic
clusters at different levels in the tree. To address
this, NCI (Wang et al., 2022) introduces a 2D
variant by adding an extra dimension to encode the
positions, making the model aware of levels of
clustering when decoding the identifier. To allow
better modeling with this variant, they additionally
introduce a change to the decoder, Prefix-Aware
Weight-Adaptive Decoding, which we describe in
the next section.

2.3 Model Variants

Besides alternative ways of constructing model
inputs and targets, generative retrieval approaches
that build on DSI have also investigated novel
modeling components. Here, we review three
model components introduced by Wang et al.
(2022) and Bevilacqua et al. (2022).

Prefix-Aware Weight-Adaptive (PAWA) De-
coder is proposed as a method for decoding 2D
Semantic DocIDs. Unlike a standard Transformer
decoder, which uses the same matrix to project
the hidden representation of the decoder to the
vocabulary space for every position, a PAWA
decoder uses different projection matrices at
each timestep, with the weights of each projec-
tion matrix computed adaptively by a separate
Transformer decoder. Specifically, in a vanilla
decoder, the dense representation h ∈ Rl×d

from the last decoder layer is projected into the
vocabulary space with W ∈ Rd×|V |, where l
denotes the sequence length for decoding. To
incorporate the position, the extra decoding
module separately processes the input query and
the already-decoded DocID tokens to output a
projection matrix W pawa ∈ Rd×l×|V |, replacing
W . This aims to capture that the semantic meaning
of a DocID token depends on its position in the
output sequence as well as on the DocID prefix
preceding it. The experiments in this paper use
the open-source PAWA decoder implementation
provided by the original authors1 as a reference
and build it out on t5x. For more details, please
refer to NCI (Wang et al., 2022) and their codebase.

Constrained decoding can be used to avoid
generating invalid document identifiers (Bevilac-
qua et al., 2022; Wang et al., 2022). While we
have empirically found that roughly less than 1
in 20 DSI-based generation beams are invalid,
we include this method nonetheless, as it is
widespread in the literature. In this work, we adopt
an exact match approach that leverages a trie to
ensure we decode only valid document identifiers.

Consistency loss helps alleviate over-fitting
by introducing a regularization term. The basic
idea is that the representations generated by two
forward passes with different dropout masks
should be similar. Wang et al. (2022) incorporate

1github.com/solidsea98/Neural-Corpus-Indexer-NCI

Dataset #Docs % Covered by
train query set

NQ100K (Wang et al., 2022) 110K 98.4%
TriviaQA (Wang et al., 2022) 74K 57.7%

MSMarco100K 100K 92.9%
MSMarco1M 1M 51.6%

MSMarcoFULL 8.8M 5.8%

Table 1: The coverage statistics of the benchmark
datasets and their training query sets.

this insight into a regularization term that augments
the generation loss. We investigate the softmax ver-
sion as described in the NCI paper (Eq. 5 in (Wang
et al., 2022)) and a KL-divergence version from
an early version of NCI (Eq. 1). They compute
the Kullback-Leibler (KL) divergence between the
output probabilities of two independent forward
passes per position, where pi,1 and pi,2 are the
probability distributions over the vocabulary
space from the two forward passes at position i,
respectively.

Lreg = 1
2 [DKL(pi,1 || pi,2) +DKL(pi,2 || pi,1)] (1)

While we closely follow the implementation of the
Neural Corpus Indexer codebase, we find that these
regularization terms lead to training instability and
that the model effectiveness often diverges into a
NaN loss. As a result, we do not include consis-
tency regularization in our final experiments.

3 Experimental Setting

We limit ourselves to English retrieval tasks, focus-
ing on the behavior of generative retrieval models
at varying corpus scales.

3.1 Corpus and Training Data
Following small-scale generative retrieval
experiment setups (Tay et al., 2022; Wang
et al., 2022; Zhuang et al., 2022b; Chen et al.,
2023), we start with experiments on the Natu-
ral Questions (Kwiatkowski et al., 2019) and
TriviaQA (Joshi et al., 2017) datasets. To better
understand how different model configurations
perform at scale and in more practical settings, we
also experiment with variants of the MS MARCO
passage ranking dataset. The MS MARCO passage
ranking collection consists of a corpus of 8.8M
passages and a training set of 532K queries. From
this dataset, we construct three variants, namely,
MSMarco100K (100K passages), MSMarco1M
(1M passages), and MSMarcoFULL (all 8.8M

passages). It is worth noting that most documents
in NQ100K and MSMarco100K have at least one
relevant query in the training set. However, as we
scale to MSMarcoFULL, the fraction of documents
with queries in the training set drastically drops to
around 6%, leading to a more practical setup. We
summarize the statistics of these datasets in Table 1.

NQ100K & TriviaQA. To enable compar-
isons, we reuse the documents, the segmented
documents, the training/testing splits, and gen-
erated query sets from Wang et al. (2022). The
Natural Questions and TriviaQA datasets have
corpora of sizes 109K and 74K, respectively.
Note that Wang et al. (2022) refers to NQ100K
as NQ320K; we refer to the number of unique
documents instead of the labeled training data
size. Most documents in the NQ100K dataset
have at least one relevant question in the training
data, while 58% of the TriviaQA dataset has this
property.

MSMarco100K, 1M, & FULL. In the same vein
as NQ100K and TriviaQA, for MSMarco100K,
we curate a dataset with 100K passages sampled
from the full MSMarco passage ranking dataset.
Most passages have at least one positive query
for training. We also include passages relevant
to the queries in the development dataset (for
evaluation). MSMarco1M is 10× larger than
MSMarco100K. As with MSMarco100K, we
augment the corpus with passages relevant to
development queries. We first include all passages
relevant to the 533K and 7K queries from the
training dataset and development sets, respectively.
This results in 516K and 7K unique passages from
each set. We randomly sample passages without
a query in either set to total a million passages.
Finally, MSMarcoFULL scales up another order of
magnitude in corpus size. As a result, only 5.8%
of the passages have a corresponding query in the
training set. We aren’t aware of any previous work
that has attempted to apply generative retrieval
models to a dataset of this size and complexity.

3.2 Synthetic Query Generation

For NQ100K and TriviaQA, we reuse the gen-
erated questions from (Wang et al., 2022) with
20 and 15 generated questions for each docu-
ment, respectively. For the MSMarco variants,
we use docT5query (Nogueira and Lin, 2019) to

generate questions, with 40 generated questions
per passage. We also train a question-generation
model using T5-base using training data from
DPR (Karpukhin et al., 2020), a retrieval dataset
derived from NQ (Kwiatkowski et al., 2019). We
use this model to generate 40 questions per pas-
sage, following the configuration of docT5query.
We refer to this setting for NQ and TriviaQA as
“in-domain D2Q”.

