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Abstract

Visual autoregressive modeling, based on the next-scale pre-
diction paradigm, exhibits notable advantages in image qual-
ity and model scalability over traditional autoregressive and
diffusion models. It generates images by progressively refin-
ing resolution across multiple stages. However, the computa-
tional overhead in high-resolution stages remains a critical
challenge due to the substantial number of tokens involved.
In this paper, we introduce SparseVAR, a plug-and-play ac-
celeration framework for next-scale prediction that dynami-
cally excludes low-frequency tokens during inference without
requiring additional training. Our approach is motivated by
the observation that tokens in low-frequency regions have a
negligible impact on image quality in high-resolution stages
and exhibit strong similarity with neighboring tokens. Ad-
ditionally, we observe that different blocks in the next-scale
prediction model focus on distinct regions, with some con-
centrating on high-frequency areas. SparseVAR leverages
these insights by employing lightweight MSE-based metrics
to identify low-frequency tokens while preserving the fidelity
of excluded regions through a small set of uniformly sampled
anchor tokens. By significantly reducing the computational
cost while maintaining high image generation quality, Spar-
seVAR achieves notable acceleration in both HART and In-
finity. Specifically, SparseVAR achieves up to a 2x speedup
with minimal quality degradation in Infinity-2B. Code is
available at https://github.com/Caesarhhh/Sparse VAR.

1. Introduction

Text-to-image generation has seen widespread application
across a range of fields, from creative industries to practical
domains like virtual reality and content creation [6, 17, 22,
24,25, 31, 35]. Among the various approaches, autoregres-
sive models [7, 14, 18-20, 27, 32, 37] stand out by utilizing
a pre-trained tokenizer to quantize continuous image fea-
tures into a sequence of discrete features by referring to a
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Figure 1. Existing visual autoregressive models allocate uniform
computational resources across all regions of a high-resolution
image. However, the large number of tokens processed in parallel
during high-resolution stages leads to substantial computational
overhead. To address this, our method decomposes the target image
into high- and low-frequency components, effectively reducing
the computational cost in high-resolution stages, thereby lowering
inference latency while preserving image generation quality.

codebook. This allows the model to generate images by
predicting the tokens in a sequence, achieving impressive
generalization and scalability. Building on this, next-scale
prediction [10, 28, 29] further accelerates autoregressive in-
ference by progressively increasing image resolution and
predicting the token maps of each resolution stage. This ap-
proach generates images in multiple stages, with each stage
progressively increasing the resolution. By predicting an en-
tire resolution at each stage, the number of iterations required
for high-resolution image generation is significantly reduced.
However, during the high-resolution stages, next-scale pre-
diction typically requires the generation of thousands of
tokens per resolution, leading to substantial computational
overhead, presenting a major challenge for scaling autore-
gressive models in high-resolution image synthesis.

To reduce the computational burden during high-
resolution stages, a natural approach is to decrease the num-
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Stage 9 Stage 10 Stage 11 Stage 12 Generated Image
Figure 2. High-resolution stages have minimal impact on low-frequency regions. We visualize the images generated by the last five
higher-resolution stages of HART-0.7B (top), along with the ¢; difference between each stage and its previous stage (bottom). The redder
areas indicate where the ¢; difference is larger, and these areas are mostly concentrated in the high-frequency regions of the foreground. In
contrast, the #1 change in low-frequency regions, such as the background, is minimal, highlighting that high-resolution stages predominantly

focus on high-frequency regions.

ber of tokens involved in the computation. Previous works
have extensively explored methods to reduce the number
of tokens in vision transformers and multimodal large lan-
guage models [1, 3, 5, 26], which can be broadly categorized
into two strategies: merging and selection. Token merg-
ing [3, 16, 26] exploit the inherent similarity across visual
tokens, using similarity matching or clustering to combine
similar tokens. However, in high-resolution image genera-
tion, the large number of tokens involved makes techniques
like clustering and similarity matching computationally pro-
hibitive. Token selection [1, 5, 12] relies on the redundancy
of token attention scores, removing tokens with low atten-
tion scores in earlier layers to reduce the token count in
subsequent layers, or applying sparse attention operators
to accelerate computation. However, as shown in previous
work [11, 29], autoregressive image generation models ex-
hibit strong local dependencies in token attention scores,
where nearly all tokens assign high attention scores to their
neighboring tokens and low scores to distant tokens. This
consistent pattern across tokens makes it difficult to dis-
tinguish redundant tokens based solely on attention scores.
Detailed visualizations of the next-scale prediction model’s
attention map are provided in the appendix.

