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ABSTRACT
Modelling and predicting the behaviour of infectious diseases is
essential for early warning and evaluating the most effective in-
terventions to prevent significant harm. Compartmental models
produce a system of ordinary differential equations (ODEs) that are
renowned for simulating the transmission dynamics of infectious
diseases. However, the parameters in compartmental models are
often unknown, and they can even change over time in the real
world, making them difficult to determine. This paper proposes an
advanced artificial intelligence approach based on physics-informed
neural networks (PINNs) to estimate time-varying parameters from
given data for the compartmental model. Our proposed PINNs
approach captures the complex dynamics of COVID-19 by integrat-
ing a modified Susceptible-Exposed-Infectious-Recovered-Death
(SEIRD) compartmental model with deep neural networks. The
experimental findings on synthesized data have demonstrated that
our method robustly and accurately learns the dynamics and fore-
casts future states. Moreover, as more data becomes available, our
proposed PINNs approach can be successfully extended to other
regions and infectious diseases.
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1 INTRODUCTION
The emergence of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has presented an unprecedented and complex public
health challenge, with emerging and re-emerging infectious dis-
eases posing a significant threat. Compartmental models, governed
by a nonlinear system of ordinary differential equations (ODEs),
simulate multi-state population transitions by incorporating do-
main knowledge and mathematical assumptions to characterize the
transmission dynamics of infectious diseases. These models are a
powerful tool for detecting, understanding, and combating infec-
tious disease outbreaks and have been widely used to evaluate the
impact of various public health interventions during the COVID-19
pandemic [24]. However, since real-world data can be inherently
stochastic, noisy, and even inaccessible, model optimization and
methodological innovation are urgently needed to handle imperfect
data and provide early warning of major public health emergencies.

Modeling and predicting the behavior of infectious diseases is
crucial for early warning and evaluating effective interventions
to mitigate damage. The first compartmental model, Susceptible-
Infectious-Removed (SIR), was proposed by Kermack and McK-
endrick to study the epidemics of the Black Death in London and
the plague in Mumbai [12]. Compartmental models allow the addi-
tion of compartments or transmission parameters to explore and
estimate the impact of different assumptions regarding interven-
tions. These parameters, included in the compartmental model,
determine the transmission progress between different disease sta-
tuses and can generate essential characteristics of an epidemic [2].
Finding the best-fit parameters from the system, given available
data, is an inverse problem. Several numerical methods have been
developed to infer constant model parameters from available data.
These methods convert the inverse problem into an optimization
problem and formulate an estimator by minimizing an objective
function. However, since various non-pharmaceutical interventions
(NPIs) are employed during the evolution of COVID-19, somemodel
parameters are time-varying.

Identifying time-varying parameters in compartmental mod-
els is a complex inverse problem, making it challenging to accu-
rately model outbreak dynamics [1, 10]. Recent advances in Physics-
informedmachine learning have shown promise in COVID-19 trans-
mission modelling by incorporating prior knowledge into deep
neural networks to enhance their accuracy and robustness [11]. For
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example, Kharazmi et al. used PINNs to identify time-dependent
parameters and data-driven fractional differential operators in sev-
eral epidemiological models [13]. Long et al. proposed a variant
of PINNs to fit daily reported cases and identify time-varying pa-
rameters in the susceptible-infectious-recovered-deceased model
for the spread of COVID-19 [15]. Nascimento et al. introduced an
approach that combines physics-informed and data-driven kernels
to reduce the gap between predictions and observations [17]. Cai
et al. employed fractional physics-informed neural networks to
refine the classical susceptible–exposed–infected–removed (SEIR)
model, infer time-dependent parameters, and identify unobserved
dynamics of the fractional SEIR model [3]. However, most of these
approaches only consider the transmission rate as a function of
time, while setting other parameters to fixed values. Additionally,
they mainly use time-varying parameters for prediction and lack a
systematic epidemiological analysis.

The primary focus of this paper is to introduce a novel method for
evaluating time-varying parameters in ODEs-based compartmental
models and to assess the impact of the NPIs based on the estimated
parameters. We constructed a SEIRD compartmental model that
takes an incubation period and the corresponding infectivity into
account, including both unknown time-varying and constant pa-
rameters. Given many unknown parameters and limited data, we
modeled the system of ODEs as one network and the time-varying
parameters as another network to reduce the parameter of neural
networks. Furthermore, such structure of the PINNs approach is in
line with the prior epidemiological correlations. We then tested the
effectiveness of our methodology using real-world reported data,
simulation experiments showed that our proposed PINNs method
effectively performs data-driven parameter estimation for mod-
elling COVID-19 transmission. Moreover, as more data becomes
available, it can be successfully extended to model and analyze
infectious disease transmission dynamics in various regions and
for different infectious diseases.