3.3 Evaluation Dataset and Metrics
We evaluate using the validation set of each dataset.
For NQ100K, TriviaQA, and MSMarco, the set
contains 7,830, 7,993, and 6,980 queries, respec-
tively. We use the same evaluation set for all three
MSMarco variants considered. For each query in
the evaluation sets, we use the models to generate
ranked lists of documents. We report Recall@1,
Recall@5, and MRR@10 (Mean Reciprocal Rank)
for NQ, TriviaQA, and MSMarco, respectively.

3.4 Model Variants
We evaluate all methods using a T5.1.1 back-
bone (Raffel et al., 2020). See Appendix A.2 for
implementation details, including hyperparameter
settings and compute cost. We test variants of la-
beled vs. synthetic queries, FirstP vs. DaQ docu-
ment representations, and combinations of multiple
representation choices. For each model variant, we
ablate all versions of document identifiers when
applicable. Modifications in model architecture
are introduced in a stacking fashion, starting with
the base model and then adding on the PAWA de-
coder, constrained decoding, and consistency loss
in this order. Note, we only evaluate the PAWA
decoder with 2D Semantic DocIDs as Wang et al.
(2022) introduce the decoder to exploit their unique
representation hierarchy.

For model scaling experiments, we mainly inves-
tigate whether Atomic DocIDs are an effective way
to scale to millions of passages, given the parame-
ter cost. As such, we consider larger models with
Naive DocIDs and Semantic DocIDs comparable
to T5-Base with Atomic DocIDs, which total 7B
parameters when scaling to 8.8M DocIDs.

For baselines we provide BM25 (Robertson and
Zaragoza, 2009) and BM25 with doc2query-T5
(Nogueira and Lin, 2019). For Natural Questions
and TriviaQA, we also include the previous results
reported for the NCI-variant of NQ (i.e., NQ100K).
The baselines include state-of-the-art generative
retrieval results like NCI and GenRet (Sun et al.,

2023), and GTR-Base, a state-of-the-art dual en-
coder (Ni et al., 2022b). For the MSMarco variants
we introduce, we provide our own GTR-Base (Ni
et al., 2022b) results.

4 Experimental Results

We report our results in three parts. First, we ab-
late all the methods from Section 2 using T5-Base
on small-scale datasets: NQ100K and TriviaQA.
We observe which techniques work best on this
small scale with widely studied datasets. Then, we
transfer the same techniques and scale up to the
entire MS MARCO passage ranking dataset. Fi-
nally, to understand whether we can attribute the
effectiveness bump from Atomic DocIDs to addi-
tional model parameters, we fix the corpus to be
MSMarcoFULL and scale the model size up to 11B.
Across the tables, At. refers to Atomic DocIDs, Nv.
Naive DocIDs, and Sm. Semantic DocIDs.

4.1 Ablations over Small Corpora

We report our ablations over NQ100K and Trivi-
aQA in Table 2. The best combination of our tech-
niques (row (7)) sets a new state-of-the-art result
on the NCI variant of Natural Questions without
using sophisticated modeling techniques, architec-
tural changes, and learned DocIDs. The choice
of document representation by far dominates the
overall effectiveness of the retriever. Using just the
training queries provided by the datasets demon-
strates poor results due to the low coverage of the
documents. With FirstP, we see considerable im-
provements over this setting. The DaQ representa-
tion strategy further improves over FirstP, exposing
the model to different views of the same document.
However, synthetic queries from D2Q are essential
to high generative retrieval effectiveness, resulting
in a gain of more than 7 points. This technique, by
far, trumps all other proposed changes.

As for other design choices, for this small-scale
setup, Naive and Semantic DocIDs compete on
par with each other (varying between task configu-
rations), and Atomic DocIDs are consistently the
best. We note, though, that on NQ100K, Atomic
DocIDs add 80M parameters to a T5-Base model
that would otherwise be 220M parameters (a 36%
increase). Given the comparable effectiveness in
the best configuration (row (7)), these extra param-
eters may or may not be worth it, but we refer to
Section A.3.2 for more discussion. Modeling tech-
niques from (Wang et al., 2022), i.e., 2D Semantic

NQ100K TriviaQA
Model At. Nv. Sm. At. Nv. Sm.

Baselines
BM25 (via Wang et al. (2022)) - 15.1 - - 56.9 -
BM25 w/ doc2query–T5 (via Wang et al. (2022) - 35.4 - - 59.7 -
GTR-Base (via Sun et al. (2023)) - 56.0 - - - -
NCI (Wang et al., 2022) - 62.8 65.9 - 88.8 90.5
GenRet (Sun et al., 2023) - - 68.1 - - -

Ours
(1a) Labeled Queries (No Indexing) 50.7 49.2 49.0 60.9 56.7 61.4
(2a) FirstP + Labeled Queries (DSI) 60.0 58.4 58.7 71.6 75.2 78.9
(2b) DaQ + Labeled Queries 61.4 60.4 60.0 81.0 80.4 77.6
(3a) DaQ + D2Q + Labeled Queries 69.6 67.9 67.9 88.2 85.7 86.3
(3b) FirstP + DaQ + D2Q + Labeled Queries 69.0 68.2 67.2 88.9 86.9 87.4
(4a) 3b + PAWA (w/ 2D Semantic DocIDs) - - 66.3 - - 86.5
(4b) 3b + Constrained Decoding - - 67.3 - - 87.3
(5) 4b + Consistency Loss (NCI) - - 66.3 - - 86.6

(6a) DaQ Only 17.1 18.4 15.6 41.0 31.3 20.6
(6b) D2Q Only 43.6 42.3 42.9 61.9 57.8 57.1
(6c) 6b + PAWA (w/ 2D Semantic DocIDs) + Constrained Decoding - - 43.1 - - 57.7

(7) 3b + in-domain D2Q 70.7 69.7 69.5 90.0 88.0 89.2

Table 2: Results on small-scale NQ (Recall@1) and TriviaQA (Recall@5) datasets. We present ablation results in
a stacking fashion. Rows 6 isolate the importance of D2Q. Last row revises the best method with in-domain D2Q.

DocIDs, PAWA, constrained decoding, and consis-
tency loss, do not reliably improve the model over
using synthetic queries alone.

At this corpus scale, our best result uses a mix-
ture of FirstP, DaQ, labeled queries, and synthetic
queries for training. However, notably, the quality
of the synthetic queries are very important, with
those from a generator we specifically trained for
the question-answering domain significantly out-
performing the query generator trained over MS-
MarcoFULL.

4.2 Scaling Corpus Size

We now consider variants of the MS MARCO pas-
sage ranking task, scaling from 100K to 1M and
8.8M passages. Results are reported in Table 3. Per-
haps the most striking observation about the transi-
tion to the MS MARCO passage ranking collection
is the absolute requirement of synthetic queries for
strong retrieval effectiveness. Synthetic queries re-
sult in a 2-3× improvement over the original DSI
formulation alone. Using only synthetic queries as
the indexing task is the most effective and straight-
forward training strategy for the MS MARCO col-
lection. This result signifies a notable difference
in the transition from NQ and TriviaQA to MS
MARCO, where FirstP and DaQ did provide sub-
stantial value. The reason may be an artifact of
the NQ and TriviaQA datasets leveraging a corpus

of Wikipedia articles: the beginning of Wikipedia
documents are informative entity descriptions, and
many sentences refer to the entity–which is likely
the answer to a requested query.