Our analysis begins by exploring the redundancy of token
maps across different stages. As shown in Figure 2, we visu-
alize the /; difference between images generated with and
without the residuals from the final several stages of HART-
0.7B [28]. The residuals are concentrated in high-frequency
regions, while the impact of the final stage’s residuals on low-
frequency regions is negligible. This indicates substantial
redundancy in token inference during high-resolution stages.
Next, as shown in Figure 3, we visualize the MSE changes

in the features before and after inference across different
blocks of the HART-0.7B. Our observations indicate that dif-
ferent blocks attend to distinct regions, with certain blocks
exhibiting pronounced changes in high-frequency regions.

Based on the above observations, we propose Sparse-
VAR, a plug-and-play method designed to accelerate any
next-scale prediction model without the need for additional
training. Starting from a relatively high-resolution stage,
SparseVAR dynamically identifies low-frequency tokens us-
ing a lightweight metric based on the MSE changes observed
across features at specific blocks focusing on high-frequency
regions, eliminating the need for computationally expensive
similarity matching. Tokens identified as low-frequency are
skipped in subsequent inference stages. Moreover, Sparse-
VAR opts to retain a small number of anchor tokens, which
serve as proxies to represent the low-frequency regions, to
effectively preserve the generation quality while incurring
minimal additional computation.

We evaluate SparseVAR on leading high-resolution next-
scale prediction methods. The results demonstrate that our
method significantly accelerates image generation with virtu-
ally no loss in quality. For instance, on the GenEval dataset,
SparseVAR improves the inference speed of Infinity by an
average of nearly 2x with a minimal quality degradation in
the generated images.

Overall, our contributions are as follows:

* We offer new insights into next-scale prediction models:
(1) A significant amount of redundant tokens exist during
inference at high-resolution stages, (2) Different blocks
focus on distinct regions.

* We introduce Sparse VAR, a simple yet effective method
for accelerating next-scale prediction models. Sparse-
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VAR dynamically identifies low-frequency tokens using
a lightweight metric, enabling early exclusion of low-
frequency tokens during high-resolution stages, thus signif-
icantly reducing computational overhead in low-frequency
regions. Moreover, SparseVAR preserves the generation
quality of low-frequency regions by retaining specific an-
chor tokens.

2. Related Work

Next-scale prediction. Next-scale prediction [10, 28, 29],
first introduced by VAR [29], demonstrates the potential of
the autoregressive paradigm in image generation, rivaling
diffusion transformers [2, 4, 21]. Traditional autoregressive
(AR) models [8, 15, 23, 36] flatten 2D images into 1D se-
quences of patch-level tokens. However, the spatial locality
inherent in images leads to strong correlations among neigh-
boring patches, which conflicts with the unidirectional depen-
dency assumption in AR modeling and limits both scalability
and generalization. VAR [29] addresses this limitation by
employing a multi-scale VQ-VAE [30] to represent images
as multi-scale token maps. In this framework, each scale’s
token map is treated as an autoregressive unit, progressively
predicting higher-resolution token maps at each step. While
effective, the discrete tokenizer [30] used in VAR struggles
to recover fine-grained image details, imposing an upper
bound on generation quality. HART [28] mitigates this issue
by introducing a continuous-discrete hybrid tokenizer, sig-
nificantly improving generation quality at higher resolutions.
Inspired by binary vector quantization [38], Infinity [10]
further expands the tokenizer vocabulary and adopts bitwise
token prediction, enabling more detailed reconstructions.
Despite these advances, these models face challenges related
to high computational redundancy, particularly during the
last few high-resolution stages of generation.

