

000 SPaRFT: SELF-PACED REINFORCEMENT FINE- 001 002 TUNING FOR LARGE LANGUAGE MODELS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Large language models (LLMs) have shown strong reasoning capabilities when
012 fine-tuned with reinforcement learning (RL). However, such methods require ex-
013 tensive data and compute, making them impractical for smaller models. Current
014 approaches to curriculum learning or data selection are largely heuristic-driven or
015 demand extensive computational resources, limiting their scalability and gener-
016 alizability. We propose **SPaRFT**, a self-paced learning framework that enables
017 efficient learning based on the capability of the model being trained through opti-
018 mizing which data to use and when. First, we apply *cluster-based data reduction*
019 to partition training data by semantics and difficulty, extracting a compact yet di-
020 verse subset that reduces redundancy. Then, a *multi-armed bandit* treats data clus-
021 ters as arms, optimized to allocate training samples based on model current per-
022 formance. Experiments across multiple reasoning benchmarks show that SPaRFT
023 achieves comparable or better accuracy than state-of-the-art baselines while using
024 up to $100 \times$ fewer samples. Ablation studies and analyses further highlight the im-
025 portance of both data clustering and adaptive selection. Our results demonstrate
026 that carefully curated, performance-driven training curricula can unlock strong
027 reasoning abilities in LLMs with minimal resources.

028 1 INTRODUCTION 029

030 Large Language Models (LLMs) have achieved remarkable progress in tasks requiring reasoning,
031 problem-solving, and generalization, driven largely by scaling trends in model size, data, and com-
032 pute (Google, 2024; OpenAI, 2024). As the cost and complexity of pretraining continue to rise,
033 research attention has increasingly shifted toward post-training techniques, which aim to improve
034 LLM capabilities more efficiently. Among these, Reinforcement Fine-Tuning (RFT) has emerged
035 as a promising method that aligns model behavior with outcome-based reward signals, often relying
036 on lightweight supervision without elaborate reward engineering or inference-time computation
037 (Kumar et al., 2025; DeepSeek-AI, 2025; Lightman et al., 2023).

038 Standard RFT trains on uniformly sampled batches from the full dataset (DeepSeek-AI, 2025).
039 While simple, this approach ignores each example’s difficulty, informativeness, and uncertainty,
040 wasting limited reward feedback on trivial or noisy instances and slowing convergence (Ouyang
041 et al., 2022; Dong et al., 2023). This raises two key underexplored dimensions: how to select which
042 examples to train on, and how to present them to LLMs over training.

043 Data reduction methods prioritize informativeness by estimating example difficulty or uncertainty.
044 For example, variance-based filtering based on multiple forward passes through a reference model
045 (Wang et al., 2025b). Although effective at denoising, these approaches incur significant computa-
046 tional overhead, making them impractical for resource-constrained models. They are also sensitive
047 to both the selected training examples and the uncertainty estimator, which can hinder generalization
048 to new LLMs.

049 In parallel, curriculum design plays a central role in guiding the learning trajectory (Bengio et al.,
050 2009). As the model improves during fine-tuning, the useful difficulty level shifts dynamically, yet
051 static curricula or random orders often fail to reflect this progression. Recent attempts at adaptivity
052 filter examples with heuristic thresholds (Shi et al., 2025), but such mechanisms can be fragile,
053 especially for small or weak models that rely on imperfect difficulty metrics, prematurely excluding
challenging, informative examples early and stalling progress.

We introduce **SPaRFT**, a self-paced RFT framework that automatically selects informative training examples and designs an adaptive schedule to improve LLM training efficiency. We formulate RFT as a Multi-Armed Bandit (MAB) (Sutton et al., 1998), where each arm is a cluster with similar semantics and difficulty. The MAB decides which data to present at each step, overcoming rigid, heuristic-driven assignment. First, we reduce data to form the clusters (arms), clustering on latent representations and per-example attributes. Motivated by redundancy in training data for RFT (Wang et al., 2025b), we retain a fixed number of samples per cluster; within each, representative examples are chosen by iteratively maximizing embedding distance from previously selected samples. In the second stage, we optimize cluster selection based on training performance: pulling an arm equals to sampling from that cluster, and the inverse of the current solve rate serves as the reward to update the bandit. Our intuition is simple: *prioritize what is currently challenging*. This avoids retraining on already-solved instances—crucial in low-resource settings with tiny LLMs and tight budgets (Le et al., 2025)—where curricula and reduction must be efficient, performance-aware, and free of costly heuristics to make RFT practical in the small-model regime.

To evaluate our approach, we conduct extensive experiments on mathematical problem-solving tasks using various LLMs of different sizes. Results show that SPaRFT significantly improves reasoning accuracy and robustness compared to both reinforcement learning and curriculum learning baselines, while reducing the number of training examples by a factor of 100. Notably, SPaRFT outperforms methods that rely on exhaustive search to select single or few training examples. Our analysis reveals how poorly designed curricula can get stuck in easy example regions, failing to leverage the diversity of the dataset.

In summary, our contributions are threefold: (1) We propose **SPaRFT**, a novel two-stage framework that reduces the number of training examples and optimizes the RFT progress for LLMs using MAB. (2) Our method is lightweight, significantly reducing the number of training examples while adding minimal computational overhead, making it well-suited for RFT of tiny LLMs. (3) Our extensive experiments demonstrate that SPaRFT consistently outperforms existing curriculum and data reduction strategies.

2 RELATED WORK

2.1 DATA REDUCTION FOR REINFORCEMENT FINE-TUNING OF LANGUAGE MODELS.

The role of data in RFT for LLMs remains an open area of research. Several works attempt to curate high-quality mathematical datasets (Luo et al., 2025; Yu et al., 2025), but they do not explicitly explore which data is most effective for fine-tuning. More recently, alternative approaches have proposed using heuristic-based scores, such as Learning Impact Measurement (Li et al., 2025) or variance-based selection methods (Wang et al., 2025b). These techniques alleviate data constraints by enabling training on only a small subset while still achieving strong reasoning capabilities. However, these methods typically require significant pre-computation, limiting their practicality in real-world deployment, and remain untested on small models with limited reasoning capabilities.

2.2 CURRICULUM LEARNING FOR LLMs.

Humans and animals learn more effectively when examples are presented in a meaningful order that gradually increases in complexity. Curriculum learning (Bengio et al., 2009) and performance-guided training progression (Le et al., 2022) have been applied to supervised and RL training. For LLMs, recent studies have explored how to organize training data to reduce computational cost and improve sample efficiency, though this area remains underdeveloped. Existing approaches include hand-crafted difficulty tiers (Wen et al., 2025; Luo et al., 2025; Song et al., 2025), which often require task-specific insights and manual tuning. More adaptive methods, such as AdaRFT (Shi et al., 2025), learn a training curriculum by dynamically adjusting a difficulty threshold to select examples. While promising, these methods still face limitations: repeated training on easy examples can lead to overfitting or poor generalization; difficulty heuristics may not transfer across tasks; and fixed sampling strategies may fail to adapt to evolving model capabilities. There remains a need for more principled curriculum strategies tailored to the scale and dynamics of LLM training.



Figure 1: SPaRFT Architecture. Top: Initial training data is annotated with difficulty, and each example’s feature vector is formed by concatenating its latent embedding with its difficulty score. These vectors are clustered into K groups, and from each cluster we select representative samples to ensure both coverage and diversity. Bottom: Each cluster is treated as an arm in a multi-armed bandit. At each step, Thompson Sampling is used to select a cluster, its representative examples are fed to the LLM to obtain rewards for RFT, and those rewards are used to update the bandit statistics.

3 SELF-PACED REINFORCEMENT FINE-TUNING

We aim to improve a policy π_θ by adaptively presenting training samples while minimizing the required data. Focusing on tasks that are too easy or too hard is inefficient, offering little challenge or feedback. Instead, data assignment should adapt to the model’s evolving capabilities, presenting examples that it is ready to learn at each stage. Threshold-based curricula require manual tuning and can be suboptimal, especially at the early training stage (Shi et al., 2025). To address this, we introduce **SPaRFT**, a two-phase approach for self-paced optimization: (1) cluster-based data reduction and (2) bandit-based data assignment. SPaRFT integrates with common RFT algorithms; we use GRPO (DeepSeek-AI, 2025) by default. A detailed description appears in Algorithm 1, Appendix A.1.

3.1 CLUSTER-BASED DATA REDUCTION

3.1.1 DATA CLUSTERING

RFT of large language models often presupposes access to abundant, high-quality supervision, which is costly or impractical in low-resource settings. We introduce a clustering-based data reduction procedure that lowers data requirements while preserving or improving training efficacy. The approach leverages two signals per training instance: (i) a latent representation and (ii) a scalar, per-example attribute available from the dataset. Grouping examples that are proximate in latent space and exhibit comparable attribute values yields a coherent partitioning that is well suited to curriculum-style sampling.

Latent representation. For each example, we obtain its latent representation with a pre-trained embedding model. To mitigate the well-known degradation of distance metrics in high dimensions (Bellman, 1966), we apply Principal Component Analysis (PCA) to reduce dimensionality. For notation, let x_i denote the i^{th} training example and s_i denotes its PCA-reduced latent vector.

Per-example attribute. Our framework supports the inclusion of an optional scalar attribute at the per-example level, alongside semantic embeddings. Let d_i denote this attribute, which can flexibly encode any task-specific signal. For clustering, we concatenate d_i with the latent embedding to form a joint representation. This design enables clustering to account not only for semantic similarity but also for structural or pedagogical cues that are important for curriculum construction.

Clustering. Prior to clustering, we standardize the coordinates of s_i and d_i to zero mean and unit variance, preventing either modality from dominating the distance metric. We then form the com-

162 bined representation e_i as follows:
 163

$$e_i = \hat{s}_i \oplus \hat{d}_i, \quad (1)$$

164 where \hat{s}_i and \hat{d}_i are the standardized latent vector and scalar feature, respectively, and \oplus denotes
 165 concatenation. Finally, we apply k -means clustering to $\{e_i\}$ to partition the dataset into K clusters
 166 (Lloyd, 1982), thereby ensuring coverage across the joint latent–attribute space.
 167

168 3.1.2 DATA REDUCTION

170 Recent work indicates that, in the context of scaling RFT, strategically curated subsets of training
 171 data can yield stronger LLM reasoning performance than finetuning on the full corpus (Li et al.,
 172 2025; Wang et al., 2025b). Motivated by this, we first partition the training set into K clusters as
 173 mentioned above, and then subsample a fixed quota of representatives per cluster, chosen to preserve
 174 coverage and diversity. Let l denote the number of examples for each cluster, C_k denote the set of
 175 examples in cluster k^{th} , and let μ_k be the corresponding cluster centroid in the embedding space.
 176 For each embedded representation e_i in cluster k , we compute its Euclidean distance to the its cluster
 177 centroid:
 178

$$\delta_i = \|e_i - \mu_k\|_2, \quad (2)$$

179 We then sort all examples in C_k by their distances δ_i . To construct a diverse and representative
 180 training subset from each cluster, we employ a greedy farthest-point sampling strategy: starting from
 181 the cluster centroid, we iteratively select examples that are maximally distant from those already
 182 chosen. This balances centrality and coverage in the embedding space. The full procedure is outlined
 183 in Phase 1 of Algorithm 1 in Appendix A.1.
 184

