
Under review as a conference paper at ICLR 2023

LEARNING COMBINATORIAL NODE LABELING
ALGORITHMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present the combinatorial node labeling framework, which generalizes many
prior approaches to solving hard graph optimization problems by supporting prob-
lems where solutions consist of arbitrarily many node labels, such as graph coloring.
We then introduce a neural network architecture to implement this framework. Our
architecture builds on a graph attention network with several inductive biases to
improve solution quality and is trained using policy gradient reinforcement learning.
We demonstrate our approach on both graph coloring and minimum vertex cover.
Our learned heuristics match or outperform classical hand-crafted greedy heuristics
and machine learning approaches while taking only seconds on large graphs. We
conduct a detailed analysis of the learned heuristics and architecture choices and
show that they successfully adapt to different graph structures.

1 INTRODUCTION

Graph problems have numerous real-world applications, ranging from scheduling problems (Marx,
2004) and register allocation (Chaitin, 1982; Smith et al., 2004), to computational biology (Abu-
khzam et al., 2004). However, many useful graph optimizations problems are NP-hard to solve (Karp,
1972). This has spurred a variety of approaches, from greedy heuristics (Brélaz, 1979; Papadimitriou
& Steiglitz, 1982; Matula & Beck, 1983; Avis & Imamura, 2007; Delbot & Laforest, 2008) to
integer linear programming (Graver, 1975). More recently, machine learning approaches have shown
increasing promise (Dai et al., 2017; Kool et al., 2019; Li et al., 2018; Karalias & Loukas, 2020).

From a structural point of view, many graph problems fall into one of three classes depending on the
type of their solution: Problems that ask for (1) subsets of vertices, (2) permutations of vertices, or
(3) partitions of vertices into two or more sets. Most work has focussed on either the first two (Dai
et al., 2017), or just one of the three (Bello et al., 2017; Li et al., 2018; Kool et al., 2019; Karalias
& Loukas, 2020; Manchanda et al., 2020; Cappart et al., 2020; Drori et al., 2020; Ma et al., 2020).
Existing machine learning methods for the first two types of problems, such as S2V-DQN (Dai et al.,
2017), do not easily generalize to cases where the number of labels is not known in advance. Many
important and challenging problems, such as graph coloring (Marx, 2004; Myszkowski, 2008; Bandh
et al., 2009), require that vertices be partitioned into an unkown number of sets.

To address this, we present the combinatorial node labeling framework (§2), which generalizes prior
approaches (Fig. 1), and supports many problems, including minimum vertex cover (Onak et al.,
2012; Bhattacharya et al., 2017; Ghaffari et al., 2020), traveling salesman (Dantzig et al., 1954;
Garey & Johnson, 1990), maximum cut (Karp, 1972), and list coloring (Jensen et al., 1995). These,
and many other (§D), problems can all be framed as iteratively assigning a label to nodes, in some
order. We then introduce a neural architecture, GAT-CNL, to learn greedy-inspired heuristics for such
problems (§3). We use policy gradient reinforcement learning (Sutton & Barto, 2018; Kool et al.,
2019) to learn a node ordering and combine this with a fixed label rule to label each node according
to the ordering. We show that for the chosen label rules, there still exists an order that guarantees an
optimal solution. By using policy gradients, we can construct both a deterministic greedy policy, as
well as a probabilistic policy where sampling boosts the solution quality. To improve performance,
we incorporate two inductive biases: spatial locality, where labeling a node only impacts the weights
of its neighbors; and temporal locality, where node selection is conditioned only on the previously
labeled node, a summary of prior labelings, and a global graph context (Figs. 2 and 3).

1

Under review as a conference paper at ICLR 2023

S2V
Encoder

Greedy
Decoder

State Embedding

Vertex embedding
Next

vertex

Graph
S2V-DQN

m

m

m

m edges
n vertices

n times

GAT
Encoder

Probabilistic
Decoder

State Embedding

Label Assignment

Vertex embedding
Next vertex
& Next label

Next
vertex

Graph
Ours: GAT-CNL

m/n

m

m/nm/n

Average Time

Learnable

m edges
n vertices

n times

No labels

Set
[Dai et al. 2017; Li et al. 2018;

Manchanda et al. 2020; Barrett et al. 2020]
Example tasks:
§ Max cut
§ MVC (§4.2)
§ Max clique

‸

Permutation
[Bello et al. 2017; Dai et al. 2017;
Joshi et al. 2019; Kool et al. 2019;

Cappart et al. 2020; Drori et al. 2020;
Ma et al. 2020]

Example tasks:
§ TSP
§ Longest paths

Node Labeling
[Ours]

Example tasks:
§ Graph coloring (§4.1)
§ Min k-cut
§ Clique cover

Figure 1: Left: Venn diagram of tasks solvable with the set, permutation, and node labeling frameworks. Node
labeling generalizes existing frameworks and allows solving additional tasks. Center & right: Comparison
of our architecture with S2V-DQN (Dai et al., 2017). We add a label assignment step, allowing us to solve
new problems. Further, the average time for picking the next vertex is significantly reduced, such that the total
number of arithmetic operations is now linear in the size of the graph.

We evaluate our approach (§4) and demonstrate significantly improved performance for neural graph
coloring (GC) and find near-optimal solutions for minimum vertex cover (MVC). We additionally
study the runtime of our models, conduct comprehensive ablation studies, and provide qualitative
analyses of the learned heuristics, showing they adapt to the properties of the input graph.

Related work. We now review key related works. Figure 1 (left) provides a comparison of node
labeling with other frameworks.

Supervised learning. The fundamental downsides of supervised learning for combinatorial opti-
mization are twofold: First, it can be difficult to formulate a problem in a supervised manner, since it
might have many optimal solutions (e.g., GC). Second, even if the problem admits a direct supervised
formulation, we still need labeled data for training, which can be hard to generate and relies on an
existing solver. In particular, supervised learning cannot easily be used for problems that have not
been studied before. Advantages of supervised learning are its sample efficiency and that it can lead
to overall better results. Recent approaches like Joshi et al. (2019) and Manchanda et al. (2020) obtain
good results for influence maximization (IM) and the traveling salesman problem (TSP), respectively.
Both approaches use supervised learning. For IM, the approach of Manchanda et al. (2020) shows
promising results on graphs much larger than those seen in training. For TSP, the approach of Joshi
et al. (2019) is very efficient but does not generalize well to graphs larger than those seen in training.
Li et al. (2018) also use supervised learning and produce good results on minimum vertex cover
(MVC), maximum independent set, and maximal clique.

Unsupervised Learning. To apply unsupervised learning, it is necessary to formulate a differen-
tiable surrogate loss. There have been approaches for several specific combinatorial optimization
problems (Nazi et al., 2019; Amizadeh et al., 2019; Tönshoff et al., 2019; Yao et al., 2019) and there
has been progress to create a framework for the derivation of trainable losses (Karalias & Loukas,
2020). Still, significant insight into a problem is required to design suitable loss functions.

Reinforcement learning (RL). Using RL only requires a way to represent partial solutions and a
way to score the cost of a (partial or final) solution. Dai et al. (2017) provide S2V-DQN, a general
framework for learning problems like MVC and TSP that is trained with RL. It shows good results
across different graph sizes for the covered problems, but is not fast enough to replace existing
approaches nor does it handle arbitrary node labels (see Fig. 1). Kool et al. (2019) focus on routing
problems like TSP and the vehicle routing problem. They outperform Dai et al. on TSP instances of
the training size. Unfortunately, their approach does not seem to generalize to graph sizes that are
very different from those used for training. Several other RL approaches have been proposed and
evaluated for TSP (Bello et al., 2017; Cappart et al., 2020; Drori et al., 2020; Ma et al., 2020). Barrett
et al. (2020) consider the maximum cut (MaxCut) problem. Huang et al. (2019) present a Monte
Carlo search tree approach specialized only for graph coloring. These methods do not address the
general node labeling framework, but instead model the solution as a permutation of vertices (e.g.,
TSP, vehicle routing) or a set of nodes or edges (e.g., MVC, MaxCut). Instead, we can represent

2

Under review as a conference paper at ICLR 2023

solutions where vertices are assigned to an unknown and unbounded number of partitions, which is
crucial for solving tasks such as graph coloring.

2 COMBINATORIAL NODE LABELING

Many graph heuristics can be phrased as a greedy process, where vertices get assigned a problem-
dependent label one after the other. For example, this label could indicate if the vertex is part of
the solution set, its position in a permutation, or its membership in one of many sets. We introduce
combinatorial node labeling, which frames many hard graph optimization problems, such as graph
coloring (see §D for a list), as a greedy process. This generalizes previous work (Kool et al., 2019;
Dai et al., 2017; Ma et al., 2020; Drori et al., 2020), to encompass problems where the number of
labels is not known in advance and is unbounded (see Fig. 1).

Every node labeling problem can be formulated as a (finite) Markov decision process (MDP), during
which nodes are successively added to a so-called partial node labeling until a termination criterion
is met. In §3, we will present a graph learning approach to optimizing such node labeling MDPs.

2.1 PRELIMINARIES

We consider an undirected, unweighted, and simple graph G = (V,E) with n nodes in V and m
edges in E. We denote the neighbors of a node v by N(v). We assume w.l.o.g. that the graph is
connected and hence m = Ω(n).

A node labeling is a function c : V → L, where L ⊆ {0, . . . , n}. A partial node labeling is a
function c′ : V ′ → L′ for a subset of nodes V ′ ⊆ V and labels L′ ⊆ L. A node labeling problem is
subject to a feasibility condition and a real-valued cost function f . The cost function maps a node
labeling c to a real-valued cost f(c). We require that the feasibility condition be expressed in terms
of an efficient (polynomial-time computable) extensibility test T : P(V × L) × V × L → {0, 1},
where P denotes the powerset. We say the extensibility test passes when it returns 1.

Intuitively, given a partial node labeling c′, a node v 6∈ V ′, and label `, the extensibility test passes
if and only if c′ can be extended by labeling node v with ` such that c′ can be extended into a node
labeling. Formally, the extensibility test characterizes the set of feasible solutions:
Definition 2.1. A node labeling c is feasible if and only if there exists a sequence of node-
label pairs (v1, `1), . . . , (vn, `n) such that for all i ≥ 0 the extensibility test T satisfies
T ({(v1, `1), . . . , (vi, `i)}, vi+1, `i+1) = 1.