As we scale the corpus size, DSI effectiveness
drops rapidly, with the best result (D2Q only with
Atomic DocIDs) falling off from 80.3 to 55.8 and
finally 24.2 as we scale to the whole 8.8M passages.
The Semantic DocID setting, too, drops off as we
scale to the whole corpus, under-performing the
Naive DocID setting. We conjecture that this may
be due to the potentially increased length of Se-
mantic DocIDs being more difficult to decode than
Naive DocIDs coupled with a noisy partitioning of
the semantic space (especially when using an off-
the-shelf embedding model such as SentenceT5-
Base). However, we observe Semantic DocIDs
decoded via the PAWA decoder score higher. We
hope to shed some insight into why this might be
in the next section, where we examine model size.
Constrained decoding only provides marginal value
and generally is not worth the added complexity.

4.3 Scaling Model Size

How much of the Atomic DocID setting’s effec-
tiveness can be attributed to its additional model
parameters? On MSMarcoFULL, decoding Atomic
DocID tokens adds an overhead of 7B parameters
to the otherwise 220M-parameter T5-Base model.

MSMarco100K MSMarco1M MSMarcoFULL

Model At. Nv. Sm. At. Nv. Sm. At. Nv. Sm.

Baselines
BM25 - 65.3 - - 41.3 - - 18.4 -
BM25 (w/ doc2query–T5) - 80.4 - - 56.6 - - 27.2 -
GTR-Base - 83.2 - - 60.7 - - 34.8 -

Ours
(1a) Labeled Queries (No Indexing) 0.0 1.1 0.0 0.0 0.5 0.0 0.0 0.0 0.0
(2a) FirstP/DaQ + Labeled Queries (DSI) 0.0 23.9 19.2 2.1 12.4 7.4 0.0 7.5 3.1
(3b) FirstP/DaQ + D2Q + Labeled Queries 79.2 77.7 76.8 53.3 48.2 47.1 14.2 13.2 6.4
(4a) 3b + PAWA (w/ 2D Semantic DocIDs) - - 77.1 - - 50.2 - - 9.0
(5) 4a + Consistency Loss (NCI) - - 77.1 - - 50.2 - - 9.1

(6b) D2Q only 80.3 78.7 78.5 55.8 55.4 54.0 24.2 13.3 11.8
(4a′) 6b + PAWA (w/ 2D Semantic DocIDs) - - 78.2 - - 54.1 - - 17.3
(4b′) 6b + Constrained Decoding - - 78.6 - - 54.0 - - 12.0
(5′) 6b + PAWA (w/ 2D Semantic DocIDs) + Constrained Decoding - - 78.3 - - 54.2 - - 17.4

Table 3: Results on the development set of the scale variant MS MARCO V1 passage collections, reported in
MRR@10. Best results per column and results within 0.1 of best are bolded. Note that FirstP here is equivalent
to DaQ as MS MARCO input passages fit into the input window. For more metrics (nDCG@20, Hits@1,5,10,20,
Precision@1,5,10,20), please see Section A.5 of the Appendix.

T5 Scale Training Params Inference FLOPs MRR@10

Base D2Q Only + Atomic DocID 7.0B 0.9× 1012 24.2
Base D2Q Only + Naive DocID 220M 1.4× 1012 13.3
Base D2Q Only + PAWA (2D Sem.) 761M 6.8× 1012 17.3
Large D2Q Only + Naive DocID 783M 3.5× 1012 21.4
Large D2Q Only + PAWA (2D Sem.) 2.1B 1.1× 1013 19.8
XL D2Q Only + Naive DocID 2.8B 9.3× 1012 26.7
XXL D2Q Only + Naive DocID 11B 4.3× 1013 24.3

Table 4: The effect of scaling up model size for sequential DocID approaches in comparison to Atomic DocIDs
for the MSMarcoFULL task.

We take the best configuration on MSMarcoFULL
from Table 3 and scale model parameters of Naive
DocID and Semantic DocID (PAWA) to similar
sizes for comparison. We report results in Table 4.

Overall, we observe a general trend that as pa-
rameter count increases, retrieval effectiveness im-
proves. Indeed, both Atomic DocIDs and PAWA
Semantic DocIDs had the highest scores in Table 3,
which we now attribute to their increased size. No-
tice that the difference here only comes out when
scaling to MSMarcoFULL, where these parame-
ter differences magnify significantly over corpora
of a smaller scale. However, not all methods are
equal. PAWA and 2D Semantic DocIDs (Wang
et al., 2022) significantly increase decoding param-
eters with its extra decoding stack, yet yield no gain
over naively scaling the Transformer with Naive
DocIDs, underperforming by 4 points at around
∼800M parameters. This pattern continues to hold
scaling PAWA to 2.1B parameters. Thus, to con-
serve resources, we do not scale PAWA any further.

Scaling Transformers naively according to de-
fault T5 scales while using Naive DocIDs had
the highest effectiveness on MSMarcoFULL at
26.7 MRR@10. Despite using only ∼2.8B pa-
rameters, this approach outperforms T5-Base with
Atomic DocIDs, which uses 7B parameters while
achieving only 24.2 MRR@10. However, while pa-
rameter count has practical implications regarding
the resources required for training and inference
(especially TPU/GPU memory), there are other
trade-offs to consider, which we discuss in the Ap-
pendix A.3.2.

While Naive DocIDs perform well at T5-XL
size, surprisingly, we find that scaling further to
XXL (11B) does not improve effectiveness; in
fact, it is detrimental to retrieval effectiveness (24.3
MRR@10 vs. XL’s 26.7) under the same experi-
mental settings and hyperparameter settings, even
though model training converges faster. This find-
ing is counter-intuitive to most generation tasks and
the common conception of generative retrieval re-

MSMarcoFULL TREC DL 19 TREC DL 20
Model / T5 Scale Training Params Recall@100 nDCG@10 nDCG@10 nDCG@10

Baselines
BM25 – – 65.8 22.8 – –
BM25 w/ docT5query – – 81.9 33.8 – –
GTR-Base (Ni et al., 2022b) – 110M 89.8 42.0 – –

Ours (T5 Scale)
Base D2Q Only + Atomic DocID 7.0B 80.5 29.7 49.8 53.8
Large D2Q Only + Naive DocID 783M 82.0 27.3 49.9 45.2
Large D2Q Only + PAWA (2D Sem.) 2.1B 73.2 24.8 46.6 50.1
XL D2Q Only + Naive DocID 2.8B 84.7 33.2 55.0 52.2
XXL D2Q Only + Naive DocID 11B 81.9 30.6 52.0 49.0

Table 5: Additional evaluation of the top five model checkpoints from Table 4 on TREC DL 19 & 20. We decode
using 100 beams here. The same metrics are reported over the original MSMarco validation set, with the addition
of Recall@100.

lying on model capacity for retrieval effectiveness.
To strengthen the evidence from our scaling re-

sults, we provide results on TREC DL 19 and 20
(Craswell et al., 2020, 2021) in Table 5. These ad-
ditional densely judged evaluation sets, as opposed
to the sparse judgments in the MS MARCO v1 Pas-
sage Ranking validation set, seek to address some
of the issues with the original task. We see that our
original findings generally hold under these new
metrics and believe that this addition reaffirms the
soundness of our study.

