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ABSTRACT

Large language models (LLMs) have shown strong reasoning capabilities when
fine-tuned with reinforcement learning (RL). However, such methods require ex-
tensive data and compute, making them impractical for smaller models. Current
approaches to curriculum learning or data selection are largely heuristic-driven or
demand extensive computational resources, limiting their scalability and gener-
alizability. We propose SPaRFT, a self-paced learning framework that enables
efficient learning based on the capability of the model being trained through opti-
mizing which data to use and when. First, we apply cluster-based data reduction
to partition training data by semantics and difficulty, extracting a compact yet di-
verse subset that reduces redundancy. Then, a multi-armed bandit treats data clus-
ters as arms, optimized to allocate training samples based on model current per-
formance. Experiments across multiple reasoning benchmarks show that SPaRFT
achieves comparable or better accuracy than state-of-the-art baselines while using
up to 100× fewer samples. Ablation studies and analyses further highlight the im-
portance of both data clustering and adaptive selection. Our results demonstrate
that carefully curated, performance-driven training curricula can unlock strong
reasoning abilities in LLMs with minimal resources.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable progress in tasks requiring reasoning,
problem-solving, and generalization, driven largely by scaling trends in model size, data, and com-
pute (Google, 2024; OpenAI, 2024). As the cost and complexity of pretraining continue to rise,
research attention has increasingly shifted toward post-training techniques, which aim to improve
LLM capabilities more efficiently. Among these, Reinforcement Fine-Tuning (RFT) has emerged
as a promising method that aligns model behavior with outcome-based reward signals, often rely-
ing on lightweight supervision without elaborate reward engineering or inference-time computation
(Kumar et al., 2025; DeepSeek-AI, 2025; Lightman et al., 2023).

Standard RFT trains on uniformly sampled batches from the full dataset (DeepSeek-AI, 2025).
While simple, this approach ignores each example’s difficulty, informativeness, and uncertainty,
wasting limited reward feedback on trivial or noisy instances and slowing convergence (Ouyang
et al., 2022; Dong et al., 2023). This raises two key underexplored dimensions: how to select which
examples to train on, and how to present them to LLMs over training.

Data reduction methods prioritize informativeness by estimating example difficulty or uncertainty.
For example, variance-based filtering based on multiple forward passes through a reference model
(Wang et al., 2025b). Although effective at denoising, these approaches incur significant computa-
tional overhead, making them impractical for resource-constrained models. They are also sensitive
to both the selected training examples and the uncertainty estimator, which can hinder generalization
to new LLMs.

In parallel, curriculum design plays a central role in guiding the learning trajectory (Bengio et al.,
2009). As the model improves during fine-tuning, the useful difficulty level shifts dynamically, yet
static curricula or random orders often fail to reflect this progression. Recent attempts at adaptivity
filter examples with heuristic thresholds (Shi et al., 2025), but such mechanisms can be fragile,
especially for small or weak models that rely on imperfect difficulty metrics, prematurely excluding
challenging, informative examples early and stalling progress.
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We introduce SPaRFT, a self-paced RFT framework that automatically selects informative training
examples and designs an adaptive schedule to improve LLM training efficiency. We formulate RFT
as a Multi-Armed Bandit (MAB) (Sutton et al., 1998), where each arm is a cluster with similar
semantics and difficulty. The MAB decides which data to present at each step, overcoming rigid,
heuristic-driven assignment. First, we reduce data to form the clusters (arms), clustering on latent
representations and per-example attributes. Motivated by redundancy in training data for RFT (Wang
et al., 2025b), we retain a fixed number of samples per cluster; within each, representative examples
are chosen by iteratively maximizing embedding distance from previously selected samples. In the
second stage, we optimize cluster selection based on training performance: pulling an arm equals to
sampling from that cluster, and the inverse of the current solve rate serves as the reward to update
the bandit. Our intuition is simple: prioritize what is currently challenging. This avoids retraining
on already-solved instances—crucial in low-resource settings with tiny LLMs and tight budgets (Le
et al., 2025)—where curricula and reduction must be efficient, performance-aware, and free of costly
heuristics to make RFT practical in the small-model regime.

To evaluate our approach, we conduct extensive experiments on mathematical problem-solving tasks
using various LLMs of different sizes. Results show that SPaRFT significantly improves reasoning
accuracy and robustness compared to both reinforcement learning and curriculum learning baselines,
while reducing the number of training examples by a factor of 100. Notably, SPaRFT outperforms
methods that rely on exhaustive search to select single or few training examples. Our analysis reveals
how poorly designed curricula can get stuck in easy example regions, failing to leverage the diversity
of the dataset.

In summary, our contributions are threefold: (1) We propose SPaRFT, a novel two-stage framework
that reduces the number of training examples and optimizes the RFT progress for LLMs using
MAB. (2) Our method is lightweight, significantly reducing the number of training examples while
adding minimal computational overhead, making it well-suited for RFT of tiny LLMs. (3) Our
extensive experiments demonstrate that SPaRFT consistently outperforms existing curriculum and
data reduction strategies.

2 RELATED WORK

2.1 DATA REDUCTION FOR REINFORCEMENT FINE-TUNING OF LANGUAGE MODELS.

The role of data in RFT for LLMs remains an open area of research. Several works attempt to cu-
rate high-quality mathematical datasets (Luo et al., 2025; Yu et al., 2025), but they do not explicitly
explore which data is most effective for fine-tuning. More recently, alternative approaches have
proposed using heuristic-based scores, such as Learning Impact Measurement (Li et al., 2025) or
variance-based selection methods (Wang et al., 2025b). These techniques alleviate data constraints
by enabling training on only a small subset while still achieving strong reasoning capabilities. How-
ever, these methods typically require significant pre-computation, limiting their practicality in real-
world deployment, and remain untested on small models with limited reasoning capabilities.

2.2 CURRICULUM LEARNING FOR LLMS.

Humans and animals learn more effectively when examples are presented in a meaningful order
that gradually increases in complexity. Curriculum learning (Bengio et al., 2009) and performance-
guided training progression (Le et al., 2022) have been applied to supervised and RL training. For
LLMs, recent studies have explored how to organize training data to reduce computational cost and
improve sample efficiency, though this area remains underdeveloped. Existing approaches include
hand-crafted difficulty tiers (Wen et al., 2025; Luo et al., 2025; Song et al., 2025), which often
require task-specific insights and manual tuning. More adaptive methods, such as AdaRFT (Shi
et al., 2025), learn a training curriculum by dynamically adjusting a difficulty threshold to select
examples. While promising, these methods still face limitations: repeated training on easy examples
can lead to overfitting or poor generalization; difficulty heuristics may not transfer across tasks; and
fixed sampling strategies may fail to adapt to evolving model capabilities. There remains a need for
more principled curriculum strategies tailored to the scale and dynamics of LLM training.
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Figure 1: SPaRFT Architecture. Top: Initial training data is annotated with difficulty, and each
example’s feature vector is formed by concatenating its latent embedding with its difficulty score.
These vectors are clustered into K groups, and from each cluster we select representative samples
to ensure both coverage and diversity. Bottom: Each cluster is treated as an arm in a multi-armed
bandit. At each step, Thompson Sampling is used to select a cluster, its representative examples are
fed to the LLM to obtain rewards for RFT, and those rewards are used to update the bandit statistics.

3 SELF-PACED REINFORCEMENT FINE-TUNING

We aim to improve a policy πθ by adaptively presenting training samples while minimizing the
required data. Focusing on tasks that are too easy or too hard is inefficient, offering little challenge
or feedback. Instead, data assignment should adapt to the model’s evolving capabilities, presenting
examples that it is ready to learn at each stage. Threshold-based curricula require manual tuning
and can be suboptimal, especially at the early training stage (Shi et al., 2025). To address this,
we introduce SPaRFT, a two-phase approach for self-paced optimization: (1) cluster-based data
reduction and (2) bandit-based data assignment. SPaRFT integrates with common RFT algorithms;
we use GRPO (DeepSeek-AI, 2025) by default. A detailed description appears in Algorithm 1,
Appendix A.1.