2 METHODOLOGY
2.1 Compartmental model
Compartmental models enable the simulation of multi-state popu-
lation transitions by incorporating domain knowledge and math-
ematical assumptions to characterize the dynamics of infectious
diseases. These models are generally represented as the following
nonlinear dynamical system:

𝑑𝑼 (𝑡)
𝑑𝑡

= F (𝑡, 𝑼 (𝑡);Ξ)
𝑼 (𝑡0) = 𝑈0

(1)

where 𝑼 (𝑡) ∈ R𝐷 (typically 𝐷 ≫ 1) is the state variable, 𝒕 ∈ [𝑡0,𝑇 ]
is the time range, 𝑈 (𝑡0) is the initial state, and Ξ stands for the
parameters of the dynamical system.

The SIR compartmental model provided the simplest framework
that matched the reporting structure with the least underlying
assumptions. Many variations of the SIR model have been proposed
to analyze the transmission of COVID-19. In this paper, we consider
a geographical region as isolated from other regions, and within
such region we divide the population (𝑁 ) of study region into five
compartments, susceptible (𝑆 , vulnerable to COVID-19 infection),

exposed (𝐸, latent individual or asymptomatic infective), infected
(𝐼 , symptomatic infected), recovered (𝑅, immune to COVID-19), and
dead (𝐷 , death due to COVID-19). The details of the SEIRD model
are described below:



𝑑𝑆 (𝑡)
𝑑𝑡

= − 𝛽𝑆 (𝑡) (𝜖𝐸 (𝑡)) + 𝐼 (𝑡)
𝑁

𝑑𝐸 (𝑡)
𝑑𝑡

=
𝛽𝑆 (𝑡) (𝜖𝐸 (𝑡) + 𝐼 (𝑡))

𝑁
− 𝐸 (𝑡)

𝛼
𝑑𝐼 (𝑡)
𝑑𝑡

=
𝐸 (𝑡)
𝛼

− 𝛾𝐼 (𝑡) − 𝜇𝐼 (𝑡)
𝑑𝑅(𝑡)
𝑑𝑡

= 𝛾𝐼 (𝑡)
𝑑𝐷 (𝑡)
𝑑𝑡

= 𝜇𝐼 (𝑡)
𝑁 = 𝑆 (𝑡) + 𝐸 (𝑡) + 𝐼 (𝑡) + 𝑅(𝑡) + 𝐷 (𝑡)

(2)

Where 𝑆 (𝑡), 𝐸 (𝑡), 𝐼 (𝑡), 𝑅(𝑡), 𝐷 (𝑡) denote the number of suscepti-
ble, exposed, infectious, recovered, and deceased individuals over
time respectively, along with non-negative initial conditions 𝑆 (0) =
𝑆0, 𝐸 (0) = 𝐸0, 𝐼 (0) = 𝐼0, 𝑅(0) = 𝑅0, 𝐷 (0) = 𝐷0. 𝛽 ≥ 0 represents
the transmission rate, which represents the probability of infection
per exposure when a susceptible individual (𝑆) has contact with
an infected patient (𝐼 ) and becomes a latent exposed individual
(𝐸). A coefficient parameter 𝜖 is introduced since the transmission
capacity of exposed and onset populations may be different. 𝜖𝛽
represents the potential rate per exposure when a susceptible indi-
vidual (𝑆) has mutual contact with an exposed individual (𝐸), and
transmits it to another exposed individual (𝐸). 𝛼 is the average
duration of incubation period, 1/𝛼 is the rate of latent individuals
becoming infectious Besides, 𝛾 ≥ 0 represents the recovery rate,
𝜇 ≥ 0 represents the death rate, and 𝑁 is the total population.

The assumption that the parameters in Eqs. 2 are time-constant,
which is a highly restrictive and unrealistic one for the real-world
epidemic where various interventions exist. The associated inter-
ventions implemented by authorities, and/or mutations of the virus,
et al. make the compartmental model require time-varying parame-
ters to capture the dynamic of dynamics of COVID-19. Therefore,
by considering transmission rate 𝛽 , recovery rate 𝛾 and death rate
𝜇 as functions of time 𝛽 (𝑡), 𝛾 (𝑡), 𝜇 (𝑡), the re-written SEIRD model
is as follows:



𝑑𝑆 (𝑡)
𝑑𝑡

= − 𝛽 (𝑡)𝑆 (𝑡) (𝜖𝐸 (𝑡)) + 𝐼 (𝑡))
𝑁

𝑑𝐸 (𝑡)
𝑑𝑡

=
𝛽 (𝑡)𝑆 (𝑡) (𝜖𝐸 (𝑡)) + 𝐼 (𝑡))