5 Analysis & Discussion

The results of this work raise major questions, in-
cluding: Why are synthetic queries effective? and
Which model scaling approach is the best? We
present an extended analysis, including additional
experiments, to provide more insight on these top-
ics in Section A.3 of the Appendix. Finally, we
discuss the limitations of our study and future di-
rections for the paradigm in Section 7 and A.4,
respectively.

6 Conclusion

We provide the first empirical study of generative
retrieval methods over the large-scale 8.8M passage
corpus of the MS MARCO passage ranking task.
Of the various methods from the literature that we
consider in this work (Tay et al., 2022; Zhuang
et al., 2022b; Wang et al., 2022), we find that the
use of synthetic queries as a document represen-
tation strategy is the only approach that remained
effective and necessary, as we scaled up the corpus
size. We highlight the importance of accounting
for the compute cost of techniques; keeping the
parameter count fixed, we find that naive methods
outperform more sophisticated ones on the full MS

MARCO dataset. Our best result on MS MARCO
passage ranking uses only synthetic queries and
Naive DocIDs in the target space for the training
task, with the model scaled to T5-XL (3B). This
model only achieves an MRR@10 of 26.7. Surpris-
ingly, increasing parameters for the same setting
up to XXL (11B) scores worse.

Altogether, our results highlight the unique chal-
lenges currently facing the generative retrieval
paradigm, the need for closer attention to method
comparisons, and more fundamental improvements
before we can fully leverage the power of larger
language models in the future.

7 Limitations

As with all empirical studies, ours has its own set
of limitations that we urge the reader to consider.
Multiple works have come after the experiments in
this work, e.g., Chen et al. (2023), and thus, we do
not present an exhaustive set of generative retrieval
techniques here. For instance, the vast space of
identifiers could be in natural language or learned
codes. In addition, due to resource constraints, our
model scaling experiments are not exhaustive, and
not all ablation scenarios in Table 3 are scaled to
larger model sizes. It could be possible that some
missed setups improve more at larger parameteriza-
tions, albeit unlikely, as with scaling past 11B. In
addition, we do not saturate the scaling of Atomic
DocIDs because of the extreme parameter require-
ments. Finally, since this work focused on the ef-
fectiveness of generative retrieval on large corpora,
scaling model size for smaller corpora was outside
our scope. Investigating the maximum corpus size
for which generative retrieval could provide state-
of-the-art effectiveness is a question of practical
importance, which we leave for future work.

References
Akari Asai, Jungo Kasai, Jonathan Clark, Kenton Lee,

Eunsol Choi, and Hannaneh Hajishirzi. 2021. XOR
QA: Cross-lingual open-retrieval question answer-
ing. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 547–564. Association for Computational
Linguistics.

Michele Bevilacqua, Giuseppe Ottaviano, Patrick
Lewis, Wen-tau Yih, Sebastian Riedel, and Fabio
Petroni. 2022. Autoregressive search engines:
Generating substrings as document identifiers.
arXiv.2204.10628.

Xiaoyang Chen, Yanjiang Liu, Ben He, Le Sun,
and Yingfei Sun. 2023. Understanding differential
search index for text retrieval. arXiv:2305.02073.

Xuanang Chen, Jian Luo, Ben He, Le Sun, and Yingfei
Sun. 2022. Towards robust dense retrieval via lo-
cal ranking alignment. In Proceedings of the Thirty-
First International Joint Conference on Artificial In-
telligence, IJCAI, pages 1980–1986.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and
Daniel Campos. 2021. Overview of the TREC 2020
deep learning track. In Text REtrieval Conference
(TREC).

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, and Jimmy Lin. 2022. Overview of the
TREC 2022 deep learning track. In Text REtrieval
Conference (TREC).

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, and Ellen M Voorhees. 2020. Overview
of the TREC 2019 deep learning track. In Text RE-
trieval Conference (TREC).

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2020. Autoregressive entity retrieval.
arXiv:2010.00904.

Mostafa Dehghani, Yi Tay, Anurag Arnab, Lucas
Beyer, and Ashish Vaswani. 2022. The efficiency
misnomer. In International Conference on Learning
Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT (1).

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence
embeddings. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 6894–6910. Association for Com-
putational Linguistics.

Daniel Gillick, Alessandro Presta, and Gaurav Singh
Tomar. 2018. End-to-end retrieval in continuous
space. arXiv:1811.08008.

Mitko Gospodinov, Sean MacAvaney, and Craig Mac-
donald. 2023. Doc2Query–: When less is more.
arXiv:2301.03266.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition
(CVPR’06), 2:1735–1742.

Kai Hui, Honglei Zhuang, Tao Chen, Zhen Qin,
Jing Lu, Dara Bahri, Ji Ma, Jai Gupta, Cicero
Nogueira dos Santos, Yi Tay, and Donald Metzler.
2022. ED2LM: Encoder-decoder to language model
for faster document re-ranking inference. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2022, pages 3747–3758. Association for
Computational Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale dis-
tantly supervised challenge dataset for reading com-
prehension. arXiv:1705.03551.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6769–
6781.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin,
Kenton Lee, et al. 2019. Natural questions: a bench-
mark for question answering research. Transactions
of the Association for Computational Linguistics,
7:453–466.

Oleg Lesota, Navid Rekabsaz, Daniel Cohen,
Klaus Antonius Grasserbauer, Carsten Eickhoff,
and Markus Schedl. 2021. A modern perspective
on query likelihood with deep generative retrieval
models. Proceedings of the 2021 ACM SIGIR
International Conference on Theory of Information
Retrieval.

Xueguang Ma, Ronak Pradeep, Rodrigo Nogueira, and
Jimmy Lin. 2022. Document expansion baselines
and learned sparse lexical representations for ms
marco v1 and v2. Proceedings of the 45th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval.

Sanket Vaibhav Mehta, Jai Gupta, Yi Tay, Mostafa De-
hghani, Vinh Q. Tran, Jinfeng Rao, Marc Najork,
Emma Strubell, and Donald Metzler. 2022. DSI++:
Updating transformer memory with new documents.
arXiv:2212.09744.

Donald Metzler, Yi Tay, Dara Bahri, and Marc Najork.
2021. Rethinking search: Making domain experts
out of dilettantes. SIGIR Forum, 55(1).