The goal of the node labeling problem is to minimize the value of the cost function among the feasible
node labelings. For consistency, an infeasible node labeling has infinite cost. Next, we present the
two node labeling problems on which we focus in our evaluation.
Definition 2.2. A k-coloring of a graph G = (V,E) is a node labeling c : V → {1, 2, . . . , k} such
that no two neighbors have the same label, i.e., ∀{u, v} ∈ E : c(u) 6= c(v).

The cost function for GC is the number of distinct labels (or colors) k. Given a partial node labeling
c′ : V ′ → {1, . . . , k} and any vertex-label pair (v, `), the extensibility test passes for (c′, v, `) if
and only if the extended partial node labeling c′ ∪ (v, `) is a k- or (k + 1)-coloring of the induced
subgraph G[V ′ ∪ {v}]. In particular, the test does not pass when ` > k+ 1. The smallest k for which
there is a k-coloring of G is the chromatic number χ(G) of G.
Definition 2.3. A vertex cover of a graph G = (V,E) is a node labeling c : V → {0, 1} such that
every edge is incident to at least one node with label 1, i.e., ∀{u, v} ∈ E : c(u) = 1 ∨ c(v) = 1.

The cost function for MVC is the number of nodes with label 1. Given a partial node labeling
c′ : V ′ → {0, 1} the extensibility test passes for (c′, v, `) if and only if the extended partial node
labeling c′ ∪ (v, `) is a vertex cover of the induced subgraph G[V ′ ∪ {v}].

2.2 NODE LABELING MDP

We show how to construct an MDP that models a given combinatorial node labeling problem.
Minimizing the cost of the combinatorial node labeling problem is equivalent to maximizing the
return of this MDP. In the vast majority of reinforcement learning approaches to solve combinatorial

3

Under review as a conference paper at ICLR 2023

graph optimization problems (Kool et al., 2019; Dai et al., 2017; Ma et al., 2020; Drori et al., 2020),
a state corresponds to a set or sequence of nodes that are already added to a solution set. Instead, in
our setting the state represents a partial node labeling. This is why in addition to problems like MVC
and TSP, we can also model problems with more than two labels (even when the number of labels is
not known in advance). Graph coloring is such a problem.
Lemma 2.4. For any node labeling problem, there is an MDP whose terminal states correspond to
the feasible solutions with a cost equal to the negative return.

We embed the cost function f and the extensibility test into the MDP. Note that we do not require a
way to measure the cost of partial node labelings. Here, we formulate the state space, action space,
transition function, and reward. In §C.1, we finish the proof of Lemma 2.4.

State space. A state S represents a partial node labeling. It is a set of pairs S = V ′ × L for a subset
of nodes V ′ ⊆ V and a subset of labels L ⊆ {0, . . . , n}. A state is terminal if V ′ = V . Hence, the
set of states is the powerset P(V × {0, . . . , n}) of the Cartesian product of the vertices and labels.
Action space. In state S, the set of legal actions are the pairs (v, `) for nodes v and labels ` which
pass the extensibility test of the problem for the partial node labeling given by S (i.e., T (S, v, l) = 1).
Transition function. In our case, the transition function T is deterministic. That is, given the current
state St and an action (v, `), T (St, (v, `)) yields the next state St+1 = St ∪ {(v, `)}.
Reward. For a terminal state S representing the node labeling c, the reward is −f(c). For all other
states, the reward is 0.

A policy is a mapping from states to probabilities for each action. Note that we can turn a probabilistic
policy into a deterministic greedy policy by choosing the action with largest probability. Next, we
present how to train such a policy end-to-end using policy gradients.

3 GRAPH LEARNING APPROACH

We present a graph learning approach to node labeling, which is inspired by greedy algorithms. Greedy
approaches generally trade optimality for improved runtime. A greedy node labeling algorithm assigns
a label in {0, . . . , n} to one node after another based on a problem-specific heuristic. Hence, it can
be seen as providing (1) an order on the nodes and (2) a rule to label the next selected node.

We focus on learning an order on the nodes and pick a label that passes the extensibility test according
to a fixed rule. The following two lemmas show there exists a label assignment rule that ensures the
optimal solution can be found for GC and MVC (see §C.2 for the proofs):
Lemma 3.1. For every graph G, there exists an ordering of vertices for which choosing the smallest
color that passes the extensibility test colors G optimally.
Lemma 3.2. For every graph G, there exists an ordering of vertices for which choosing the label 1
until every edge in G has one of its endpoints labeled with 1 produces a minimum vertex cover of G.

We expect similar results can be obtained for most other node labeling problems.

Instead of a handcrafted ordering heuristic, we learn to assign weights to each node and choose the
nodes according to their weights. To compute these weights, we introduce a novel spatial locality
inductive bias inspired by the greedy heuristics: labeling a node should only affect the weights of its
neighbors. As we will show in §4.3, this leads to better test scores compared to the alternatives of
updating all or none of the weights when a node is labeled. This spatial locality bias is inspired by
successful greedy heuristics: The ListRight heuristic for MVC (Delbot & Laforest, 2008) assigns a
node to the vertex cover based on the assignment of its neighbors. For GC, the DSATUR strategy
selects nodes according to their saturation degree (Brélaz, 1979). If a new node is selected, only the
saturation degree of its neighborhood can change; the others remain unchanged.

3.1 POLICY OPTIMIZATION

We train our node labeling model by policy gradients, specifically REINFORCE (Bello et al., 2017)
with a greedy rollout baseline (Kool et al., 2019). The advantage of policy gradients over Q-learning
is that is has stronger convergence guarantees (Sutton & Barto, 2018). At a high level, the algorithm
works as follows. We begin by initializing two models, the current model and the baseline model.
For each graph in the batch, the algorithm performs a probabilistic rollout of the policy. The baseline

4

Under review as a conference paper at ICLR 2023

Attention Weights Change

Figure 2: Spatial locality of the decoding. We show
how a graph is 2-colored using node order c, e, b, a, d.
After labeling a node, only its neighbors’ attention
weights change; e.g., when c is colored, only its neigh-
bors b and e receive new attention weights. (We omit
the last step where d is colored.)

Last Labeled
Node

State embedding
Graph embedding

Last labeled node

embedding

Label embedding

Figure 3: Temporal locality of the state embedding.
We show how the state embedding is updated as nodes
are colored. The state embedding focuses on the last
labeled node, and contains the graph embedding, and
embeddings of the last labeled node and its label, which
pools the embeddings of nodes with the same label.

model performs a greedy rollout. The difference between the two costs determines the policy gradient
update. After every epoch, we perform a (one-sided) paired t-test over the cost on a challenge dataset
to check if the baseline model should be replaced with the current model. See §A.2 for more details.

3.2 GAT-CNL ARCHITECTURE

Our architecture, GAT-CNL, consists of an encoder and a decoder to learn a policy specific to the
node labeling problem. The encoder learns the local structural information that is important for the
problem in the form of a node embedding.

The state embedding encapsulates information about the graph itself (enabling the network to adapt
its actions to the graph), the last node that was labeled and its label, and a summary of prior actions
(with pooling). This enables the state embedding to have constant size; adding additional nodes
provided no benefit (see §4.3). This also serves as a temporal locality bias; however, note that the
decoder is not Markovian, as it depends on more than just the previous decision.

The decoder uses the node embeddings and the state embedding to select the next node based on
attention weights between the node embeddings and the state embedding. After the decoder picks the
next node v, the label rule (see Lemmas 3.1 and 3.2) assigns the label ` for the node. The policy then
takes the action (v, `). Then, the state embedding is updated and the decoder is invoked again until
all nodes are labeled. Figure 1 (right) overviews our architecture.

Node features. Each node v is associated with an input feature vector xv. Our input features
consist of a combination of sine and cosine functions of the node degree, similar to positional
embeddings (Vaswani et al., 2017). This representation ensures that input features are bounded
in magnitude even for larger graphs. We subtract the mean node degree from the degrees on the
synthetic dense graph instances.

GAT encoder. We use a hidden dimension of size d (unless stated otherwise, d = 64). The input
features are first linearly transformed and then fed into a GNN, which produces, for each node v, a
node embedding hv ∈ Rd. We use a three-layer Graph Attention Network (GAT) (Vaswani et al.,
2017; Velickovic et al., 2018; Lee et al., 2019), additive multi-head attention with four heads, batch
normalization (Ioffe & Szegedy, 2015) with a skip connection (He et al., 2016) at each encoder layer,
and leaky ReLU activations (Maas et al., 2013).

State embedding. The state embedding allows the decoder to condition its choice based on the graph
instance and the partial node labeling. For computational reasons, we ensure it is of constant size.
Denote the node labeled in step t by v(t) and its label by `(t). Then the state embedding consists
of three components concatenated together: (1) The graph embedding hG, a max-pooling over all
node embeddings. (2) The node embedding hv(t−1) of the last labeled node v(t−1). (3) The label
embedding h`(t−1) of the last labeled node’s label `(t−1), a max-pooling over the embeddings of
all nodes with that label. In the first iteration, we use a learned parameter h(0) for (2) and (3). We
considered including more than just the last labeled node, but found that this led to worse performance
(§4.3). Hence, this induces a temporal bias by focusing on the prior node and nodes with the same
label as the last labeled node. See Figure 3 for an illustration of the state embedding.

5

Under review as a conference paper at ICLR 2023

Local attention decoder. The decoder takes as input the node embeddings generated by the encoder
and the state embedding and outputs the next node to label. In each time step t, an attention
mechanism between the state embedding gt and each node embedding hv produces attention weights
a

(t)
v . Here, we introduce a spatial locality bias: labeling a node can only affect the attention scores of

its neighbors in the next time step. Let V ′ be the set of nodes already labeled. The attention weight
a

(t)
v for node v in time step t is given by the local decoding. For a node v /∈ V ′:

a(t)
v =

{
C · tanh

(
(Θ1gt)

T (Θ2hv)√
d

)
v ∈ N (v(t−1)) or t = 0

a
(t−1)
v v /∈ N (v(t−1)).