185 3.2 BANDIT-BASED DATA ASSIGNMENT

186 Our core intuition is to prioritize examples that are *currently* challenging for the model rather than
 187 fixing a static “hard set”, since what is difficult changes as training progresses. At each step t , the
 188 policy π_θ selects a cluster $c_t \in \{1, \dots, K\}$, framing scheduling as a multi-armed bandit where each
 189 arm is a cluster. We use Thompson Sampling (Thompson, 1933; Russo et al., 2020): for cluster k ,
 190 maintain cumulative reward $R_k^{(t)}$ and count $n_k^{(t)}$, and draw as follows:
 191

$$\tilde{\mu}_k^{(t)} \sim \mathcal{N}\left(-\frac{R_k^{(t)}}{n_k^{(t)} + \epsilon}, \frac{1}{n_k^{(t)} + \epsilon}\right). \quad (3)$$

192 Here, the mean is negated so clusters with lower *solve rates* (harder under the current model) are
 193 favored. We especially note that solve rate is computed online and differs from the precomputed
 194 *difficulty* d_i used only for clustering. The selected cluster as follows:
 195

$$c_t = \arg \max_k \tilde{\mu}_k^{(t)}. \quad (4)$$

200 This formulation naturally balances exploration and exploitation: clusters with fewer observations
 201 are more likely to be explored, while clusters with consistently lower solve rates (i.e., harder sam-
 202 ples) are exploited more frequently. A batch of size B is sampled from cluster c_t to train π_θ . The
 203 reward for each sample in the batch is computed based on the correctness of the model’s output:
 204

$$r_i = \begin{cases} 1, & \text{if the response is correct} \\ 0, & \text{otherwise} \end{cases} \quad (5)$$

207 The average reward over the batch is calculated as $r_{avg} = \frac{1}{B} \sum_{i=1}^B r_i$. This average reward is used
 208 in two ways. First, it provides a scalar learning signal to update the policy network π_θ via any RL
 209 algorithm (e.g., GRPO). The RL training objective is to maximize the expected total reward:
 210

$$\max_\theta \mathbb{E}_{q \sim D_{train}, a \sim \pi_\theta} [r_{avg}] \quad (6)$$

212 where a is the sampled answer from π_θ given the question q .
 213

214 Second, r_{avg} is used to update the internal statistics of the multi-armed bandit by adjusting both the
 215 cumulative reward and the count of interactions for the selected cluster:
 216

$$R_{c_t}^{(t+1)} = R_{c_t}^{(t)} + r_{avg}, \quad n_{c_t}^{(t+1)} = n_{c_t}^{(t)} + 1. \quad (7)$$

216 This dynamic update process ensures that the sampling distribution adapts online to the evolving
 217 state of the model. Clusters that temporarily present higher error rates receive increased sampling
 218 probability, while those that become easy are sampled less frequently. Crucially, because rewards
 219 are derived from model predictions themselves, this approach tightly couples curriculum scheduling
 220 with real-time model capacity, which results in a self-regulating training signal that continuously
 221 steers focus toward maximally informative examples. Full algorithm of SPaRFT is provided in
 222 Algorithm 1, Appendix A.1. In addition, we formally analyze the convergence of the MAB used in
 223 SPaRFT, as stated in the following Proposition.

224 **Proposition 1.** *Under assumptions: (i) bounded rewards, LLM training with (ii) gradient clipping
 225 and (iii) decayed learning rate, the Thompson Sampling scheduler in SPaRFT satisfies sublinear
 226 reward variation up to step T : $V_T = O(\log T)$. Consequently, as $t \rightarrow \infty$, the sampling distribution
 227 concentrates on clusters with maximal expected reward.*

228 *Proof.* See Appendix A.2. □

231 4 EXPERIMENTS

233 We evaluate our method on several
 234 LLMs. Full fine-tuning is performed
 235 on *Qwen3-0.6B*, *Qwen2.5-0.5B-Instruct*,
 236 *Falcon3-1B-Instruct*, and
 237 *Llama3.2-1B-Instruct* using a sin-
 238 gle NVIDIA H100 GPU, with
 239 *Qwen3-0.6B* achieving performance
 240 comparable to larger models (e.g.,
 241 *Qwen2.5-Math-7B-Instruct*). In
 242 addition, we fine-tune *Qwen3-8B-Base*
 243 with Low-Rank Adaptation
 244 (Hu et al., 2021) on a single H200
 245 GPU. Training covers mathemati-
 246 cal and logical reasoning datasets:
 247 (1) DeepScaleR-Uniform, (2)
 248 DeepScaleR-Easy, (3) DeepScaleR-
 249 Difficult (10k problems each) (Luo
 250 et al., 2025); (4) GSM8K (7,473
 251 problems) (Cobbe et al., 2021); and (5) Knights and Knaves (K&K) (Xie et al., 2024). Latent
 252 embeddings for clustering are obtained using *Qwen3-Embedding-0.6B*. All chosen datasets are
 253 annotated with difficulty levels, either instantiated as a per-example attribute defined by solve
 254 rates from a moderate LLM (Shi et al., 2025) or explicit labels (Xie et al., 2024). While our
 255 framework can use other attributes (e.g., uncertainty, informativeness), **we choose difficulty as**
 256 **the per-example attribute** for clustering since it is natural and interpretable. Each experiment
 257 is repeated with three random seeds, and training is implemented with the Open-R1 codebase
 258 (Hugging Face, 2025). In each run, our method selects **only up to 100 training examples** using
 259 the reduction strategy in Section 3. This process adds negligible overhead compared to R1: on
Qwen3-0.6B with an H100 GPU, training time is nearly identical (15h37m vs. 15h23m), with only
 a slight increase due to bandit-based selection.

260 **Evaluation** We use five benchmarks that span different reasoning types and difficulty levels:
 261 **GSM8K** (Cobbe et al., 2021), consists of diverse grade school math problems; **MATH500**, a 500-
 262 sample subset of the MATH dataset (Hendrycks et al., 2021); **AIME24** and **AIME25**, comprising
 263 problems from the 2024 and 2025 American Invitational Mathematics Examination, respectively;
 264 and finally, the logical reasoning **K&K** test set consists of 700 samples, with 100 examples for dif-
 265 ferent number of people in the question from 2 to 8. We report the extractive match scores for all
 266 mathematical datasets, following Lighteval’s evaluation framework (Habib et al., 2023). For K&K
 267 dataset, we follow the evaluation protocols established by the dataset authors Xie et al. (2024).

268 **Baselines** **Base** refers to the pretrained model without any fine-tuning. π_1 and π_2 represent the
 269 baselines in **1-shot RLVR** paper, trained on one and two examples selected from the DeepScaleR

Method	GSM8K	MATH500	AIME24	AIME25
Base	78.0	75.4	10.0	<u>16.7</u>
π_1	78.1	75.4	<u>13.3</u>	<u>16.7</u>
π_2	<u>79.0</u>	74.2	6.7	10.0
Ordered	77.9	74.8	<u>13.3</u>	13.3
SFT	77.6 _{0.5}	74.8 _{0.4}	7.8 _{1.9}	14.4 _{5.1}
R1	77.9 _{1.0}	71.6 _{1.3}	8.9 _{5.1}	12.2 _{5.1}
AdaRFT	78.9 _{0.3}	<u>75.9_{1.5}</u>	12.2 _{3.9}	14.4 _{3.9}
SPaRFT	79.5_{0.6}	78.0_{1.3}	14.4_{1.9}	18.9_{5.1}

Table 1: Results using *Qwen3-0.6B* across different datasets. We report extractive match scores (mean_{std}) at the final training checkpoint, averaged over 3 seeds (except for the Base, π_1 , π_2 , and Ordered baselines). Best results are highlighted in bold, and the second-best are underlined.

Method	Number of People							Average
	2	3	4	5	6	7	8	
Base	32.0	10.0	8.0	2.0	0.0	0.0	0.0	7.4
R1	31.7±1.5	11.3±0.6	8.3±0.6	4.0±1.0	0.7±0.6	0.0±0.0	1.0±0.0	8.1±0.3
ADARFT	31.7±0.6	10.7±2.1	7.3±0.6	3.7±0.6	0.3±0.6	0.0±0.0	1.0±0.0	7.8±0.2
SPaRFT	34.3±1.2	13.7±1.2	10.0±1.0	5.3±1.5	1.6±1.5	0.0±0.0	1.3±0.6	9.5 ±0.8

Table 2: Accuracy (%) by number of people in K&K puzzles with results reported as mean \pm standard deviation (except for Base baseline) over 3 runs. Bold denotes the best mean performance.

dataset, respectively (Wang et al., 2025b). **SFT** denotes the supervised fine-tuning baseline. **Ordered** (Bengio et al., 2009) is a curriculum baseline in which training begins with easier examples and gradually progresses to harder ones. **R1** is the RL baseline trained with the standard GRPO algorithm without an SFT cold start, as in DeepSeek-R1 (DeepSeek-AI, 2025). **AdaRFT** is a curriculum learning approach that selects examples based on a difficulty threshold (Shi et al., 2025). We also include an additional variance-based baseline, **LIMR** (Li et al., 2025), trained on the MATH dataset (Hendrycks et al., 2021), with details in Appendix A.4.

5 EXPERIMENTAL RESULTS

5.1 BENCHMARKING SPARFT WITH QWEN3-0.6B

We fine-tune *Qwen3-0.6B* in a zero-shot setup. Despite its small size, it is a strong baseline and supports a *thinking mode* using `<think> </think>` tags. Following (Wang et al., 2025b), we use one seed for π_1 and π_2 . For the *Ordered* baseline, we also use one seed, as the order of training examples is fixed. Further details on training hyperparameters are provided in Appendix A.13.

Table 1 presents test accuracies from the final training checkpoint using *Qwen3-0.6B*. SPaRFT consistently achieves the highest performance across all benchmarks, despite using only 100 training examples—*two orders of magnitude fewer than other baselines*. On GSM8K, SPaRFT reaches $79.5 \pm 0.6\%$, outperforming all baselines including AdaRFT ($78.9 \pm 0.3\%$) and R1 ($77.9 \pm 1.0\%$). On the MATH500 benchmark, SPaRFT yields $78.0 \pm 1.3\%$, improving over the next-best result ($75.9 \pm 1.5\%$) by a margin of 2.1 percentage points. Notably, SPaRFT also shows strong gains in harder math datasets: it reaches $18.9 \pm 5.1\%$ on AIME25, outperforming AdaRFT ($14.4 \pm 3.9\%$) by 4.5 percentage points, and achieves the best score on AIME24 with $14.4 \pm 1.9\%$. These results highlight SPaRFT’s data efficiency and robustness across tasks of varying difficulty.

5.2 SPARFT WORKS WITH VARIOUS DATASETS

5.2.1 MATHEMATICAL DATASETS TRAINING RESULTS

We evaluate our method on three distinct training sets: (1) GSM8K; (2) DeepScaleR-Easy, a subset of DeepScaleR with primarily low-difficulty questions; and (3) DeepScaleR-Difficult, a subset with mainly high-difficulty questions. All experiments use *Qwen3-0.6B* as the backbone, and we adopt the same reward functions and hyperparameters as in Section 5.1. We compare with the top-3 baselines, excluding π_1 and π_2 as they are unavailable in GSM8K. As seen in Figure 2, across all settings, SPaRFT consistently outperforms standard SFT, achieving gains of 2.9–5.5 % on GSM8K and up to 7.8 % on the AIME benchmarks. R1 generally ranks second, especially on the easier splits, while AdaRFT falls 1–2 % behind in most cases. Notably, when trained on the difficult subset (3), SPaRFT attains a 2.3 % improvement on MATH500 and more than doubles AIME24 accuracy relative to SFT. These results confirm that SPaRFT not only enhances overall accuracy but also yields the greatest benefits on the most challenging training set.