𝑁
− 𝐸 (𝑡)

𝛼
𝑑𝐼 (𝑡)
𝑑𝑡

=
𝐸 (𝑡)
𝛼

− 𝛾 (𝑡)𝐼 (𝑡) − 𝜇 (𝑡)𝐼 (𝑡)
𝑑𝑅(𝑡)
𝑑𝑡

= 𝛾 (𝑡)𝐼 (𝑡)
𝑑𝐷 (𝑡)
𝑑𝑡

= 𝜇 (𝑡)𝐼 (𝑡)
𝑁 = 𝑆 (𝑡) + 𝐸 (𝑡) + 𝐼 (𝑡) + 𝑅(𝑡) + 𝐷 (𝑡)

(3)

Among them, the five variables 𝑆 (𝑡), 𝐸 (𝑡), 𝐼 (𝑡), 𝑅(𝑡), 𝐷 (𝑡) have
the samemeanings as in Eq. 2. If we assume that the total population
𝑁 is constant, then the sum of the increase or decrease of the state
of each population is 0, namely, 𝑑𝑆 (𝑡 )

𝑑𝑡
+ 𝑑𝐼 (𝑡 )

𝑑𝑡
+ 𝑑𝑅 (𝑡 )

𝑑𝑡
+ 𝑑𝐷 (𝑡 )

𝑑𝑡
= 0.
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The basic reproduction number 𝑅0 is a constant epidemiological
parameter that provides an estimation of the contagiousness of the
infectious disease. It also serves as a threshold parameter, when
𝑅0 > 1, one infected individual can trigger an outbreak, while when
𝑅0 < 1, the infection will not spread in the population. Given a
compartmental model, 𝑅0 can be calculated by the Next Generation
Matrix (NGM) approach [7].

If the related parameters in the compartmental model are time-
varying as in Eq. 3, the reproduction number 𝑅0 is expected to keep
changing, as a function of time called the effective reproduction
number 𝑅𝑡 . 𝑅𝑡 for the course of SEIRD model using the NGM ap-
proach, which yields the following expressions in the proposed
SEIRD model:

𝑅𝑡 = 𝜖 · 𝛽 (𝑡)𝛼 + 𝛽 (𝑡)
𝛾 (𝑡) + 𝜇 (𝑡) (4)

𝑅𝑡 provides an estimation of the contagiousness of the infectious
disease, during the course of an outbreak, where not every individ-
ual is considered susceptible.

2.2 Deep neural networks
Deep neural networks (DNNs) have emerged as a reliable and effec-
tive method for nonlinear function approximation, demonstrating
remarkable capabilities in scientific computation and engineering
applications, as evidenced by their widespread utilization. Many
types of DNNs have been developed such as recurrent neural net-
works, convolutional neural networks, and Transformer et al [16],
and here we only consider fully-connected deep neural networks
(FDNN). Neural networks can be viewed as discretizations of contin-
uous dynamical systems, making them well-suited for dealing with
dynamic systems. Mathematically, an FDNN defines a mapping of
the form

F : 𝒙 ∈ R𝑑 =⇒ 𝒚 = F (𝒙) ∈ R𝑐 , (5)
where 𝑑 and 𝑐 are the input and output dimensions, respectively.
Generally, a standard neural unit of an FDNN receives an input
𝒙 ∈ R𝑑 and produces an output 𝒚 ∈ R𝑚 , 𝒚 = 𝜎 (𝑾𝒙 + 𝒃) with
𝑾 ∈ R𝑚×𝑑 and 𝒃 ∈ R𝑚 being weight matrix and bias vector,
respectively. 𝜎 (·), which is referred to as the activation function,
is designed to add element-wise non-linearity to the model. An
FDNN with ℓ hidden layers can be considered a nested composition
of sequential standard neural units. For convenience, we denote
the output of the DNN by 𝒚(𝒙 ;𝜽 ) with 𝜽 standing for the set of all
weights and biases. Specifically, the 𝑗𝑡ℎ neuron in ℓ layer can be
formulated as

𝑦
[ℓ ]
𝑗

=

𝑛 [ℓ−1]∑︁
𝑘=1

𝑤
[ℓ ]
𝑗𝑘

𝜎 [ℓ−1] (𝑦 [ℓ−1]
𝑘

) + 𝑏 [ℓ ]
𝑗

, (6)

where 𝑦 [ℓ−1]
𝑘

represents the value of the 𝑘𝑡ℎ neuron in the ℓ − 1
layer, 𝑛 [ℓ−1] represents the number of neurons in the ℓ − 1 layer,
𝜎 [ℓ−1] is the activation function of the ℓ−1 layer,𝑤 [ℓ ]

𝑗𝑘
is the weight

between the 𝑘𝑡ℎ neuron in the ℓ − 1 layer and the 𝑗𝑡ℎ neuron in the
ℓ layer, and 𝑏 [ℓ ]

𝑗
is the bias of the 𝑗𝑡ℎ neuron in the ℓ layer.