Token reduction. Reducing the number of input tokens is a
common strategy to enhance computational efficiency. Exist-
ing approaches primarily employ token selection [1, 5, 12]
or token merging [3, 16, 26]. FastV [5] ranks tokens based
on their attention scores up to the K -th layer and prunes the
bottom R%, retaining the remaining tokens for subsequent
processing. HIRED [1] addresses high-resolution image in-
puts by dynamically allocating token budgets per sub-image
using shallow-layer attention and selecting the top N patches
per sub-image based on deeper-layer [CLS] attention. Sim-
ilarly, ZipVL [12] employs an adaptive ratio assignment
scheme to discard less critical tokens, thereby compress-
ing the KV cache and accelerating the attention operation.
However, token selection methods are unsuitable for gen-
erative models due to the high interdependence of tokens.
Alternatively, token merging approaches reduce redundancy
by combining similar tokens. ToMe [3] divides tokens into
two groups, calculates inter-group similarity, and merges
the top NN pairs of most similar tokens. VTM [16] intro-

MSE changes in block 16

Generated Image Stage 9 Stage 10 Stage 11

Figure 3. Different blocks in next-scale prediction models tend
to focus on distinct regions. We visualize the MSE changes before
and after feature inference at the 16th and 21st blocks during stages
10-12 of HART-0.7B. It is clear that different blocks exhibit distinct
regional focus tendencies.

duces a learnable token merging technique for long-form
video inputs, considering both token similarity and saliency.
LLava-PruMerge [26] integrates selection and merging by
initially selecting visual tokens based on [CLS] attention
scores, followed by merging using k-nearest neighbors. In
the context of high-resolution image generation, the sheer
volume of tokens significantly amplifies the computational
cost of clustering and similarity matching, rendering such
techniques infeasible for practical applications.

3. Empircal Insights

In this section, we provide visualizations and a in-depth
analysis of next-scale prediction models, revealing two key
properties that offer critical insights for our method.
Observation 1: The residuals generated at high-
resolution stages have minimal impact on low-frequency
regions. Existing VAR models predict logits py at each
stage k, which are then mapped to residual feature maps
Ary, via the pre-trained codebook. To investigate the influ-
ence of these predictions on the final image, especially at
high-resolution stages, we visualize the ¢; changes between
decoded images from two adjacent stages. As shown in Fig-
ure 2, with increasing stages, the residuals concentrate on
high-frequency regions, while their effect on the majority
of low-frequency regions is minimal. This indicates signifi-
cant redundancy in the high-resolution stages. Inspired by
this, we propose early exclusion of low-frequency tokens at
high-resolution stages to reduce this redundancy.
Observation 2: Different blocks in next-scale prediction
models tend to focus on distinct regions. To investigate
the regional differences in focus across blocks, we visualize
the MSE changes in features before and after inference at
various blocks. As shown in Figure 3, the regions attended
differ significantly across blocks. Specifically, the block 16
focuses more on high-frequency regions like contours, while
block 21 emphasizes low-frequency regions such as back-
ground. Based on this observation, we propose dynamically
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Figure 4. Overview of dynamic exclusion in SparseVAR. SparseVAR dynamically identifies and excludes low-frequency tokens starting
from higher-resolution stages by analyzing MSE changes in features before and after inference in specific blocks, which significantly reduces
computational overhead while maintaining generation quality of high-resolution regions.
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Figure 5. Overview of retention of anchor tokens in Sparse-
VAR (o = 3). SparseVAR retains a small number of anchor
tokens to represent low-frequency regions, enabling early-excluded
tokens to copy predictions from the most similar anchors.
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distinguishing high- and low-frequency regions of the gen-
erated image using the MSE changes in features before and
after inference in specific blocks.

4. Methodology

Inspired by the above observations, we propose Sparse VAR,
a simple yet effective method for accelerating next-scale pre-
diction models. SparseVAR comprises two key components:
early exclusion of low-frequency tokens and the retention
of anchor tokens. As shown in Figure 4, Figure 5 and Al-
gorithm 1, SparseVAR identifies low-frequency tokens by
analyzing the MSE changes at specific blocks, enabling their
early exclusion to reduce computational cost. Simultane-
ously, SparseVAR retains a set of anchor tokens to ensure
the preservation of generation quality in low-frequency re-
gions. The acceleration provided by SparseVAR is plug-and-
play, making it compatible with any next-scale prediction
model without the need for additional training.

4.1. Preliminary

Inference of the next-scale prediction. Consider a next-
scale prediction model comprising IV blocks, the VAR frame-

work employs a hierarchical generation process across K
progressive resolution scales. At each scale k € {1, ..., K},
the model parallelly predicts logits py, for all hy x wy, tokens
in the current resolution scale. Subsequently, the residual
feature map Ary, is generated by retrieving features for each
token from the pretrained codebook based on the predicted
logit map pg. The residual feature Ar; from all previous
stages (i < k) are interpolated and accumulated to form r,
which serves as the input for stage k£ + 1. Finally, 7 is used
to generate the final image through a VAE decoder.