5.2.2 K&K TRAINING RESULTS

In this dataset, we consider the number of people in the question as the per-example attribute d_i and select *Qwen3-0.6B* as the Base LLM for the experiments. The final answer is used for computing the

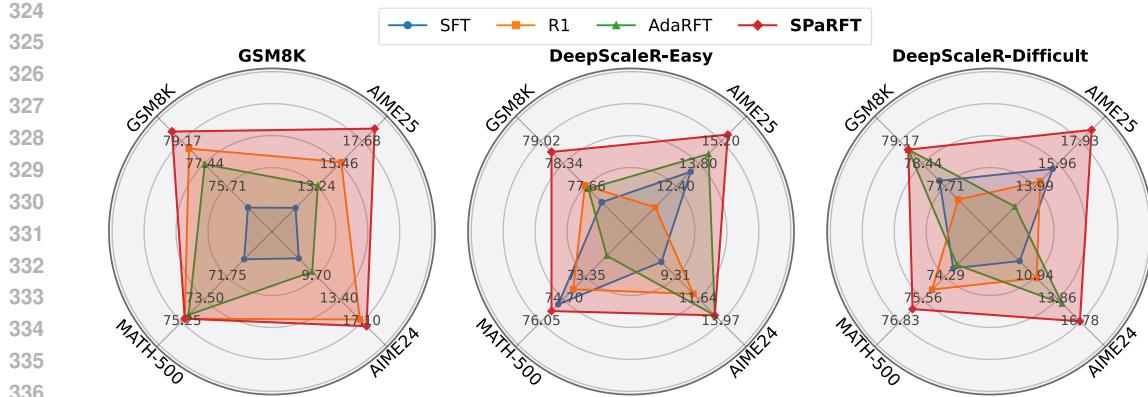


Figure 2: Results averaged over 3 training seeds using three training datasets with Qwen3-0.6B.

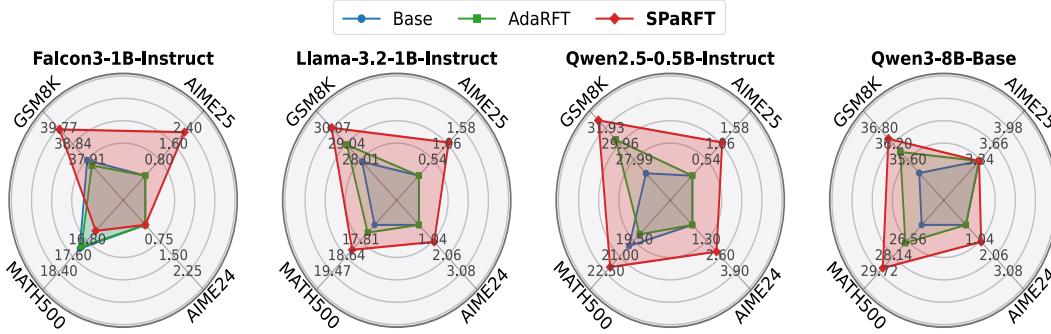


Figure 3: Results averaged over 3 training seeds using other LLMs across datasets.

accuracy reward, and the evaluation protocol strictly follows the original setup in Xie et al. (2024) to ensure consistency and comparability. As shown in Table 2, SParFT consistently outperforms all baselines across difficulty levels, with clear gains on more complex puzzles involving 2–5 people, where reasoning demands are substantially higher. It achieves the highest overall average accuracy of 9.5%, compared to 8.1% for R1 and 7.8% for AdaRFT—representing relative improvements of $\sim 17\%$ and $\sim 22\%$, respectively. Notably, the AdaRFT baseline shows a decline in accuracy in 2 out of 7 settings, indicating that training with a noisy curriculum can negatively impact model performance. These results collectively highlight the effectiveness of SParFT in scaling to harder reasoning cases while maintaining competitive performance on simpler ones, thereby validating the role of curriculum-guided selection in enhancing reasoning-focused training.

5.3 SParFT HELPS DIVERSE LLM LEARNERS

We train on DeepScaleR-Uniform and evaluate *Qwen2.5-0.5B-Instruct*, *Falcon3-1B-Instruct*, *Llama3.2-1B-Instruct*, and *Qwen3-8B-Base*, which are compact to mid-size LLMs with strong reasoning, language, code, and math skills. We exclude *Qwen3-8B* (reasoning-enabled) due to the substantial compute from long `<think>` traces. We compare against the Base model and AdaRFT, the most consistent and second-best method in Section 5.1. All models use the same zero-shot setup, except *Llama3.2-1B-Instruct*, which requires one in-context example per instance to yield valid correctness rewards (Le et al., 2025). Figure 3 shows SParFT as the clear winner, ranking first in 13/16 cases. Average gains are evident on GSM8K ($\sim +3\%$) and MATH500 ($\sim +2\%$). On the harder AIME splits, SParFT turns near-zero baseline scores into consistent positives, reflecting better sample efficiency under sparse-reward RFT. We see complete or near-complete sweeps on the smaller models over Base and AdaRFT, indicating benefits in capacity-constrained settings; results on *Qwen3-8B-Base* remain strong despite not being used for RFT training. Overall, a bandit-driven, performance-aware curriculum generalizes across architectures and tasks with minimal protocol changes, delivering reliable gains under compute-conscious budgets.

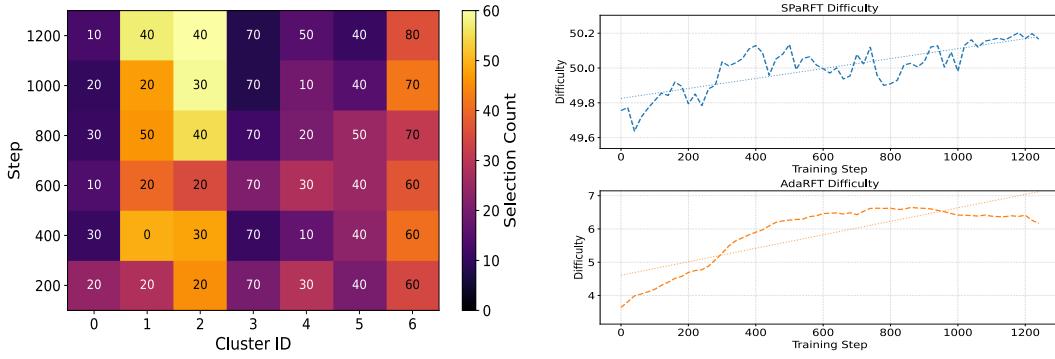


Figure 4: **Left:** Multi-arm Bandit Cluster Selection and its Impact on Cluster Solve Rates During Training. **Right:** Top: Difficulty of training examples selected by SPaRFT over time. Bottom: Difficulty of training examples selected by AdaRFT over time. Note: The plots are shown separately due to the large difference in their difficulty scales.

6 ABLATION STUDIES AND MODEL ANALYSES

6.1 MULTI-ARM BANDIT ANALYSIS

Empirical Convergence SPaRFT leverages the MAB framework to adaptively guide curriculum learning, making it important to characterize how the scheduler evolves during training. Figure 4 (Left) illustrates a heatmap of cluster solve rates alongside bandit selections over time using *Qwen3-0.6B* on the DeepScaleR-Uniform dataset partitioned into 7 clusters. Early in training (around step 200), the bandit behaves nearly uniformly, allocating samples across clusters with little preference. As the model accumulates experience, clear patterns emerge: clusters 1 and 2 exhibit higher solve-rate differentials, and the bandit correspondingly shifts toward sampling them more frequently, signaling that these clusters provide greater marginal learning benefit. From step 600 onward, this concentration intensifies, with clusters 1 and 2 dominating the selection distribution, indicating that the scheduler successfully adapts to focus training on regions of the data that remain most informative for continued performance improvement.

Solve Rate Trends. Clusters 1 and 2 show the largest solve rate gains, increasing from 20% at step 200 to 40% by step 1200. These clusters appear moderately difficult and provide strong learning signals. In contrast, cluster 3, which is rarely picked, starts high at 70% and remains flat, suggesting it is too easy to help the model improve. Other clusters, such as 4 and 5, show modest gains with continued exploration, except for cluster 0. By the end of training, the bandit converges to favor clusters 1 and 2, which consistently yield the most benefit.

6.2 DATA REDUCTION ANALYSIS

Average Sample Difficulty Comparison We consider *Qwen3-0.6B* on DeepScaleR-Uniform with 7 clusters to examine selected example difficulties. Figure 4 (Right) compares the average difficulty of training examples chosen over time by SPaRFT and AdaRFT. Although AdaRFT accesses the full dataset, its performance with tiny LLMs struggles to reach medium and hard examples,

due to a threshold mechanism that is highly sensitive and skews selection. In contrast, SPaRFT favors medium-hard instances, avoiding the overemphasis on easy examples seen in AdaRFT. We attribute this to our clustering strategy, which captures both semantic diversity and difficulty: each cluster mixes a broad range of examples, enabling exploration of harder cases without sacrificing

Method	GSM8K	MATH500	AIME24	AIME25
SPaRFT ⁻	78.8±0.4	76.4±0.7	12.2±3.9	11.1±1.9
SPaRFT	79.5±0.6	78.0±1.3	14.4±1.9	18.9±5.1

Table 3: Mean \pm standard deviation over 3 seeds on the DeepScaleR-uniform dataset using *Qwen3-0.6B* as the base model. SPaRFT⁻ denotes the variant without data reduction. Best results are in bold.

variety. This contributes to SPaRFT’s superior performance over other curricula or selection methods.

Impact of Data Reduction To evaluate the effectiveness of the data reduction phase in our method, we conduct ablation experiments where data reduction is disabled, where all examples within each cluster are retained without filtering. Results are shown in Table 3. Without data reduction, each cluster contains significantly more examples than the batch size B . As shown, SPaRFT without data reduction still outperforms the Base baseline but underperforms the full version with selection. We attribute this to increased sampling variance in large, unfiltered clusters, where heterogeneity in example difficulty reduces the stability and efficacy of the learning signal.

6.3 CLUSTERING EFFECTS

Number Of Clusters Figure 5 shows how SPaRFT’s performance depends on the number of clusters K . Accuracy peaks with a moderate number ($K = 7$), while very few ($K = 1$) or many ($K = 20$) clusters reduce performance. This reflects a trade-off between specialization and generalization: too few clusters collapse diverse examples into coarse groups, while too many fragment the data, causing sparse sampling and unstable training signals. A moderate clustering level provides the best balance, enabling the bandit to exploit informative variation without over-fragmentation. These results highlight the importance of tuning K carefully, as it directly affects how well the curriculum leverages per-example information.