The nonlinear activation function enhances the ability of DNN
to model various non-linear problems, selecting the suitable acti-
vation function matters greatly for DNN applied in all domains.
Particularly, the activation function has an extremely significant
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Figure 1: Illustration of the FDNN. A neural network consists
of an input layer (the input 𝑥), several hidden layers (com-
posed of weights𝑊 ℓ , bias 𝑏ℓ , and activation function 𝜎), and
an output layer.

impact on the success of training PINNs. ReLU activation function
has been widely used in many deep learning applications due to
its dealing well with vanishing gradients problems [19]. However,
for solving differential equations, the first and second derivatives
of the neural networks would serve as inputs to calculate the loss
function, which means that the activation function of the DNN in
PINNs framework requires the second derivative to be satisfied as
non-zero. Definitely, many research works have demonstrated that
sigmoid function and tanh function are suited for effective PINNs
framework training tasks.

2.3 PINNs for SEIRD model
Physics-informed neural networks (PINNs) approach is a data-
driven approach to approximate the solution of differential equa-
tions and estimate unknown parameters. The main idea of PINNs is
to integrate a priori knowledge as physical laws or domain exper-
tise modelled by differential equations into deep neural networks.
Equations in the compartmental model possess coupling and the
coefficients are not independent of each other through the lens of
biological and epidemics. In this context, we employ two separate
DNNs with input 𝑡 to represent the stats 𝑼 (𝒕) and time-varying pa-
rameters, respectively. For the two unknown constant parameters
(𝛼 , 𝜖), we designed the modified 𝑡𝑎𝑛ℎ activation function to repre-
sent them. The expression of the 𝑡𝑎𝑛ℎ function is 𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 ,
and the range of values belong to [-1, 1]. Considering that 𝛼 > 0
and 0 ≤ 𝜖 ≤ 1, thus we designed the expression of 𝜖 as 𝑡𝑎𝑛ℎ(𝑥),
the expression of 𝛼 as 21 · 𝑡𝑎𝑛ℎ(𝑥), 𝑥 is a random sample with
uniform distribution generated from the interval [0, 3]. Meanwhile,
COVID-19 transmission involves the analysis of real-world data,
for which the available data size tends to be small and sparse. Such
a PINNs architecture enables a well-trained model with a limited
data set.

The PINNs framework is required to fit the data and simultane-
ously satisfy the equations, whereby the loss function includes two
parts. The first part is the mismatch between the network output
and the available data, and another part is the residual of ODEs. In
this study, we employ the approximation 𝑼𝑵𝑵 (𝒕 ;𝚯𝑼 ) ≈ 𝑼 (𝒕) to
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represent the time-varying SEIRD equations (Eqs 3). The parame-
ters 𝚯 are optimized to achieve the best fit with the observed data.
Considering the available data 𝑼𝒋 at times 𝑡1, 𝑡2, ..., 𝑡𝑛 as training
points (ground truth), the mean squared error (MSE) is calculated
as follows:

𝑀𝑆𝐸𝑢 =
1
𝑁

𝑁∑︁
𝑗=1

���̂�𝑁𝑁 (𝑡 𝑗 ) − 𝑼 (𝑡 𝑗 )
��2 , (7)

Another component of the loss function is the residual of the sys-
tems of Eqs. 1, we define the residual of equations as R𝑁𝑁 (𝑡) =
𝑑𝑼 (𝒕 )
𝑑𝑡

−F (𝑼𝑵𝑵 , 𝑡 ;Ξ). The residual, denoted as 𝑹 (𝑡 ;𝚯𝑈 ), serves as
ametric for assessing the accuracy of the approximation𝑼𝑁𝑁 (𝑡 ;𝚯𝑈 )
in satisfying the ordinary differential equations (ODEs). Evaluating
the residual involves computing the time derivative of the neu-
ral network output, which can be accomplished using automatic
differentiation [20]. Automatic differentiation is a computational
technique that efficiently computes derivatives by applying the
chain rule. It breaks down functions into elementary operations
and calculates their derivatives, allowing for accurate and efficient
computation of the overall function’s derivative with respect to its
input variables.