3.1 CLUSTER-BASED DATA REDUCTION

3.1.1 DATA CLUSTERING

RFT of large language models often presupposes access to abundant, high-quality supervision,
which is costly or impractical in low-resource settings. We introduce a clustering-based data re-
duction procedure that lowers data requirements while preserving or improving training efficacy.
The approach leverages two signals per training instance: (i) a latent representation and (ii) a scalar,
per-example attribute available from the dataset. Grouping examples that are proximate in latent
space and exhibit comparable attribute values yields a coherent partitioning that is well suited to
curriculum-style sampling.

Latent representation. For each example, we obtain its latent representation with a pre-trained em-
bedding model. To mitigate the well-known degradation of distance metrics in high dimensions
(Bellman, 1966), we apply Principal Component Analysis (PCA) to reduce dimensionality. For
notation, let xi denote the ith training example and si denotes its PCA-reduced latent vector.

Per-example attribute. Our framework supports the inclusion of an optional scalar attribute at the
per-example level, alongside semantic embeddings. Let di denote this attribute, which can flexibly
encode any task-specific signal. For clustering, we concatenate di with the latent embedding to form
a joint representation. This design enables clustering to account not only for semantic similarity but
also for structural or pedagogical cues that are important for curriculum construction.

Clustering. Prior to clustering, we standardize the coordinates of si and di to zero mean and unit
variance, preventing either modality from dominating the distance metric. We then form the com-
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bined representation ei as follows:
ei = ŝi ⊕ d̂i, (1)

where ŝi and d̂i are the standardized latent vector and scalar feature, respectively, and ⊕ denotes
concatenation. Finally, we apply k-means clustering to {ei} to partition the dataset into K clusters
(Lloyd, 1982), thereby ensuring coverage across the joint latent–attribute space.

3.1.2 DATA REDUCTION

Recent work indicates that, in the context of scaling RFT, strategically curated subsets of training
data can yield stronger LLM reasoning performance than finetuning on the full corpus (Li et al.,
2025; Wang et al., 2025b). Motivated by this, we first partition the training set into K clusters as
mentioned above, and then subsample a fixed quota of representatives per cluster, chosen to preserve
coverage and diversity. Let l denote the number of examples for each cluster, Ck denote the set of
examples in cluster kth, and let µk be the corresponding cluster centroid in the embedding space.
For each embedded representation ei in cluster k, we compute its Euclidean distance to the its cluster
centroid:

δi = ∥ei − µk∥2, (2)
We then sort all examples in Ck by their distances δi. To construct a diverse and representative
training subset from each cluster, we employ a greedy farthest-point sampling strategy: starting from
the cluster centroid, we iteratively select examples that are maximally distant from those already
chosen. This balances centrality and coverage in the embedding space. The full procedure is outlined
in Phase 1 of Algorithm 1 in Appendix A.1.

3.2 BANDIT-BASED DATA ASSIGNMENT

Our core intuition is to prioritize examples that are currently challenging for the model rather than
fixing a static “hard set”, since what is difficult changes as training progresses. At each step t, the
policy πθ selects a cluster ct ∈ {1, . . . ,K}, framing scheduling as a multi-armed bandit where each
arm is a cluster. We use Thompson Sampling (Thompson, 1933; Russo et al., 2020): for cluster k,
maintain cumulative reward R

(t)
k and count n(t)

k , and draw as follows:

µ̃
(t)
k ∼ N

(
−

R
(t)
k

n
(t)
k + ϵ

,
1

n
(t)
k + ϵ

)
. (3)

Here, the mean is negated so clusters with lower solve rates (harder under the current model) are
favored. We especially note that solve rate is computed online and differs from the precomputed
difficulty di used only for clustering. The selected cluster as follows:

ct = argmax
k

µ̃
(t)
k . (4)

This formulation naturally balances exploration and exploitation: clusters with fewer observations
are more likely to be explored, while clusters with consistently lower solve rates (i.e., harder sam-
ples) are exploited more frequently. A batch of size B is sampled from cluster ct to train πθ. The
reward for each sample in the batch is computed based on the correctness of the model’s output:

ri =

{
1, if the response is correct
0, otherwise

(5)

The average reward over the batch is calculated as ravg = 1
B

∑B
i=1 ri. This average reward is used

in two ways. First, it provides a scalar learning signal to update the policy network πθ via any RL
algorithm (e.g., GRPO). The RL training objective is to maximize the expected total reward:

max
θ

Eq∼Dtrain,a∼πθ
[ravg] (6)

where a is the sampled answer from πθ given the question q.

Second, ravg is used to update the internal statistics of the multi-armed bandit by adjusting both the
cumulative reward and the count of interactions for the selected cluster:

R(t+1)
ct = R(t)

ct + ravg, n(t+1)
ct = n(t)

ct + 1. (7)
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This dynamic update process ensures that the sampling distribution adapts online to the evolving
state of the model. Clusters that temporarily present higher error rates receive increased sampling
probability, while those that become easy are sampled less frequently. Crucially, because rewards
are derived from model predictions themselves, this approach tightly couples curriculum scheduling
with real-time model capacity, which results in a self-regulating training signal that continuously
steers focus toward maximally informative examples. Full algorithm of SPaRFT is provided in
Algorithm 1, Appendix A.1. In addition, we formally analyze the convergence of the MAB used in
SPaRFT, as stated in the following Proposition.
Proposition 1. Under assumptions: (i) bounded rewards, LLM training with (ii) gradient clipping
and (iii) decayed learning rate, the Thompson Sampling scheduler in SPaRFT satisfies sublinear
reward variation up to step T : VT = O(log T ). Consequently, as t→∞, the sampling distribution
concentrates on clusters with maximal expected reward.

Proof. See Appendix A.2.

4 EXPERIMENTS

Method GSM8K MATH500 AIME24 AIME25

Base 78.0 75.4 10.0 16.7
π1 78.1 75.4 13.3 16.7
π2 79.0 74.2 6.7 10.0
Ordered 77.9 74.8 13.3 13.3
SFT 77.60.5 74.80.4 7.81.9 14.45.1

R1 77.91.0 71.61.3 8.95.1 12.25.1

AdaRFT 78.90.3 75.91.5 12.23.9 14.43.9

SPaRFT 79.50.6 78.01.3 14.41.9 18.95.1

Table 1: Results using Qwen3-0.6B across different
datasets. We report extractive match scores (meanstd) at the
final training checkpoint, averaged over 3 seeds (except for
the Base, π1, π2, and Ordered baselines). Best results are
highlighted in bold, and the second-best are underlined.

We evaluate our method on several
LLMs. Full fine-tuning is performed
on Qwen3-0.6B, Qwen2.5-0.5B-
Instruct, Falcon3-1B-Instruct, and
Llama3.2-1B-Instruct using a sin-
gle NVIDIA H100 GPU, with
Qwen3-0.6B achieving performance
comparable to larger models (e.g.,
Qwen2.5-Math-7B-Instruct). In
addition, we fine-tune Qwen3-8B-
Base with Low-Rank Adaptation
(Hu et al., 2021) on a single H200
GPU. Training covers mathemati-
cal and logical reasoning datasets:
(1) DeepScaleR-Uniform, (2)
DeepScaleR-Easy, (3) DeepScaleR-
Difficult (10k problems each) (Luo
et al., 2025); (4) GSM8K (7,473
problems) (Cobbe et al., 2021); and (5) Knights and Knaves (K&K) (Xie et al., 2024). Latent
embeddings for clustering are obtained using Qwen3-Embedding-0.6B. All chosen datasets are
annotated with difficulty levels, either instantiated as a per-example attribute defined by solve
rates from a moderate LLM (Shi et al., 2025) or explicit labels (Xie et al., 2024). While our
framework can use other attributes (e.g., uncertainty, informativeness), we choose difficulty as
the per-example attribute for clustering since it is natural and interpretable. Each experiment
is repeated with three random seeds, and training is implemented with the Open-R1 codebase
(Hugging Face, 2025). In each run, our method selects only up to 100 training examples using
the reduction strategy in Section 3. This process adds negligible overhead compared to R1: on
Qwen3-0.6B with an H100 GPU, training time is nearly identical (15h37m vs. 15h23m), with only
a slight increase due to bandit-based selection.