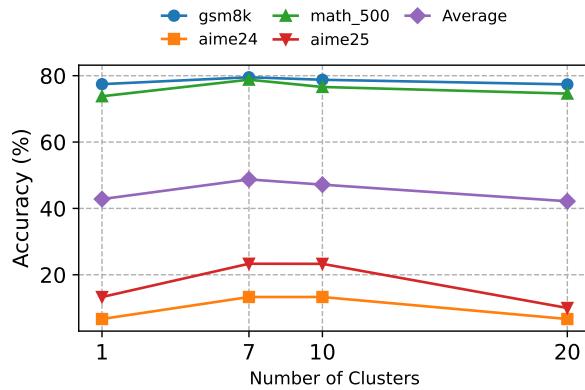


Figure 5: Results for 1 seed with Qwen3-0.6B and different number of clusters.

Importance Of Concatenating Per-Example Attribute In Clustering To assess the contribution of initial per-example attributes to cluster quality, we repeat the clustering pipeline after ablating this signal (i.e., omitting per-example attribute). Owing to space constraints, results are reported in Appendix Figure 8, showing downstream performance of *Qwen3-0.6B* on each dataset under this “no-attribute” condition. Across benchmarks, we observe a consistent drop in accuracy and reasoning metrics when per-example information is excluded, confirming that these attributes are key to forming meaningful clusters and improving curriculum selection.

6.4 OTHER ABLATION STUDIES

We also ablate (i) diverse sample selection, (ii) embedding model choice, (iii) number of PCA components, (iv) samples per cluster, (v) selected-sample difficulty, (vi) dataset distribution, and (vii) cluster properties and (vii) training time (Appendices A.5, A.6, A.7, A.9, A.10, A.11, A.12). Across these dimensions, the results consistently support the robustness of our approach, clarify trade-offs and hyperparameter sensitivities, and offer practical guidance for default settings.

7 CONCLUSION

We introduced **SPaRFT**, a lightweight framework that enables efficient reasoning in small language models through clustering and adaptive curriculum learning. SPaRFT selects compact, diverse training subsets and dynamically adapts training focus based on model performance. Experiments show that SPaRFT achieves competitive accuracy with significantly fewer samples. These results highlight the effectiveness of combining semantic clustering with performance-driven curricula to unlock reasoning in small models using minimal resources.

486 REPRODUCIBILITY STATEMENT
487488 Implementation details and experimental setups are provided in the Appendix. Following publi-
489 cation, we will release our codebase as open source, along with documentation to facilitate repro-
490 ducibility.
491492 LLM USAGE
493494 Large Language Models (LLMs) were not involved in the conception or design of our approach. We
495 used them only to improve the manuscript's readability (grammar and style) and for a small post-hoc
496 analysis; none of these uses influenced the method, training, or reported results.
497498 REFERENCES
499500 Art of Problem Solving. Art of problem solving wiki. https://artofproblemsolving.com/wiki/index.php/Main_Page. Accessed: 2025-09-19.
501502 Richard Bellman. Dynamic programming. *Science*, 153(3731):34–37, 1966.503 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
504 In *Proceedings of the 26th Annual International Conference on Machine Learning*, ICML
505 '09, pp. 41–48, New York, NY, USA, 2009. Association for Computing Machinery. ISBN
506 9781605585161. doi: 10.1145/1553374.1553380. URL <https://doi.org/10.1145/1553374.1553380>.
507508
509 Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit problem with non-
510 stationary rewards. *Advances in neural information processing systems*, 27, 2014.511
512 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
513 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
514 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
515 2021.516
517 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
518 2025. URL <https://arxiv.org/abs/2501.12948>.
519520 Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
521 Jipeng Zhang, KaShun SHUM, and Tong Zhang. RAFT: Reward ranked finetuning for generative
522 foundation model alignment. *Transactions on Machine Learning Research*, 2023. ISSN 2835-
523 8856. URL <https://openreview.net/forum?id=m7p507zb1Y>.
524525 Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016. <http://www.deeplearningbook.org>.526
527 Google. Introducing gemini 2.0: Our new ai model for the agentic era, 2024. URL <https://blog.google/technology/google-deepmind/>. Accessed: 2025-03-05.528 Nathan Habib, Clémentine Fourrier, Hynek Kydlíček, Thomas Wolf, and Lewis Tunstall. Light-
529 eval: A lightweight framework for llm evaluation, 2023. URL <https://github.com/huggingface/lighteval>.
530531 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
532 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
533 2021.534
535 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
536 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.
537538
539 Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. *arXiv
preprint arXiv:2501.03262*, 2025.

540 Tianjin Huang, Ziquan Zhu, Gaojie Jin, Lu Liu, Zhangyang Wang, and Shiwei Liu. SPAM: Spike-
 541 aware adam with momentum reset for stable LLM training. In *The Thirteenth International Con-*
 542 *ference on Learning Representations*, 2025. URL [https://openreview.net/forum?](https://openreview.net/forum?id=L9eBxTCpQG)
 543 [id=L9eBxTCpQG](https://openreview.net/forum?id=L9eBxTCpQG).

544 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.

545 Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal,
 546 Mubarak Shah, Ming-Hsuan Yang, Phillip HS Torr, Salman Khan, and Fahad Shahbaz Khan.
 547 Llm post-training: A deep dive into reasoning large language models. *arXiv preprint*
 548 *arXiv:2502.21321*, 2025.

549 Hung Le, Majid Abdolshah, Thommen K George, Kien Do, Dung Nguyen, and Svetha Venkatesh.
 550 Episodic policy gradient training. In *Proceedings of the AAAI Conference on Artificial Intelli-*
 551 *gence*, volume 36, pp. 7317–7325, 2022.

552 Hung Le, Dai Do, Dung Nguyen, and Svetha Venkatesh. Reasoning under 1 billion: Memory-
 553 augmented reinforcement learning for large language models. *arXiv preprint arXiv:2504.02273*,
 554 2025.

555 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling, 2025. URL <https://arxiv.org/abs/2502.11886>.

556 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 557 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. *arXiv preprint*
 558 *arXiv:2305.20050*, 2023.

559 Stuart Lloyd. Least squares quantization in pcm. *IEEE Transactions on Information Theory*, 28(2):
 560 129–137, 1982. doi: 10.1109/TIT.1982.1056489.

561 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
 562 Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
 563 with a 1.5b model by scaling rl. <https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL>, 2025. Notion Blog.

564 OpenAI. Hello gpt-4o, 2024. URL <https://openai.com/index/hello-gpt-4o/>.

565 OpenAI. Introducing gpt-5, 2025. URL <https://openai.com/gpt-5/>.

566 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 567 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 568 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 569 27730–27744, 2022.

570 Walter Rudin. *Principles of Mathematical Analysis*. McGraw-Hill, 3rd edition, 1976.

571 Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A tutorial on
 572 thompson sampling, 2020. URL <https://arxiv.org/abs/1707.02038>.

573 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 574 optimization algorithms, 2017. URL <https://arxiv.org/abs/1707.06347>.

575 Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement fine-
 576 tuning via adaptive curriculum learning, 2025. URL <https://arxiv.org/abs/2504.05520>.

577 Mingyang Song, Mao Zheng, Zheng Li, Wenjie Yang, Xuan Luo, Yue Pan, and Feng Zhang.
 578 Fastcurl: Curriculum reinforcement learning with stage-wise context scaling for efficient train-
 579 ing r1-like reasoning models, 2025. URL <https://arxiv.org/abs/2503.17287>.

580 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 581 press Cambridge, 1998.

594 William R. Thompson. On the likelihood that one unknown probability exceeds another in view of
 595 the evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933.
 596

597 Guoxia Wang, Shuai Li, Congliang Chen, Jinle Zeng, Jiaxin Yang, Tao Sun, Yanjun Ma, Dianhai Yu,
 598 and Li Shen. Adagc: Improving training stability for large language model pretraining, 2025a.
 599 URL <https://arxiv.org/abs/2502.11034>.

600 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
 601 He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
 602 Shen. Reinforcement learning for reasoning in large language models with one training example,
 603 2025b. URL <https://arxiv.org/abs/2504.20571>.

604 Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
 605 Tang, Xiaowei Lv, Haosheng Zou, Yongchao Deng, Shousheng Jia, and Xiangzheng Zhang.
 606 Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond, 2025. URL
 607 <https://arxiv.org/abs/2503.10460>.

608

609 Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
 610 Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning. 2024.
 611 URL <https://arxiv.org/abs/2410.23123>.

612 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
 613 Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
 614 ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
 615 Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
 616 Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
 617 uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
 618 <https://arxiv.org/abs/2503.14476>.

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A APPENDIX
649650 A.1 ALGORITHM FOR SPARFT
651652 In this section, we provide the pseudo-code for SPaRFT in Algorithm 1.
653654 **Algorithm 1** SPaRFT655 **Input:** Policy π_θ , Dataset \mathcal{D} , Embedding model ϕ , Clusters K , Batch size B , RL algorithm \mathcal{A} ,
656 Small positive constant ϵ 657 **Output:** Trained policy π_θ

```

658 1: // Phase 1: Cluster-based Data Reduction
659 2: for each  $x_i \in \mathcal{D}$  do
660 3:    $s_i \leftarrow \text{PCA}(\phi(x_i))$ ,  $d_i \leftarrow \text{difficulty}(x_i)$ 
661 4:    $e_i \leftarrow s_i \oplus d_i$ 
662 5: end for
663 6: Run K-means on  $\{e_i\}$  to form  $\{C_k\}_{k=1}^K$ 
664 7: Select  $l$  diverse examples  $S_k \subset C_k$  via farthest sampling
665 8:  $\mathcal{D}_{\text{train}} \leftarrow \bigcup_k \{x_i \mid i \in S_k\}$ 
666 9: // Phase 2: Bandit-driven Curriculum
667 10: Initialize Multi-arm Bandit
668 11: for each  $k$  do
669 12:   Initialize  $R_k \leftarrow 0, n_k \leftarrow 0$ 
670 13: end for
671 14: while training not finished do
672 15:   for each cluster  $k = 1, \dots, K$  do
673 16:     Sample reward estimate:  $\tilde{\mu}_k \sim \mathcal{N}\left(-\frac{R_k}{n_k + \epsilon}, \frac{1}{n_k + \epsilon}\right)$ 
674 17:   end for
675 18:   Select cluster:  $c_t \leftarrow \arg \max_k \tilde{\mu}_k$ 
676 19:   Sample batch  $X \subset C_{c_t}$ 
677 20:   Generate responses  $G \leftarrow \pi_\theta(X)$ 
678 21:   Calculate correctness  $r_i, i = 1, \dots, B$ 
679 22:   Compute average reward  $r_{\text{avg}} \leftarrow \frac{1}{B} \sum_{i=1}^B r_i$ 
680 23:   Update policy:  $\pi_\theta \leftarrow \mathcal{A}(\pi_\theta, X, G, r_{\text{avg}})$ 
681 24:   Update bandit stats:
682      $R_{c_t} \leftarrow R_{c_t} + r_{\text{avg}}, \quad n_{c_t} \leftarrow n_{c_t} + 1$ 
683 25: end while
684 26: return  $\pi_\theta$ 
685
```

686 A.2 CONVERGENCE OF THE THOMPSON SAMPLING SCHEDULER
687688 We analyze the convergence of the Thompson Sampling scheduler used in SPaRFT. Each data cluster
689 is treated as an arm in a multi-armed bandit. At step t , let $\pi_{\theta(t)}$ denote the model with parameters
690 $\theta^{(t)}$. The expected reward (solve rate) of cluster C_k is defined as:

691
$$\mu_k^{(t)} = \mathbb{E}_{x \sim C_k} [\Pr(\pi_{\theta(t)}(x) = \text{correct})]. \quad (8)$$
 692

693 where $\Pr(\pi_{\theta(t)}(x) = \text{correct})$ denotes the probability that the model produces a correct answer for
694 input x .695 We already have: (1) the model is trained using gradient clipping with threshold G_{\max} ; (2) the
696 learning rate α_t follows a cosine decay schedule with warmup and is therefore non-increasing and
697 vanishes as $t \rightarrow \infty$; and (3) the expected rewards satisfy $\mu_k^{(t)} \in [0, 1]$ for all clusters k . These three
698 properties are directly enforced in the SPaRFT implementation.
699700 To complete the convergence analysis, we now bound the drift of each cluster's expected reward.
701 Define

702
$$f_k(\theta) = \mathbb{E}_{x \sim C_k} [\Pr(\pi_\theta(x) = \text{correct})], \quad (9)$$

702 where f_k is the *cluster-level reward surface* for arm k , and note that since each layer of our base
 703 model is continuously differentiable, so is $f_k(\theta)$ (Goodfellow et al., 2016). We assume that, in
 704 practice, gradient clipping at norm G_{\max} together with a bounded initialization prevents the
 705 parameters $\{\theta^{(t)}\}$ from diverging excessively, effectively keeping them in some large but fixed ball
 706 $\{\|\theta\| \leq R\}$. Empirical studies on LLM training have repeatedly observed that clipped updates
 707 under cosine-decay schedules yield stable trajectories without catastrophic parameter growth (e.g.,
 708 (Wang et al., 2025a; Huang et al., 2025)).