𝑀𝑆𝐸𝑟 =
1
𝑁

𝑁∑︁
𝑗=1

��R𝑁𝑁 (𝑡 𝑗 )
��2 , (8)

In summary, the loss function of proposed PINNs approach is de-
fined as:

𝑳 = 𝜔𝑢𝑀𝑆𝐸𝑢 + 𝜔𝑟𝑀𝑆𝐸𝑟 (9)
The weight coefficients, 𝜔𝑢 , 𝜔𝑟 , in the loss function play a crucial
role in balancing the optimization process between learning from
the data and satisfying the ODEs. These parameters allow fine-
tuning of the model’s behaviour and trade-off between the two
objectives. By adjusting the values of 𝜔𝑢 , 𝜔𝑟 , the emphasis can be
placed on either accurately fitting the available data or ensuring
the ODE constraints are well-satisfied.

Consequently, this PINNs model strives to minimize the loss
function, effectively learning the underlying physics encoded in
the ODEs while accurately capturing the patterns and relationships
in the available data.

3 EXPERIMENTS
In this section, we will provide a description of the collected data
and present the results obtained from parameter estimation and
predictions using the proposed PINNs approach.

3.1 Data source
For the COVID-19 epidemic in Italy, the first official report of in-
digenous case was on February 21, 2020 in Lodi province, while
several epidemiological-linked cases were traced back to February
20, 2020. The data considered in our study is downloaded from
Italian Civil Protection (http://www.protezionecivile.gov.it/media-
comunicazione/comunicati-stampa) andMinistry of Health (http://www.salute.gov.it/portale/home.html).
It is comprised of commutative infected, recovered, and deceased
cases for the period from February 20, 2020 (day 1), to June 30,
2020 (day 132) [8]. To avoid weekly fluctuations induced by the
work-leisure shift and nature noise in the real-world data, a 7-day
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Figure 2: Schematic diagram of the PINNs framework for the
SEIRD compartmental model with unknown (time-varying
and constant) parameters. The green-shaded DNNs repre-
sents the states 𝑼𝑵𝑵 (𝒕) to fit the available data and infer the
unobserved dynamics. The yellow-shaded DNNs represents
time-varying parameters 𝛽 (𝑡), 𝛾 (𝑡), 𝜇 (𝑡). The two constant pa-
rameters (𝛼 , 𝜖) are represented by the modified 𝑡𝑎𝑛ℎ(𝑡) acti-
vation function.

moving average was used to smooth the reported data by averaging
the values of each day with those of the 7 days before. In order to
control the transmission of COVID-19 in Italy, lockdown and many
restriction measures were implemented from February 23, 2020, as
the developed timeline shown in Fig. 3. All events and interventions
are available from official websites https://mn.gov/governor/covid-
19/news/.

Key Events

Formal start date of COVID-19: 
localized lockdown for certain regions

Feb 21 March 8 20 22 April 1 10 May 3 18 June 15

Ban parks, public gardens, and 
open-air recreational activity

All non-essential or non-strategic 
industrial activities are closed

LockdownLockdown Lockdown

DPCM: initial release of 
some restriction measures

DPCM: general opening in 
effect, social distancing and 
other measures remain

First DPCM: localized national lockdown, 
ban of gathering and sports events.

National lockdown, commercial 
activities shutdown

11 26

2020

DPCM: general opening in 
effect, social distancing 
and other measures remain

23

First official 
report case

Figure 3: Timeline of NPIs implemented in Italy to control
COVID-19. DPCM: Decree of the Prime Minister.

3.2 Experimental settings
We train the PINNs model on a personal laptop running the Win-
dows 10 operating system, equipped with an Intel (R) Core (TM)
i7-8550U CPU operating at 1.8GHz. We implement the PINNs ap-
proach using Python and the PyTorch framework [21]. For the
numerical experiment, we train the neural networks using the
Adam optimizer with an initial learning rate of 2×10−3 and a decay
rate of 95% every 2000 epochs. The entire training process takes
about 10 minutes to run 50,000 epochs on all training data, and
predictions can be made within seconds.

http://www.protezionecivile.gov.it/media-comunicazione/comunicati-stampa
http://www.protezionecivile.gov.it/media-comunicazione/comunicati-stampa
http://www.salute.gov.it/portale/home.html
https://mn.gov/governor/covid-19/news/
https://mn.gov/governor/covid-19/news/
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3.3 Results
3.3.1 Data fitting. In this subsection, we present the evaluation of
how well the estimated parameters fit the SEIRD compartmental
model on the available data. Fig.4 shows the fitting of the dynamic
of the SEIRD model to the available real-world reported data (after
7-day smoothing), which demonstrates that the proposed PINNs
approach can accurately fit the different fluctuations in the data.
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Figure 4: Data fitting during training. (a.) Fitting to the avail-
able data of current infectious. (b.) Fitting to the available
data of cumulative recovered. (c.) Fitting to the available data
of cumulative deaths. Dot: observed data. Line: 7-day rolling
of observed data. Dashed: PINNs’ prediction of dynamics.

