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Abstract

Visual autoregressive modeling, based on the next-scale pre-
diction paradigm, exhibits notable advantages in image qual-
ity and model scalability over traditional autoregressive and
diffusion models. It generates images by progressively refin-
ing resolution across multiple stages. However, the computa-
tional overhead in high-resolution stages remains a critical
challenge due to the substantial number of tokens involved.
In this paper, we introduce SparseVAR, a plug-and-play ac-
celeration framework for next-scale prediction that dynami-
cally excludes low-frequency tokens during inference without
requiring additional training. Our approach is motivated by
the observation that tokens in low-frequency regions have a
negligible impact on image quality in high-resolution stages
and exhibit strong similarity with neighboring tokens. Ad-
ditionally, we observe that different blocks in the next-scale
prediction model focus on distinct regions, with some con-
centrating on high-frequency areas. SparseVAR leverages
these insights by employing lightweight MSE-based metrics
to identify low-frequency tokens while preserving the fidelity
of excluded regions through a small set of uniformly sampled
anchor tokens. By significantly reducing the computational
cost while maintaining high image generation quality, Spar-
seVAR achieves notable acceleration in both HART and In-
finity. Specifically, SparseVAR achieves up to a 2× speedup
with minimal quality degradation in Infinity-2B. Code is
available at https://github.com/Caesarhhh/SparseVAR.

1. Introduction
Text-to-image generation has seen widespread application

across a range of fields, from creative industries to practical

domains like virtual reality and content creation [6, 17, 22,

24, 25, 31, 35]. Among the various approaches, autoregres-

sive models [7, 14, 18–20, 27, 32, 37] stand out by utilizing

a pre-trained tokenizer to quantize continuous image fea-

tures into a sequence of discrete features by referring to a
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Existing Visual Autoregressive Modeling
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Figure 1. Existing visual autoregressive models allocate uniform

computational resources across all regions of a high-resolution

image. However, the large number of tokens processed in parallel

during high-resolution stages leads to substantial computational

overhead. To address this, our method decomposes the target image

into high- and low-frequency components, effectively reducing

the computational cost in high-resolution stages, thereby lowering

inference latency while preserving image generation quality.

codebook. This allows the model to generate images by

predicting the tokens in a sequence, achieving impressive

generalization and scalability. Building on this, next-scale

prediction [10, 28, 29] further accelerates autoregressive in-

ference by progressively increasing image resolution and

predicting the token maps of each resolution stage. This ap-

proach generates images in multiple stages, with each stage

progressively increasing the resolution. By predicting an en-

tire resolution at each stage, the number of iterations required

for high-resolution image generation is significantly reduced.

However, during the high-resolution stages, next-scale pre-

diction typically requires the generation of thousands of

tokens per resolution, leading to substantial computational

overhead, presenting a major challenge for scaling autore-

gressive models in high-resolution image synthesis.

To reduce the computational burden during high-

resolution stages, a natural approach is to decrease the num-
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Generated ImageStage 9 Stage 10 Stage 11 Stage 12
Figure 2. High-resolution stages have minimal impact on low-frequency regions. We visualize the images generated by the last five

higher-resolution stages of HART-0.7B (top), along with the �1 difference between each stage and its previous stage (bottom). The redder

areas indicate where the �1 difference is larger, and these areas are mostly concentrated in the high-frequency regions of the foreground. In

contrast, the �1 change in low-frequency regions, such as the background, is minimal, highlighting that high-resolution stages predominantly

focus on high-frequency regions.

ber of tokens involved in the computation. Previous works

have extensively explored methods to reduce the number

of tokens in vision transformers and multimodal large lan-

guage models [1, 3, 5, 26], which can be broadly categorized

into two strategies: merging and selection. Token merg-

ing [3, 16, 26] exploit the inherent similarity across visual

tokens, using similarity matching or clustering to combine

similar tokens. However, in high-resolution image genera-

tion, the large number of tokens involved makes techniques

like clustering and similarity matching computationally pro-

hibitive. Token selection [1, 5, 12] relies on the redundancy

of token attention scores, removing tokens with low atten-

tion scores in earlier layers to reduce the token count in

subsequent layers, or applying sparse attention operators

to accelerate computation. However, as shown in previous

work [11, 29], autoregressive image generation models ex-

hibit strong local dependencies in token attention scores,

where nearly all tokens assign high attention scores to their

neighboring tokens and low scores to distant tokens. This

consistent pattern across tokens makes it difficult to dis-

tinguish redundant tokens based solely on attention scores.