If v ∈ V ′, then the attention weight is a(t)
v = −∞. In the first iteration of the decoder, we calculate

the coefficients for each node in the graph. As in Bello et al. (2017), we clip the attention coefficients
within a constant range [−C,C]. In our experiments we set C = 10. The learnable parameter
matrices are Θ1 ∈ Rd×3d and Θ2 ∈ Rd×d. We use scaled dot-product attention (Vaswani et al., 2017)
(instead of additive attention) to speed up the decoding. Finally, for each node v we apply a softmax
over all attention weights to obtain the probability pv that node v is labeled next. See Figure 2 for a
visualization of the attention weight computation during decoding.

During inference, our greedy policy selects the vertices with maximum probability. Our sampling
policy (for k samples) runs the greedy policy once, then evaluates the learned probabilistic policy k
times (selecting a node v with the learned probability pv), returning the best result.

3.3 NUMBER OF OPERATIONS

We express the number of operations (arithmetic operations and comparisons) of the model during
inference parameterized by the embedding dimension d, the number of nodes n and the number
of edges m. The encoder uses O(dm + d2n) arithmetic operations and the decoder uses O(d2m)
arithmetic operations, resulting in O(dm + d2n + d2m) arithmetic operations, which is linear in
the size of the graph. To select the action of maximum probability (or sample a node), the decoder
additionally needs O(n2) comparison operations (although this could be reduced to O(m log n) with
an appropriate data structure). We empirically study the runtime in §§4.1 and 4.2; in practice, the
d2m term dominates the runtime for the evaluated graphs until 5000 vertices. In contrast, updating
all attention weights after every labeling scales as O(n3) (see §B.5).

4 EXPERIMENTS

We evaluate our approach on established benchmarks for graph coloring and minimum vertex cover,
including greedy baselines and machine learning approaches. We focus on other heuristic approaches
that return an approximation in polynomial time.

Training. We use three different synthetic graph distributions to generate instances for training and
validation (Albert & Barabási, 2002; Erdős & Rényi, 1960; Watts & Strogatz, 1998). We generate
20,000 graphs for training. The graphs have between 20 and 100 nodes. We use Adam with learning
rate α = 10−4 (Kingma & Ba, 2015). The effective batch size is B = 320, which comes from using
batches of 64 graphs for each node count n and accumulating their gradients. We clip the L2 norm
of the gradient to 1, as done in Bello et al. (2017). We selected these hyperparameters after initial
experiments on the validation set. Each model took 15–20 CPU compute node hours to train on a
cluster with Intel Xeon E5-2695 v4 and 64 GB memory per node. The overall time spent training was

Table 1: Graph coloring results on the Lemos et al.
(2019) subset of the COLOR challenge graphs.

Method Cost Wins Optimal

C
la

ss
ic Largest First 10.65 50% 45%
DSATUR 9.85 65% 50%
Smallest Last 10.8 50% 45%

M
L

Lemos et al. (2019) N/A 45% 25%
Ours — Greedy 10.36±0.01 55% 50%
Ours — Sampling 9.65±0.04 70% 50%

Table 2: Comparison of MVC approaches on dense ER
graphs with edge-probability 0.15.

Method Cost Approx. Ratio

C
la

ss
.

Maximal Matching 232.00 1.2486
List Right 225.35 1.1120

M
L

Li et al. (2018) 212.296 1.0594
S2V-DQN N/A 1.1208
Ours — Greedy 221.52±1.1 1.0510
Ours — 10 samples 220.27±1.2 1.0443

6

Under review as a conference paper at ICLR 2023

0

12

3

4

5

6

7

8

9

10

1112

1314

15

(a) Erdős-Rényi graph.

0

1
2

3

4

5

6
7

8

9

1011

12

13

14

15

(b) Watts-Strogatz graph.

0

1

2

3

4

5

6

7
8

9

10 11

12

13

14

15

(c) Barabási-Albert graph.
Figure 4: Example colorings produced by our learned heuristic. Node borders indicate the colors. Numbers on
the nodes indicate the order in which the heuristic labels them.

was less than 2500 CPU node hours and the time spent on validation and testing was less than 300
CPU node hours. We train each model for 200 epochs with five random seeds and report the standard
deviation σ of cost w.r.t. the random seeds as ±σ. See §A for more details.

Test Scores. In addition to mean cost, we report the ratio of the solution cost to the optimal solution
cost (approximation ratio). For large graphs, this cannot be computed exactly in a timely manner. In
this case, we use the best solution found by an ILP solver within a compute time of one hour. To
compare with baselines which return infeasible solutions (and hence have ill-defined cost), we report
the percentage of wins (ties for first place count as wins) and the percentage of instances solved
optimally. We refer to these metrics as “Wins” and “Optimal”, respectively. We use the model with
the lowest cost to compute these percentages.

Runtime.We benchmark on a c2d-standard-4 Google Cloud instance with 4 vCPUs and 16 GB RAM.

4.1 GRAPH COLORING

Greedy baselines. Largest-First greedily colors nodes in decreasing order of degree. Smallest-
Last (Matula & Beck, 1983) colors the nodes in reverse degeneracy order, which guarantees that
when a node is colored, it will have the smallest possible number of neighbors that have been
already colored. Smallest-Last guantees a constant number of colors for certain families of graphs,
such as Barabási-Albert graphs (Albert & Barabási, 2002) and planar graphs (Matula & Beck,
1983). DSATUR (Brélaz, 1979) selects nodes based on the largest number of distinct colors in its
neighborhood. DSATUR is exact on certain families of graphs, e.g., bipartite graphs (Brélaz, 1979).
We use the implementations from NetworkX (Hagberg et al., 2008).

Machine learning baseline. We compare our approach with the chromatic number estimator of
Lemos et al. (2019). It does not guarantee that the solution is feasible, meaning that it can both under-
and overestimate the chromatic number. We use the values reported by the original paper. Note that
S2V-DQN (Dai et al., 2017) cannot solve GC because of the way it embeds the state.

COLOR benchmark (Table 1). We evaluate on the same subset of the COLOR02/03 benchmark (Col,
2002) as Lemos et al. (2019), consisting of 20 instances of size between 25 and 561 nodes. Our
greedy policy outperforms both Largest-First and Smallest-Last and is tied with DSATUR for the
most graphs solved optimally. When sampling (100 samples) to evaluate the policy, our model
outperforms all baselines in both mean cost and win percentage and is tied for the most graphs solved
optimally. The approximation ratio is 1.25 and 1.13 for our greedy and sampling policies, resp.

Results on classic graphs. We also trained our model on four families of sparse graphs: cycles,
wheels, random trees, and stars. We trained on graphs up to 400 nodes and evaluated on graphs
up to 10,000 nodes. The produced colorings are optimal or extremely close to optimal for all four
families (Table 3). As our model works perfectly on cycles and wheels we conclude that the model
learns to leverage local graph structure and works even when all nodes have the same degree and are
completely symmetrical. Table 4 shows the validation cost for varying instance size on Watts-Strogatz
graphs, which grows only slowly with instance size. See §B.2 for additional results.

Qualitative results. Figure 4 presents typical examples of the learned coloring heuristic on the
training distribution graphs. See §E.1 for more examples. We can observe that the heuristic generally

7

Under review as a conference paper at ICLR 2023

Table 3: Our approach colors simple
families of graphs (near-)optimally.

Graph Family Optimal χ Ours

Stars 2 2±0.0

Random trees 2 2±0.01

Even cycles 2 2±0.0

Odd cycles 3 3±0.0

Odd wheels 3 3±0.01

Even wheels 4 4±0.0

0

1

2

34

5

6

7

8

9

10

11

12

13

14

(a) Erdős-Rényi graph.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Barabási-Albert graph.
Figure 5: Example covers from our learned heuristic. Nodes with a bold
border are in the cover. Numbers indicate the labeling order. Once a
cover is found, the order is irrelevant.

picks higher degree, centrally located nodes first. However, if several nodes have the same degree, it
favors coloring neighboring nodes subsequently. This happens in the WS graphs, see Figure 4b. The
learned heuristic can consistently color the WS graphs with 4 colors, which matches the Smallest-Last
heuristic. We conclude that the learned heuristic captures complex aspects of the graph extending
beyond simple degree-based decisions and considers the graph’s local neighborhood structure.

Runtime (Figure 6). We compare the runtime of our approach with the classical baselines. As we
did not have access to the code of Lemos et al. (2019), we could not compare the runtime directly.
Our approach is faster than DSATUR for graphs larger than 640 nodes and scales much better. As
expected from §3.3, the runtime of our algorithm grows linearly with the size of the graph, similar to
the simpler baselines such as Largest First and Smallest Last, which have better constant factors.

4.2 MINIMUM VERTEX COVER

Classic baselines. We compare with two classic algorithms. First, we use the endpoints of a maximal
matching, which produces a 2-approximation Papadimitriou & Steiglitz (1982). Second, we compare
with list-right Delbot & Laforest (2008), a

√
∆
2 + 3

2 approximation algorithm for maximum degree ∆.

Machine learning baselines. S2V-DQN is a Q-learning based approach (Dai et al., 2017). We use
the values reported in the original paper. Li et al. (2018) present a tree-search based approach trained
in a supervised way. In contrast to S2V-DQN, it samples multiple solutions, then verifies if they
are feasible. The time to construct a feasible solution varies depending on the instance. We use the
publicly available code and pretrained model from the authors. We run Li et al.’s code until it finds a
feasible solution, and sample more solutions if it is below the time budget of 30 seconds per graph.