Evaluation We use five benchmarks that span different reasoning types and difficulty levels:
GSM8K (Cobbe et al., 2021), consists of diverse grade school math problems; MATH500, a 500-
sample subset of the MATH dataset (Hendrycks et al., 2021); AIME24 and AIME25, comprising
problems from the 2024 and 2025 American Invitational Mathematics Examination, respectively;
and finally, the logical reasoning K&K test set consists of 700 samples, with 100 examples for dif-
ferent number of people in the question from 2 to 8. We report the extractive match scores for all
mathematical datasets, following Lighteval’s evaluation framework (Habib et al., 2023). For K&K
dataset, we follow the evaluation protocols established by the dataset authors Xie et al. (2024).

Baselines Base refers to the pretrained model without any fine-tuning. π1 and π2 represent the
baselines in 1-shot RLVR paper, trained on one and two examples selected from the DeepScaleR
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Number of People Average

Method 2 3 4 5 6 7 8

Base 32.0 10.0 8.0 2.0 0.0 0.0 0.0 7.4
R1 31.7±1.5 11.3±0.6 8.3±0.6 4.0±1.0 0.7±0.6 0.0±0.0 1.0±0.0 8.1±0.3
ADARFT 31.7±0.6 10.7±2.1 7.3±0.6 3.7±0.6 0.3±0.6 0.0±0.0 1.0±0.0 7.8±0.2
SPaRFT 34.3±1.2 13.7±1.2 10.0±1.0 5.3±1.5 1.6±1.5 0.0±0.0 1.3±0.6 9.5 ±0.8

Table 2: Accuracy (%) by number of people in K&K puzzles with results reported as mean ±
standard deviation (except for Base baseline) over 3 runs. Bold denotes the best mean performance.

dataset, respectively (Wang et al., 2025b). SFT denotes the supervised fine-tuning baseline. Or-
dered (Bengio et al., 2009) is a curriculum baseline in which training begins with easier examples
and gradually progresses to harder ones. R1 is the RL baseline trained with the standard GRPO
algorithm without an SFT cold start, as in DeepSeek-R1 (DeepSeek-AI, 2025). AdaRFT is a cur-
riculum learning approach that selects examples based on a difficulty threshold (Shi et al., 2025).
We also include an additional variance-based baseline, LIMR (Li et al., 2025), trained on the MATH
dataset (Hendrycks et al., 2021), with details in Appendix A.4.

5 EXPERIMENTAL RESULTS

5.1 BENCHMARKING SPARFT WITH QWEN3-0.6B

We fine-tune Qwen3-0.6B in a zero-shot setup. Despite its small size, it is a strong baseline and
supports a thinking mode using <think> </think> tags. Following (Wang et al., 2025b), we
use one seed for π1 and π2. For the Ordered baseline, we also use one seed, as the order of training
examples is fixed. Further details on training hyperparameters are provided in Appendix A.13.

Table 1 presents test accuracies from the final training checkpoint using Qwen3-0.6B. SPaRFT con-
sistently achieves the highest performance across all benchmarks, despite using only 100 training
examples—two orders of magnitude fewer than other baselines. On GSM8K, SPaRFT reaches
79.5± 0.6%, outperforming all baselines including AdaRFT (78.9± 0.3%) and R1 (77.9± 1.0%).
On the MATH500 benchmark, SPaRFT yields 78.0 ± 1.3%, improving over the next-best result
(75.9 ± 1.5%) by a margin of 2.1 percentage points. Notably, SPaRFT also shows strong gains in
harder math datasets: it reaches 18.9 ± 5.1% on AIME25, outperforming AdaRFT (14.4 ± 3.9%)
by 4.5 percentage points, and achieves the best score on AIME24 with 14.4 ± 1.9%. These results
highlight SPaRFT’s data efficiency and robustness across tasks of varying difficulty.

5.2 SPARFT WORKS WITH VARIOUS DATASETS

5.2.1 MATHEMATICAL DATASETS TRAINING RESULTS

We evaluate our method on three distinct training sets: (1) GSM8K; (2) DeepScaleR–Easy, a subset
of DeepScaleR with primarily low-difficulty questions; and (3) DeepScaleR–Difficult, a subset with
mainly high-difficulty questions. All experiments use Qwen3-0.6B as the backbone, and we adopt
the same reward functions and hyperparameters as in Section 5.1. We compare with the top-3
baselines, excluding π1 and π2 as they are unavailable in GSM8K. As seen in Figure 2, across all
settings, SPaRFT consistently outperforms standard SFT, achieving gains of 2.9–5.5 % on GSM8K
and up to 7.8 % on the AIME benchmarks. R1 generally ranks second, especially on the easier
splits, while AdaRFT falls 1–2 % behind in most cases. Notably, when trained on the difficult
subset (3), SPaRFT attains a 2.3 % improvement on MATH500 and more than doubles AIME24
accuracy relative to SFT. These results confirm that SPaRFT not only enhances overall accuracy but
also yields the greatest benefits on the most challenging training set.

5.2.2 K&K TRAINING RESULTS

In this dataset, we consider the number of people in the question as the per-example attribute di and
select Qwen3-0.6B as the Base LLM for the experiments. The final answer is used for computing the
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Figure 2: Results averaged over 3 training seeds using three training datasets with Qwen3-0.6B.

Figure 3: Results averaged over 3 training seeds using other LLMs across datasets.

accuracy reward, and the evaluation protocol strictly follows the original setup in Xie et al. (2024)
to ensure consistency and comparability. As shown in Table 2, SPaRFT consistently outperforms all
baselines across difficulty levels, with clear gains on more complex puzzles involving 2–5 people,
where reasoning demands are substantially higher. It achieves the highest overall average accuracy
of 9.5%, compared to 8.1% for R1 and 7.8% for AdaRFT–representing relative improvements of
∼17% and ∼22%, respectively. Notably, the AdaRFT baseline shows a decline in accuracy in
2 out of 7 settings, indicating that training with a noisy curriculum can negatively impact model
performance. These results collectively highlight the effectiveness of SPaRFT in scaling to harder
reasoning cases while maintaining competitive performance on simpler ones, thereby validating the
role of curriculum-guided selection in enhancing reasoning-focused training.

5.3 SPARFT HELPS DIVERSE LLM LEARNERS

We train on DeepScaleR-Uniform and evaluate Qwen2.5-0.5B-Instruct, Falcon3-1B-Instruct,
Llama3.2-1B-Instruct, and Qwen3-8B-Base, which are compact to mid-size LLMs with strong rea-
soning, language, code, and math skills. We exclude Qwen3-8B (reasoning-enabled) due to the
substantial compute from long <think> traces. We compare against the Base model and AdaRFT,
the most consistent and second-best method in Section 5.1. All models use the same zero-shot
setup, except Llama3.2-1B-Instruct, which requires one in-context example per instance to yield
valid correctness rewards (Le et al., 2025). Figure 3 shows SPaRFT as the clear winner, ranking
first in 13/16 cases. Average gains are evident on GSM8K (∼+3%) and MATH500 (∼+2%). On
the harder AIME splits, SPaRFT turns near-zero baseline scores into consistent positives, reflect-
ing better sample efficiency under sparse-reward RFT. We see complete or near-complete sweeps
on the smaller models over Base and AdaRFT, indicating benefits in capacity-constrained settings;
results on Qwen3-8B-Base remain strong despite not being used for RFT training. Overall, a bandit-
driven, performance-aware curriculum generalizes across architectures and tasks with minimal pro-
tocol changes, delivering reliable gains under compute-conscious budgets.
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Figure 4: Left: Multi-arm Bandit Cluster Selection and its Impact on Cluster Solve Rates During
Training. Right: Top: Difficulty of training examples selected by SPaRFT over time. Bottom:
Difficulty of training examples selected by AdaRFT over time. Note: The plots are shown separately
due to the large difference in their difficulty scales.