709 Under this assumption, the extreme-value theorem (Rudin, 1976) guarantees the existence of a con-
 710 stant $H < \infty$ such that

$$711 \quad \|\nabla_{\theta} f_k(\theta)\| \leq H \quad \forall \|\theta\| \leq R. \quad (10)$$

712 Moreover, each gradient step with cosine-decay learning rate α_t and gradient clipping satisfies

$$714 \quad \|\theta^{(t+1)} - \theta^{(t)}\| \leq \alpha_t G_{\max}. \quad (11)$$

716 Applying the mean-value theorem (Rudin, 1976) then yields

$$717 \quad \begin{aligned} |\mu_k^{(t+1)} - \mu_k^{(t)}| &= |f_k(\theta^{(t+1)}) - f_k(\theta^{(t)})| \\ 718 &\leq H \|\theta^{(t+1)} - \theta^{(t)}\| \\ 719 &\leq H G_{\max} \alpha_t = \varepsilon_t, \end{aligned} \quad (12)$$

722 where $\varepsilon_t \rightarrow 0$ as $\alpha_t \rightarrow 0$. Thus, we obtain the desired vanishing drift $|\mu_k^{(t+1)} - \mu_k^{(t)}| \leq \varepsilon_t$ for every
 723 cluster k .

724 Let $V_T = \sum_{t=1}^{T-1} \max_k |\mu_k^{(t+1)} - \mu_k^{(t)}|$ denote the total reward variation up to step T . The bound
 725 above implies

$$727 \quad V_T \leq \sum_{t=1}^{T-1} \varepsilon_t. \quad (13)$$

730 Since $\alpha_t = O(1/t)$ after warmup, we have $\sum_{t=1}^{T-1} \varepsilon_t = O(\log T)$, and hence $V_T = O(\log T)$. This
 731 sublinear variation is sufficient to ensure convergence of Thompson Sampling in the non-stationary
 732 bandit setting, as shown in prior work (Besbes et al., 2014). Therefore, the Thompson Sampling
 733 scheduler concentrates on the cluster(s) with the highest current expected reward as $t \rightarrow \infty$. This
 734 ensures that the bandit-based curriculum used in SPaRFT converges to the most informative training
 735 distribution over time.

737 A.3 ADDITIONAL RELATED WORK: REINFORCEMENT FINE-TUNING FOR LANGUAGE 738 MODELS

739 Due to page limit in the main paper, we include the additional related work in the Reinforcement
 740 Fine-Tuning methods for Language Models here.

742 Language Models can be formulated as sequential decision-making agents, enabling the application
 743 of RL techniques for fine-tuning. Proximal Policy Optimization (PPO) (Schulman et al., 2017) has
 744 been widely adopted in early RLHF pipelines due to its balance between stability and sample ef-
 745 ficiency. More recent work introduced actor-only alternatives such as REINFORCE++ (Hu, 2025)
 746 and Group Relative Policy Optimization (GRPO) (DeepSeek-AI, 2025), which eliminate the need
 747 for value networks and have shown strong performance on large language models, particularly in
 748 reasoning tasks. By avoiding a separately trained critic, these approaches simplify optimization,
 749 reduce variance in policy updates, and mitigate instability caused by poorly estimated value func-
 750 tions. GRPO, in particular, has been successfully deployed in large-scale instruction tuning setups
 751 where explicit reward modeling is either impractical or misaligned with target behaviors. Instead
 752 of depending on hand-crafted reward models, GRPO leverages group-based relative comparisons
 753 across sampled trajectories, thereby aligning the optimization signal with preference-style super-
 754 vision. This actor-only paradigm aligns naturally with recent trends in LLM alignment, where
 755 scalability, reduced computational overhead, and robustness to noisy feedback are critical. These
 algorithms represent a shift from critic-dependent RLHF pipelines toward lightweight, actor-centric

756 A.4 ADDITIONAL BASELINE: LEARNING IMPACT MEASUREMENT
757

758 In this section, we compare the performance of our method on mathematical reasoning tasks against
759 a variance-based data selection approach, Learning Impact Measurement (LIM) (Li et al., 2025).
760 While the original LIM paper reports results on the MATH-Full dataset (Hendrycks et al., 2021),
761 we also conduct clustering on the same dataset using our method (SPaRFT) to ensure a fair com-
762 parison. It is worth noting that after data reduction, LIM retains approximately 1,400 training
763 samples, whereas SPaRFT selects only 5 representative clusters, corresponding to just 50 data
764 points—amounting to **merely 3% of the data used by LIM baseline**. Despite this drastic re-
765 duction, our method achieves competitive or superior results, demonstrating that SPaRFT can reach
766 high efficiency and effectiveness with a fraction of the training data. For these experiments, we
767 performs training on 3 different seeds, and report in Table 4.

768 A.4.1 LIM DEFINITION
769

770 LIM computes a per-sample score from its reward trajectory relative to the model’s average reward
771 curve across epochs. Let r_i^k be the reward of sample i at epoch k and $r_k = \frac{1}{N} \sum_{i=1}^N r_i^k$ the epoch-
772 wise mean over all N samples for $k = 1, \dots, K$. The alignment score is

$$773 \quad s_i = 1 - \frac{\sum_{k=1}^K (r_i^k - r_k)^2}{\sum_{k=1}^K (1 - r_k)^2}, \quad i = 1, \dots, N, \quad (14)$$

777 which normalizes the squared deviation of the sample trajectory from the epoch-wise mean. Data
778 reduction is performed by thresholding:

$$779 \quad \mathcal{D}_{\text{LIMR}} = \{i : s_i > \theta\}. \quad (15)$$

781 A.4.2 RESULTS
782

783 We show the results on four mathematical reasoning datasets between our method and LIMR using
784 MATH as training data in Table 4. We select Qwen2.5-0.5B-Instruct as the base LLM for training.

785 The results highlight the effectiveness of SPaRFT compared to both the Base model and LIMR. On
786 GSM8K, SPaRFT reaches 32.0%, which represents a relative improvement of +22% over the Base
787 (26.3%) and still surpasses LIMR (30.7%). On MATH500, SPaRFT achieves 20.7%, outperforming
788 LIMR (20.3%) and the Base (20.0%), showing that our method yields more stable gains even on
789 challenging competition-level problems. Notably, SPaRFT is the only method that improves perfor-
790 mance on the Olympiad benchmarks: it attains 1.1% on AIME24 and 3.3% on AIME25, while both
791 the Base and LIMR fail to make progress on these harder tasks.

792 Overall, these findings confirm that SPaRFT not only provides consistent improvements on standard
793 benchmarks such as GSM8K and MATH500, but also uniquely enhances generalization to the most
794 challenging settings, where variance-based selection methods like LIMR struggle. This demon-
795 strates the robustness and efficiency of our cluster-based approach in leveraging limited training
796 data for stronger downstream reasoning performance.

Method	GSM8K	MATH500	AIME24	AIME25
Base	26.3	20.0	0.0	0.0
LIMR	30.7 ± 1.3	20.3 ± 1.1	0.0 ± 0.0	0.0 ± 0.0
SPaRFT	32.0 ± 0.8	20.7 ± 1.2	1.1 ± 1.9	3.3 ± 0.0

803 Table 4: Mean \pm standard deviation over 3 seeds on the MATH dataset using Qwen2.5-0.5B-Instruct
804 as the base model. Best results are **bolded**.

806 A.5 EFFECT OF DIVERSE SAMPLE SELECTION
808

809 We show the impact of sample selection strategies for the data reduction on the performance of
810 different LLMs in Figure 6. Specifically, we compare our method against two baselines: *random*,

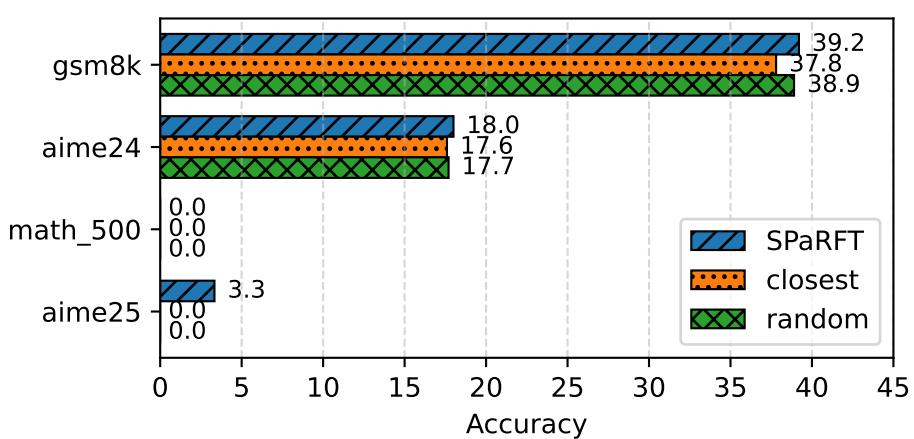


Figure 6: Comparison of selection strategies across datasets. Selecting diverse examples with SPaRFT outperforms both random and closest baselines. Closest examples perform worse, likely due to reduced variety within each cluster.

which randomly selects training examples for the cluster, and *closest*, which selects the closest examples to the cluster center. As observed, selecting diverse examples with our method consistently yields the highest performance across four datasets. Interestingly, the *closest* strategy performs worse than *random* in most cases. We hypothesize that this is because the examples nearest to the cluster center tend to be overly similar, thus failing to provide sufficient coverage and variation for effective learning.