Results on in-distribution graphs. We evaluate and compare our approach for MVC with S2V-
DQN (Dai et al., 2017) and Li et al. (2018) on the same dataset of generated graphs as Dai et al.
(2017). It consists of 16,000 graphs from two distributions, Erdős-Rényi (ER) (Erdős & Rényi, 1960)
and Barabási-Albert (BA) (Albert & Barabási, 2002), of sizes varying from 20 to 600 nodes. We
use the results reported by Dai et al. (2017) on their model trained on 40–50 nodes, except for the
graphs with less than 40 nodes, for which no data is available for this model. Hence we use their
model trained on 20–40 nodes on these smaller graphs. See Table 2 for the results on ER graphs
and §B.3 for results on additional graphs. On ER graphs, our model achieves the closest average
approximation ratio, followed by Li et al. (2018). Li et al. (2018) has the lowest average cost. Note
that the lowest approximation ratio and lowest cost need not coincide because the cost grows quickly
with graph size, whereas the approximation ratio does not. Our model and Li et al. (2018) outperform
the greedy baseline, while S2V-DQN is slightly outperformed by List Right. In Table 4, we show
how the approximation ratio and cost depend on the instance size. As shown in §B.3, on the BA
graphs, our model is about 2.3% away from optimal. The two machine learning baselines are slightly
less than 1% away from optimal. The greedy baselines are 9%− 45% away from optimal.

Qualitative Results. Figure 5 shows typical results of our learned MVC heuristics. See §E.2 for
more examples. On the ER graphs, we can see that the heuristic does not always start with the highest
degree node. In contrast, on the BA graphs, the heuristic has a strong preference to start with the
highest degree node. Unlike the classic greedy heuristics (and our learned graph coloring heuristic),
the learned MVC heuristics seldomly pick neighboring nodes subsequently.

8

Under review as a conference paper at ICLR 2023

320 640 1280 2560 5120
Number of nodes

0.0

0.5

1.0

1.5

2.0

2.5

R
un

tim
e

[s
]

DSATUR:
min: 3.4
median: 3.4
max: 8.1

DSATUR:
min: 13.5
median: 13.7
max: 32.7

Our model
DSATUR
Largest first
Smallest last

Figure 6: Distribution of graph coloring in-
ference runtime on WS graphs.

Table 4: Mean validation cost of our approach for graph coloring
on WS graphs and cost and approximation ratio for minimum
vertex cover on ER graphs (10 samples). Shaded columns are for
graphs larger than during training.

G
C Nodes 20 50 100 200 400 600

Cost 3.92 4.00 4.02 4.01 4.04 4.05

M
V

C Nodes 15–20 40–100 100–300 300–500 500–600
Cost 8 43.8 178.4 384.9 540
Approx. 1.012 1.042 1.048 1.055 1.054

Runtime. As shown in §B.5, our approach takes around 0.5 second to find a cover on the test graphs
with 1,000 nodes on a CPU per sample, and around 5 seconds for 10 samples. This is comparable to
what Dai et al. (2017) reported on a GPU on a similar graph (11 seconds). Note that the time budget
for Li et al. (2018) was 30 seconds and the time budget for the combinatorial solver was 1 hour.

4.3 ABLATION STUDIES

Spatial locality. We test the inductive biases we made regarding locality of the decoder by comparing
against a decoder variant that never updates the attention weights (static decoding) and a variant that
always updates all of the attention weights (global decoding).

Static decoding never recomputes the attention weights. For node a node i that is not yet labeled,
its weight is: ai = C · tanh

(
(Θ1g0)T (Θ2hi)√

d

)
. Static decoding uses O(d2n+m+ n2) operations,

which are fewer than those of local update decoding when m � d2n. With static decoding, the
model is essentially a GNN with a special node-readout function.

Global decoding recomputes the attention weights in each time step t. For a node i that is not yet
labeled, its weight is: a(t)

i = C · tanh
(

(Θ1gt)T (Θ2hi)√
d

)
. Global decoding uses O(d2n2) operations,

which is at least a d2 factor more than local update decoding for not too dense graphs (m� n2/d2).
When there are only two labels (as for MVC), global decoding is very similar to the Kool et al. (2019)
model. The difference to Kool et al. (2019) is that they use additional attention layer to compute a
new state embedding in each step.

We train graph coloring models with both static and global decoding on the Lemos et al. (2019) subset
of the COLOR challenge graphs (following §4.1). Static and global decoding achieve a mean cost of
10.74±0.12 and 10.71±0.05, respectively, both worse than when using our inductive bias (Table 1).

Architecture Parameters. We varied the size of the context embedding (i.e., the number of nodes
and their labels that contribute to it). Increasing the context size does not significantly improve the
test score on graph coloring. For graph coloring, a context of size two and three results in a mean cost
of 10.49±0.12 and 10.42±0.12, respectively, for the greedy policy. We varied the number of attention
heads (among 1, 2, 4) with a per-head dimension of 16. For graph coloring, this results in a mean
validation cost of 5.29±0.02, 4.98±0.01, and 4.95±0.02, respectively. We therefore use 4 attention
heads (hidden dimension 64). In §B.4, we provide additional ablation studies for the encoder.

5 CONCLUSION

We introduced combinatorial node labeling, a framework that generalizes existing approaches to
many hard graph problems, and presented a neural network architecture for it, which demonstrates
excellent results on both graph coloring and minimum vertex cover problems. This serves as an
important step toward replacing hand-crafted heuristics in graph algorithms with learned heuristics
tailored to a particular problem and graph structure.

There are many avenues for future research. While the nodel labeling framework is very general,
other graph problems may require adjustments to the neural architecture or inductive biases for good
performance. In particular, handling weighted graphs and edge labeling problems would be valuable.

9

Under review as a conference paper at ICLR 2023

ETHICS STATEMENT

The combinatorial node labeling framework and our neural network architecture target a broad class of
graph problems, and hence are very general-purpose. Downstream tasks of such problems range from
compiler passes to logistics optimization to graph data mining. Hence, it is hard to identify specific
cases of benefit or harm from our work, as it depends on the specific application of the downstream
tasks. We nevertheless urge careful consideration of the implications of improving performance on
tasks using our methods, especially ones with privacy implications (e.g., data mining).

REPRODUCIBILITY STATEMENT

We detail the combinatorial node labeling framework in §2, and describe the neural network architec-
ture and training process we use in §3. We note that the node labeling framework is very general and
alternative architectures could be used to solve it. Proofs of our theoretical claims are provided in §C
and we give details of our training setup in §4 and §A. We additionally include our source code in the
supplementary material to aid reproducibility.

REFERENCES

Computational symposium on graph coloring and generalizations (COLOR02), Ithaca, NY, 7-8 September 2002,
2002. URL https://mat.tepper.cmu.edu/COLOR02/.

Faisal Abu-khzam, Rebecca Collins, Michael Fellows, Michael Langston, W. Suters, and Christopher Symons.
Kernelization algorithms for the vertex cover problem: Theory and experiments. pp. 62–69, 01 2004.

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of Modern
Physics, 74(1):47–97, Jan 2002. ISSN 1539-0756. doi: 10.1103/revmodphys.74.47. URL http://dx.
doi.org/10.1103/RevModPhys.74.47.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An unsupervised
differentiable approach. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?
id=BJxgz2R9t7.

Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings and graph partitioning.
J. ACM, 56(2):5:1–5:37, 2009. doi: 10.1145/1502793.1502794. URL https://doi.org/10.1145/
1502793.1502794.

David Avis and Tomokazu Imamura. A list heuristic for vertex cover. Oper. Res. Lett., 35(2):201–204, March
2007. ISSN 0167-6377. doi: 10.1016/j.orl.2006.03.014. URL https://doi.org/10.1016/j.orl.
2006.03.014.

Tobias Bandh, Georg Carle, and Henning Sanneck. Graph coloring based physical-cell-id assignment for
LTE networks. In Proceedings of the International Conference on Wireless Communications and Mobile
Computing: Connecting the World Wirelessly, IWCMC 2009, Leipzig, Germany, June 21-24, 2009, pp. 116–
120, 2009. doi: 10.1145/1582379.1582406. URL https://doi.org/10.1145/1582379.1582406.

Thomas D. Barrett, William R. Clements, Jakob N. Foerster, and Alex Lvovsky. Exploratory combinatorial
optimization with reinforcement learning. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020, pp. 3243–3250, 2020. URL https://aaai.org/ojs/index.php/AAAI/
article/view/5723.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial optimization
with reinforcement learning. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Workshop Track Proceedings, 2017. URL https://openreview.
net/forum?id=Bk9mxlSFx.

Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully dynamic approximate maximum
matching and minimum vertex cover in O(log3 n) worst case update time. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira,
January 16-19, pp. 470–489, 2017. doi: 10.1137/1.9781611974782.30. URL https://doi.org/10.
1137/1.9781611974782.30.

10

https://mat.tepper.cmu.edu/COLOR02/
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
https://openreview.net/forum?id=BJxgz2R9t7
https://openreview.net/forum?id=BJxgz2R9t7
https://doi.org/10.1145/1502793.1502794
https://doi.org/10.1145/1502793.1502794
https://doi.org/10.1016/j.orl.2006.03.014
https://doi.org/10.1016/j.orl.2006.03.014
https://doi.org/10.1145/1582379.1582406
https://aaai.org/ojs/index.php/AAAI/article/view/5723
https://aaai.org/ojs/index.php/AAAI/article/view/5723
https://openreview.net/forum?id=Bk9mxlSFx
https://openreview.net/forum?id=Bk9mxlSFx
https://doi.org/10.1137/1.9781611974782.30
https://doi.org/10.1137/1.9781611974782.30

Under review as a conference paper at ICLR 2023

Hans L. Bodlaender. Discovering treewidth. In SOFSEM 2005: Theory and Practice of Computer Science,
31st Conference on Current Trends in Theory and Practice of Computer Science, Liptovský Ján, Slovakia,
January 22-28, 2005, Proceedings, pp. 1–16, 2005. doi: 10.1007/978-3-540-30577-4_1. URL https:
//doi.org/10.1007/978-3-540-30577-4_1.

Daniel Brélaz. New methods to color vertices of a graph. Commun. ACM, 22(4):251–256, 1979. doi:
10.1145/359094.359101. URL https://doi.org/10.1145/359094.359101.

Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and André Augusto
Ciré. Combining reinforcement learning and constraint programming for combinatorial optimization. CoRR,
abs/2006.01610, 2020. URL https://arxiv.org/abs/2006.01610.