Detailed visualizations of the next-scale prediction model’s

attention map are provided in the appendix.

Our analysis begins by exploring the redundancy of token

maps across different stages. As shown in Figure 2, we visu-

alize the �1 difference between images generated with and

without the residuals from the final several stages of HART-

0.7B [28]. The residuals are concentrated in high-frequency

regions, while the impact of the final stage’s residuals on low-

frequency regions is negligible. This indicates substantial

redundancy in token inference during high-resolution stages.

Next, as shown in Figure 3, we visualize the MSE changes

in the features before and after inference across different

blocks of the HART-0.7B. Our observations indicate that dif-

ferent blocks attend to distinct regions, with certain blocks

exhibiting pronounced changes in high-frequency regions.

Based on the above observations, we propose Sparse-

VAR, a plug-and-play method designed to accelerate any

next-scale prediction model without the need for additional

training. Starting from a relatively high-resolution stage,

SparseVAR dynamically identifies low-frequency tokens us-

ing a lightweight metric based on the MSE changes observed

across features at specific blocks focusing on high-frequency

regions, eliminating the need for computationally expensive

similarity matching. Tokens identified as low-frequency are

skipped in subsequent inference stages. Moreover, Sparse-

VAR opts to retain a small number of anchor tokens, which

serve as proxies to represent the low-frequency regions, to

effectively preserve the generation quality while incurring

minimal additional computation.

We evaluate SparseVAR on leading high-resolution next-

scale prediction methods. The results demonstrate that our

method significantly accelerates image generation with virtu-

ally no loss in quality. For instance, on the GenEval dataset,

SparseVAR improves the inference speed of Infinity by an

average of nearly 2× with a minimal quality degradation in

the generated images.

Overall, our contributions are as follows:

• We offer new insights into next-scale prediction models:

(1) A significant amount of redundant tokens exist during

inference at high-resolution stages, (2) Different blocks

focus on distinct regions.

• We introduce SparseVAR, a simple yet effective method

for accelerating next-scale prediction models. Sparse-
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VAR dynamically identifies low-frequency tokens using

a lightweight metric, enabling early exclusion of low-

frequency tokens during high-resolution stages, thus signif-

icantly reducing computational overhead in low-frequency

regions. Moreover, SparseVAR preserves the generation

quality of low-frequency regions by retaining specific an-

chor tokens.

2. Related Work
Next-scale prediction. Next-scale prediction [10, 28, 29],

first introduced by VAR [29], demonstrates the potential of

the autoregressive paradigm in image generation, rivaling

diffusion transformers [2, 4, 21]. Traditional autoregressive

(AR) models [8, 15, 23, 36] flatten 2D images into 1D se-

quences of patch-level tokens. However, the spatial locality

inherent in images leads to strong correlations among neigh-

boring patches, which conflicts with the unidirectional depen-

dency assumption in AR modeling and limits both scalability

and generalization. VAR [29] addresses this limitation by

employing a multi-scale VQ-VAE [30] to represent images

as multi-scale token maps. In this framework, each scale’s

token map is treated as an autoregressive unit, progressively

predicting higher-resolution token maps at each step. While

effective, the discrete tokenizer [30] used in VAR struggles

to recover fine-grained image details, imposing an upper

bound on generation quality. HART [28] mitigates this issue

by introducing a continuous-discrete hybrid tokenizer, sig-

nificantly improving generation quality at higher resolutions.

Inspired by binary vector quantization [38], Infinity [10]

further expands the tokenizer vocabulary and adopts bitwise

token prediction, enabling more detailed reconstructions.

Despite these advances, these models face challenges related

to high computational redundancy, particularly during the

last few high-resolution stages of generation.

Token reduction. Reducing the number of input tokens is a

common strategy to enhance computational efficiency. Exist-

ing approaches primarily employ token selection [1, 5, 12]

or token merging [3, 16, 26]. FastV [5] ranks tokens based

on their attention scores up to the K-th layer and prunes the

bottom R%, retaining the remaining tokens for subsequent

processing. HiRED [1] addresses high-resolution image in-

puts by dynamically allocating token budgets per sub-image

using shallow-layer attention and selecting the top N patches

per sub-image based on deeper-layer [CLS] attention. Sim-

ilarly, ZipVL [12] employs an adaptive ratio assignment

scheme to discard less critical tokens, thereby compress-

ing the KV cache and accelerating the attention operation.