6 ABLATION STUDIES AND MODEL ANALYSES

6.1 MULTI-ARM BANDIT ANALYSIS

Empirical Convergence SPaRFT leverages the MAB framework to adaptively guide curriculum
learning, making it important to characterize how the scheduler evolves during training. Figure 4
(Left) illustrates a heatmap of cluster solve rates alongside bandit selections over time using Qwen3-
0.6B on the DeepScaleR-Uniform dataset partitioned into 7 clusters. Early in training (around step
200), the bandit behaves nearly uniformly, allocating samples across clusters with little preference.
As the model accumulates experience, clear patterns emerge: clusters 1 and 2 exhibit higher solve-
rate differentials, and the bandit correspondingly shifts toward sampling them more frequently, sig-
naling that these clusters provide greater marginal learning benefit. From step 600 onward, this
concentration intensifies, with clusters 1 and 2 dominating the selection distribution, indicating that
the scheduler successfully adapts to focus training on regions of the data that remain most informa-
tive for continued performance improvement.

Solve Rate Trends. Clusters 1 and 2 show the largest solve rate gains, increasing from 20% at step
200 to 40% by step 1200. These clusters appear moderately difficult and provide strong learning
signals. In contrast, cluster 3, which is rarely picked, starts high at 70% and remains flat, suggesting
it is too easy to help the model improve. Other clusters, such as 4 and 5, show modest gains with
continued exploration, except for cluster 0. By the end of training, the bandit converges to favor
clusters 1 and 2, which consistently yield the most benefit.

6.2 DATA REDUCTION ANALYSIS

Method GSM8K MATH500 AIME24 AIME25

SPaRFT− 78.8±0.4 76.4±0.7 12.2±3.9 11.1±1.9
SPaRFT 79.5±0.6 78.0±1.3 14.4±1.9 18.9±5.1

Table 3: Mean ± standard deviation over 3 seeds on the
DeepScaleR-uniform dataset using Qwen3-0.6B as the base
model. SPaRFT− denotes the variant without data reduc-
tion. Best results are in bold.

Average Sample Difficulty Com-
parison We consider Qwen3-0.6B
on DeepScaleR-Uniform with 7 clus-
ters to examine selected example dif-
ficulties. Figure 4 (Right) compares
the average difficulty of training ex-
amples chosen over time by SPaRFT
and AdaRFT. Although AdaRFT ac-
cesses the full dataset, its perfor-
mance with tiny LLMs struggles to
reach medium and hard examples,
due to a threshold mechanism that is highly sensitive and skews selection. In contrast, SPaRFT
favors medium–hard instances, avoiding the overemphasis on easy examples seen in AdaRFT. We
attribute this to our clustering strategy, which captures both semantic diversity and difficulty: each
cluster mixes a broad range of examples, enabling exploration of harder cases without sacrificing
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variety. This contributes to SPaRFT’s superior performance over other curricula or selection meth-
ods.

Impact of Data Reduction To evaluate the effectiveness of the data reduction phase in our
method, we conduct ablation experiments where data reduction is disabled, where all examples
within each cluster are retained without filtering. Results are shown in Table 3. Without data reduc-
tion, each cluster contains significantly more examples than the batch size B. As shown, SPaRFT
without data reduction still outperforms the Base baseline but underperforms the full version with
selection. We attribute this to increased sampling variance in large, unfiltered clusters, where het-
erogeneity in example difficulty reduces the stability and efficacy of the learning signal.

6.3 CLUSTERING EFFECTS

1 7 10 20
Number of Clusters

20

40

60

80
Ac

cu
ra

cy
 (%

)

gsm8k
aime24

math_500
aime25

Average

Figure 5: Results for 1 seed with Qwen3-0.6B and different
number of clusters.

Number Of Clusters Figure 5
shows how SPaRFT’s performance
depends on the number of clusters
K. Accuracy peaks with a moder-
ate number (K = 7), while very
few (K = 1) or many (K = 20)
clusters reduce performance. This re-
flects a trade-off between specializa-
tion and generalization: too few clus-
ters collapse diverse examples into
coarse groups, while too many frag-
ment the data, causing sparse sam-
pling and unstable training signals.
A moderate clustering level provides
the best balance, enabling the bandit
to exploit informative variation with-
out over-fragmentation. These results
highlight the importance of tuning K
carefully, as it directly affects how
well the curriculum leverages per-example information.

Importance Of Concatenating Per-Example Attribute In Clustering To assess the contribution
of initial per-example attributes to cluster quality, we repeat the clustering pipeline after ablating
this signal (i.e., omitting per-example attribute). Owing to space constraints, results are reported
in Appendix Figure 8, showing downstream performance of Qwen3-0.6B on each dataset under
this “no-attribute” condition. Across benchmarks, we observe a consistent drop in accuracy and
reasoning metrics when per-example information is excluded, confirming that these attributes are
key to forming meaningful clusters and improving curriculum selection.

6.4 OTHER ABLATION STUDIES

We also ablate (i) diverse sample selection, (ii) embedding model choice, (iii) number of PCA
components, (iv) samples per cluster, (v) selected-sample difficulty, (vi) dataset distribution, and
(vii) cluster properties and (vii) training time (Appendices A.5, A.6, A.7, A.9, A.10, A.11, A.12).
Across these dimensions, the results consistently support the robustness of our approach, clarify
trade-offs and hyperparameter sensitivities, and offer practical guidance for default settings.

7 CONCLUSION

We introduced SPaRFT, a lightweight framework that enables efficient reasoning in small language
models through clustering and adaptive curriculum learning. SPaRFT selects compact, diverse train-
ing subsets and dynamically adapts training focus based on model performance. Experiments show
that SPaRFT achieves competitive accuracy with significantly fewer samples. These results high-
light the effectiveness of combining semantic clustering with performance-driven curricula to unlock
reasoning in small models using minimal resources.

9
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REPRODUCIBILITY STATEMENT

Implementation details and experimental setups are provided in the Appendix. Following publi-
cation, we will release our codebase as open source, along with documentation to facilitate repro-
ducibility.

LLM USAGE

Large Language Models (LLMs) were not involved in the conception or design of our approach. We
used them only to improve the manuscript’s readability (grammar and style) and for a small post-hoc
analysis; none of these uses influenced the method, training, or reported results.
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A APPENDIX

A.1 ALGORITHM FOR SPARFT

In this section, we provide the pseudo-code for SPaRFT in Algorithm 1.