4.2. Dynamic Exclusion of Low-Frequency Tokens

Exclusion in high-resolution stages. As illustrated in
Observation 1, we propose to exclude low-frequency to-
kens during inference to reduce computational overhead.
Considering that earlier stages of the next-scale prediction
model have lower computational overhead and mainly cap-
ture low-frequency information (hence exhibiting limited
redundancy), we only start applying early-exit from the P-th
stage onward.

Dynamic high-low frequency identification. Since the
proportion of low-frequency regions varies across images,
it is essential to design a lightweight method to dynami-
cally identify regions that are low-frequency and should
be excluded from the computation. Inspired by Obser-
vation 2, we directly leverage the MSE variations of fea-
tures within a specific block, to effectively distinguish high-
and low-frequency regions. As illustrated in Figure 4, let
F; € RMWXwexC represents the output feature map of se-
lected block s at stage k(k > P), where C is the number of
channels. The MSE change map AF; | € Rie—1Xwk-1 i
previous stage is defined as:

c
s—1/: - \\2
AF;_1(i,7) Z Fi_1(i,5,0) = Fki(%]&)) ’

(D
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where ¢ and j index the spatial dimensions of the feature
map. AF}_; is interpolated to match the resolution of the
stage k, resulting in Fj, € R >wr,

Let MY C {1,...,hx} x {1,...,wy} denote the set
of low-frequency token indices at stage k. Tokens in stage k
are classified as low-frequency and added to the exclusion
set Mfw if their corresponding values in F, are below a
threshold 7 - max(F},), where 7 € [0, 1] is a hyperparameter
controlling the sparsity level. Formally, we define:

MY = {(i,§) | Fr(i,7) < 7-max(Fp)}.  (2)

Regions identified as low-frequency are excluded from com-
putation in stage k and all subsequent stages, ensuring that
they do not participate in any further computations.

4.3. Retention of Anchor Tokens

To ensure the generation quality of low-frequency regions,
we propose retaining a set of anchor tokens that encapsulate
the essential information of excluded low-frequency regions
by leveraging the high similarity of tokens in neighboring
low-frequency areas. Specifically, we uniformly select the
top-left corner of every a X « grid as the anchor token,
ensuring efficient representation while preserving essential
structural information. As illustrated in Figure 5, when
a = 3, anchor tokens are selected from the top-left corner
of every 3 x 3 grid.

At stage k (k > P), the output logits map pj_; from the
previous stage is utilized to assess the similarity of low-
frequency regions. Specifically, py_; is interpolated to
match the resolution of stage &, resulting in pi. The logits
of anchor tokens, denoted as ay, are a subset of pi. The
cosine similarity between py, and ay, is computed as:

=T
Sim(f)k, ak) = __pki
1P llaxl]

After inference in stage k, an excluded token is assigned

the logits of its most similar anchor token if the similarity
exceeds a predefined threshold 3; otherwise, the feature map
Ary, in its location is set to zero.
Complexity analysis. For inference complexity, Spar-
seVAR reduces the computational cost by excluding low-
frequency tokens starting from stage P. Since the computa-
tional cost of higher-resolution stages dominates the overall
inference complexity in next-scale prediction models, we
primarily analyze these stages.

For the k-th stage, the computational cost of the original
model is O (h? - w}). SparseVAR dynamically identifies
the low-frequency regions, and suppose a proportion s of
low-frequency tokens is excluded from computation. Ad-
ditionally, anchor tokens are uniformly sampled from the
feature map at each stage. The number of anchor tokens

is proportional to %, where « is the sampling size. The

3

reduced computational cost at stage k, considering both the
exclusion of low-frequency tokens and the inclusion of an-
chor tokens, becomes:

1
O((1—5k+a2)2-hi-w2>.

Algorithm 1 Inference Procedure for Stage % in Sparse VAR

Input: Input feature map r;_1, selected block index s for

MSE computation, threshold 7, anchor grid size c, similarity

threshold 3, [pr—1, AF;_,] (for k > P)