3.3.2 Inference. We aim to infer the time-varying parameters 𝛽 (𝑡),
𝛾 (𝑡), 𝜇 (𝑡), as well as the constants 𝛼 and 𝜖 , through the inverse
problem solving of the SEIRD compartmental model. The incuba-
tion period and the infectiousness during this period are parameters
specific to the virus, which can be obtained from clinical case in-
formation or inferred using statistical or mathematical modelling
based on available data. In our study, we estimate the incubation
period of COVID-19 to be approximately 5.8 days, and the infec-
tiousness during the incubation period is found to be nearly equal
to 99.9% of the infection period.

The transmission dynamics of infectious diseases are influenced
by multiple factors, such as government interventions, individual
behaviour, and medical resources. In order to accurately model

the spread of infectious diseases using compartmental models, it is
necessary to update certain parameters over time to account for the
evolving impact of interventions. These parameters include 𝛽 (𝑡),
𝛾 (𝑡), and 𝜇 (𝑡), which represent the time-varying rates of transmis-
sion, recovery, and mortality, respectively. In Figure 5, we present
the inference results of these time-varying parameters in Italy from
February 20 to June 30, 2020. This analysis provides insights into
how the values of 𝛽 (𝑡), 𝛾 (𝑡), and 𝜇 (𝑡) change over the specified
time period, reflecting the impact of interventions and other factors
on the dynamics of the disease.

Note that the events that have an impact on 𝛽 (𝑡) have to do with
people’s adaption to preventive interventions and the interactions
among individuals, whereas 𝜇 (𝑡) relates to the availability and ef-
fectiveness of health care, as well as on the resource availability in
hospitals. 𝛾 (𝑡) is known to be a disease-specific parameter (inverse
of the infectious period) but is also affected by the capacity of the
healthcare system to accommodate hospitalization. As shown in
Fig.5 (a), the transmission rate 𝛽 (𝑡) can fit well with what would be
expected given such events. The earliest traceable first confirmed
case of COVID-19 on February 20, 2020, the authorities of Italy
started imposing the localized lockdown for certain regions on Feb-
ruary 23, 2020, these control measures achieved a certain success, as
demonstrated by a significant reduction in transmission rates 𝛽 (𝑡).
As far as 𝛾 (𝑡) and 𝜇 (𝑡), hospitals’ ability particularly emergency
rooms had a considerable impact. In the context of COVID-19, hos-
pitals are at full capacity in the first months of the outbreak, and
as months went by, healthcare professionals learned more about
possible treatments to treat the disease’s symptoms and effects.
This usually results in a decrease in the proportion of individuals
that died from the disease (decrease of 𝜇 (𝑡)) and in a decrease in
the recovery time (an increase of 𝛾 (𝑡)). As shown in Fig.5 (b) and
Fig.5 (c), in qualitative terms, was an increasing trend in 𝛾 (𝑡) and a
decreasing trend in 𝜇 (𝑡).

The effective reproduction number is a crucial parameter in the
SEIRD model that helps to predict the spread of infectious diseases.
𝑅𝑡 less than 1 indicates that the transmission of the infectious
disease will gradually disappear. By monitoring changes in 𝑅𝑡 over
time, public health officials can make informed decisions about
interventions to control the spread of the disease. Fig. 6 (a) shows
the evolution of 𝑅𝑡 = 𝜖 · 𝛽 (𝑡)𝛼 + 𝛽 (𝑡 )

𝛾 (𝑡 )+𝜇 (𝑡 ) in the proposed SEIRD
compartmental model from February 20 to June 30, 2020. In the first
several days of the outbreak, the effective reproduction number
𝑅𝑡 was greater than 8, which resulted in a substantial outbreak.
On February 25, 𝑅𝑡 gradually decreased as localized lockdown for
certain regions and the awareness of the epidemic. However, 𝑅𝑡 was
still greater than 1, which may be due to the partially incomplete
lockdown, or the movement of people from northern to southern
Italy when the country-wide lockdown was announced but not yet
enforced. When the national lockdown was fully operational and
strictly enforced, 𝑅𝑡 keeps decreasing and finally reached below 1.
Moreover, 𝑅𝑡 steadily declined at the end of March due to a wider
testing campaign that identified more mildly symptomatic infected
individuals. Since June 15, 𝑅𝑡 shows a growing trend due to DPCM
declaring that general opening was in effect, social distancing, and
other measures remained. Additionally, to validate the estimated 𝑅𝑡 ,
a serial Bayesian model was implemented to produce the 𝑅𝑡 of Italy
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Figure 5: The time-varying transmission rate of SEIRDmodel
based on PINNs approach on Italy data from February 20 to
June 30, 2020. (a): transmission rate 𝛽 (𝑡). (b): recovery rate
𝛾 (𝑡). (c): death rate 𝜇 (𝑡)