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine read-
ing comprehension dataset. In CoCo@ NIPS.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Con-
stant, Ji Ma, Keith B. Hall, Daniel Cer, and Yin-
fei Yang. 2022a. Sentence-T5: Scaling up sentence
encoder from pre-trained text-to-text transfer trans-
former. In Findings of the Association for Compu-
tational Linguistics: ACL 2022, pages 1864–1874.
Association for Computational Linguistics.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Hernandez Abrego, Ji Ma, Vincent Zhao,
Yi Luan, Keith B. Hall, Ming-Wei Chang, and Yin-
fei Yang. 2022b. Large dual encoders are general-
izable retrievers. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9844–9855. Association for Com-
putational Linguistics.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage
re-ranking with BERT. arXiv:1901.04085.

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and
Jimmy Lin. 2020. Document ranking with a pre-
trained sequence-to-sequence model. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 708–718. Association for Com-
putational Linguistics.

Rodrigo Nogueira and Jimmy Lin. 2019. From
doc2query to docTTTTTquery. Online preprint.

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and
Kyunghyun Cho. 2019. Document expansion by
query prediction. arXiv:1904.08375.

Ronak Pradeep, Yilin Li, Yuetong Wang, and Jimmy
Lin. 2022. Neural query synthesis and domain-
specific ranking templates for multi-stage clinical
trial matching. In Proceedings of the 45th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’22, page
2325–2330. Association for Computing Machinery.

Ronak Pradeep, Xueguang Ma, Rodrigo Nogueira, and
Jimmy Lin. 2021a. Vera: Prediction techniques
for reducing harmful misinformation in consumer
health search. In Proceedings of the 44th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’21, page
2066–2070. Association for Computing Machinery.

Ronak Pradeep, Rodrigo Nogueira, and Jimmy J. Lin.
2021b. The Expando-Mono-Duo design pattern for
text ranking with pretrained sequence-to-sequence
models. arXiv:2101.05667.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghu-
nandan H. Keshavan, Trung Vu, Lukasz Heldt,
Lichan Hong, Yi Tay, Vinh Q. Tran, Jonah Samost,
Maciej Kula, Ed H. Chi, and Maheswaran Sathi-
amoorthy. 2023. Recommender systems with gen-
erative retrieval. arXiv:2305.05065.

Adam Roberts, Hyung Won Chung, Anselm Levskaya,
Gaurav Mishra, James Bradbury, Daniel Andor, Sha-
ran Narang, Brian Lester, Colin Gaffney, Afroz
Mohiuddin, Curtis Hawthorne, Aitor Lewkowycz,
Alex Salcianu, Marc van Zee, Jacob Austin, Sebas-
tian Goodman, Livio Baldini Soares, Haitang Hu,
Sasha Tsvyashchenko, Aakanksha Chowdhery, Jas-
mijn Bastings, Jannis Bulian, Xavier Garcia, Jianmo
Ni, Andrew Chen, Kathleen Kenealy, Jonathan H.
Clark, Stephan Lee, Dan Garrette, James Lee-Thorp,
Colin Raffel, Noam Shazeer, Marvin Ritter, Maarten
Bosma, Alexandre Passos, Jeremy Maitin-Shepard,
Noah Fiedel, Mark Omernick, Brennan Saeta, Ryan
Sepassi, Alexander Spiridonov, Joshua Newlan, and
Andrea Gesmundo. 2022. Scaling up models and
data with t5x and seqio. arXiv:2203.17189.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Now Publishers Inc.

Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang
Wang, Haichao Zhu, Pengjie Ren, Zhumin Chen,
Dawei Yin, Maarten de Rijke, and Zhaochun Ren.
2023. Learning to tokenize for generative retrieval.
arXiv:2304.04171.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
arXiv:1409.3215.

Yi Tay, Vinh Q. Tran, Mostafa Dehghani, Jianmo Ni,
Dara Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe
Zhao, Jai Gupta, Tal Schuster, William W. Cohen,
and Donald Metzler. 2022. Transformer memory as
a differentiable search index. arXiv:2202.06991.

Dan Vanderkam, Robert B Schonberger, H. Rowley,
and Sanjiv Kumar. 2013. Nearest neighbor search
in Google Correlate. Online preprint.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Yujing Wang, Ying Hou, Hong Wang, Ziming Miao,
Shibin Wu, Hao Sun, Qi Chen, Yuqing Xia, Cheng-
min Chi, Guoshuai Zhao, Zheng Liu, Xing Xie,
Hao Sun, Weiwei Deng, Qi Zhang, and Mao Yang.
2022. A neural corpus indexer for document re-
trieval. arXiv:2206.02743.

Yidan Zhang, Ting Zhang, Dong Chen, Yujing Wang,
Qi Chen, Xing Xie, Hao Sun, Weiwei Deng,
Qi Zhang, Fan Yang, Mao Yang, Qingmin Liao, and
Baining Guo. 2023. IRGen: Generative modeling
for image retrieval. arXiv:2303.10126.

Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Wu,
Peitian Zhang, and Ji-Rong Wen. 2022. Ultron: An
ultimate retriever on corpus with a model-based in-
dexer. arXiv:2208.09257.

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai
Hui, Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang,
and Michael Bendersky. 2022a. RankT5: Fine-
tuning T5 for text ranking with ranking losses.
arXiv:2210.10634.

Shengyao Zhuang, Houxing Ren, Linjun Shou, Jian
Pei, Ming Gong, Guido Zuccon, and Daxin Jiang.
2022b. Bridging the gap between indexing and re-
trieval for differentiable search index with query gen-
eration. arXiv:2206.10128.

Noah Ziems, Wenhao Yu, Zhihan Zhang, and Meng
Jiang. 2023. Large language models are built-in au-
toregressive search engines. arXiv:2305.09612.

A Appendix

Due to space constraints, we include related work,
additional discussion, analysis, experiments, and
implementation details here.

A.1 Related Work

Traditional retrieval models like BM25 (Robertson
and Zaragoza, 2009) that rely on the lexical overlap,
term frequency heuristics, and inverse document
frequency, while reasonably strong on their own,
tend to fail at matching documents that have minor
word overlap but are semantically related.

A popular solution is dual encoders (Gillick
et al., 2018; Karpukhin et al., 2020; Chen et al.,
2022), where a pretrained language model such
as BERT (Devlin et al., 2019) computes low-
dimensional dense representations instead of the
high-dimensional sparse representations found in
BM25. Fine-tuning pretrained models on the target
task can further improve the effectiveness of dual
encoders. Based on the success of T5 in various nat-
ural language understanding tasks, Ni et al. (2022a)
proposes scaling up dual encoders by training T5-
style pretrained language models with a two-stage
contrastive learning approach on the Semantic Text
Similarity (STS) tasks. The Generalizable T5 Re-
triever (GTR) (Ni et al., 2022b) extends this idea
to information retrieval. The most successful GTR
models were pretrained on a large-scale question-
answering dataset curated from the internet and
fine-tuned on the MS MARCO Passage Ranking
task (Nguyen et al., 2016).