However, token selection methods are unsuitable for gen-

erative models due to the high interdependence of tokens.

Alternatively, token merging approaches reduce redundancy

by combining similar tokens. ToMe [3] divides tokens into

two groups, calculates inter-group similarity, and merges

the top N pairs of most similar tokens. VTM [16] intro-

MSE changes in block 16

MSE changes in block 21

Generated Image Stage 9 Stage 10 Stage 11

Figure 3. Different blocks in next-scale prediction models tend
to focus on distinct regions. We visualize the MSE changes before

and after feature inference at the 16th and 21st blocks during stages

10-12 of HART-0.7B. It is clear that different blocks exhibit distinct

regional focus tendencies.

duces a learnable token merging technique for long-form

video inputs, considering both token similarity and saliency.

LLava-PruMerge [26] integrates selection and merging by

initially selecting visual tokens based on [CLS] attention

scores, followed by merging using k-nearest neighbors. In

the context of high-resolution image generation, the sheer

volume of tokens significantly amplifies the computational

cost of clustering and similarity matching, rendering such

techniques infeasible for practical applications.

3. Empircal Insights
In this section, we provide visualizations and a in-depth

analysis of next-scale prediction models, revealing two key

properties that offer critical insights for our method.

Observation 1: The residuals generated at high-
resolution stages have minimal impact on low-frequency
regions. Existing VAR models predict logits p̃k at each

stage k, which are then mapped to residual feature maps

Δrk via the pre-trained codebook. To investigate the influ-

ence of these predictions on the final image, especially at

high-resolution stages, we visualize the �1 changes between

decoded images from two adjacent stages. As shown in Fig-

ure 2, with increasing stages, the residuals concentrate on

high-frequency regions, while their effect on the majority

of low-frequency regions is minimal. This indicates signifi-

cant redundancy in the high-resolution stages. Inspired by

this, we propose early exclusion of low-frequency tokens at
high-resolution stages to reduce this redundancy.
Observation 2: Different blocks in next-scale prediction
models tend to focus on distinct regions. To investigate

the regional differences in focus across blocks, we visualize

the MSE changes in features before and after inference at

various blocks. As shown in Figure 3, the regions attended

differ significantly across blocks. Specifically, the block 16

focuses more on high-frequency regions like contours, while

block 21 emphasizes low-frequency regions such as back-

ground. Based on this observation, we propose dynamically
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Figure 4. Overview of dynamic exclusion in SparseVAR. SparseVAR dynamically identifies and excludes low-frequency tokens starting

from higher-resolution stages by analyzing MSE changes in features before and after inference in specific blocks, which significantly reduces

computational overhead while maintaining generation quality of high-resolution regions.

Copy the most similar anchor

AR model

Low frequency High frequencyExclude Anchor

Figure 5. Overview of retention of anchor tokens in Sparse-

VAR (α = 3). SparseVAR retains a small number of anchor

tokens to represent low-frequency regions, enabling early-excluded

tokens to copy predictions from the most similar anchors.

distinguishing high- and low-frequency regions of the gen-
erated image using the MSE changes in features before and
after inference in specific blocks.

4. Methodology
Inspired by the above observations, we propose SparseVAR,

a simple yet effective method for accelerating next-scale pre-

diction models. SparseVAR comprises two key components:

early exclusion of low-frequency tokens and the retention

of anchor tokens. As shown in Figure 4, Figure 5 and Al-

gorithm 1, SparseVAR identifies low-frequency tokens by

analyzing the MSE changes at specific blocks, enabling their

early exclusion to reduce computational cost. Simultane-

ously, SparseVAR retains a set of anchor tokens to ensure

the preservation of generation quality in low-frequency re-

gions. The acceleration provided by SparseVAR is plug-and-

play, making it compatible with any next-scale prediction

model without the need for additional training.

4.1. Preliminary
Inference of the next-scale prediction. Consider a next-

scale prediction model comprising N blocks, the VAR frame-

work employs a hierarchical generation process across K
progressive resolution scales. At each scale k ∈ {1, ...,K},

the model parallelly predicts logits pk for all hk×wk tokens

in the current resolution scale. Subsequently, the residual

feature map Δrk is generated by retrieving features for each

token from the pretrained codebook based on the predicted

logit map pk. The residual feature Δri from all previous

stages (i ≤ k) are interpolated and accumulated to form rk,

which serves as the input for stage k+1. Finally, rK is used

to generate the final image through a VAE decoder.