A.6 IMPACT OF EMBEDDING MODEL CHOICE

To assess SPaRFT’s robustness to different semantic embedding backbones, we compare its default sentence encoder with an alternative based on *Qwen2-1.5B-Instruct* (*Alibaba-NLP/gte-Qwen2-1.5B-instruct*). We denote *Qwen3*¹ as the baseline using *Qwen3-Embedding-0.6B*, which is adopted in SPaRFT, and *Qwen2.5*² as the baseline using *Alibaba-NLP/gte-Qwen2-1.5B-instruct*. Table 5 reports zero-shot performance on four math reasoning benchmarks. Results show that SPaRFT yields nearly identical performance across both embedding models, with the *Qwen3*-based encoder showing a slight advantage. This plug-and-play flexibility demonstrates that any high-quality pre-trained encoder can be seamlessly integrated into our framework without retraining.

Embedding	GSM8K	MATH500	AIME24	AIME25
<i>Qwen3</i> ¹	32.9 ± 0.9	22.0 ± 0.7	2.2 ± 1.9	1.1 ± 1.9
<i>Qwen2.5</i> ²	31.6 ± 0.6	21.0 ± 1.2	1.1 ± 1.9	0.0 ± 0.0

Table 5: Results using DeepScaleR as training data for *Qwen2.5-0.5B-Instruct*, evaluated with two embedding models: *Qwen3*¹ and *Qwen2.5*².

A.7 IMPACT OF THE NUMBER OF PCA COMPONENT

In SPaRFT, we first apply PCA to reduce the dimensionality of the latent vectors extracted from the pretrained Sentence-BERT model. By default we use 50 principal components; here, we vary this number to study its effect on final performance. Using *Qwen3-0.6B* as the base model and training on the DeepScaleR-uniform dataset, the results are shown in Table 6. We observe that smaller to moderate numbers of components (10 or 50) yield the best performance, whereas larger values (100 or 300) lead to a decline. We hypothesize that very high-dimensional embeddings overwhelm the difficulty signal prior to clustering, resulting in poorer downstream performance.

Number of PCA Components	GSM8K	MATH500	AIME24	AIME25	Average
10	79.2	74.4	13.3	20.0	46.7
50	79.5	78.9	13.3	23.3	48.8
100	79.8	76.6	6.7	13.3	44.1
300	79.0	75.8	16.7	10.0	45.4

Table 6: Results on 1 same seed on the DeepScaleR-uniform dataset using Qwen3-0.6B as the base model with different number of PCA components.

A.8 NUMBER OF SAMPLES IN EACH CLUSTER

We vary the number of samples per cluster l to assess its impact, and present the results in Figure 7. As shown, performance peaks at our default setting of $l = 10$. In contrast, using $l = 1$ yields lower performance, likely because the selected examples lack sufficient diversity to provide a strong learning signal. Larger values of $l \in [100, 300]$ also lead to degraded performance, which we attribute to increased randomness when sampling too many examples per arm, especially when $l \gg B$. Due to compute limits, we couldn't extensively tune l between 10–100, where better results might be possible. Overall, setting $l \sim B$ achieves the most reasonable results.

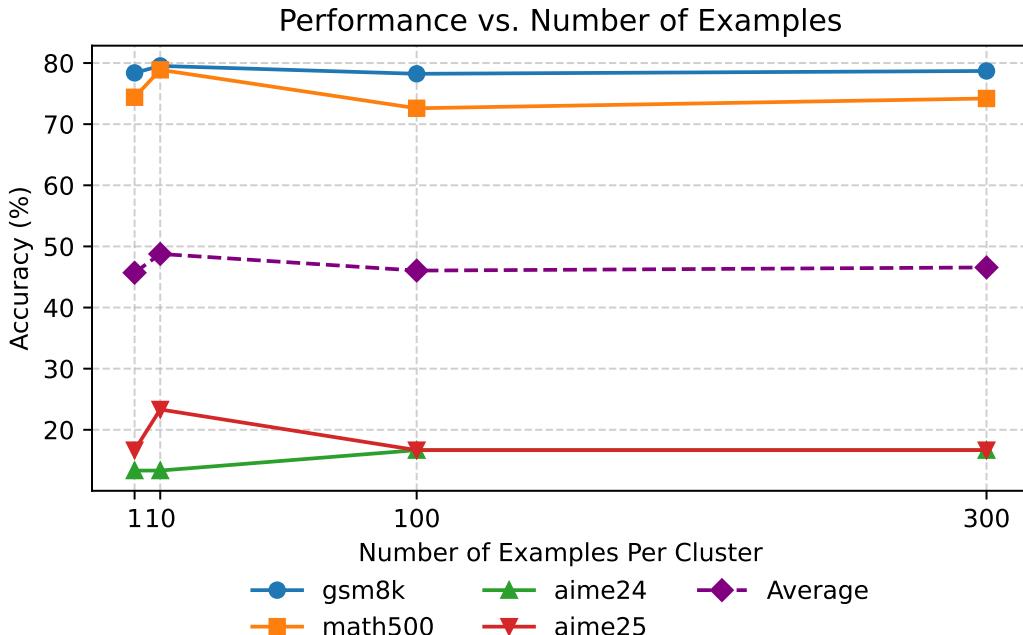


Figure 7: Results for 1 seed with Qwen3-0.6B and different number of samples per cluster.

A.9 SELECTED TRAINING SAMPLES DIFFICULTY

We analyze the selected training examples to understand how SParFT constructs its curriculum. Figure 9 shows the difficulty distribution of questions selected on the DeepScaleR-uniform dataset. SParFT consistently chooses examples across the full difficulty range—from easy (near 0) to hard (near 100)—ensuring balanced coverage. This diversity enables training on a broad range of problems, avoiding overfitting to simple or complex cases. Notably, this balance emerges without manual difficulty constraints, highlighting the effectiveness of SParFT’s clustering and selection strategy.

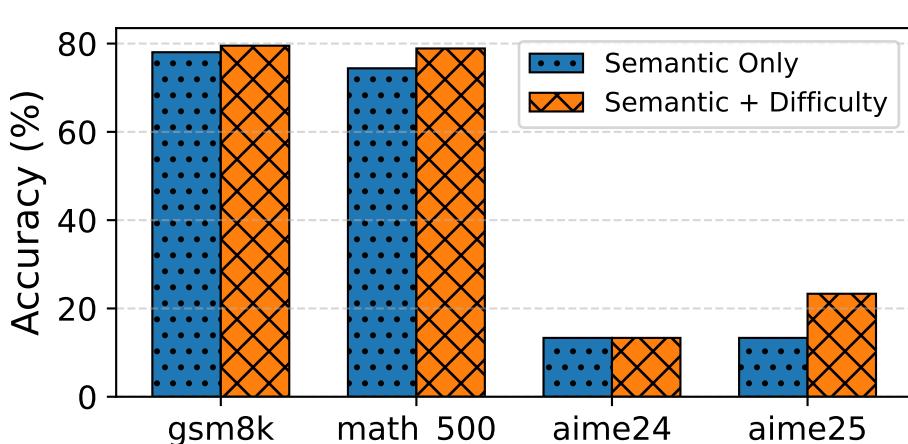


Figure 8: Effect of Removing Difficulty in Clustering on Performance.

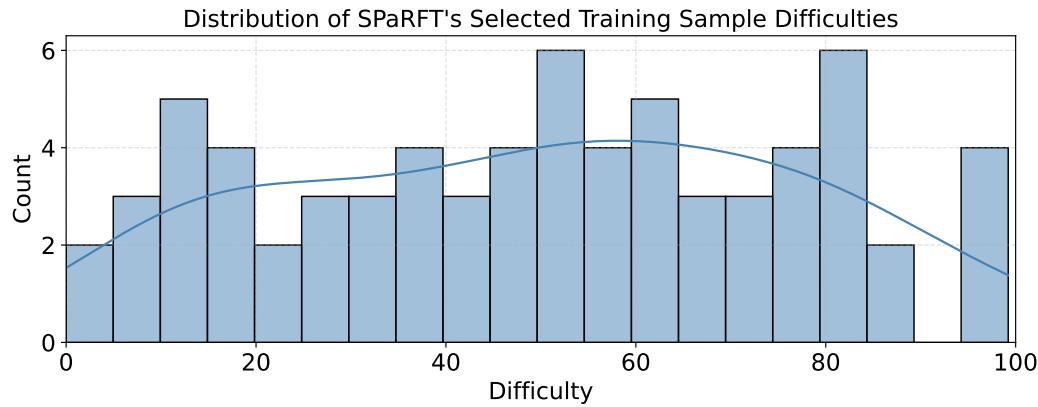


Figure 9: Difficulty distribution of training examples in SParFT.

953 A.10 DEEPSALER SUBSET DISTRIBUTIONS

955 We provide the difficulty score distributions of three DeepScaleR subsets: DeepScaleR Uniform,
 956 DeepScaleR Easy, and DeepScaleR Difficult, as shown in Figure 10. Each subset exhibits distinct
 957 difficulty characteristics, reflecting the varying levels of challenge present in the data. The distri-
 958 butions are grouped into bins of size 10, allowing for a clear comparison of how problem difficulty
 959 varies across these subsets. In particular, the Uniform subset spans the entire difficulty range with
 960 roughly balanced coverage, making it suitable for general-purpose training and evaluation. By con-
 961 trast, the Easy subset is concentrated heavily in the lower-difficulty bins, highlighting its role in
 962 providing simpler problems for warm-up training or curriculum learning. Meanwhile, the Difficult
 963 subset skews strongly toward the higher-difficulty bins, offering more challenging samples that are
 964 valuable for stress-testing reasoning capabilities and benchmarking advanced methods. Together,
 965 these subsets provide complementary perspectives on model performance across a wide spectrum of
 966 difficulty levels, ensuring a more comprehensive assessment of reasoning ability.

967 A.11 CLUTER ANALYSIS

969 In this section, to provide further insight into what happens during the clustering phase of our frame-
 970 work, we analyze several representative settings to examine both what is captured for training and
 971 how clustering shapes the overall behavior of our approach. Specifically, we investigate how prob-
 lem embeddings are grouped and how these clusters align with meaningful curricular categories.

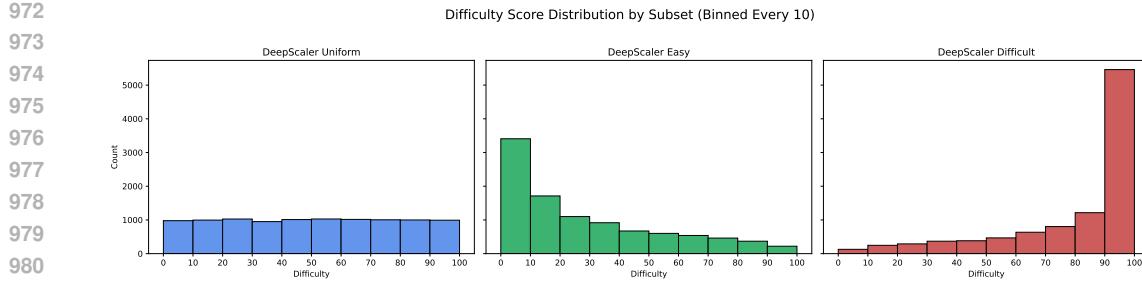


Figure 10: DeepScaleR subsets’ difficulty distributions.

For this purpose, we employ GPT-5’s API (OpenAI, 2025) to categorize each problem into one of the seven canonical subject areas defined by Hendrycks et al. (2021), namely: Prealgebra, Algebra, Number Theory, Counting & Probability, Geometry, Intermediate Algebra, and Precalculus. This taxonomy is consistent with the Art of Problem Solving (AoPS) curriculum (Art of Problem Solving), which provides a widely accepted structure for organizing mathematical problem-solving skills.