Existing approaches often apply synthetic query
generation to improve retrieval effectiveness.
Nogueira et al. (2019) first leveraged a vanilla
sequence-to-sequence Transformer to train a model
that can map passages to queries that it might
be able to answer. Nogueira and Lin (2019),
doc2query-T5 further improved the effectiveness
of the traditional Transformer by leveraging a T5
model. Ma et al. (2022) experimented with similar
ideas and showed that query generation is effective
across a wide range of corpora and task setups.

Prior to generative retrieval, sequence-to-
sequence language models, like T5 (Raffel et al.,
2020), were shown to be effective for reranking
tasks. In this setup, models assign scores to the
top-k results from a first-stage retrieval method.
One can then use these scores to rerank the doc-
uments. For example, monoT5 (Nogueira et al.,
2020) was the first to leverage T5 as a pointwise

reranker by training a model that takes the con-
catenation of the query and document as input
and generates a relevance label. Pradeep et al.
(2021b); Zhuang et al. (2022a); Hui et al. (2022)
have since improved the effectiveness and effi-
ciency of generation-based reranking. These ap-
proaches continue to demonstrate strong effective-
ness in various retrieval tasks (Pradeep et al., 2021a;
Craswell et al., 2022; Pradeep et al., 2022).

Generative retrieval seeks to replace the entire in-
formation retrieval process with a single sequence-
to-sequence model capable of mapping queries
directly to relevant document identifiers (Met-
zler et al., 2021). Differentiable Search Indexes
(DSI) (Tay et al., 2022) first demonstrated the po-
tential of this paradigm, where T5 is used to pa-
rameterize an end-to-end search system, with the
model parameters encoding all information about
the corpus. See Section 2 for more information.
DSI was shown to outperform a dual encoder base-
line on the Natural Questions dataset (Kwiatkowski
et al., 2019). Zhuang et al. (2022b) explores the
effectiveness of DSI and synthetic queries on a
100K passage subset of the MS MARCO passage
ranking corpus and XOR QA (Asai et al., 2021).
Neural Corpus Indexer (Wang et al., 2022) builds
on the success of DSI and introduces a combina-
tion of more input variants and architectural ad-
ditions, some of which we describe and explore
in this work. Many works have explored various
document identifier designs, including document
substring (Bevilacqua et al., 2022), metadata-based
approaches (Zhou et al., 2022; Ziems et al., 2023),
and learned quantization (Rajput et al., 2023; Sun
et al., 2023). More recently, (Chen et al., 2023) pro-
poses a distillation approach on top of DSI, learning
from the rankings generated by dense retrieval us-
ing a multi-task training loss. Note, this is not to be
confused with “generative retrieval models” as used
by Lesota et al. (2021), defined via the cumulative
probabilities of generating query terms to provide
a probabilistic perspective on relevance estimation
and to offer a nuanced measure of uncertainty.

However, none of these works have explored
training or evaluating generative retrieval systems
on corpora larger than O(100K) documents. Given
that the generative retrieval paradigm has extended
beyond traditional retrieval into areas such as rec-
ommender systems (Rajput et al., 2023) and vi-
sion (Zhang et al., 2023), we believe our study will
be crucial for an evergrowing community.

A.2 Implementation Details
We use T5.1.1 as implemented by t5x (Roberts
et al., 2022). We implement the different setups
described in Section 2 in the form of seqio tasks.
For the MS MARCO variants, we set the maximum
input sequence length to 128 for all experiments.
Following the NCI setup, we set it to 64 for the
NQ100K and TriviaQA experiments. We initialize
our models with the pre-trained T5-base model.
For the PAWA decoder, we randomly initialize the
PAWA model parameters. Following (Tay et al.,
2022) for sequential DocIDs, beam search, with 40
beams, is used during inference.

We revise hyperparameter settings from (Tay
et al., 2022) to ones we have found to empirically
perform better, especially for indexing larger cor-
pora like MSMarcoFULL. We set the batch size in
all our experiments to 512. We train our models
with a learning rate of 10−3 and a dropout rate of
0.1. We use 10K learning rate warm-up steps for
all runs, except for Atomic DocIDs that use 100K
steps. We train our small-scale datasets, NQ100K,
TriviaQA, and MSMarco100K, for 1M steps. For
MSMarco1M and MSMarcoFULL, we train our
model to convergence or, at most, 9M steps. We use
8 TPUv4 chips for training models at the T5-Base
scale. T5-Large, T5-XL, and T5-Base with Atomic
DocIDs over MSMarcoFULL use 64 TPUv4 chips.
For T5-XXL, we use 128 chips. Our most expen-
sive runs took roughly 10-14 days to train to con-
vergence on MSMarcoFULL.

A.3 Discussion
The results of this work raise multiple questions
regarding the current state of generative retrieval
at a scale that we aim to provide more insight into
here.

A.3.1 Why are synthetic queries effective?
Although the use of synthetic queries as a docu-
ment representation technique is effective in pre-
vious works (Zhuang et al., 2022b; Wang et al.,
2022; Chen et al., 2023), our experiments high-
light its central importance to generative retrieval
on a larger, more challenging corpus. We suggest
that the effectiveness of synthetic queries mainly
comes from augmenting the input distribution dur-
ing training to be closer to that observed at infer-
ence/evaluation time. Mainly, this comes in two
forms: mitigating the coverage gap of ground-truth
labeled queries and the document corpus and clos-
ing the gap between the training query distribution

and inference/evaluation. In addition, we find that
the diversity of generated synthetic queries can im-
pact retrieval effectiveness.

Document coverage gap. In Table 1, for each
dataset considered, we report the coverage of
their document corpus by the corresponding la-
beled query training set. When comparing MS-
Marco100k, 1M, and FULL, the query coverage
drops from a 92.9% to a 51.6% and a 5.8%, re-
spectively. Consider rows (2a) and (3b) in Table
3, which only differ by the addition of synthetic
queries. In these settings, we observe that MS-
Marco100K improved by 3.3×while MSMarco1M
improved by 3.9x, even though 1M is a larger cor-
pus and may be affected by model capacity, as we
see with MSMarcoFULL. Similarly, for NQ100k
and TriviaQA, which have 98.4% and 57.7% cov-
erage, respectively, we observe that swapping La-
beled Queries (No Indexing) (row 1a) for D2Q only
(row 6b) hurts performance for NQ100k while im-
proving performance for TriviaQA (Table 2). Since
the D2Q model is trained on MS MARCO, for
NQ100K, replacing its labeled training queries with
synthetic queries only amounted to a 1.6% cov-
erage gain, which is not worth the domain shift.
However, for TriviaQA, this amounted to a 42.3%
coverage gain, which is more worth the domain
shift.