4.2. Dynamic Exclusion of Low-Frequency Tokens
Exclusion in high-resolution stages. As illustrated in

Observation 1, we propose to exclude low-frequency to-

kens during inference to reduce computational overhead.

Considering that earlier stages of the next-scale prediction

model have lower computational overhead and mainly cap-

ture low-frequency information (hence exhibiting limited

redundancy), we only start applying early-exit from the P -th

stage onward.

Dynamic high-low frequency identification. Since the

proportion of low-frequency regions varies across images,

it is essential to design a lightweight method to dynami-

cally identify regions that are low-frequency and should

be excluded from the computation. Inspired by Obser-
vation 2, we directly leverage the MSE variations of fea-

tures within a specific block, to effectively distinguish high-

and low-frequency regions. As illustrated in Figure 4, let

Fs
k ∈ R

hk×wk×C represents the output feature map of se-

lected block s at stage k(k ≥ P ), where C is the number of

channels. The MSE change map ΔFs
k−1 ∈ R

hk−1×wk−1 in

previous stage is defined as:

ΔFs
k−1(i, j) =

1

C

C∑
c=1

(
Fs

k−1(i, j, c)− Fs−1
k−1(i, j, c)

)2
,

(1)
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where i and j index the spatial dimensions of the feature

map. ΔFs
k−1 is interpolated to match the resolution of the

stage k, resulting in F̃k ∈ R
hk×wk .

Let Mlow
k ⊆ {1, . . . , hk} × {1, . . . , wk} denote the set

of low-frequency token indices at stage k. Tokens in stage k
are classified as low-frequency and added to the exclusion

set Mlow
k if their corresponding values in F̃k are below a

threshold τ ·max(F̃k), where τ ∈ [0, 1] is a hyperparameter

controlling the sparsity level. Formally, we define:

Mlow
k = {(i, j) | F̃k(i, j) < τ ·max(F̃k)}. (2)

Regions identified as low-frequency are excluded from com-

putation in stage k and all subsequent stages, ensuring that

they do not participate in any further computations.

4.3. Retention of Anchor Tokens
To ensure the generation quality of low-frequency regions,

we propose retaining a set of anchor tokens that encapsulate

the essential information of excluded low-frequency regions

by leveraging the high similarity of tokens in neighboring

low-frequency areas. Specifically, we uniformly select the

top-left corner of every α × α grid as the anchor token,

ensuring efficient representation while preserving essential

structural information. As illustrated in Figure 5, when

α = 3, anchor tokens are selected from the top-left corner

of every 3× 3 grid.

At stage k (k ≥ P ), the output logits map pk−1 from the

previous stage is utilized to assess the similarity of low-

frequency regions. Specifically, pk−1 is interpolated to

match the resolution of stage k, resulting in p̃k. The logits

of anchor tokens, denoted as ak, are a subset of p̃k. The

cosine similarity between p̃k and ak is computed as:

Sim(p̃k,ak) =
p̃�
k ak

‖p̃k‖‖ak‖ . (3)

After inference in stage k, an excluded token is assigned

the logits of its most similar anchor token if the similarity

exceeds a predefined threshold β; otherwise, the feature map

Δrk in its location is set to zero.

Complexity analysis. For inference complexity, Spar-
seVAR reduces the computational cost by excluding low-
frequency tokens starting from stage P . Since the computa-

tional cost of higher-resolution stages dominates the overall

inference complexity in next-scale prediction models, we

primarily analyze these stages.

For the k-th stage, the computational cost of the original

model is O
(
h2
k · w2

k

)
. SparseVAR dynamically identifies

the low-frequency regions, and suppose a proportion sk of

low-frequency tokens is excluded from computation. Ad-

ditionally, anchor tokens are uniformly sampled from the

feature map at each stage. The number of anchor tokens

is proportional to 1
α2 , where α is the sampling size. The

reduced computational cost at stage k, considering both the

exclusion of low-frequency tokens and the inclusion of an-

chor tokens, becomes:

O

(
(1− sk +

1

α2
)2 · h2

k · w2
k

)
.