- **Prealgebra:** Covers arithmetic foundations, including fractions, decimals, percents, ratios, proportions, and basic number properties. It also introduces simple equations and word problems.
- **Algebra:** Focuses on symbolic manipulation and equations, such as linear and quadratic equations, inequalities, systems of equations, factoring, functions, and exponents. It marks the transition from arithmetic to general algebraic reasoning.
- **Number Theory:** Includes topics such as divisibility, prime numbers, greatest common divisors, modular arithmetic, congruences, and Diophantine equations. Problems emphasize reasoning about integer structure and properties.
- **Counting & Probability:** Encompasses combinatorics and elementary probability, including permutations, combinations, casework, binomial coefficients, expected value, and probabilistic reasoning.
- **Geometry:** Centers on Euclidean geometry of lines, angles, triangles, quadrilaterals, circles, and polygons. Topics include similarity, congruence, area, volume, coordinate geometry, and introductory trigonometric methods.
- **Intermediate Algebra:** Extends algebra with higher-level topics such as polynomials, rational functions, complex numbers, inequalities, logarithmic and exponential functions, and sequences/series.
- **Precalculus:** Prepares for calculus through trigonometry, advanced functions, polar/parametric representations, vectors, and deeper study of sequences and series.

A.11.1 DEEPSALER DATASET

We analyze the *DeepScaleR* dataset under the configuration with $K=7$ clusters induced by Qwen3-0.6B-Embeddings, consistent with Table 9. Figure 10 visualizes one representative run. The resulting partition exhibits intuitive curricular structure: a majority of items fall into *Pre-algebra* (51.4%), with *Geometry* (18.6%) and *Algebra* (12.9%) also comprising substantial shares; by contrast, smaller categories such as *Number Theory* (1.4%) and *Intermediate Algebra* (1.4%) are comparatively scarce, with the remaining mass distributed across *Counting & Probability* and *Precalculus*.

Beyond mirroring topical prevalence in the underlying corpus, this distribution suggests that the embedding-driven clustering is aligned with both latent difficulty and high-level curricular distinctions. Practically, this yields two benefits for downstream training: (i) it avoids over-emphasizing any single subject area, providing balanced exposure across topics; and (ii) it simplifies scheduling, since strata can be sampled in a principled way (e.g., uniformly or by difficulty-aware policies) without ad-hoc reweighting to correct for cluster idiosyncrasies. In short, even though clusters are

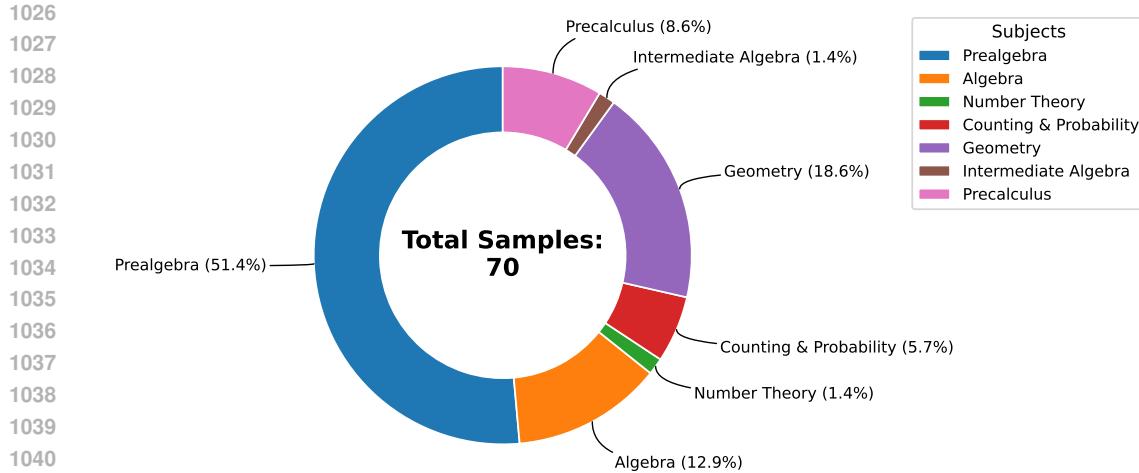


Figure 11: Selected data subjects (70 samples) using Qwen3-0.6B-Embedding. The data is clustered from DeepScaleR-uniform set.

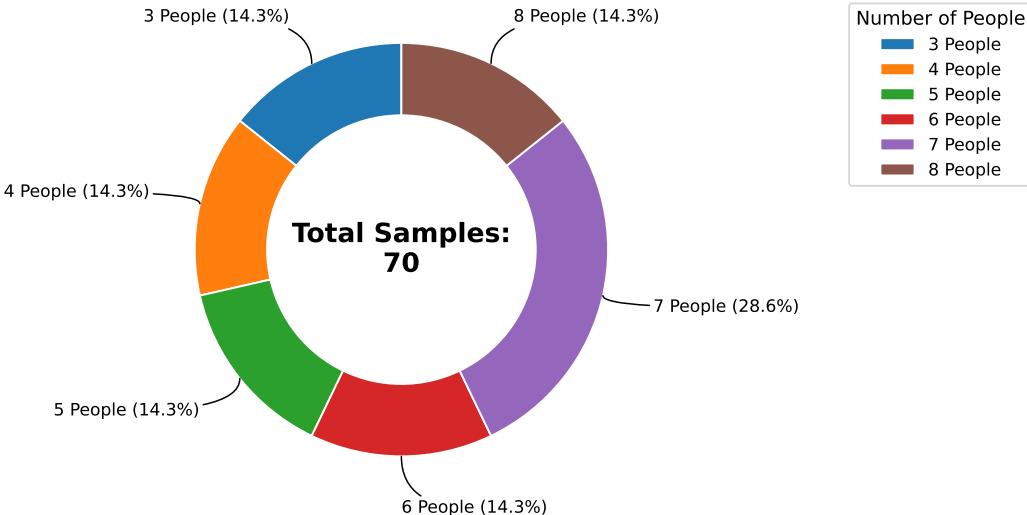


Figure 12: Selected data subjects (70 samples) using Qwen3-0.6B-Embedding. The data is clustered from Knights and Knaves set.

formed in representation space, they preserve pedagogically meaningful boundaries that support stable and fair curriculum design.

A.11.2 KNIGHTS-AND-KNAVES DATASET

We conduct an analogous analysis on the *Knights-and-Knaves* dataset using $K=7$ clusters obtained with Qwen3-0.6B-Embeddings. The results are shown in Figure 12. Plotting the distribution of selected questions by the number of people per instance reveals two robust regularities across all three training seeds: (i) no 2-person questions are selected; and (ii) aside from the 7-person category, all remaining categories contain the same number of questions. The same symmetry appears in the other seeds, indicating that the clustering process is not only semantically coherent but also structurally consistent with a salient, coarse-grained attribute (the number of entities in the prompt).

These regularities have useful practical consequences. First, they provide balanced coverage over interaction sizes, preventing the curriculum from drifting toward a single conversational complexity.

1080
 1081 Second, they reduce confounds in subsequent evaluation and scheduling: because most categories
 1082 are equalized, one can adopt simple, uniform sampling or layer a performance-aware scheduler
 1083 on top without introducing artifacts from cluster imbalance. We reckon the persistent absence of
 1084 2-person items likely reflects a combination of dataset composition and our selection protocol’s
 1085 preference for more discriminative examples.

1086 A.12 TRAINING TIME

1088 To evaluate computational efficiency, we measure wall-clock training time when applying AdaRFT
 1089 and our proposed SPaRFT across five representative base models: *Qwen3-0.6B*, *Falcon*, *Llama3*,
 1090 *Qwen2.5*, and *Qwen3-8B*. These models span a range of parameter scales and architectures, providing
 1091 a balanced testbed for assessing runtime behavior under different backbone choices. All runs
 1092 are conducted under identical hardware and data conditions to ensure a fair comparison.

1093 Figure 13 reports the results. Across all models, SPaRFT consistently reduces wall-clock training
 1094 time relative to AdaRFT, with per-model savings ranging from 2.1% to 10.8% (e.g., *Qwen2.5*:
 1095 –66 minutes, –10.8%; *Qwen3-8B*: –85 minutes, –5.6%; *Llama3*: –40 minutes, –7.4%;
 1096 *Qwen3-0.6B*: –23 minutes, –2.4%; *Falcon*: –14 minutes, –2.1%).

1097 We attribute these savings to SPaRFT’s clustering phase, which dynamically prioritizes clusters
 1098 that yield higher learning signal over a reduced selection space, thereby avoiding wasted updates
 1099 on redundant or low-yield samples. Although the absolute magnitude of savings depends on the
 1100 underlying backbone, the improvements are consistent across diverse architectures, highlighting
 1101 that SPaRFT not only improves data efficiency but also offers a practical reduction in training cost
 1102 without additional engineering or inference-time overhead.

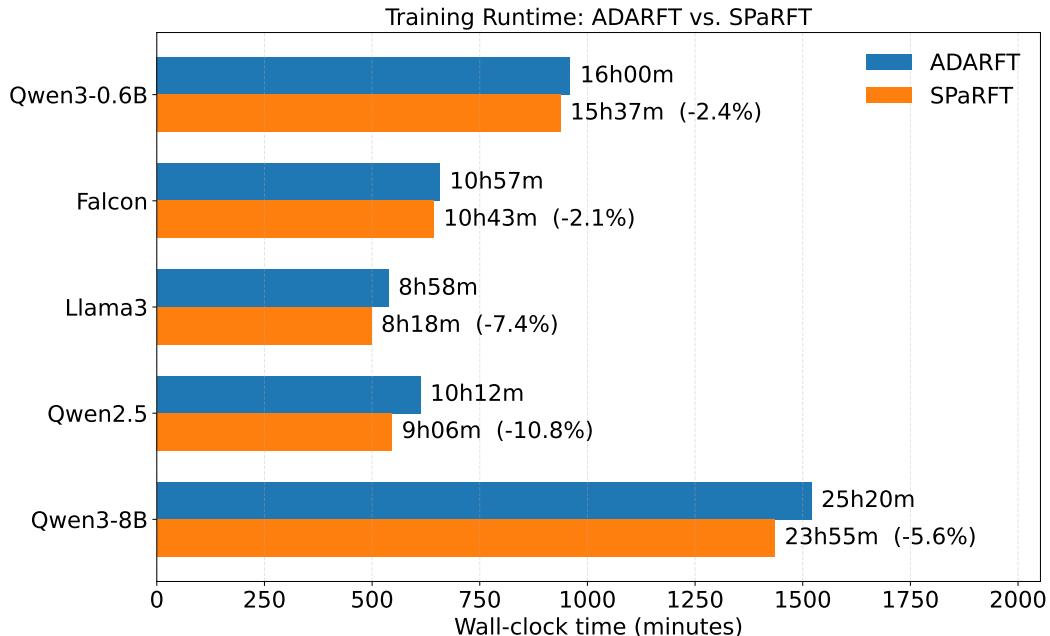


Figure 13: Training time comparison between AdaRFT and SPaRFT.