Query distribution gap. Synthetic query genera-
tion effectively closes the query distribution gap
between training and evaluation. In Table 2, row
(7) first shows the importance of the query distribu-
tion by using an in-domain query generation model
to improve retrieval performance. To further un-
derstand the relationship between retrieval perfor-
mance and query distribution gap, we plot the rela-
tionship between synthetic query similarity vs. val-
idation query similarity and retrieval performance
(MRR@10). For each evaluation query in the MS
MARCO validation set, we measure the maximum
similarity among all synthetic queries generated for
the corresponding passage. We used Jaccard simi-
larity for its simplicity. For each evaluation query,
we evaluate MRR@10 using the Atomic DocID
variant of row 6b in Table 3. Figure 1 reports the
average MRR@10 within each 10pt Jaccard sim-
ilarity bucket. We plot two variants using 40 and
100 sampled queries per passage for comparison.

In general, higher Jaccard similarity correlates
with higher MRR@10 scores. That is, the more
similar our training queries are to the evaluation

10 20 30 40 50 60 70 80 90 100

70

80

90

Jaccard Similarity (%)

M
R

R
@

10

D2Q-100
D2Q-40

Figure 1: Jaccard similarity between synthetic queries
and validation set queries vs. MRR@10 on the MS-
Marco100K subset.

10 20 30 40

72

74

76

78

80

82

k: # of sampled queries

M
R

R
@

10

RankT5 top-k
Random k

All 100 samples

Figure 2: For MSMarco100K, we present the
MRR@10 scores as we vary the number of synthetic
queries per passage. Given 100 pre-generated queries
per passage, we compare random-k sampling, top-k
selection via RankT5-XL, and using all 100 synthetic
queries.

ones, the better the retrieval effectiveness. Compar-
ing the two settings, higher exposure to synthetic
queries typically results in better scores across the
similarity buckets. Even though the query distri-
bution is vital, it is worth noting that even on the
lowest end of similarity, this setting still has strong
retrieval effectiveness. While synthetic query distri-
bution is a crucial aspect of retrieval effectiveness,
it is not singular in determining the end effective-
ness, and the generative retrieval model goes far
beyond simply detecting lexically similar queries
to those seen during training.
Diversity. We provide further analysis regarding
the importance of synthetic query diversity. Here,
we assume the same MSMarco100K setting using
the Atomic DocID variant of row 6b in Table 3. We
vary the number of sampled synthetic queries per
passage used for training and observe MRR@10.

We consider using 10, 20, 30, 40, and 100 sampled
queries per passage, which we construct by first
sampling the full 100 queries and then taking ran-
dom subsets of varying sizes. We use a sampling
temperature of 1.0 and consider the top 10 tokens at
each sampling step. Recent studies show advances
in utilizing cross encoders to refine the generated
query set of incoherent, unspecific queries to im-
prove the use of D2Q (Gospodinov et al., 2023).
Accordingly, we also experiment with ranking the
100 sampled queries and taking top-10,20,30,40
instead of randomly sampling. We achieve this
using a state-of-the-art cross-attention re-ranker,
RankT5-XL (Zhuang et al., 2022a), to score (gener-
ated query, passage) pairs and then take the top-k.

We report results in Figure 2. We consistently
find that sampling more synthetic queries improves
effectiveness in this setting. Surprisingly, ap-
plying RankT5-based selection over the samples
hurt scores. This suggests an overall preference
for more samples and more diverse samples to
improve effectiveness. Using all 100 samples
scored the best, increasing MRR@10 from 80.3
(Table 3, which used 40 samples) to 82.4, closing
the gap with GTR-Base (83.2 MRR@10) on MS-
Marco100K. Exactly why query diversity is so im-
portant is still up for interpretation, but there could
be a couple of possibilities: more diverse samples
give a higher chance of at least some being close
to the target distribution, and more examples could
provide a type of regularization to the model.

A.3.2 Which model scaling approach is best?
Much of this paper has considered parameter cost
as a proxy for memorization capacity, which has
been conjectured, in the past, to be important for
retrieval (Tay et al., 2022). However, model com-
parisons should not stop at parameter counts as
this may not correlate with other cost indicators
(training speed, FLOPs, etc.) that are important
to practical applications (Dehghani et al., 2022).
While ultimately, the best method to scale genera-
tive retrieval models will be the one that unlocks
the potential of the paradigm to be competitive on
large-scale retrieval tasks, we can provide some
first glimpses into what trade-offs are at stake as
we consider larger models for larger corpora.

As a case study, we consider T5-Base with
Atomic DocIDs compared to T5-XL with Naive
DocIDs from Table 4. Both are trained only with
synthetic queries and represent the only two viable
approaches based on our experiments. The PAWA

decoder severely underperforms quality-wise as we
scale model size, not to mention the FLOP expense
of having an extra decoding stack during inference.
We further discuss parameter cost, training speed,
and inference FLOPs here.

Parameters. As corpus size scales, generative
retrieval models face a fundamental prerequisite
in model size to achieve decent performance, as
seen in Table 3. Between the three different ways
of adding parameters (naive scaling, Atomic Doc-
IDs, PAWA decoder), we see quality improvements
over the smaller models. As discussed, on a fixed
parameter budget basis, Naive DocIDs demonstrate
the highest effectiveness on MSMarcoFULL.

Training Speed. Applications that require fre-
quent retraining value fast total training wall time.
We train T5-Base Atomic DocIDs and T5-XL
Naive DocIDs on the same hardware (64 TPUv4)
and hyperparameter settings. To achieve the opti-
mal performance reported in Table 4, T5-XL Naive
DocIDs required 14 days while T5-Base Atomic
DocID required only ∼7 days. However, at ∼7
days T5-XL Naive DocIDs were quality matched
with T5-Base Atomic DocIDs (∼ 24.5 MRR@10),
making both approaches roughly equal in terms of
training wall-time when accounting for quality.

Inference FLOPs. Inference FLOPs can be a
proxy for serving performance, although imperfect.
Here, we see that while Sequential DocIDs can
achieve more with fewer parameters, Atomic Doc-
IDs are incredibly FLOP efficient during inference.
T5-Base with Atomic DocIDs for MSMarcoFULL
requires only 9.7% the inference FLOPs of T5-XL
with Naive DocIDs for 90% of the retrieval perfor-
mance (Table 4). How is this possible? Atomic
DocIDs incur additional compute costs to calculate
an output projection and softmax over the enor-
mous vocab of ∼8.8M DocIDs. However, it only
has to compute this once to get a complete ranking
of the entire corpus — a potentially unique prop-
erty of the approach. On the other hand, Sequential
DocIDs require d decoding steps to decode a single
DocID and k beams to find a ranking of k Doc-
IDs (k = 40 for our experiments). Thus, even
though Atomic DocIDs require an expensive out-
put projection, Sequential DocIDs require O(d · k)
more decoding steps. To scale Naive DocIDs to be
competitive with Atomic DocIDs, also makes each
decoding turn significantly more expensive.

Finally, we cannot say which approach is the
best as the paradigm has yet to achieve competitive

results on the MS Marco passage ranking. On small
corpora (100K passages), Atomic DocIDs are the
highest quality, efficient option without incurring
too many extra parameters. Though we can see that
training models to maximize memorization amplify
compute trade-offs from our experiments, the field
must provide more nuanced discussions of cost
trade-offs as it considers more realistic applications
of generative retrieval.