Algorithm 1 Inference Procedure for Stage k in SparseVAR

Input: Input feature map rk−1, selected block index s for

MSE computation, threshold τ , anchor grid size α, similarity

threshold β, [pk−1,ΔFs
k−1] (for k ≥ P )

Output: Logits pk, MSE change map ΔFs
k(for k ≥ P − 1)

1: if k < P then
2: Directly inference and obtain logits pk

3: if k = P − 1 then
4: Compute MSE change map ΔFs

k using Eq. (1)

5: else
// Exclude low-frequency tokens dynamically

6: Interpolate ΔFs
k−1 to resolution F̃s

k

7: Identify low-frequency tokens Mlow
k using Eq. (2)

8: Exclude tokens in Mlow
k except anchor tokens

9: Inference and obtain logits pk for remaining tokens

// Copy logits from anchor token

10: Interpolate logits pk−1 to match resolution the k-th

stage and obtain p̃k

11: for each token (i, j) ∈ Mlow
k do

12: Compute similarity with anchors using Eq. (3)

13: if maximum similarity ≥ β then
14: Assign logits of the most similar anchor

15: Compute MSE change map ΔFs
k for the current

stage using Eq. (1)

16: return pk, ΔFs
k(for k ≥ P − 1)

5. Experiments
Implementation details. We conduct experiments on the

Infinity-2B [10] and HART-0.7B [28], both are 1024× 1024
high-resolution autoregressive generation models based on

next-scale prediction. We compare the performance of

accelerated image generation on the GenEval [9], DPG-

Bench [13], ImageReward [34], and HPSV2.1 [33] datasets

with β = 0.9 and P = 10. Since the sparsity varies dy-

namically across images, we present the average per-image

inference performance across these datasets. All inference

latency is measured on an NVIDIA 3090 GPU.

Main results. To evaluate the acceleration performance of

SparseVAR, we conduct experiments on the GenEval and

DPG-Bench. As shown in Table 1 and Table 2, the results

demonstrate that SparseVAR significantly improves infer-

ence speed with minimal impact on image generation quality.

For instance, when τ = 0.7, SparseVAR reduces the in-

ference latency of Infinity by 51%, with the overall score
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Table 1. Quantitative evaluation on GenEval. This table presents a comprehensive quantitative analysis of the GenEval benchmark,

accounting for varying thresholds τ and α = 4. Latency measurements were conducted with a batch size of 1 on a single GPU. The

evaluation of Infinity-2B was performed using rewritten prompts in accordance with the methodology outlined in the official repository.

Model τ
GenEval↑ Latency (s)↓

Two Obj. Position Color Attri. Counting Colors Sin Obj. Overall

Infinity-2B - 0.8586 0.4175 0.5525 0.6844 0.8431 1.0000 0.7260 2.78

+ SparseVAR

0.4 0.8485 0.4250 0.5625 0.7000 0.8457 1.0000 0.7303 2.64

0.5 0.8359 0.4250 0.5600 0.6781 0.8351 1.0000 0.7224 1.87

0.6 0.8409 0.4125 0.5475 0.6812 0.8404 1.0000 0.7204 1.47

0.7 0.8460 0.4225 0.5475 0.6719 0.8378 1.0000 0.7209 1.36

HART-0.7B - 0.6919 0.1625 0.2825 0.3688 0.8617 0.9938 0.5602 1.32

+ SparseVAR

0.4 0.7071 0.1450 0.2650 0.3938 0.8777 0.9906 0.5632 1.25

0.5 0.7045 0.1600 0.2575 0.3969 0.8644 0.9906 0.5623 1.18

0.6 0.7071 0.1600 0.2825 0.3562 0.8670 0.9906 0.5606 0.99

0.7 0.6035 0.1200 0.2125 0.3344 0.8351 0.9656 0.5119 0.81

decreasing by only 0.0051 in GenEval and 0.0033 in DPG-

Bench. Similarly, when τ = 0.6, SparseVAR achieves a

25% reduction in the inference latency of HART, while ex-

hibiting only a marginal decrease in GenEval(0.0030) and

in DPG-Bench(0.0023). These results indicate that Sparse-

VAR effectively preserves the image generation quality of

high-frequency regions during high-resolution stages.

Table 2. Quantitative evaluation on DPG-Bench. Latency measure-

ments are conducted on a single GPU using a batch size of 1.