at the same time period [5], as shown in Fig. 6 (b). Parameters for
the serial interval distribution in the model were set according to
the published literature (mean = 7.5 d; SD = 3.4 d) [18, 23]. As shown
in 6, the 𝑅𝑡 estimated by the proposed PINNs approach is essentially
the same as that estimated by the Bayesianmodel. Besides, the result
of the proposed approach provides a more detailed and accurate
capture of the dynamics.

3.3.3 Forecasting. Modeling results can provide reliable feedback
information for the authorities to make future decisions. The ODEs-
based compartmental model requires determined initial conditions
and model parameters to make predictions. To test the performance
of the proposed PINNs approach, we performed predictions for the
early outbreak of COVID-19 in Italy at one-month, two-month, and
three-month, respectively. As the initial conditions can be obtained
from the training data and the model parameters are already cali-
brated, we can forecast the epidemic dynamics by performing the
forward process. In the prediction part, the value of 𝛽 (𝑡), 𝛾 (𝑡) and
𝜇 (𝑡) are assumed to be their final value of the training time window.
Fig. 7 displays the one-week prediction and corresponding obser-
vations for three time periods produced by using the SEIRD model
with the estimated parameters. Note that the number of recovered
and death states in the SEIRD model are terminal states, which
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Figure 6: 𝑅𝑡 in Italy from February 24 to June 30, 2020. (a.)
Rt estimated by proposed PINNs approach for SEIRD model.
(b.) 𝑅𝑡 estimated by serial Bayesian model.

means that the changes in the number of recovered and death peo-
ple are always non-decreasing. In turn, the infected people may see
periods of increase and decrease due to it being a state of transition.
Fig.7 (a) displays the one-week prediction based on the reported
data from February 20 to March 20, 2020, Fig.7 (b) displays the one-
week prediction based on the reported data from February 20 to
April 19, 2020, and Fig.7 (c) displays the one-week prediction based
on the reported data from February 20 to May 19, 2020. The perfect
match between the predictions and the observations demonstrates
the parameters inferred by the learned network are very plausible,
as well as the generalization ability of the model.

Furthermore, to quantitatively test the prediction performance
of the proposed approach, We use three evaluation metrics to make
fair and effective comparisons. They are mean absolute error (MAE),
root mean square error (RMSE), andmean absolute percentage error
(MAPE). The calculation method is shown in Eq. (10)(12)(11).

𝑀𝐴𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | , (10)

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2, (11)

𝑀𝐴𝑃𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |
𝑦𝑖

∗ 100%, (12)

Interventions to control COVID-19 keep adjusting, which may
result in uncertainty, experimental results as represented in Table1
show the highly accurate forecasting capability of the proposed
approach.
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Table 1: The forecasting performance in 3-day, 5-day and 7-day.

Metrics After March 20, 2020 After April 19, 2020 After May 19, 2020

3-day 5-day 7-day 3-day 5-day 7-day 3-day 5-day 7-day

MAE(I) 5411 5790 6419 2503 3258 2792 1352 2170 3046
RMSE(I) 5431 5819 6519 3705 2618 3275 1567 2515 3514
MAPE(I) 11.60% 11.52% 11.78% 2.32% 3.04% 2.61% 2.20% 3.70% 5.41%

MAE(R) 813 1728 2944 2934 5704 9001 1643 2700 4170
RMSE(R) 959 2128 3706 3321 6821 10936 1880 3151 4972
MAPE(R) 11.93% 20.07% 31.04% 5.57% 10.00% 14.83% 1.23% 1.96% 2.97%

MAE(D) 423 543 927 330 235 318 147 109 95
RMSE(D) 527 637 1151 349 279 379 147 122 109
MAPE(D) 8.36% 8.98% 12.64% 1.35% 0.95% 1.24% 0.45% 0.34% 0.30%
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Figure 7: Forecasting results of the SEIRD models based on
estimated parameters. In the first column are plotted the pre-
dicted current infections, in the second column are plotted
the predicted cumulative recovered, in the third column are
plotted the predicted cumulative deaths, and the dotted boxes
represent the corresponding observations. a. 7-day forecast-
ing results based on the February 20 to March 20, 2020 time
window. b. 7-day forecasting results based on the February
20 to April 19, 2020 time window. c. 7-day forecasting results
based on the February 20 to May 19, 2020 time window.