A.4 Future Directions
While open problems in generative retrieval have
not changed (e.g., how to achieve state-of-the-art re-
sults on large corpora, how to update such a model
with new documents (Mehta et al., 2022)), we be-
lieve that our work also raises new open questions
for the field. (1) How do we properly leverage large
language models and the power of scaling model
parameters to benefit generative retrieval on large
corpora? While Tay et al. (2022) showed this possi-
bility over NQ, the same is not yet observed on MS
MARCO even though intuitively expanded model
capacity should benefit increased corpus scale. (2)
How can we design model scaling recipes and de-
rive scaling laws that maximize retrieval perfor-
mance? In this work, we only consider default
T5 parameterizations, which may or may not be
optimal for memorization-heavy tasks. (3) How
can we design architectures that can interpolate be-
tween the compute trade-offs of Atomic DocIDs
and Sequential DocIDs? We look forward to un-
derstanding more about these vital problems to the
success of generative retrieval in future work.

A.5 Additional Results
In the remaining pages, we include extended re-
sults. Besides MRR@10 in Table 3, we report
nDCG@20, Hits@K, and Precision@K in Table 6
for our experiments on MSMarco, corresponding to
different rows in Table 3 indexing with the row id.
We can see that these metrics correlate well with
MRR@10, and our observations remain consistent
with those already described.

Rows in Table 3 Dataset DocID nDCG@20 Hits@1 Hits@5 Hits@10 Hits@20 P@1 P@5 P@10 P@20

2a MSMarco100K Atomic 0.0 0.01 0.01 0.03 0.03 0.01 0.00 0.00 0.00
2a MSMarco100K Naive 26.9 19.23 30.10 33.95 38.21 19.23 6.17 3.49 1.97
2a MSMarco100K Semantic 24.7 15.52 27.58 33.48 39.00 15.52 5.57 3.40 1.99
2a MSMarco1M Atomic 4.1 1.33 4.20 6.17 9.17 1.33 0.84 0.62 0.46
2a MSMarco1M Naive 14.7 9.13 16.83 19.84 23.12 9.13 3.44 2.03 1.19
2a MSMarco1M Semantic 11.2 3.91 12.16 17.77 24.17 3.91 2.46 1.80 1.23
2a MSMarcoFULL Atomic 0.3 0.19 0.27 0.33 0.42 0.19 0.05 0.03 0.02
2a MSMarcoFULL Naive 13.3 3.31 13.75 23.44 31.13 3.31 2.83 2.43 1.62
2a MSMarcoFULL Semantic 5.5 1.32 5.40 9.01 13.28 1.32 1.09 0.91 0.67

3b MSMarco100K Atomic 83.0 71.42 90.21 93.34 95.24 71.42 18.86 9.83 5.03
3b MSMarco100K Naive 82.2 72.08 88.11 91.45 93.45 72.08 18.52 9.65 4.94
3b MSMarco100K Semantic 82.0 71.26 88.44 91.58 93.81 71.26 18.49 9.63 4.95
3b MSMarco1M Atomic 62.0 43.78 70.82 78.84 85.14 43.78 14.61 8.18 4.45
3b MSMarco1M Naive 59.5 42.61 67.92 75.09 81.02 42.61 14.09 7.83 4.24
3b MSMarco1M Semantic 59.0 41.65 66.73 74.73 81.50 41.65 13.78 7.76 4.26
3b MSMarcoFULL Atomic 31.1 13.54 36.28 47.78 58.12 13.54 7.35 4.87 2.99
3b MSMarcoFULL Naive 23.8 5.90 25.42 42.31 54.40 5.90 5.19 4.39 2.83
3b MSMarcoFULL Semantic 10.8 3.12 11.42 17.32 24.58 3.12 2.30 1.74 1.24

4a MSMarco100K Semantic 80.3 69.57 86.63 90.44 92.62 69.57 18.07 9.47 4.87
4a MSMarco1M Semantic 56.9 38.97 64.91 73.62 80.27 38.97 13.39 7.63 4.18
4a MSMarcoFULL Semantic 13.3 4.80 14.71 20.56 28.02 4.80 2.97 2.08 1.42

5 MSMarco100K Semantic 80.4 69.66 86.82 90.59 92.74 69.66 18.11 9.49 4.88
5 MSMarco1M Semantic 57.0 38.98 64.87 73.84 80.47 38.98 13.38 7.64 4.19
5 MSMarcoFULL Semantic 13.5 4.84 14.80 20.83 28.62 4.84 2.98 2.11 1.45

6b MSMarco100K Atomic 83.6 72.85 90.33 93.55 95.44 72.85 18.91 9.84 5.05
6b MSMarco100K Naive 81.9 71.65 88.24 91.20 93.04 71.65 18.53 9.62 4.92
6b MSMarco100K Semantic 81.8 70.96 88.35 91.69 93.91 70.96 18.50 9.66 4.96
6b MSMarco1M Atomic 62.8 44.11 71.56 79.87 86.36 44.11 14.82 8.31 4.52
6b MSMarco1M Naive 61.7 44.76 69.58 77.12 82.81 44.76 14.52 8.07 4.35
6b MSMarco1M Semantic 60.6 42.99 68.81 76.83 82.75 42.99 14.23 8.00 4.33
6b MSMarcoFULL Atomic 32.5 14.27 37.26 49.64 60.43 14.27 7.56 5.07 3.11
6b MSMarcoFULL Naive 21.9 5.82 22.42 37.28 50.16 5.82 4.59 3.86 2.62
6b MSMarcoFULL Semantic 17.5 6.23 19.01 27.35 36.99 6.23 3.83 2.77 1.88

4a′ MSMarco100K Semantic 81.7 70.72 88.12 91.56 94.20 70.72 18.42 9.62 4.97
4a′ MSMarco1M Semantic 60.9 43.61 68.83 77.23 83.54 43.61 14.23 8.02 4.36
4a′ MSMarcoFULL Semantic 24.4 9.37 27.74 38.28 48.08 9.37 5.61 3.89 2.45

4b′ MSMarco100K Semantic 81.7 70.97 88.11 91.40 93.71 70.97 18.44 9.62 4.95
4b′ MSMarco1M Semantic 60.6 42.95 68.74 76.72 82.91 42.95 14.21 7.98 4.34
4b′ MSMarcoFULL Semantic 17.9 6.36 19.41 27.87 37.66 6.36 3.91 2.82 1.91

5′ MSMarco100K Semantic 24.8 6.56 15.60 35.53 66.66 6.56 3.19 3.65 3.46
5′ MSMarco1M Semantic 13.1 9.44 14.26 16.32 18.81 9.44 2.86 1.64 0.95
5′ MSMarcoFULL Semantic 24.5 9.50 27.49 38.25 48.22 9.50 5.57 3.90 2.46

Table 6: Results with additional metrics for our experiments on variants of the MS MARCO passage ranking
collection considered in Table 3.