Output: Logits pi, MSE change map AF; (for k > P — 1)
1: if k£ < P then

2 Directly inference and obtain logits py

3: if k = P — 1 then

4: Compute MSE change map AF3, using Eq. (1)

5: else

/I Exclude low-frequency tokens dynamically

Interpolate AF]_; to resolution F

Identify low-frequency tokens M " using Eq. (2)

Exclude tokens in M};’W except anchor tokens

Inference and obtain logits py, for remaining tokens

/I Copy logits from anchor token

10: Interpolate logits py—1 to match resolution the k-th

stage and obtain py,
11:  for each token (i, j) € MY do

© 2 3

12: Compute similarity with anchors using Eq. (3)
13: if maximum similarity > (3 then
14: Assign logits of the most similar anchor

15: Compute MSE change map AF} for the current
stage using Eq. (1)
16: return py, AF;(fork > P —1)

5. Experiments

Implementation details. We conduct experiments on the
Infinity-2B [10] and HART-0.7B [28], both are 1024 x 1024
high-resolution autoregressive generation models based on
next-scale prediction. We compare the performance of
accelerated image generation on the GenEval [9], DPG-
Bench [13], ImageReward [34], and HPSV2.1 [33] datasets
with 8 = 0.9 and P = 10. Since the sparsity varies dy-
namically across images, we present the average per-image
inference performance across these datasets. All inference
latency is measured on an NVIDIA 3090 GPU.

Main results. To evaluate the acceleration performance of
SparseVAR, we conduct experiments on the GenEval and
DPG-Bench. As shown in Table 1 and Table 2, the results
demonstrate that SparseVAR significantly improves infer-
ence speed with minimal impact on image generation quality.
For instance, when 7 = 0.7, SparseVAR reduces the in-
ference latency of Infinity by 51%, with the overall score
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Table 1. Quantitative evaluation on GenEval. This table presents a comprehensive quantitative analysis of the GenEval benchmark,
accounting for varying thresholds 7 and o = 4. Latency measurements were conducted with a batch size of 1 on a single GPU. The
evaluation of Infinity-2B was performed using rewritten prompts in accordance with the methodology outlined in the official repository.

Model T GenEvalt Latency (s)|
Two Obj. Position Color Attri. Counting Colors Sin Obj. Overall

Infinity-2B - 0.8586 0.4175 0.5525 0.6844 0.8431 1.0000 0.7260 2.78
0.4 0.8485 0.4250 0.5625 0.7000 0.8457  1.0000 0.7303 2.64
+ SparseVAR 0.5 0.8359 0.4250 0.5600 0.6781 0.8351 1.0000 0.7224 1.87
P 0.6 0.8409 0.4125 0.5475 0.6812 0.8404  1.0000 0.7204 1.47
0.7 0.8460 0.4225 0.5475 0.6719 0.8378  1.0000 0.7209 1.36
HART-0.7B - 0.6919 0.1625 0.2825 0.3688 0.8617  0.9938 0.5602 1.32
0.4 0.7071 0.1450 0.2650 0.3938 0.8777  0.9906 0.5632 1.25
+ SparseVAR 0.5 0.7045 0.1600 0.2575 0.3969 0.8644  0.9906 0.5623 1.18
P 0.6 0.7071 0.1600 0.2825 0.3562 0.8670  0.9906 0.5606 0.99
0.7 0.6035 0.1200 0.2125 0.3344 0.8351  0.9656 0.5119 0.81

decreasing by only 0.0051 in GenEval and 0.0033 in DPG-
Bench. Similarly, when 7 = 0.6, SparseVAR achieves a
25% reduction in the inference latency of HART, while ex-
hibiting only a marginal decrease in GenEval(0.0030) and
in DPG-Bench(0.0023). These results indicate that Sparse-
VAR effectively preserves the image generation quality of
high-frequency regions during high-resolution stages.

Table 2. Quantitative evaluation on DPG-Bench. Latency measure-
ments are conducted on a single GPU using a batch size of 1.