Algorithm 1 SPaRFT
Input: Policy πθ, Dataset D, Embedding model ϕ, Clusters K, Batch size B, RL algorithm A,
Small positive constant ϵ
Output: Trained policy πθ

1: // Phase 1: Cluster-based Data Reduction
2: for each xi ∈ D do
3: si ← PCA(ϕ(xi)), di ← difficulty(xi)
4: ei ← si ⊕ di
5: end for
6: Run K-means on {ei} to form {Ck}Kk=1
7: Select l diverse examples Sk ⊂ Ck via farthest sampling
8: Dtrain ←

⋃
k{xi | i ∈ Sk}

9: // Phase 2: Bandit-driven Curriculum
10: Initialize Multi-arm Bandit
11: for each k do
12: Initialize Rk ← 0, nk ← 0
13: end for
14: while training not finished do
15: for each cluster k = 1, . . . ,K do
16: Sample reward estimate: µ̃k ∼ N

(
− Rk

nk+ϵ ,
1

nk+ϵ

)
17: end for
18: Select cluster: ct ← argmaxk µ̃k

19: Sample batch X ⊂ Cct
20: Generate responses G← πθ(X)
21: Calculate correctness ri, i = 1, . . . , B

22: Compute average reward ravg ← 1
B

∑B
i=1 ri

23: Update policy: πθ ← A(πθ, X,G, ravg)
24: Update bandit stats:

Rct ← Rct + ravg, nct ← nct + 1

25: end while
26: return πθ

A.2 CONVERGENCE OF THE THOMPSON SAMPLING SCHEDULER

We analyze the convergence of the Thompson Sampling scheduler used in SPaRFT. Each data cluster
is treated as an arm in a multi-armed bandit. At step t, let πθ(t) denote the model with parameters
θ(t). The expected reward (solve rate) of cluster Ck is defined as:

µ
(t)
k = Ex∼Ck

[Pr(πθ(t)(x) = correct)] . (8)

where Pr (πθ(t)(x) = correct) denotes the probability that the model produces a correct answer for
input x.

We already have: (1) the model is trained using gradient clipping with threshold Gmax; (2) the
learning rate αt follows a cosine decay schedule with warmup and is therefore non-increasing and
vanishes as t→∞; and (3) the expected rewards satisfy µ

(t)
k ∈ [0, 1] for all clusters k. These three

properties are directly enforced in the SPaRFT implementation.

To complete the convergence analysis, we now bound the drift of each cluster’s expected reward.
Define

fk(θ) = Ex∼Ck

[
Pr
(
πθ(x) = correct

)]
, (9)
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where fk is the cluster-level reward surface for arm k, and note that since each layer of our base
model is continuously differentiable, so is fk(θ) (Goodfellow et al., 2016). We assume that, in
practice, gradient clipping at norm Gmax together with a bounded initialization prevents the pa-
rameters {θ(t)} from diverging excessively, effectively keeping them in some large but fixed ball
{∥θ∥ ≤ R}. Empirical studies on LLM training have repeatedly observed that clipped updates
under cosine-decay schedules yield stable trajectories without catastrophic parameter growth (e.g.,
(Wang et al., 2025a; Huang et al., 2025)).

Under this assumption, the extreme-value theorem (Rudin, 1976) guarantees the existence of a con-
stant H <∞ such that

∥∇θfk(θ)∥ ≤ H ∀ ∥θ∥ ≤ R. (10)

Moreover, each gradient step with cosine-decay learning rate αt and gradient clipping satisfies

∥θ(t+1) − θ(t)∥ ≤ αt Gmax. (11)

Applying the mean-value theorem (Rudin, 1976) then yields∣∣µ(t+1)
k − µ

(t)
k

∣∣ = ∣∣fk(θ(t+1))− fk(θ
(t))
∣∣

≤ H ∥θ(t+1) − θ(t)∥
≤ H Gmax αt = εt, (12)

where εt → 0 as αt → 0. Thus, we obtain the desired vanishing drift
∣∣µ(t+1)

k − µ
(t)
k

∣∣ ≤ εt for every
cluster k.

Let VT =
∑T−1

t=1 maxk |µ(t+1)
k − µ

(t)
k | denote the total reward variation up to step T . The bound

above implies

VT ≤
T−1∑
t=1

εt. (13)

Since αt = O(1/t) after warmup, we have
∑T−1

t=1 εt = O(log T ), and hence VT = O(log T ). This
sublinear variation is sufficient to ensure convergence of Thompson Sampling in the non-stationary
bandit setting, as shown in prior work (Besbes et al., 2014). Therefore, the Thompson Sampling
scheduler concentrates on the cluster(s) with the highest current expected reward as t → ∞. This
ensures that the bandit-based curriculum used in SPaRFT converges to the most informative training
distribution over time.

A.3 ADDITIONAL RELATED WORK: REINFORCEMENT FINE-TUNING FOR LANGUAGE
MODELS

Due to page limit in the main paper, we include the additional related work in the Reinforcement
Fine-Tuning methods for Language Models here.

Language Models can be formulated as sequential decision-making agents, enabling the application
of RL techniques for fine-tuning. Proximal Policy Optimization (PPO) (Schulman et al., 2017) has
been widely adopted in early RLHF pipelines due to its balance between stability and sample ef-
ficiency. More recent work introduced actor-only alternatives such as REINFORCE++ (Hu, 2025)
and Group Relative Policy Optimization (GRPO) (DeepSeek-AI, 2025), which eliminate the need
for value networks and have shown strong performance on large language models, particularly in
reasoning tasks. By avoiding a separately trained critic, these approaches simplify optimization,
reduce variance in policy updates, and mitigate instability caused by poorly estimated value func-
tions. GRPO, in particular, has been successfully deployed in large-scale instruction tuning setups
where explicit reward modeling is either impractical or misaligned with target behaviors. Instead
of depending on hand-crafted reward models, GRPO leverages group-based relative comparisons
across sampled trajectories, thereby aligning the optimization signal with preference-style super-
vision. This actor-only paradigm aligns naturally with recent trends in LLM alignment, where
scalability, reduced computational overhead, and robustness to noisy feedback are critical. These
methods represent a shift from critic-dependent RLHF pipelines toward lightweight, actor-centric
algorithms that better match the scale and complexity of modern LLM training regimes.
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A.4 ADDITIONAL BASELINE: LEARNING IMPACT MEASUREMENT

In this section, we compare the performance of our method on mathematical reasoning tasks against
a variance-based data selection approach, Learning Impact Measurement (LIM) (Li et al., 2025).
While the original LIM paper reports results on the MATH-Full dataset (Hendrycks et al., 2021),
we also conduct clustering on the same dataset using our method (SPaRFT) to ensure a fair com-
parison. It is worth noting that after data reduction, LIM retains approximately 1,400 training
samples, whereas SPaRFT selects only 5 representative clusters, corresponding to just 50 data
points—amounting to merely 3% of the data used by LIM baseline. Despite this drastic re-
duction, our method achieves competitive or superior results, demonstrating that SPaRFT can reach
high efficiency and effectiveness with a fraction of the training data. For these experiments, we
performs training on 3 different seeds, and report in Table 4.

A.4.1 LIM DEFINITION

LIM computes a per-sample score from its reward trajectory relative to the model’s average reward
curve across epochs. Let r k

i be the reward of sample i at epoch k and rk = 1
N

∑N
i=1 r

k
i the epoch-

wise mean over all N samples for k = 1, . . . ,K. The alignment score is

si = 1 −
∑K

k=1

(
r k
i − rk

)2∑K
k=1

(
1− rk

)2 , i = 1, . . . , N, (14)

which normalizes the squared deviation of the sample trajectory from the epoch-wise mean. Data
reduction is performed by thresholding:

DLIMR = { i : si > θ }. (15)

A.4.2 RESULTS

We show the results on four mathematical reasoning datasets between our method and LIMR using
MATH as training data in Table 4. We select Qwen2.5-0.5B-Instruct as the base LLM for training.

The results highlight the effectiveness of SPaRFT compared to both the Base model and LIMR. On
GSM8K, SPaRFT reaches 32.0%, which represents a relative improvement of +22% over the Base
(26.3%) and still surpasses LIMR (30.7%). On MATH500, SPaRFT achieves 20.7%, outperforming
LIMR (20.3%) and the Base (20.0%), showing that our method yields more stable gains even on
challenging competition-level problems. Notably, SPaRFT is the only method that improves perfor-
mance on the Olympiad benchmarks: it attains 1.1% on AIME24 and 3.3% on AIME25, while both
the Base and LIMR fail to make progress on these harder tasks.