Gregory J. Chaitin. Register allocation & spilling via graph coloring. In Proceedings of the SIGPLAN ’82
Symposium on Compiler Construction, Boston, Massachusetts, USA, June 23-25, 1982, pp. 98–105, 1982.
doi: 10.1145/800230.806984. URL https://doi.org/10.1145/800230.806984.

Lenore J. Cowen, Robert Cowen, and Douglas R. Woodall. Defective colorings of graphs in surfaces: Partitions
into subgraphs of bounded valency. J. Graph Theory, 10(2):187–195, 1986. doi: 10.1002/jgt.3190100207.
URL https://doi.org/10.1002/jgt.3190100207.

Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. CoRR, abs/1704.01665, 2017. URL http://arxiv.org/abs/1704.01665.

George B. Dantzig, D. Ray Fulkerson, and Selmer M. Johnson. Solution of a large-scale traveling-salesman
problem. Oper. Res., 2(4):393–410, 1954. doi: 10.1287/opre.2.4.393. URL https://doi.org/10.
1287/opre.2.4.393.

François Delbot and Christian Laforest. A better list heuristic for vertex cover. Inf. Process. Lett., 107(3-4):
125–127, 2008. doi: 10.1016/j.ipl.2008.02.004. URL https://doi.org/10.1016/j.ipl.2008.
02.004.

Iddo Drori, Anant Kharkar, William R. Sickinger, Brandon Kates, Qiang Ma, Suwen Ge, Eden Dolev, Brenda
Dietrich, David P. Williamson, and Madeleine Udell. Learning to solve combinatorial optimization problems
on real-world graphs in linear time. In 19th IEEE International Conference on Machine Learning and
Applications, ICMLA 2020, Miami, FL, USA, December 14-17, 2020, pp. 19–24, 2020. doi: 10.1109/
ICMLA51294.2020.00013. URL https://doi.org/10.1109/ICMLA51294.2020.00013.

Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1):17–60,
1960.

Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., USA, 1990. ISBN 0716710455.

Mohsen Ghaffari, Ce Jin, and Daan Nilis. A massively parallel algorithm for minimum weight vertex cover. In
SPAA ’20: 32nd ACM Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, July
15-17, 2020, pp. 259–268, 2020. doi: 10.1145/3350755.3400260. URL https://doi.org/10.1145/
3350755.3400260.

Jack E. Graver. On the foundations of linear and integer linear programming I. Math. Program., 9(1):207–226,
1975. doi: 10.1007/BF01681344. URL https://doi.org/10.1007/BF01681344.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics, and function
using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman (eds.), Proceedings of the 7th Python
in Science Conference, pp. 11 – 15, Pasadena, CA USA, 2008.

Frank Harary and Robert A. Melter. On the metric dimension of a graph. Ars Combinatoria, 2(191-195):1, 1976.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pp. 770–778, 2016. doi: 10.1109/CVPR.2016.90. URL https://doi.org/10.1109/
CVPR.2016.90.

Stephen T. Hedetniemi and Renu C. Laskar. Bibliography on domination in graphs and some basic definitions of
domination parameters. Discret. Math., 86(1-3):257–277, 1990. doi: 10.1016/0012-365X(90)90365-O. URL
https://doi.org/10.1016/0012-365X(90)90365-O.

Jiayi Huang, Md. Mostofa Ali Patwary, and Gregory F. Diamos. Coloring big graphs with alphagozero. CoRR,
abs/1902.10162, 2019. URL http://arxiv.org/abs/1902.10162.

11

https://doi.org/10.1007/978-3-540-30577-4_1
https://doi.org/10.1007/978-3-540-30577-4_1
https://doi.org/10.1145/359094.359101
https://arxiv.org/abs/2006.01610
https://doi.org/10.1145/800230.806984
https://doi.org/10.1002/jgt.3190100207
http://arxiv.org/abs/1704.01665
https://doi.org/10.1287/opre.2.4.393
https://doi.org/10.1287/opre.2.4.393
https://doi.org/10.1016/j.ipl.2008.02.004
https://doi.org/10.1016/j.ipl.2008.02.004
https://doi.org/10.1109/ICMLA51294.2020.00013
https://doi.org/10.1145/3350755.3400260
https://doi.org/10.1145/3350755.3400260
https://doi.org/10.1007/BF01681344
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/0012-365X(90)90365-O
http://arxiv.org/abs/1902.10162

Under review as a conference paper at ICLR 2023

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, pp. 448–456, 2015. URL http://proceedings.mlr.press/
v37/ioffe15.html.

T.R. Jensen, T.R. Jensen, and B. Toft. Graph Coloring Problems. A Wiley interscience publication. Wiley, 1995.
ISBN 9780471028659. URL https://books.google.ch/books?id=YfZQAAAAMAAJ.

Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network technique
for the travelling salesman problem. CoRR, abs/1906.01227, 2019. URL http://arxiv.org/abs/
1906.01227.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-
ber 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
49f85a9ed090b20c8bed85a5923c669f-Abstract.html.

David R. Karger and Clifford Stein. A new approach to the minimum cut problem. J. ACM, 43(4):601–640,
1996. doi: 10.1145/234533.234534. URL https://doi.org/10.1145/234533.234534.

David R. Karger, Rajeev Motwani, and G. D. S. Ramkumar. On approximating the longest path in a graph.
Algorithmica, 18(1):82–98, 1997. doi: 10.1007/BF02523689. URL https://doi.org/10.1007/
BF02523689.

R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher (eds.), Complexity of
Computer Computations, pp. 85–103. Plenum Press, 1972.

Brian W. Kernighan and Shen Lin. An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J.,
49(2):291–307, 1970. doi: 10.1002/j.1538-7305.1970.tb01770.x. URL https://doi.org/10.1002/
j.1538-7305.1970.tb01770.x.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

John Boaz Lee, Ryan A. Rossi, Sungchul Kim, Nesreen K. Ahmed, and Eunyee Koh. Attention models in
graphs: A survey. ACM Trans. Knowl. Discov. Data, 13(6):62:1–62:25, 2019. doi: 10.1145/3363574. URL
https://doi.org/10.1145/3363574.

Henrique Lemos, Marcelo O. R. Prates, Pedro H. C. Avelar, and Luís C. Lamb. Graph colouring meets deep
learning: Effective graph neural network models for combinatorial problems. CoRR, abs/1903.04598, 2019.
URL http://arxiv.org/abs/1903.04598.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional net-
works and guided tree search. In Advances in Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pp. 537–546, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
8d3bba7425e7c98c50f52ca1b52d3735-Abstract.html.

Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial optimization by graph
pointer networks and hierarchical reinforcement learning. In AAAI Workshop on Deep Learning on Graphs:
Methodologies and Applications, 2020.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network acoustic
models. In Proc. icml, volume 30, pp. 3. Citeseer, 2013.

Sahil Manchanda, Akash Mittal, Anuj Dhawan, Sourav Medya, Sayan Ranu, and Ambuj Singh. GCOMB:
learning budget-constrained combinatorial algorithms over billion-sized graphs. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/e7532dbeff7ef901f2e70daacb3f452d-Abstract.html.

D. Marx. Graph colouring problems and their applications in scheduling. Periodica Polytechnica Electrical
Engineering, 48:11–16, 2004.

12

http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://books.google.ch/books?id=YfZQAAAAMAAJ
http://arxiv.org/abs/1906.01227
http://arxiv.org/abs/1906.01227
https://proceedings.neurips.cc/paper/2020/hash/49f85a9ed090b20c8bed85a5923c669f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/49f85a9ed090b20c8bed85a5923c669f-Abstract.html
https://doi.org/10.1145/234533.234534
https://doi.org/10.1007/BF02523689
https://doi.org/10.1007/BF02523689
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3363574
http://arxiv.org/abs/1903.04598
https://proceedings.neurips.cc/paper/2018/hash/8d3bba7425e7c98c50f52ca1b52d3735-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/8d3bba7425e7c98c50f52ca1b52d3735-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e7532dbeff7ef901f2e70daacb3f452d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e7532dbeff7ef901f2e70daacb3f452d-Abstract.html

Under review as a conference paper at ICLR 2023

David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring algorithms.
J. ACM, 30(3):417–427, 1983. doi: 10.1145/2402.322385. URL https://doi.org/10.1145/2402.
322385.

Pawel B. Myszkowski. Solving scheduling problems by evolutionary algorithms for graph coloring problem.
In Metaheuristics for Scheduling in Industrial and Manufacturing Applications, pp. 145–167. 2008. doi:
10.1007/978-3-540-78985-7_7. URL https://doi.org/10.1007/978-3-540-78985-7_7.

Azade Nazi, Will Hang, Anna Goldie, Sujith Ravi, and Azalia Mirhoseini. GAP: generalizable approximate graph
partitioning framework. CoRR, abs/1903.00614, 2019. URL http://arxiv.org/abs/1903.00614.

Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A near-optimal sublinear-time algorithm
for approximating the minimum vertex cover size. In Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pp. 1123–1131, 2012.
doi: 10.1137/1.9781611973099.88. URL https://doi.org/10.1137/1.9781611973099.88.

Christos Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms and Complexity,
volume 32. 01 1982. ISBN 0-13-152462-3. doi: 10.1109/TASSP.1984.1164450.

J. M. Robson. Algorithms for maximum independent sets. J. Algorithms, 7(3):425–440, 1986. doi: 10.1016/
0196-6774(86)90032-5. URL https://doi.org/10.1016/0196-6774(86)90032-5.

Michael D. Smith, Norman Ramsey, and Glenn H. Holloway. A generalized algorithm for graph-coloring register
allocation. In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and
Implementation 2004, Washington, DC, USA, June 9-11, 2004, pp. 277–288, 2004. doi: 10.1145/996841.
996875. URL https://doi.org/10.1145/996841.996875.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford Book,
Cambridge, MA, USA, 2018. ISBN 0262039249.

Robert Endre Tarjan and Anthony E. Trojanowski. Finding a maximum independent set. SIAM J. Comput., 6(3):
537–546, 1977. doi: 10.1137/0206038. URL https://doi.org/10.1137/0206038.

Etsuji Tomita and Tomokazu Seki. An efficient branch-and-bound algorithm for finding a maximum clique.
In Discrete Mathematics and Theoretical Computer Science, 4th International Conference, DMTCS 2003,
Dijon, France, July 7-12, 2003. Proceedings, pp. 278–289, 2003. doi: 10.1007/3-540-45066-1_22. URL
https://doi.org/10.1007/3-540-45066-1_22.

Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. RUN-CSP: unsupervised learning of message
passing networks for binary constraint satisfaction problems. CoRR, abs/1909.08387, 2019. URL http:
//arxiv.org/abs/1909.08387.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pp. 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018. URL https:
//openreview.net/forum?id=rJXMpikCZ.

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-world’ networks. Nature, 393(6684):440–
442, June 1998. ISSN 0028-0836. doi: 10.1038/30918. URL http://dx.doi.org/10.1038/30918.

Weichi Yao, Afonso S. Bandeira, and Soledad Villar. Experimental performance of graph neural networks on
random instances of max-cut. CoRR, abs/1908.05767, 2019. URL http://arxiv.org/abs/1908.
05767.

13

https://doi.org/10.1145/2402.322385
https://doi.org/10.1145/2402.322385
https://doi.org/10.1007/978-3-540-78985-7_7
http://arxiv.org/abs/1903.00614
https://doi.org/10.1137/1.9781611973099.88
https://doi.org/10.1016/0196-6774(86)90032-5
https://doi.org/10.1145/996841.996875
https://doi.org/10.1137/0206038
https://doi.org/10.1007/3-540-45066-1_22
http://arxiv.org/abs/1909.08387
http://arxiv.org/abs/1909.08387
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
http://dx.doi.org/10.1038/30918
http://arxiv.org/abs/1908.05767
http://arxiv.org/abs/1908.05767

Under review as a conference paper at ICLR 2023

A TRAINING

A.1 DATA GENERATION

We use four different synthetic graph distributions to generate instances for training and validation.
All graphs are generated via the Python NETWORKX library (Hagberg et al., 2008).

Barabási-Albert Model (Albert & Barabási, 2002) The Barabási-Albert (BA) Model generates
random scale-free networks. Similar to real-world networks BA graphs grow by preferential attach-
ment, i.e., a new node is more likely to link to more connected nodes. The model is parameterized by
one parameter δ, which dictates the average degree.

Erdős-Rényi Model (Erdős & Rényi, 1960) An Erdős-Rényi (ER) graph G(n, p) has n nodes and
each edge exists independently with probability p. The expected number of edges is

(
n
2

)
p.

Watts-Strogatz Model (Watts & Strogatz, 1998) Watts-Strogatz (WS) graphs were developed to
overcome the shortcomings of ER graphs when modeling real world graphs. In real networks we
see the formation of local clusters, i.e., the neighbors of a node are more likely to be neighbors. For
parameters k and q, a WS graph is built as follows: build a ring of n nodes. Next, connect each node
to its k nearest neighbors. Finally, replace each edge {u, v} by a new edge {u,w} (chosen uniformly
at random) with probability q.

A.1.1 TRAINING SET PARAMETERS

See Table 5 for the parameters of the graph distributions used during training. Note that for BA
and ER graphs, the parameters match those used in the Dai et al. (2017) test set (see Table 2 and
Table 10). We also consider sparse ER graphs (S-ER), for we set the edge probability such that graphs
have expected average degree close to ∆ = 7.5 when n is small but remain connected with high
probability when n is large. This means that

ps−er = min

(
1,max

(
∆

n
, (1 + ε)

lnn

n

))
, (1)

for a small ε, which we set to 0.2 in our experiments. The formula is derived from the connectivity
threshold of ER graphs (Erdős & Rényi, 1960).

For graph coloring, we train on a hybrid dataset consisting of an equal proportion of BA, S-ER,
and WS graphs. For minimum vertex cut, we train on a dataset consisting of BA graphs, a dataset
consisting of ER graphs, and a hybrid dataset consisting on a combination of the two (in equal
proportion). We use the in-distribution models for the evaluation on the synthetic test instances and
the hybrid model for the memetracker graph. During training, we use an equal proportion of
graphs with n ∈ {20, 40, 50, 70, 100} nodes.

For the results on simple graphs in Table 3, we use graphs with sizes n ∈
{10, . . . , 51, 60, 61, 70, 71, 80, 81, 90, 91, 99, 100, 200, 201, 300, 301, 400, 401} and validate on
1000 or 1001 nodes.

A.2 POLICY OPTIMIZATION

We train our model with REINFORCE with a greedy rollout baseline Kool et al. (2019). The details
follow. We denote the cost of labeling the graph Gi in the order given by the sequence of nodes π
by L(π,Gi). A model M is parameterized by parameters θ. On a graph Gi, the model returns a
sequence of nodes π and an associated probability pθ. The probability pθ is the product of all action
probabilities that led to the sequence of nodes π. We write pθ, π ← Mθ(Gi) when the policy is
evaluated deterministically and pθ, π ∼Mθ(Gi) when the policy is evaluated probabilistically.

Table 5: The graph parameters for training and validation.

BA ER S-ER WS

δ = 4 p = 0.15 p = ps−er k = 5,
q = 0.1

14

Under review as a conference paper at ICLR 2023

Algorithm 1 Policy Training with Reinforce+Baseline
1: Input: number of epochs E, batch size B, datasets Dtrain
2: Initialize model Mθ and baseline model MBL

θ
3: Dchallenge ← sample new challenge dataset
4: for epoch = 1, . . . , E do
5: for batch in Dtrain do
6: [pθ,i, πi ∼Mθ(Gi) for Gi in batch] . Sample from policy
7: [pBLθ,i , π

BL
i ←MθBL(Gi) for Gi in batch] . Greedy baseline

8: ∇θJ(θ) = 1
B

∑B
i=1(L(πi | Gi)− L(πBLi | Gi)) ∇θ log(pθ,i) . Policy Gradient

9: θ ← ADAM(θ,∇θJ(θ))
10: end for
11: if OneSidedPairedTTest(Mθ, MBL

θ , Dchallenge) < 0.05 then . Challenge the baseline
12: θBL ← θ
13: Dchallenge ← sample new challenge dataset
14: end if
15: end for

The complete training procedure is given in Algorithm 1. Algorithm 1 follows from the textbook
REINFORCE with a baseline (Sutton & Barto, 2018) by factoring the probability of reaching a terminal
state and using that the rewards are 0 in our MDP except when reaching a terminal state. Unlike Kool
et al. (2019), we do not use warmup epochs where training starts out with an exponential moving
average baseline.

B ADDITIONAL RESULTS

B.1 VALIDATION RESULTS

We compare the cost of the learned heuristic for different parameters of the training. The validation
set consists of 600 graphs with n nodes for n ∈ {20, 50, 100, 200, 400, 600}.

B.1.1 GRAPH COLORING

Table 6 shows the validation cost on the three training distribution for all evaluated configurations.

With a larger learning rate of α = 10−3, the mean validation cost for graph coloring is significantly
worse, namely 5.22±0.002. A smaller learning rate of α = 10−5 leads to a mean validation cost of
5.02±0.001, which is slightly worse than the cost of 4.95±0.02 for α = 10−4.

B.1.2 MINIMUM VERTEX COVER

Table 7 shows the validation results for training on either only one distribution and evaluating on ER
and BA graphs. Training on a mixture ER and BA graphs leads to worse validation cost on BA graphs
compared to training only on BA graphs. Training on ER graphs exclusively without BA graphs leads
to a slight cost improvement on ER graphs.

B.2 RESULTS BY SIZE

Table 8 shows how the cost and approximation ratio of our MVC approach varies with the instance
size (on the ER test graphs). Although the approximation ratio grows slightly with instance size, it
remains within ca 5.5% of optimal for graphs with 500-600 nodes.

Table 9 shows how the cost of GC varies on two synthetic distributions of graphs, S-ER and BA. For
BA and ER graphs, the cost grows by about one color on the larger graphs.

B.3 ADDITIONAL RESULTS FOR MVC

Results on BA graphs See Table 10 for the MVC results on BA graphs.

15

Under review as a conference paper at ICLR 2023

Table 6: Ablation studies for graph coloring. L, S, and G are short for local, static, and global
decoders, respectively. Prev. denotes the number of previously labeled nodes in the state embed-
ding, Norm. indicates if batch-normalization is used, and Short. indicates if shortcuts are used.

Encoder Decoder Validation cost on distribution
Layers Norm. Short. Type Prev. Heads S-ER WS BA All

3 X X L 1 4 5.32±0.05 4.01±0.00 5.50±0.04 4.95±0.02

2 X X L 1 4 5.34±0.04 4.01±0.01 5.57±0.02 4.98±0.02

1 X X L 1 4 5.4±0.05 4.09±0.01 5.55±0.05 5.02±0.03

3 7 7 L 1 4 5.56±0.02 4.29±±0.09 6.09±0.04 5.32±0.05

3 X 7 L 1 4 5.56±0.05 4.12±0.05 5.92±0.04 5.22±0.04

3 X X S 1 4 5.59±0.04 4.14±0.00 5.52±0.06 5.09±0.04

3 X X G 1 4 5.58±0.02 4.15±0.01 5.54±0.03 5.1±0.03

3 X X L 2 4 5.37±0.03 4.02±0.01 5.49±0.04 4.97±0.03

3 X X L 3 4 5.36±0.02 4.02±0.01 5.48±0.07 4.96±0.02

3 X X L 1 2 5.38±0.03 4.02±0.01 5.54±0.03 4.98±0.01

3 X X L 1 1 5.58±0.02 4.01±0.01 6.26±0.05 5.28±0.02

Table 7: MVC Validation Cost for vary-
ing training and validation distributions.

Train Graphs Cost ER Cost BA

ER 223.56±0.11 218.07±4.36

BA 223.76±0.43 199.44±12.02

ER+BA 223.98±0.26 208.18±6.24

Table 8: Cost and approximation ratio of our approach
for MVC on BA graphs by instance size. Shaded
columns are for test instances larger than the train-
ing graphs. Approx. denotes the approximation ratio.

Nodes 15-20 40-100 100-300 300-500 500-600
Cost 10.53 35.08 113.56 225.16 309.02
Approx. 1.009 1.016 1.022 1.025 1.027

Table 9: Mean validation cost of our greedy approach for GC on S-ER and BA graphs by instance size. Shaded
columns are for instances larger than those seen during training.