Model T DPG-Bencht Latency (s)|
Global. Relation Overall
Infinity-2B - 0.8419 09283 0.8289  2.55
04 0.8541 09246 08282 234
0.5 0.8480 0.9242 0.8254 1.69
+SparseVAR ) 8632 0.9237 0.8260 1.35
0.7 0.8511 0.9270 0.8256 1.20
HART-0.7B - 0.8710 0.9295 0.8099 1.31
0.4 0.8571 09233 0.8092 1.24
0.5 0.8602 0.9233 0.8082 1.19
+SparseVAR ' 76602 0.9246  0.8069 1.00
0.7 0.8663 09254 08072  0.83

Human preference evaluation. To further investigate the
impact of SparseVAR’s acceleration on human evaluation
preferences, we conducted experiments on two datasets fo-
cused on human preference assessment. As shown in Table 3,
on the HPSv2.1 dataset, when 7 = (0.7, SparseVAR reduces
the average inference latency of Infinity by 49.43% while
the overall score decreases by only 0.47. On the ImageRe-
ward dataset, SparseVAR reduces the inference latency by

49.62% with a score reduction of only 0.0266. These results
indicate that SparseVAR effectively preserves the quality
of high-frequency regions, and the generated images remain
aligned with human preferences.

Influence of different .. To investigate the effectiveness of
anchor tokens, we conducted comparative experiments on
HART and Infinity by varying the grid size c. As shown in
Table 4, retaining anchor tokens improves the image gener-
ation quality of both HART and Infinity while introducing
minimal additional inference overhead. Notably, HART is
more significantly affected due to its residual diffusion mech-
anism, which takes the final stage’s output as input. Without
logits assigned to the early exiting low-frequency tokens via
anchor tokens, residual diffusion lacks these low-frequency
inputs, leading to incomplete detail refinement in these re-
gions. Consequently, the strategy of retaining anchor tokens
effectively preserves the optimization quality of this diffu-
sion process. When « is small, the image generation quality
improves further, but the number of tokens required for in-
ference increases significantly, resulting in slower inference.
Considering both quality and efficiency, we set o = 4.
Influence of different P. To investigate the impact of early-
exited stages on image generation quality, we conducted
experiments on GenEval to compare the effects of different
values of P on generation quality and average inference
latency. As shown in Table 5, when P is set to a small value,
meaning the model exits at a very early stage, the image
generation quality significantly deteriorates while inference
latency is not greatly reduced. This is because next-scale
prediction progressively increases the resolution, making
later stages much more computationally intensive than earlier
ones. Furthermore, earlier stages primarily generate low-
frequency content, making early exits more sensitive to the
final image quality. Therefore, considering both quality and
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Table 3. Quantitative evaluation on Human Preference Metrics. This table provides a detailed quantitative analysis on two human preference
benchmarks, considering varying thresholds 7 and a fixed local window size of 4. Latency measurements were performed with a batch size

of 1 on a single GPU to ensure consistency and accuracy.

Model - ImageReward HPSv2.1
Score! Latency(s)] Anime Concept-Art Paintings Photo Overall Latency(s)]
Infinity-2B - 09212 2.64 31.63 30.26 30.28 29.27 30.36 2.61
04 09147 2.37 31.58 30.13 30.16 29.22 30.27 2.35
+ SparseVAR 0.5 0.8969 1.77 31.40 29.95 29.96 29.05 30.09 1.79
P 0.6 0.8943 1.42 31.29 29.82 29.77 28.94 29.95 1.40
0.7 0.8946 1.33 31.21 29.75 29.71 28.88 29.89 1.32
HART-0.7B - 0.8656 1.32 31.22 29.61 29.10 28.21 29.53 1.30
0.4 0.8818 1.25 31.19 29.58 29.08 28.19 29.51 1.26
+ SparseVAR 0.5 0.8818 1.20 31.06 29.47 28.96 28.09 29.40 1.19
P 0.6 0.8121 1.01 30.25 28.68 28.13 27.51 28.64 1.02
0.7 04333 0.82 27.18 25.60 25.13 24.93 25.71 0.81
Table 4. Evaluation of different local window Table 5. Impact of different P on image gener- vss ey