4 DISCUSSION
Transmissionmodelling is increasingly being used to support public
health decision-making in the control of infectious diseases. In this
paper, a modified SEIRD compartmental model with time-varying
parameters is introduced to describe and predict the dynamics of
COVID-19 transmission in Italy.

Estimating the unknown parameters of this model is a complex
inverse problem, for the solution of which we proposed a domain-
specific PINNs approach.

The proposed approach has been applied tomodelling the COVID-
19 transmission in Italy, the estimated parameters resulted effective
in fitting the COVID-19 contagion data and in providing accurate
predictions of the evolution. Besides, these results, the proposed
PINNs approach allows us to have a more detailed understanding
of the contagion mechanism.

In Fig. 5 (a) is that the control measures imposed by the authori-
ties seem to have been effective in reducing the key transmission
rate parameter 𝛽 (𝑡). Fig. 5 (b) and (c) show that the recovery rate
tends to increase with time and the death rate to decrease. This
phenomenon, which seems not directly related to the lockdown,
can be attributed to different causes, among which a better un-
derstanding of the disease and consequent improvement in the
effusiveness of the response from the national health system, and
possibly a change in the nature, virulence, and lethality of the virus.
Furthermore, we evaluate how the estimated parameters fit the
SEIRD compartmental model by comparing the results of previous
publications. We compare our results to those obtained using the
methodology of the rolling regression framework [4], where the
order of magnitude of the time-varying parameters 𝛽 (𝑡), 𝛾 (𝑡) and
𝜇 (𝑡) is in agreement and the trend is almost identical. A compre-
hensive meta-analysis demonstrated that the median incubation
period for general transmissions in early outbreaks was 5.8 days
[95% confidence interval (95% CI): 5.3, 6.2] [25]. Li et al. analyzed
data on the first 425 confirmed cases inWuhan to determine the epi-
demiologic characteristics of NCIP, the results show that the mean
incubation period was 5.2 days (95% confidence interval [CI], 4.1 to
7.0) [14]. Yang et al. collected contact tracing data in a municipality
in Hubei province during a full outbreak period to estimate the
incubation period and serial interval of COVID-19, the estimated
median incubation period of COVID-19 is 5.4 days (bootstrapped
95% confidence interval (CI) 4.8–6.0) [26]. The estimated 𝛼 by the
proposed PINNs approach is 5.8, which is consistent with the re-
sults of the above research. The estimated 𝜖 by the proposed PINNs
approach is 0.99, which means that the transmission capacity of
exposed and onset populations are nearly identical [9]. Numer-
ous related studies demonstrate that the incubation period and the
infection period carry almost the same capacity for transmission
[6, 22].
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The goal of modeling the transmission dynamics of an infec-
tious disease is to capture the mechanisms of a host passing on
the infection to other individuals. Once the information is clear,
a model can be used as a sort of experimental system to simu-
late what would happen to the evolution of disease with different
interventions implemented. While the proposed PINNs approach
indeed offers many advantages, it does have some limitations. One
of the main limitations is that PINNs architecture requires prior
knowledge of the physical laws and constraints that govern the
problem being solved. The structure of compartmental models may
change depending on the question of interest and impact their ac-
curacy. That means if the underlying epidemiological laws are not
well understood or if the available data is not consistent with the
known epidemiological laws, the model may not work well. But it
should be noted that the emphasis on infectious disease models is
on the application of public health, not the mathematics of these
models. As world-renowned Statistician George E. P. Box made the
following statement. "All models are wrong, but some are useful."

5 CONCLUSIONS
In this paper, we proposed a novel PINNs approach to estimate
the unknown parameters (including time-varying and constant
parameters) for the ODEs-based compartmental model to depict
the dynamic of the COVID-19 transmission. The experiment result
with real-world report data reveals that the proposed COVID-19
modeling approach enables to yield of epidemiological models that
can describe the real-time dynamics of the contagion, providing
reliable predictions and valuable insight into the contagion mech-
anisms. We have provided a completed workflow for analyzing
infectious disease transmission systems described by a system of
ODEs produced compartmental model. We emphasize that the pro-
posed PINNs approach can easily be implemented without any
background knowledge about numerical analysis (for example, sta-
bility conditions) but about some libraries for implementing neural
networks. For a given scenario that we consider, the proposed
PINNs approach can be effective for simulating different epidemic
scenarios, testing various hypotheses, and for designing suitable
control measures.
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