S-ER Graphs

Nodes 20 50 100 200 400 600
Cost 5.30 5.18 5.18 5.28 5.39 5.96

BA Graphs

Nodes 20 50 100 200 400 600
Cost 4.83 5.08 5.34 5.61 5.96 6.18

Table 10: Comparison of MVC approaches on BA graphs with average degree 4.

Name Cost Approx. Ratio

C
la

ss
.

Maximal Matching 190.84 1.4516
List Right 143.50 1.0984

M
L

Li et al. (2018) 131.62 1.0084
S2V-DQN N/A 1.0099
Ours - Greedy 133.78±0.07 1.0234
Ours - 10 Samples 133.39±0.05 1.0202

16

Under review as a conference paper at ICLR 2023

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of nodes

0

2

4

6

8

10

12

14

R
un

tim
e

[s
]

(a) GC on S-ER graphs:
R2 = 95.2%, S = 1.12 · 10−5s

1000 2000 3000 4000 5000
Number of nodes

0.0

0.5

1.0

1.5

2.0

2.5

R
un

tim
e

[s
]

(b) GC on WS graphs:
R2 = 96.0%, S = 1.67 · 10−6s

0 1000 2000 3000 4000 5000
Number of nodes

0.0

0.5

1.0

1.5

2.0

2.5

R
un

tim
e

[s
]

(c) MVC on S-ER graphs:
R2 = 94.4%, S = 3.4 · 10−6s.

0 1000 2000 3000 4000 5000
Number of nodes

0.0

0.5

1.0

1.5

2.0

2.5

R
un

tim
e

[s
]

(d) MVC on BA graphs:
R2 = 94.4%, S = 1.68 · 10−6s

Figure 7: Inference runtime with local decoding. The solid line indicates a linear least squares fit, the dashed
orange line the mean. We report the coefficient of determination R2 and standard errror S.

B.4 ABLATION STUDIES FOR THE ENCODER

We varied the number of layers in the encoder, removed the shortcut connections, and removed
the normalization. The results are summarized in Table 6. We can see that removing the shortcut
connections has a very strong detrimental effect on the validation cost. Removing both shortcuts and
normalization deteriorates the cost further. Using 2 layers results in a small, but noticeable increase
in cost, whereas a single layer has a significantly worse cost.

B.5 RUNTIME SCALABILITY

We evaluated the inference runtime on a c2d-highmem-4 (4 vCPUs, 32 GB RAM) Google Cloud
machine (Environment M94 with PyTorch 1.11). Figure 7 show the runtime scaling of our approach
on GC and MVC together with a linear least squares fit. In Figure 7b, we see that for graphs up
to around 5000 vertices the runtime of GC inference very closely follows a linear trend. For larger
graphs, the runtime grows slightly faster than linear, as shown in Figure 7a. Similar results hold
for MVC: it takes less than 0.5 seconds to compute a vertex cover for a graph with 1,000 nodes.
Figure 7d and Figure 7c show the distribution of MVC runtimes of up to 5120 nodes.

B.6 DISCUSSION.

It is not surprising that our machine learning approach performs best on in-distribution graphs. Whilst
it is desirable to have an approach that generalizes well, if a representative sample of graphs is
available for a target applications, this does not pose an issue. Moreover, we have shown that the
quality degrades gradually when the test distribution differs from the training distribution.

17

Under review as a conference paper at ICLR 2023

C ADDITIONAL PROOFS

C.1 THE NODE LABELING MDP

Proof of Lemma 2.4. Consider a sequence of actions (v1, `1), . . . , (vn, `n) ending in a terminal state.
For all t, the prefix (v1, `1), . . . , (vt, `t) of this sequence corresponds to a partial node labeling c′
(by viewing the sequence of node-label pairs as describing a function from nodes to labels). By
construction of the MDP, labeling node vi+1 with `t+1 passes the extensibility test for c′. Hence the
node labeling c represented by (v1, `1), . . . , (vn, `n) is feasible. By construction, the return of the
episode is −f(c), where f(c) is the cost of node labeling c.

Conversely, consider a feasible solution c with cost f(c). Then, by definition of feasibility (§4.3),
there is a sequence (v1, `1), . . . , (vn, `n) of node-label pairs such that for all t ≥ 0 the partial node
labeling given by (v1, `1), . . . , (vt, `t) passes the extensibility test for node vt+1 and label `t+1.
Hence, the sequence of node-label pairs is also a sequence of actions in the MDP leading to a terminal
state. The return for this episode is −f(c).

Note that since our tasks are episodic, the return equals the sum of the rewards (specifically the
reward received in the terminal state). In particular, we do not use discounting.

C.2 OPTIMALITY OF THE LABELING RULE

Proof of Lemma 3.1. Let G be some graph with chromatic number χ(G) = k and c∗ be a mapping
that colors G optimally. We partition V into color classes Ci = {v | c∗(v) = i} such that all nodes
with color i are in Ci. Now, we build an ordering by consecutively taking all nodes from C1, then all
nodes from C2 and so on. Choosing the smallest color that passes the extensibility test will produce
an optimal coloring for such an order of nodes: The proof is by strong induction on the index of the
color class i. The induction hypothesis H(i) is that for all nodes v in Cj for j < i, v is colored with
a color in {1, . . . , j}. Assume the induction hypothesis H(i) holds. Now, consider a node v in Ci.
The color i must be a valid color for v: First, assigning color i does not produce any conflicts with
any node u in Cj for j < i because by induction hypothesis node u has a color strictly less than i.
Second, assigning color i to v does not produce a conflict with another node w in Ci because then Ci
would not be a valid class of colors (nodes in a color class cannot be neighbors.). As we choose the
smallest valid color and i is valid, v get a color in {1, . . . i}. Thus, H(i+ 1) holds.

Note that this coloring might be different from the one of c∗. This is, because a node in Ci might
have no conflicts with some color j < i and therefore this node will be assigned color j.

Proof of Lemma 3.2. Let S be the set over nodes with label 1 in a minimum vertex cover of G. Order
these nodes first (in an arbitrary relative order), then order the remaining nodes in V − S after these
nodes (in an arbitrary relative order). Now, label the nodes with 1 in this order until every edge has
an endpoint with label 1. After |S| steps, every node in S has label 1, meaning that the nodes with
label 1 form a minimum vertex cover: If the nodes formed a vertex cover after less than |S| steps, we
would find a smaller vertex cover, contradicting the minimality of S.

D LIST OF COMBINATORIAL NODE LABELING PROBLEMS

We provide an extensive list of classic graph optimization problems framed as node labeling problems.
Note that there can be multiple equivalent formulations. For some problems, we consider a weighed
graph G with weight function w : E 7→ R+, we write w(u, v) the weight of an edge {u, v}. For a
set of nodes S, we denote the subgraph of G induced by S with G[S].

The problems in Table 11 require a partition of the nodes as their solution. These can be represented
as node labeling problems by giving each partition its unique label. For many of the problems, the
number of used labels determines the cost function.

The problems in Table 12 require a path (or a sequences of nodes) as their solution, which we represent
as node labeling problems by having the label indicate the position in the path (or sequence).

18

Under review as a conference paper at ICLR 2023

Table 11: Node labeling problems which partition the nodes into 2 or more sets.

Problem Extensibility Test T (V ′ × L, v, l) Cost function f

Balanced k-partition
(Kernighan & Lin, 1970)

There are no more than dnk e
nodes with the same label
and at most k labels.

∑
{u,v}∈E,l(u)6=l(v) w(u, v)

Balanced k, 1 + ε vpartition
(Kernighan & Lin, 1970)

There are no more than dn(1+ε)
k e

nodes with the same label
and at most k labels.

∑
{u,v}∈E,l(u)6=l(v) w(u, v)

Minimum k-cut
(Karger & Stein, 1996)

k − |V | − |V ′| − 1 ≤ |L ∪ {v}|
and |L ∪ {v}| ≤ k

∑
{u,v}∈E,l(u)6=l(v) w(u, v)

Clique cover
(Karp, 1972)

Every label induces a clique Number of labels

Domatic number
(Hedetniemi & Laskar, 1990)

Every label induces a
dominating set of G[V ′ ∪ {v}]

Negative number of labels

Graph coloring
(Jensen et al., 1995)

No neighbor of v has label l Number of labels

Graph co-coloring
(Jensen et al., 1995)

The nodes with label l induce
an independent set in G
or the complement of G

Number of labels

k-defective coloring
(Cowen et al., 1986)

No node has more than k
neighbors with label l

Number of labels

Table 12: Node labeling problems where the labels encode a permutation of nodes.

Problem Extensibility Test T (V ′ × L, v, l) Cost function f

Traveling salesman
problem
(Dantzig et al., 1954)

l = max(L) + 1 and v
is a neighbor of the node
in L with label max(L)

∑
(u,v)∈E,l(v)=l(u)+1 w(u, v)

Tree decomposition
(Bodlaender, 2005)

l = max(L) + 1 For a node vi with label i, add
edges to G until vi forms a
clique with its higher-labeled
neighbors. The cost is the largest
number of higher-labeled
neighbors in the augmented graph
(Bodlaender, 2005).

Longest path
(Karger et al., 1997)

l = max(L) + 1 Maximum number of nodes
with consecutive labels
that induce a path

The problems in Table 13 require a set of nodes as their solution. These can be represented as node
labeling problems by giving the nodes in the solution set the label 1 and the nodes not in the solution
set the label 0. The cost function is closely related to the number of nodes with label 1 for most of
these problems.

19

Under review as a conference paper at ICLR 2023

Table 13: Node labeling problems with binary labels. For all these problems, the extensibility test passes only if
the label is 0 or 1 (and the additional requirements listed below are satisfied).