sizes « on GenEval. 7 is set as 0.6. Inference

ation quality and inference latency on GenEval. Ve

K

latency is measured with batch size of 1 andin  We report the generation quality score (1) and £ %5
. . 9
seconds. - means that we do not keep anchor inference latency in seconds ({) for each P. 2 0.45
tokens. 2
P Infinity HART g 040
i Q
a Infinity HART Score Latency(s) Score Latency(s) 0351 @ L‘)g“s
Score Latency(s) Score Latency(s) 6 0.6805 1.29 0.5529 0.98 ol A MSE
2 0.7235 1.76 0.5615 1.11 8 0.7085 1.35 0.5577 0.98 o 12 16 20 24
3 0.7210 1.54 0.5578 1.06 9 0.7126 1.39 0.5565 0.99 Inference Latency (s)
4 0.7204 1.47 0.5606 0.99 10 0.7204 1.47 0.5602 0.99 Figure 6. Comparison of different met-
5 07200 146 05560 097 11 07261 176 05625 1.03 rics for distinguishing high- and low-
- 0.7190 1.38 0.5502 0.93 12 0.7274 2.21 0.5607 1.05

efficiency, we set P = 10.

Comparisons with different early exiting metrics. To com-
pare the effectiveness of different metrics for distinguishing
high- and low-frequency regions for early exiting, we eval-
uated three approaches: using the MSE changes in specific
block, the logits similarity generated at each stage, and the
¢, differences between images generated by the cumulative
residuals decoded at each stage and the previous stage. We
have detailed the calculation specifics of the three metrics in
the appendix. As shown in Figure 6, using MSE as the metric
for early exiting provides the most lightweight and accurate
measurement of low-frequency regions, enabling precise
early exits. Although using the ¢; difference of generated im-
ages can also effectively distinguish high- and low-frequency
regions, it requires an additional decoder operation at each
stage, resulting in extra computational overhead.

Impact of block selection on MSE-based frequency esti-
mation. To investigate the impact of using MSE changes
from different blocks for high- and low-frequency selection
on image generation quality, we conducted comparative ex-
periments across various blocks on Infinity with 7 = 0.6. As

frequency regions.

shown in Figure 8, while some blocks exhibit clear distinc-
tions in MSE variations between high and low frequencies,
others do not. Among all blocks, the 16" block achieved the
best results. Therefore, we utilize the MSE changes from the
16" block for high- and low-frequency estimation. Addi-
tional visualizations of MSE changes across different blocks
are provided in the appendix.

Qualitative visualizations. To provide a more intuitive
demonstration of SparseVAR’s ability to accurately reduce
computations in low-frequency regions, we visualize the
token distribution for early exiting across different stages
with 7 = 0.6 and o = 4. As shown in Figure 7, the visual-
izations illustrate the sparsity pattern of SparseVAR’s early
exit process in 11*" to 13" stage. As clearly illustrated in
the figure, SparseVAR effectively excludes the majority of
low-frequency regions, retaining high-frequency regions for
inference. By the final stage, only a small number of tokens
remain, yet the majority of the image generation quality is
preserved. Compared to the baseline, SparseVAR achieves
a significant acceleration in inference speed with minimal
degradation in image generation quality.
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Figure 7. Qualitative visualizations of SparseVAR. The yellow and purple colors represent the tokens identified as retained and early-exited

at each stage, respectively.

S
n

S
S

Geneval Overall Score
s =
~ w

e

e
s

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Selected Block Index

Figure 8. Impact of block selection on MSE-based frequency
estimation. Image generation quality is evaluated using the HART-
0.7B across different blocks.

6. Conclusion

This paper explores the redundancy of token computations
in high-resolution stages of next-scale prediction models and
proposes Sparse VAR, a novel method for effectively accel-
erating image generation. The approach offers a simple yet
effective strategy that dynamically identifies and excludes
low-frequency tokens, requiring no additional training. By

leveraging the strong local dependencies between neighbor-
ing tokens, SparseVAR significantly reduces computational
overhead while preserving image quality. Overall, Sparse-
VAR enhances the efficiency of next-scale prediction models
with minimal loss in performance, providing a practical so-
lution for high-resolution image synthesis.

Limitations and future work. Our research primar-
ily focuses on next-scale prediction models, leaving the
broader applicability of early exclusion of low-frequency
tokens in other autoregressive generation models unexplored.
Extending this concept to a wider range of autoregressive
frameworks remains an important direction for future work.
Additionally, the current approach employs a uniform sam-
pling strategy for anchor selection. However, fixed window
frequencies and anchor positions may not be optimal for
all images, as the characteristics of low-frequency regions
vary significantly across different inputs. Developing a dy-
namic method to adaptively adjust the sampling frequency
and anchor placement based on image content could further
enhance the generation quality of low-frequency regions.
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