Overall, these findings confirm that SPaRFT not only provides consistent improvements on standard
benchmarks such as GSM8K and MATH500, but also uniquely enhances generalization to the most
challenging settings, where variance-based selection methods like LIMR struggle. This demon-
strates the robustness and efficiency of our cluster-based approach in leveraging limited training
data for stronger downstream reasoning performance.

Method GSM8K MATH500 AIME24 AIME25

Base 26.3 20.0 0.0 0.0
LIMR 30.7 ± 1.3 20.3 ± 1.1 0.0 ± 0.0 0.0 ± 0.0
SPaRFT 32.0 ± 0.8 20.7 ± 1.2 1.1 ± 1.9 3.3 ±0.0

Table 4: Mean± standard deviation over 3 seeds on the MATH dataset using Qwen2.5-0.5B-Instruct
as the base model. Best results are bolded.

A.5 EFFECT OF DIVERSE SAMPLE SELECTION

We show the impact of sample selection strategies for the data reduction on the performance of
different LLMs in Figure 6. Specifically, we compare our method against two baselines: random,
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Figure 6: Comparison of selection strategies across datasets. Selecting diverse examples with
SPaRFT outperforms both random and closest baselines. Closest examples perform worse, likely
due to reduced variety within each cluster.

which randomly selects training examples for the cluster, and closest, which selects the closest
examples to the cluster center. As observed, selecting diverse examples with our method consistently
yields the highest performance across four datasets. Interestingly, the closest strategy performs
worse than random in most cases. We hypothesize that this is because the examples nearest to the
cluster center tend to be overly similar, thus failing to provide sufficient coverage and variation for
effective learning.

A.6 IMPACT OF EMBEDDING MODEL CHOICE

To assess SPaRFT’s robustness to different semantic embedding backbones, we compare its default
sentence encoder with an alternative based on Qwen2-1.5B-Instruct (Alibaba-NLP/gte-Qwen2-1.5B-
instruct). We denote Qwen31 as the baseline using Qwen3-Embedding-0.6B, which is adopted in
SPaRFT, and Qwen2.52 as the baseline using Alibaba-NLP/gte-Qwen2-1.5B-instruct. Table 5 re-
ports zero-shot performance on four math reasoning benchmarks. Results show that SPaRFT yields
nearly identical performance across both embedding models, with the Qwen3-based encoder show-
ing a slight advantage. This plug-and-play flexibility demonstrates that any high-quality pre-trained
encoder can be seamlessly integrated into our framework without retraining.

Embedding GSM8K MATH500 AIME24 AIME25

Qwen31 32.9±0.9 22.0±0.7 2.2±1.9 1.1±1.9
Qwen2.52 31.6±0.6 21.0±1.2 1.1±1.9 0.0±0.0

Table 5: Results using DeepScaleR as training data for Qwen2.5-0.5B-Instruct, evaluated with two
embedding models: Qwen31 and Qwen2.52.

A.7 IMPACT OF THE NUMBER OF PCA COMPONENT

In SPaRFT, we first apply PCA to reduce the dimensionality of the latent vectors extracted from the
pretrained Sentence-BERT model. By default we use 50 principal components; here, we vary this
number to study its effect on final performance. Using Qwen3-0.6B as the base model and training
on the DeepScaleR-uniform dataset, the results are shown in Table 6. We observe that smaller to
moderate numbers of components (10 or 50) yield the best performance, whereas larger values (100
or 300) lead to a decline. We hypothesize that very high-dimensional embeddings overwhelm the
difficulty signal prior to clustering, resulting in poorer downstream performance.
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Number of PCA Components GSM8K MATH500 AIME24 AIME25 Average
10 79.2 74.4 13.3 20.0 46.7
50 79.5 78.9 13.3 23.3 48.8
100 79.8 76.6 6.7 13.3 44.1
300 79.0 75.8 16.7 10.0 45.4

Table 6: Results on 1 same seed on the DeepScaleR-uniform dataset using Qwen3-0.6B as the base
model with different number of PCA components.

A.8 NUMBER OF SAMPLES IN EACH CLUSTER

We vary the number of samples per cluster l to assess its impact, and present the results in Figure 7.
As shown, performance peaks at our default setting of l = 10. In contrast, using l = 1 yields
lower performance, likely because the selected examples lack sufficient diversity to provide a strong
learning signal. Larger values of l ∈ [100, 300] also lead to degraded performance, which we
attribute to increased randomness when sampling too many examples per arm, especially when
l≫ B. Due to compute limits, we couldn’t extensively tune l between 10–100, where better results
might be possible. Overall, setting l ∼ B achieves the most reasonable results.
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Figure 7: Results for 1 seed with Qwen3-0.6B and different number of samples per cluster.

A.9 SELECTED TRAINING SAMPLES DIFFICULTY

We analyze the selected training examples to understand how SPaRFT constructs its curriculum.
Figure 9 shows the difficulty distribution of questions selected on the DeepScaleR-uniform dataset.
SPaRFT consistently chooses examples across the full difficulty range—from easy (near 0) to hard
(near 100)—ensuring balanced coverage. This diversity enables training on a broad range of prob-
lems, avoiding overfitting to simple or complex cases. Notably, this balance emerges without manual
difficulty constraints, highlighting the effectiveness of SPaRFT’s clustering and selection strategy.
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Figure 8: Effect of Removing Difficulty in Clustering on Performance.
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Figure 9: Difficulty distribution of training examples in SPaRFT.

A.10 DEEPSCALER SUBSET DISTRIBUTIONS

We provide the difficulty score distributions of three DeepScaleR subsets: DeepScaleR Uniform,
DeepScaleR Easy, and DeepScaleR Difficult, as shown in Figure 10. Each subset exhibits distinct
difficulty characteristics, reflecting the varying levels of challenge present in the data. The distri-
butions are grouped into bins of size 10, allowing for a clear comparison of how problem difficulty
varies across these subsets. In particular, the Uniform subset spans the entire difficulty range with
roughly balanced coverage, making it suitable for general-purpose training and evaluation. By con-
trast, the Easy subset is concentrated heavily in the lower-difficulty bins, highlighting its role in
providing simpler problems for warm-up training or curriculum learning. Meanwhile, the Difficult
subset skews strongly toward the higher-difficulty bins, offering more challenging samples that are
valuable for stress-testing reasoning capabilities and benchmarking advanced methods. Together,
these subsets provide complementary perspectives on model performance across a wide spectrum of
difficulty levels, ensuring a more comprehensive assessment of reasoning ability.

A.11 CLUTER ANALYSIS

In this section, to provide further insight into what happens during the clustering phase of our frame-
work, we analyze several representative settings to examine both what is captured for training and
how clustering shapes the overall behavior of our approach. Specifically, we investigate how prob-
lem embeddings are grouped and how these clusters align with meaningful curricular categories.
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Figure 10: DeepScaleR subsets’ difficulty distributions.

For this purpose, we employ GPT-5’s API (OpenAI, 2025) to categorize each problem into one of
the seven canonical subject areas defined by Hendrycks et al. (2021), namely: Prealgebra, Alge-
bra, Number Theory, Counting & Probability, Geometry, Intermediate Algebra, and Precalculus.
This taxonomy is consistent with the Art of Problem Solving (AoPS) curriculum (Art of Problem
Solving), which provides a widely accepted structure for organizing mathematical problem-solving
skills.

• Prealgebra: Covers arithmetic foundations, including fractions, decimals, percents, ratios,
proportions, and basic number properties. It also introduces simple equations and word
problems.