Model τ
DPG-Bench↑ Latency (s)↓

Global. Relation Overall

Infinity-2B - 0.8419 0.9283 0.8289 2.55

+ SparseVAR

0.4 0.8541 0.9246 0.8282 2.34

0.5 0.8480 0.9242 0.8254 1.69

0.6 0.8632 0.9237 0.8260 1.35

0.7 0.8511 0.9270 0.8256 1.20

HART-0.7B - 0.8710 0.9295 0.8099 1.31

+ SparseVAR

0.4 0.8571 0.9233 0.8092 1.24

0.5 0.8602 0.9233 0.8082 1.19

0.6 0.8602 0.9246 0.8069 1.00

0.7 0.8663 0.9254 0.8072 0.83

Human preference evaluation. To further investigate the

impact of SparseVAR’s acceleration on human evaluation

preferences, we conducted experiments on two datasets fo-

cused on human preference assessment. As shown in Table 3,

on the HPSv2.1 dataset, when τ = 0.7, SparseVAR reduces

the average inference latency of Infinity by 49.43% while

the overall score decreases by only 0.47. On the ImageRe-

ward dataset, SparseVAR reduces the inference latency by

49.62% with a score reduction of only 0.0266. These results

indicate that SparseVAR effectively preserves the quality

of high-frequency regions, and the generated images remain

aligned with human preferences.

Influence of different α. To investigate the effectiveness of

anchor tokens, we conducted comparative experiments on

HART and Infinity by varying the grid size α. As shown in

Table 4, retaining anchor tokens improves the image gener-

ation quality of both HART and Infinity while introducing

minimal additional inference overhead. Notably, HART is

more significantly affected due to its residual diffusion mech-

anism, which takes the final stage’s output as input. Without

logits assigned to the early exiting low-frequency tokens via

anchor tokens, residual diffusion lacks these low-frequency

inputs, leading to incomplete detail refinement in these re-

gions. Consequently, the strategy of retaining anchor tokens

effectively preserves the optimization quality of this diffu-

sion process. When α is small, the image generation quality

improves further, but the number of tokens required for in-

ference increases significantly, resulting in slower inference.

Considering both quality and efficiency, we set α = 4.

Influence of different P . To investigate the impact of early-

exited stages on image generation quality, we conducted

experiments on GenEval to compare the effects of different

values of P on generation quality and average inference

latency. As shown in Table 5, when P is set to a small value,

meaning the model exits at a very early stage, the image

generation quality significantly deteriorates while inference

latency is not greatly reduced. This is because next-scale

prediction progressively increases the resolution, making

later stages much more computationally intensive than earlier

ones. Furthermore, earlier stages primarily generate low-

frequency content, making early exits more sensitive to the

final image quality. Therefore, considering both quality and
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Table 3. Quantitative evaluation on Human Preference Metrics. This table provides a detailed quantitative analysis on two human preference

benchmarks, considering varying thresholds τ and a fixed local window size of 4. Latency measurements were performed with a batch size

of 1 on a single GPU to ensure consistency and accuracy.

Model τ
ImageReward HPSv2.1

Score↑ Latency(s)↓ Anime Concept-Art Paintings Photo Overall↑ Latency(s)↓
Infinity-2B - 0.9212 2.64 31.63 30.26 30.28 29.27 30.36 2.61

+ SparseVAR

0.4 0.9147 2.37 31.58 30.13 30.16 29.22 30.27 2.35

0.5 0.8969 1.77 31.40 29.95 29.96 29.05 30.09 1.79

0.6 0.8943 1.42 31.29 29.82 29.77 28.94 29.95 1.40

0.7 0.8946 1.33 31.21 29.75 29.71 28.88 29.89 1.32

HART-0.7B - 0.8656 1.32 31.22 29.61 29.10 28.21 29.53 1.30

+ SparseVAR

0.4 0.8818 1.25 31.19 29.58 29.08 28.19 29.51 1.26

0.5 0.8818 1.20 31.06 29.47 28.96 28.09 29.40 1.19

0.6 0.8121 1.01 30.25 28.68 28.13 27.51 28.64 1.02

0.7 0.4333 0.82 27.18 25.60 25.13 24.93 25.71 0.81

Table 4. Evaluation of different local window

sizes α on GenEval. τ is set as 0.6. Inference

latency is measured with batch size of 1 and in

seconds. - means that we do not keep anchor

tokens.

α
Infinity HART

Score Latency(s) Score Latency(s)
2 0.7235 1.76 0.5615 1.11

3 0.7210 1.54 0.5578 1.06

4 0.7204 1.47 0.5606 0.99

5 0.7200 1.46 0.5560 0.97

- 0.7190 1.38 0.5502 0.93

Table 5. Impact of different P on image gener-

ation quality and inference latency on GenEval.