Problem Extensibility Test T (V ′ × L, v, l) Cost function f

Maximum cut
(Karp, 1972)

At least one node has label 1 −|{{u, v} ∈ E, l(u) 6= l(v)}|

Sparsest cut
(Arora et al., 2009)

At least one node has label 1 |{{u,v}∈E, l(u) 6=l(v)}|
|{v∈V, l(v)=1}|

Maximum independent set
(Tarjan & Trojanowski, 1977)
(Robson, 1986)

The subgraph induced by
the nodes with label 1 is an
independent set

−|{v ∈ V, l(v) = 1}|

Minimum vertex cover
(node cover) (Karp, 1972)

The subgraph induced by
the nodes with label 1 is a
vertex cover of G[V ′ ∪ {v}]

|{v ∈ V, l(v) = 1}|

Maximum clique
(Tomita & Seki, 2003)

The subgraph induced by
the nodes with label 1 is a
clique

−|{v ∈ V, l(v) = 1}|

Minimum feedback
node set
(Karp, 1972)

G[{u ∈ V ′ ∪ {v}, l(u) = 0}]
is a forest

|{v ∈ V, l(v) = 1}|

Metric dimension
(Harary & Melter, 1976)

The nodes in V ′ ∪ {v} are
uniquely identified by their
distances to nodes
with label 1

|{v ∈ V, l(v) = 1}|

Minimum
dominating set
(Hedetniemi & Laskar, 1990)

The nodes with label 1 form a
dominating set of G[V ′ ∪ {v}]

|{v ∈ V, l(v) = 1}|

Minimum connected
dominating set
(Hedetniemi & Laskar, 1990)

The nodes with label 1 form a
connected dominating
set of G[V ′ ∪ {v}]

|{v ∈ V, l(v) = 1}|

20

Under review as a conference paper at ICLR 2023

0

1

2

3

4

5

6

7

8 9

10

11

12

13

14
15

(a) Erdős-Rényi graph, n = 16.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(b) Erdős-Rényi graph, n = 16.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(c) Erdős-Rényi graph, n = 16.

0
1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

(d) Erdős-Rényi graph, n = 16.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(e) Erdős-Rényi graph, n = 16.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(f) Erdős-Rényi graph, n = 16.

0

1

2

3
4

5

6 7

8

9

10
1112

13

14

15

(g) Watts-Strogatz graph, n = 16.

0

1

2
3

4

5

6

7

8

9

10

11 12

13 14

15

(h) Watts-Strogatz graph, n = 16.

0

1

2

3

45

67

8

9

1011

12

13

14

15

(i) Watts-Strogatz graph, n = 16.

0
1

2

3

4

5

6

7

8

9

1011

12

13

14

15

(j) Watts-Strogatz graph, n = 16.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(k) Watts-Strogatz graph, n = 16.

0
1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

(l) Watts-Strogatz graph, n = 16.

Figure 8: Example colorings produced by our learned heuristic. Node borders indicate the colors. Numbers on
the nodes indicate the order in which the heuristic labels them.

E ADDITIONAL EXAMPLES

E.1 GRAPH COLORING

Figure 8 and Figure 9 show additional results of our learned coloring heuristic on in-distribution
graphs. For the Erdős-Rényi graphs and Watts-Strogatz, we provide some examples in a circular
layout and some with a force-directed layout. The force-directed layout emphasizes the structure of
the graph, but for these two graph classes leads to many crossing edges. See Figure 10 and Figure 11
for results on cycles, wheels, and trees. Interestingly, the heuristic picks the highest degree node in a
star or wheel sometimes first and sometimes last.

21

Under review as a conference paper at ICLR 2023

0
1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

(a) Barabási-Albert graph, n = 16.

0

1

2

3 4

5

6

7

8

9

10

11

1213

14

15

(b) Barabási-Albert graph, n = 16.

0
1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

(c) Barabási-Albert graph, n = 16.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(d) Barabási-Albert graph, n = 16.

0

1

2

3

4

5

6

7

8

9

1011

12

13

14

15

(e) Barabási-Albert graph, n = 16.

0

1

2

3

4

5

6

7

8

9

10 11

12

13
14

15

(f) Barabási-Albert graph, n = 16.

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

(g) Erdős-Rényi graph, n = 20.

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

(h) Watts-Strogatz graph, n = 20.

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

(i) Barabási-Albert graph, n = 20.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

(j) Erdős-Rényi graph, n = 20.

0

1

2

3
4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

(k) Watts-Strogatz graph, n = 20.

0

1
2

3

4

5
6

7

8
9

10

11
12

13

14 15

16

17

18

19

(l) Barabási-Albert graph, n = 20.

Figure 9: Example colorings produced by our learned heuristic. Node borders indicate the colors. Numbers on
the nodes indicate the order in which the heuristic labels them.

22

Under review as a conference paper at ICLR 2023

0

1

2
3

4

5

6

7

8
9

10

11

(a) Cycle graph, n = 12.

0

1

2

3
4

5

6

7

8

9

10

11
12

13

14

15

(b) Cycle graph, n = 16.

0

1

2

3

4
5

678
9

10

11

12

13

14

15

16

17

18
19

20 21 22
23

24

25

26

27

(c) Cycle graph, n = 28.

0

1

2

34

5

6

7

8

9 10

11

12

(d) Cycle graph, n = 13.

0

1

2

3
45

6

7

8

9

10

11

12 13
14

15

16

(e) Cycle graph, n = 17.

0

1

2

3

4
5

678
9

10

11

12

13

14

15

16

17

18

19
20

21 22 23
24

25

26

27

28

(f) Cycle graph, n = 29.

0

1
2

3

4

5

6

7
8

9

10

11

(g) Wheel graph, n = 12.

0

1

2

3
4

5

6

7

8

9

10

11
12

13

14

15

(h) Wheel graph, n = 16.

0

1

2

3

4
5

678
9

10

11

12

13

14

15

16

17

18
19

20 21 22
23

24

25

26

27

(i) Wheel graph, n = 28.

0

1

23

4

5

6

7

8 9

10

11

12

(j) Wheel graph, n = 13.

0

1

2

3
45

6

7

8

9

10

11

12 13
14

15

16

(k) Wheel graph, n = 17.

0

1

2

3

4
5

678
9

10

11

12

13

14

15

16

17

18

19
20

21 22 23
24

25

26

27

28

(l) Wheel graph, n = 29.

Figure 10: Example colorings produced by our learned heuristic on cycles and wheels. The learned coloring
heuristic visits nodes on the cycles in-order. For the wheels, the center of the wheel is either visited first or last.

23

Under review as a conference paper at ICLR 2023

0

1
2

3

4

5

6

7
8

9

10

11

(a) Star graph, n = 12.

0

1

2

3
4

5

6

7

8

9

10

11
12

13

14

15

(b) Star graph, n = 16.

0

1

2

3

4
5

678
9

10

11

12

13

14

15

16

17

18
19

20 21 22
23

24

25

26

27

(c) Star graph, n = 28.

0

1

23

4

5

6

7

8 9

10

11

12

(d) Star graph, n = 13.

0

1

2

3
45

6

7

8

9

10

11

12 13
14

15

16

(e) Star graph, n = 17.

0

1

2

3

4
5

678
9

10

11

12

13

14

15

16

17

18

19
20

21 22 23
24

25

26

27

28

(f) Star graph, n = 29.

0

1
2

3

4

5

6

7

8

9

10 11

(g) Tree graph, n = 12.

0

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

(h) Tree graph, n = 16.

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21

22

23
24

25

26

27

(i) Tree graph, n = 28.

0
1

2

3

4

5

6

7

8 9

10
1112

(j) Tree graph, n = 13.

0
1

2

3 4 5 6

7

8

9

10

11

12

13

14

15

16

(k) Tree graph, n = 17.

0
1

2
3

4

5
6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

21

2223 24

25

26
2728

(l) Tree graph, n = 29.

Figure 11: Example colorings produced by our learned heuristic on stars and random trees. For stars, the
heuristic either labels the center first or last. The tree heuristic prefers to start coloring at one of the leaves of the
tree and then colors nodes in a search pattern from there, coloring nodes that are neighbors of already colored
nodes. It often labels the remaining leaves very late into the coloring.

24

Under review as a conference paper at ICLR 2023

0

1 2

3

4

5
6

7

8

9

10

11

12

13

14

15

(a) Erdős-Rényi graph, n = 16.

0

1
2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

(b) Erdős-Rényi graph, n = 17.

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

(c) Erdős-Rényi graph, n = 18.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

(d) Erdős-Rényi graph, n = 20.

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 28

29
30

31

32
33

34

35

36

3738

39

40

(e) Erdős-Rényi graph, n = 41.

0

1

2

3

4

5

678
9

10

11

12
13

14

15

16

17

18

19

20

21

22

23 24

25

26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41

(f) Erdős-Rényi graph, n = 42.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(g) Barabási-Albert graph, n = 16.

0

1

2

3

4

5
67

8

9

10

11
12

13

14

15
16

(h) Barabási-Albert graph, n = 17.

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(i) Barabási-Albert graph, n = 18.

0

1

2

3

4
56

7

8

9

10

11

12

13

14

15

16

17

1819

(j) Barabási-Albert graph, n = 20.

0
1

2

3

4

5

6

7

8

9

10
11

12

1314

15

16

1718

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35
36

37

38

39

40

(k) Barabási-Albert graph, n = 41.

0
1

2

3

4

567

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
40 41

(l) Barabási-Albert graph, n = 42.

Figure 12: Example covers produced by our learned heuristic on Erdős-Rényi and Barabási-Albert graphs.
Black-bordered nodes are in the cover.

E.2 MINIMUM VERTEX COVER

Figure 12 shows additional example covers of our learned heuristic on in-distribution graphs.

25

	Introduction
	Combinatorial Node Labeling
	Preliminaries
	Node labeling MDP

	Graph learning approach
	Policy optimization
	GAT-CNL Architecture
	Number of operations

	Experiments
	Graph Coloring
	Minimum Vertex Cover
	Ablation Studies

	Conclusion
	Training
	Data Generation
	Training set parameters

	Policy Optimization

	Additional Results
	Validation Results
	Graph coloring
	Minimum vertex cover

	Results by Size
	Additional Results for MVC
	Ablation Studies for the Encoder
	Runtime Scalability
	Discussion.

	Additional Proofs
	The node labeling MDP
	Optimality of the labeling rule

	List of combinatorial node labeling problems
	Additional Examples
	Graph Coloring
	Minimum Vertex Cover