• Algebra: Focuses on symbolic manipulation and equations, such as linear and quadratic
equations, inequalities, systems of equations, factoring, functions, and exponents. It marks
the transition from arithmetic to general algebraic reasoning.

• Number Theory: Includes topics such as divisibility, prime numbers, greatest common di-
visors, modular arithmetic, congruences, and Diophantine equations. Problems emphasize
reasoning about integer structure and properties.

• Counting & Probability: Encompasses combinatorics and elementary probability, includ-
ing permutations, combinations, casework, binomial coefficients, expected value, and prob-
abilistic reasoning.

• Geometry: Centers on Euclidean geometry of lines, angles, triangles, quadrilaterals, cir-
cles, and polygons. Topics include similarity, congruence, area, volume, coordinate geom-
etry, and introductory trigonometric methods.

• Intermediate Algebra: Extends algebra with higher-level topics such as polynomials, ra-
tional functions, complex numbers, inequalities, logarithmic and exponential functions, and
sequences/series.

• Precalculus: Prepares for calculus through trigonometry, advanced functions, po-
lar/parametric representations, vectors, and deeper study of sequences and series.

A.11.1 DEEPSCALER DATASET

We analyze the DeepScaleR dataset under the configuration with K=7 clusters induced by
Qwen3-0.6B-Embeddings, consistent with Table 9. Figure 10 visualizes one representative
run. The resulting partition exhibits intuitive curricular structure: a majority of items fall into Pre-
algebra (51.4%), with Geometry (18.6%) and Algebra (12.9%) also comprising substantial shares;
by contrast, smaller categories such as Number Theory (1.4%) and Intermediate Algebra (1.4%)
are comparatively scarce, with the remaining mass distributed across Counting & Probability and
Precalculus.

Beyond mirroring topical prevalence in the underlying corpus, this distribution suggests that the
embedding-driven clustering is aligned with both latent difficulty and high-level curricular distinc-
tions. Practically, this yields two benefits for downstream training: (i) it avoids over-emphasizing
any single subject area, providing balanced exposure across topics; and (ii) it simplifies schedul-
ing, since strata can be sampled in a principled way (e.g., uniformly or by difficulty-aware policies)
without ad-hoc reweighting to correct for cluster idiosyncrasies. In short, even though clusters are
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Total Samples:
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Figure 11: Selected data subjects (70 samples) using Qwen3-0.6B-Embedding. The data is clustered
from DeepScaleR-uniform set.
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Figure 12: Selected data subjects (70 samples) using Qwen3-0.6B-Embedding. The data is clustered
from Knights and Knaves set.

formed in representation space, they preserve pedagogically meaningful boundaries that support
stable and fair curriculum design.

A.11.2 KNIGHTS-AND-KNAVES DATASET

We conduct an analogous analysis on the Knights-and-Knaves dataset using K=7 clusters obtained
with Qwen3-0.6B-Embeddings. The results are shown in Figure 12. Plotting the distribution
of selected questions by the number of people per instance reveals two robust regularities across all
three training seeds: (i) no 2-person questions are selected; and (ii) aside from the 7-person category,
all remaining categories contain the same number of questions. The same symmetry appears in
the other seeds, indicating that the clustering process is not only semantically coherent but also
structurally consistent with a salient, coarse-grained attribute (the number of entities in the prompt).

These regularities have useful practical consequences. First, they provide balanced coverage over
interaction sizes, preventing the curriculum from drifting toward a single conversational complexity.
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Second, they reduce confounds in subsequent evaluation and scheduling: because most categories
are equalized, one can adopt simple, uniform sampling or layer a performance-aware scheduler
on top without introducing artifacts from cluster imbalance. We reckon the persistent absence of
2-person items likely reflects a combination of dataset composition and our selection protocol’s
preference for more discriminative examples.

A.12 TRAINING TIME

To evaluate computational efficiency, we measure wall-clock training time when applying AdaRFT
and our proposed SPaRFT across five representative base models: Qwen3-0.6B, Falcon, Llama3,
Qwen2.5, and Qwen3-8B. These models span a range of parameter scales and architectures, provid-
ing a balanced testbed for assessing runtime behavior under different backbone choices. All runs
are conducted under identical hardware and data conditions to ensure a fair comparison.

Figure 13 reports the results. Across all models, SPaRFT consistently reduces wall-clock train-
ing time relative to AdaRFT, with per-model savings ranging from 2.1% to 10.8% (e.g., Qwen2.5:
−66 minutes, −10.8%; Qwen3-8B: −85 minutes, −5.6%; Llama3: −40 minutes, −7.4%;
Qwen3-0.6B: −23 minutes, −2.4%; Falcon: −14 minutes, −2.1%).

We attribute these savings to SPaRFT’s clustering phase, which dynamically prioritizes clusters
that yield higher learning signal over a reduced selection space, thereby avoiding wasted updates
on redundant or low-yield samples. Although the absolute magnitude of savings depends on the
underlying backbone, the improvements are consistent across diverse architectures, highlighting
that SPaRFT not only improves data efficiency but also offers a practical reduction in training cost
without additional engineering or inference-time overhead.

0 250 500 750 1000 1250 1500 1750 2000
Wall-clock time (minutes)

Qwen3-0.6B

Falcon

Llama3

Qwen2.5

Qwen3-8B

16h00m
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Training Runtime: ADARFT vs. SPaRFT
ADARFT
SPaRFT

Figure 13: Training time comparison between AdaRFT and SPaRFT.

A.13 SPARFT TRAINING DETAILS

A.13.1 TRAINING HYPERPARAMETERS

General Training Parameters In this section, we provide the training details of SPaRFT in Table
7. These parameters apply for full training LLMs (which excludes the training of Qwen3-8B-Base).
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Parameters Value
Number of examples per cluster (l) 10
Number of PCA components 50
Batch size (B) 8
Number of generation per step (G) 8
Maximum completion length (L) 1200
Initial learning rate (α) 5e−6

Weight Decay 0.1
Warmup Ratio 0.1
lr scheduler type cosine
Adam β1 0.9
Adam β2 0.99
bf16 True
Per device train batch size 8
Gradient accumulation steps 8
Max grad norm (Gnorm) 0.1
ϵ 1e−6

Table 7: Parameters used in SPaRFT.

LoRA Training Parameters In this section, we provide the LoRA training parameters for Qwen3-
8B-Base. All the parameters used are reported in Table 8.

Parameters Value
All Parameters 8,194,569,216
Trainable Parameters (l) 3,833,856
Trainable % 0.05
Rank 8
LoRA α 16
Target Modules [”q proj”, ”v proj”]
LoRA Dropout 0.1
Bias None

Table 8: Parameters used for Low-rank Adaptation (LoRA) Fine-tuning.

A.13.2 NUMBER OF CLUSTERS

We provide the number of clusters used for different settings of SPaRFT in Table 9. While the
optimal number of clusters varies across datasets, it remains within a moderate range, consistent
with our observations in Section 6.3.

Model Train dataset Number of clusters

Qwen3-0.6B

DeepScaleR-uniform 7
DeepScaleR-easy 8

DeepScaleR-difficult 10
GSM8K 10

Falcon3-1B-Instruct DeepScaleR-uniform 6

Llama-3.2-1B-Instruct DeepScaleR-uniform 8

Qwen2.5-0.5B-Instruct DeepScaleR-uniform 7
Knights and Knaves 7

Qwen3-8B-Base DeepScaleR-uniform 7

Table 9: Number of clusters used for different settings of our method.
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Models/Datasets URL
Qwen3-Embedding-0.6B https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
Qwen2.5-0.5B-Instruct https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
Llama3.2-1B-Instruct https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
Falcon3-1B-Instruct https://huggingface.co/tiiuae/Falcon3-1B-Instruct
Alibaba-NLP/
gte-Qwen2-1.5B-instruct https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct
DeepScaleR https://huggingface.co/datasets/agentica-org/DeepScaleR-Preview-Dataset
GSM8K https://huggingface.co/datasets/openai/gsm8k
MATH-500 https://huggingface.co/datasets/HuggingFaceH4/MATH-500
AIME24 https://huggingface.co/datasets/math-ai/aime24
AIME25 https://huggingface.co/datasets/math-ai/aime25

Table 10: Models and Datasets Details.