We report the generation quality score (↑) and

inference latency in seconds (↓) for each P .

P
Infinity HART

Score Latency(s) Score Latency(s)
6 0.6805 1.29 0.5529 0.98

8 0.7085 1.35 0.5577 0.98

9 0.7126 1.39 0.5565 0.99

10 0.7204 1.47 0.5602 0.99

11 0.7261 1.76 0.5625 1.03

12 0.7274 2.21 0.5607 1.05

Figure 6. Comparison of different met-

rics for distinguishing high- and low-

frequency regions.

efficiency, we set P = 10.

Comparisons with different early exiting metrics. To com-

pare the effectiveness of different metrics for distinguishing

high- and low-frequency regions for early exiting, we eval-

uated three approaches: using the MSE changes in specific

block, the logits similarity generated at each stage, and the

�1 differences between images generated by the cumulative

residuals decoded at each stage and the previous stage. We

have detailed the calculation specifics of the three metrics in

the appendix. As shown in Figure 6, using MSE as the metric

for early exiting provides the most lightweight and accurate

measurement of low-frequency regions, enabling precise

early exits. Although using the �1 difference of generated im-

ages can also effectively distinguish high- and low-frequency

regions, it requires an additional decoder operation at each

stage, resulting in extra computational overhead.

Impact of block selection on MSE-based frequency esti-
mation. To investigate the impact of using MSE changes

from different blocks for high- and low-frequency selection

on image generation quality, we conducted comparative ex-

periments across various blocks on Infinity with τ = 0.6. As

shown in Figure 8, while some blocks exhibit clear distinc-

tions in MSE variations between high and low frequencies,

others do not. Among all blocks, the 16th block achieved the

best results. Therefore, we utilize the MSE changes from the

16th block for high- and low-frequency estimation. Addi-

tional visualizations of MSE changes across different blocks

are provided in the appendix.

Qualitative visualizations. To provide a more intuitive

demonstration of SparseVAR’s ability to accurately reduce

computations in low-frequency regions, we visualize the

token distribution for early exiting across different stages

with τ = 0.6 and α = 4. As shown in Figure 7, the visual-

izations illustrate the sparsity pattern of SparseVAR’s early

exit process in 11th to 13th stage. As clearly illustrated in

the figure, SparseVAR effectively excludes the majority of

low-frequency regions, retaining high-frequency regions for

inference. By the final stage, only a small number of tokens

remain, yet the majority of the image generation quality is

preserved. Compared to the baseline, SparseVAR achieves

a significant acceleration in inference speed with minimal

degradation in image generation quality.
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Prompt: giant dragon carcass, tropical swamp, photography

Prompt: backpacker traveling in Bali, Indonesia. Ultra realism, 4K, beautiful landscape, ultra detail.

Prompt: A plump cupcake with a candle on top and creamy frosting, 3D cartoon style, realistic details.

Figure 7. Qualitative visualizations of SparseVAR. The yellow and purple colors represent the tokens identified as retained and early-exited

at each stage, respectively.

Figure 8. Impact of block selection on MSE-based frequency

estimation. Image generation quality is evaluated using the HART-

0.7B across different blocks.

6. Conclusion
This paper explores the redundancy of token computations

in high-resolution stages of next-scale prediction models and

proposes SparseVAR, a novel method for effectively accel-

erating image generation. The approach offers a simple yet

effective strategy that dynamically identifies and excludes

low-frequency tokens, requiring no additional training. By

leveraging the strong local dependencies between neighbor-

ing tokens, SparseVAR significantly reduces computational

overhead while preserving image quality. Overall, Sparse-

VAR enhances the efficiency of next-scale prediction models

with minimal loss in performance, providing a practical so-

lution for high-resolution image synthesis.

Limitations and future work. Our research primar-

ily focuses on next-scale prediction models, leaving the

broader applicability of early exclusion of low-frequency

tokens in other autoregressive generation models unexplored.

Extending this concept to a wider range of autoregressive

frameworks remains an important direction for future work.

Additionally, the current approach employs a uniform sam-

pling strategy for anchor selection. However, fixed window

frequencies and anchor positions may not be optimal for

all images, as the characteristics of low-frequency regions

vary significantly across different inputs. Developing a dy-

namic method to adaptively adjust the sampling frequency

and anchor placement based on image content could further

enhance the generation quality of low-frequency regions.
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