A.13 SPaRFT TRAINING DETAILS

A.13.1 TRAINING HYPERPARAMETERS

General Training Parameters In this section, we provide the training details of SPaRFT in Table 7. These parameters apply for full training LLMs (which excludes the training of *Qwen3-8B-Base*).

1134	Parameters	Value
1135	Number of examples per cluster (l)	10
1136	Number of PCA components	50
1137	Batch size (B)	8
1138	Number of generation per step (G)	8
1139	Maximum completion length (L)	1200
1140	Initial learning rate (α)	$5e^{-6}$
1141	Weight Decay	0.1
1142	Warmup Ratio	0.1
1143	lr_scheduler_type	cosine
1144	Adam β_1	0.9
1145	Adam β_2	0.99
1146	bf16	True
1147	Per device train batch size	8
1148	Gradient accumulation steps	8
1149	Max grad norm (G_{norm})	0.1
1150	ϵ	$1e^{-6}$

Table 7: Parameters used in SPaRFT.

LoRA Training Parameters In this section, we provide the LoRA training parameters for *Qwen3-8B-Base*. All the parameters used are reported in Table 8.

1157	Parameters	Value
1158	All Parameters	8,194,569,216
1159	Trainable Parameters (l)	3,833,856
1160	Trainable %	0.05
1161	Rank	8
1162	LoRA α	16
1163	Target Modules	[”q-proj”, ”v-proj”]
1164	LoRA Dropout	0.1
1165	Bias	None

Table 8: Parameters used for Low-rank Adaptation (LoRA) Fine-tuning.

A.13.2 NUMBER OF CLUSTERS

We provide the number of clusters used for different settings of SPaRFT in Table 9. While the optimal number of clusters varies across datasets, it remains within a moderate range, consistent with our observations in Section 6.3.

1174	Model	Train dataset	Number of clusters
1175	Qwen3-0.6B	DeepScaleR-uniform	7
		DeepScaleR-easy	8
		DeepScaleR-difficult	10
		GSM8K	10
1176	Falcon3-1B-Instruct	DeepScaleR-uniform	6
1177	Llama-3.2-1B-Instruct	DeepScaleR-uniform	8
1178	Qwen2.5-0.5B-Instruct	DeepScaleR-uniform	7
		Knights and Knaves	7
1179	Qwen3-8B-Base	DeepScaleR-uniform	7

Table 9: Number of clusters used for different settings of our method.

1188	Models/Datasets	URL
1189	Qwen3-Embedding-0.6B	https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
1190	Qwen2.5-0.5B-Instruct	https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
1191	Llama3.2-1B-Instruct	https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
1192	Falcon3-1B-Instruct	https://huggingface.co/tiuae/Falcon3-1B-Instruct
1193	Alibaba-NLP/	
1194	gte-Qwen2-1.5B-instruct	https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct
1195	DeepScaleR	https://huggingface.co/datasets/agentica-org/DeepScaleR-Preview-1
1196	GSM8K	https://huggingface.co/datasets/openai/gsm8k
1197	MATH-500	https://huggingface.co/datasets/HuggingFaceH4/MATH-500
1198	AIME24	https://huggingface.co/datasets/math-ai/aime24
1199	AIME25	https://huggingface.co/datasets/math-ai/aime25

Table 10: Models and Datasets Details.

A.13.3 MODEL AND DATA REFERENCES

We list the links to the LLM models and datasets in Table 10.

A.13.4 SYSTEM PROMPT

Following (Hugging Face, 2025), the system prompt asks the model to generate the answer with clear requirements, with reasoning and answer following the format, as described in Figure 14.

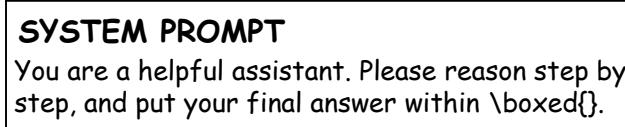


Figure 14: System prompt used in our experiments.

A.14 RESPONSE EXAMPLES

We present several sampled responses of SPaRFT in Table 11 and 12.

A.15 SELECTED EXAMPLE ANALYSIS

In this section, we provide details on the selected examples by SPaRFT. For each cluster, we show 2 selected examples selected by our method using *Qwen3-0.6B*, with the DeepScaleR-uniform dataset. We select the examples from the setting with total number of clusters equal 7. The examples are shown from Table 13 to Table 19.

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

Table 11: Qwen3-0.6B fine-tuned with SPaRFT responses.

1252
1253
1254
1255
1256
1257
1258

Question

Let f be the function defined by $f(x) = ax^2 - \sqrt{2}$ for some positive a . If $f(f(\sqrt{2})) = -\sqrt{2}$ then $a =$. Please reason step by step, and put your final answer within $\boxed{\text{}}$.

Answer

To solve for a , we need to find the value of a such that $f(f(\sqrt{2})) = -\sqrt{2}$, where $f(x) = ax^2 - \sqrt{2}$. First, let's compute $f(\sqrt{2})$:

$$f(\sqrt{2}) = a(\sqrt{2})^2 - \sqrt{2} = a(2) - \sqrt{2} = 2a - \sqrt{2}$$

Now, we need to compute $f(f(\sqrt{2}))$:

$$f(f(\sqrt{2})) = f(2a - \sqrt{2}) = a(2a - \sqrt{2})^2 - \sqrt{2}$$

Let's expand the square term:

$$(2a - \sqrt{2})^2 = (2a)^2 - 2(2a)(\sqrt{2}) + (\sqrt{2})^2 = 4a^2 - 4a\sqrt{2} + 2$$

...

So the discriminant is zero, which means there is a repeated root:

$$a = \frac{2\sqrt{2}}{4} = \frac{\sqrt{2}}{2}$$

Therefore, the value of a is $\frac{\sqrt{2}}{2}$.

Let me double-check the calculations to ensure there are no errors. Starting from the beginning:

1. $f(\sqrt{2}) = a(2) - \sqrt{2} = 2a - \sqrt{2}$
2. Then $f(f(\sqrt{2})) = f(2a - \sqrt{2}) = a(2a - \sqrt{2})^2 - \sqrt{2}$
3. Expanding $(2a - \sqrt{2})^2$ gives $4a^2 - 4a\sqrt{2} + 2$
4. Multiplying by a and subtracting $\sqrt{2}$ gives $4a^3 - 4a^2\sqrt{2} + 2a - \sqrt{2}$
5. Setting equal to $-\sqrt{2}$ leads to the equation $4a^3 - 4a^2\sqrt{2} + 2a = 0$
6. Factoring gives $2a(2a^2 - 2a\sqrt{2} + 1) = 0$, leading to the quadratic with discriminant zero.

Yes, the steps seem correct. The discriminant being zero implies a repeated root, which gives

$$a = \frac{\sqrt{2}}{2}. \text{ Therefore, the answer is } \boxed{\frac{\sqrt{2}}{2}}.$$

Final Answer

$$\boxed{\frac{\sqrt{2}}{2}}$$

1288
1289
1290
1291
1292
1293
1294
1295

1296
1297
1298
1299

Table 12: Qwen3-0.6B fine-tuned with SPaRFT responses.

1300
1301
1302
1303
1304**Question**

A set S of points in the xy -plane is symmetric about the origin, both coordinate axes, and the line $y = x$. If $(2, 3)$ is in S , what is the smallest number of points in S ? Please reason step by step, and put your final answer within $\boxed{\text{}}$.

1305
1306
1307
1308
1309
1310
1311
1312
1313
1314**Answer**

To solve this problem, we need to determine the smallest number of points in the set S , given that the set is symmetric about the origin, both coordinate axes, and the line $y = x$. Additionally, the point $(2, 3)$ is in S .

Step 1: Understand the Symmetry Conditions

A set of points that is symmetric about the **origin** means that for every point (x, y) in S , $(-x, -y)$ is also in S .

Symmetry about the **coordinate axes** means that if (x, y) is in S , then (y, x) is also in S . Symmetry about the **line $y = x$** means that if (x, y) is in S , then (y, x) is also in S .

1315
1316
1317
1318
1319
1320
1321

...

Is there a point that we might be missing?

Let's check if $(3, 2)$ is symmetric to itself. Yes, it is.

So, with these three points, we have covered all the symmetries.

But wait! What about the point $(2, 3)$? Is there a point symmetric to it that we haven't considered?

No, because we already considered all the points under the given symmetries.

So, the minimal number of points in S is 3.

1322
1323
1324
1325
1326
1327
1328
1329
1330
1331**### Final Answer:**

3

1332
1333

Table 13: Cluster 0 examples. Only 2 examples are shown for illustration.

1334
1335
1336
1337
1338
1339
1340
1341**Example 1****Prompt**

(In the preliminaries of optimal method and experimental design) When using the 0.618 method to find the optimal amount to add in an experiment, if the current range of excellence is $[628, 774]$ and the good point is 718, then the value of the addition point for the current experiment is _____. Please reason step by step, and put your final answer within $\boxed{\text{}}$.

Answer

684

1342
1343
1344
1345
1346
1347**Example 2****Prompt**

Calculate the probability that in a deck of 52 cards, the second card has a different suit than the first, and the third card has a different suit than the first and second. Please reason step by step, and put your final answer within $\boxed{\text{}}$.

Answer
 $\frac{169}{425}$
1348
1349

1350

1351

1352

Table 14: Cluster 1 examples. Only 2 examples are shown for illustration.

1353

Example 1**Prompt**

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

Table 14: Cluster 1 examples. Only 2 examples are shown for illustration.

1372

Example 1**Prompt**

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

Table 14: Cluster 1 examples. Only 2 examples are shown for illustration.

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Example 1**Prompt**

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Prompt

Solve for x : $\log_3(x^2 - 1) = 2$. Please reason step by step, and put your final answer within $\boxed{\text{}}$.

Answer

4

Example 2**Prompt**

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Evaluate the integral $\int_0^1 xe^x dx$. Please reason step by step, and put your final answer within $\boxed{\text{}}$.

Answer $e - 2$

1404

1405

1406

1407

Table 17: Cluster 4 examples. Only 2 examples are shown for illustration.

1408

1409

Example 1**Prompt**

If $\sin x + \cos x = \sqrt{2}$, find the value of $\sin^4 x + \cos^4 x$. Please reason step by step, and put your final answer within $\boxed{\text{}}$.

Answer

$$\frac{3}{4}$$

1410

1411

Example 2**Prompt**

Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. Please reason step by step, and put your final answer within $\boxed{\text{}}$.

Answer

1

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

Table 18: Cluster 5 examples. Only 2 examples are shown for illustration.

1426

1427

Example 1**Prompt**

How many 4-digit numbers are there such that no two adjacent digits are the same? Please reason step by step, and put your final answer within $\boxed{\text{}}$.

Answer

5832

1428

1429

Example 2**Prompt**

If $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$, what is $A \cup B$? Please reason step by step, and put your final answer within $\boxed{\text{}}$.

Answer

$$\{1, 2, 3, 4, 5, 6\}$$

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

Table 19: Cluster 6 examples. Only 2 examples are shown for illustration.

1444

1445

Example 1**Prompt**

What is the value of the determinant of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$? Please reason step by step, and put your final answer within $\boxed{\text{}}$.

Answer

-2

1446

1447

Example 2**Prompt**

Simplify: $(2x - 3)^2 - (x + 1)^2$. Please reason step by step, and put your final answer within $\boxed{\text{}}$.

Answer

$$3x^2 - 14x + 8$$

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457