A.13.3 MODEL AND DATA REFERENCES

We list the links to the LLM models and datasets in Table 10.

A.13.4 SYSTEM PROMPT

Following (Hugging Face, 2025), the system prompt asks the model to generate the answer with
clear requirements, with reasoning and answer following the format, as described in Figure 14.

SYSTEM PROMPT
You are a helpful assistant. Please reason step by
step, and put your final answer within \boxed{}.

Figure 14: System prompt used in our experiments.

A.14 RESPONSE EXAMPLES

We present several sampled responses of SPaRFT in Table 11 and 12.

A.15 SELECTED EXAMPLE ANALYSIS

In this section, we provide details on the selected examples by SPaRFT. For each cluster, we show 2
selected examples selected by our method using Qwen3-0.6B, with the DeepScaleR-uniform dataset.
We select the examples from the setting with total number of clusters equal 7. The examples are
shown from Table 13 to Table 19.
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Table 11: Qwen3-0.6B fine-tuned with SPaRFT responses.

Question
Let f be the function defined by f(x) = ax2 −

√
2 for some positive a. If f(f(

√
2)) = −

√
2

then a =. Please reason step by step, and put your final answer within \boxed{}.
Answer
To solve for a, we need to find the value of a such that f(f(

√
2)) = −

√
2, where f(x) =

ax2 −
√
2. First, let’s compute f(

√
2):

f(
√
2) = a(

√
2)2 −

√
2 = a(2)−

√
2 = 2a−

√
2

Now, we need to compute f(f(
√
2)):

f(f(
√
2)) = f(2a−

√
2) = a(2a−

√
2)2 −

√
2

Let’s expand the square term:

(2a−
√
2)2 = (2a)2 − 2(2a)(

√
2) + (

√
2)2 = 4a2 − 4a

√
2 + 2

. . .

So the discriminant is zero, which means there is a repeated root:

a =
2
√
2

4
=

√
2

2

Therefore, the value of a is
√
2
2 .

Let me double-check the calculations to ensure there are no errors. Starting from the beginning:
1. f(

√
2) = a(2)−

√
2 = 2a−

√
2

2. Then f(f(
√
2)) = f(2a−

√
2) = a(2a−

√
2)2 −

√
2

3. Expanding (2a−
√
2)2 gives 4a2 − 4a

√
2 + 2

4. Multiplying by a and subtracting
√
2 gives 4a3 − 4a2

√
2 + 2a−

√
2

5. Setting equal to −
√
2 leads to the equation 4a3 − 4a2

√
2 + 2a = 0

6. Factoring gives 2a(2a2 − 2a
√
2 + 1) = 0, leading to the quadratic with discriminant zero.

Yes, the steps seem correct. The discriminant being zero implies a repeated root, which gives

a =
√
2
2 . Therefore, the answer is

√
2

2
.

**Final Answer** √
2

2
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Table 12: Qwen3-0.6B fine-tuned with SPaRFT responses.

Question
A set S of points in the xy-plane is symmetric about the origin, both coordinate axes, and the
line y = x. If (2, 3) is in S, what is the smallest number of points in S?. Please reason step by
step, and put your final answer within \boxed{}.
Answer
To solve this problem, we need to determine the smallest number of points in the set S, given
that the set is symmetric about the origin, both coordinate axes, and the line y = x. Addition-
ally, the point (2, 3) is in S.
—
### Step 1: Understand the Symmetry Conditions
A set of points that is symmetric about the **origin** means that for every point (x, y) in S,
(−x,−y) is also in S.
Symmetry about the **coordinate axes** means that if (x, y) is in S, then (y, x) is also in S.
Symmetry about the **line y = x** means that if (x, y) is in S, then (y, x) is also in S.

. . .

Is there a point that we might be missing?
Let’s check if (3, 2) is symmetric to itself. Yes, it is.
So, with these three points, we have covered all the symmetries.
But wait! What about the point (2, 3)? Is there a point symmetric to it that we haven’t consid-
ered?
No, because we already considered all the points under the given symmetries.
So, the minimal number of points in S is 3.
—
### Final Answer:

3

Table 13: Cluster 0 examples. Only 2 examples are shown for illustration.

Example 1
Prompt
(In the preliminaries of optimal method and experimental design) When using the 0.618 method
to find the optimal amount to add in an experiment, if the current range of excellence is
[628, 774] and the good point is 718, then the value of the addition point for the current ex-
periment is . Please reason step by step, and put your final answer within \boxed{}.
Answer
684
Example 2
Prompt
Calculate the probability that in a deck of 52 cards, the second card has a different suit than the
first, and the third card has a different suit than the first and second. Please reason step by step,
and put your final answer within \boxed{}.
Answer
169
425
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1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
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Table 14: Cluster 1 examples. Only 2 examples are shown for illustration.

Example 1
Prompt
Calculate: cos 190◦(1+

√
3 tan 10◦)

sin 290◦
√
1−cos 40◦

= . Please reason step by step, and put your final answer
within \boxed{}.
Answer
2
√
2

Example 2
Prompt
Let an be the number of n-digit numbers formed using only digits 1 and 2 such that no two
adjacent digits are both 2. Find a5. Please reason step by step, and put your final answer within
\boxed{}.
Answer
13

Table 15: Cluster 2 examples. Only 2 examples are shown for illustration.

Example 1
Prompt
You have 5 red balls and 5 blue balls in a box. You randomly draw 4 balls without replacement.
What is the probability that exactly 2 red balls are drawn? Please reason step by step, and put
your final answer within \boxed{}.
Answer
25
63
Example 2
Prompt
If a and b are real numbers such that a2 + b2 = 1, what is the maximum value of ab? Please
reason step by step, and put your final answer within \boxed{}.
Answer
1
2

Table 16: Cluster 3 examples. Only 2 examples are shown for illustration.

Example 1
Prompt
Solve for x: log3(x

2 − 1) = 2. Please reason step by step, and put your final answer within
\boxed{}.
Answer
4
Example 2
Prompt
Evaluate the integral

∫ 1

0
xex dx. Please reason step by step, and put your final answer within

\boxed{}.
Answer
e− 2
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1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 17: Cluster 4 examples. Only 2 examples are shown for illustration.

Example 1
Prompt
If sinx + cosx =

√
2, find the value of sin4 x + cos4 x. Please reason step by step, and put

your final answer within \boxed{}.
Answer
3
4
Example 2
Prompt
Find the sum of the series

∑∞
n=1

1
n(n+1) . Please reason step by step, and put your final answer

within \boxed{}.
Answer
1

Table 18: Cluster 5 examples. Only 2 examples are shown for illustration.

Example 1
Prompt
How many 4-digit numbers are there such that no two adjacent digits are the same? Please
reason step by step, and put your final answer within \boxed{}.
Answer
5832
Example 2
Prompt
If A = {1, 2, 3, 4} and B = {3, 4, 5, 6}, what is A ∪ B? Please reason step by step, and put
your final answer within \boxed{}.
Answer
{1, 2, 3, 4, 5, 6}

Table 19: Cluster 6 examples. Only 2 examples are shown for illustration.

Example 1
Prompt

What is the value of the determinant of the matrix
[
1 2
3 4

]
? Please reason step by step, and put

your final answer within \boxed{}.
Answer
−2
Example 2
Prompt
Simplify: (2x − 3)2 − (x + 1)2. Please reason step by step, and put your final answer within
\boxed{}.
Answer
3x2 − 14x+ 8
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