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Abstract—Recently, a versatile library of quasi-analytic
complex-valued wavelet packets (WPs) which originate from
splines of arbitrary orders, was designed [1]. The real parts
of the quasi-analytic WPs (qWPs) are the regular spline-based
orthonormal WPs. The imaginary parts, which are slightly
modified Hilbert transforms of the real parts, are the so-called
complementary orthonormal WPs, which, unlike the symmetric
regular WPs, are antisymmetric. Both regular and complemen-
tary WPs are well localized in time domain and their DFT spectra
provide a variety of refined splits of the frequency domain. The
waveforms can have arbitrary number of vanishing moments.

Tensor products of 1D quasi-analytic WPs (qWPs) provide a
diversity of 2D waveforms oriented in multiple directions. The
designed computational scheme enables us to get fast and easy
implementation of the qWP transforms. The shapes of real and
imaginary parts of the qWPs can be regarded as directional
cosine waves with different frequencies modulated by localized
low-frequency signals. For example, the set of the fourth-level
WPs comprises waveforms which are oriented in 314 different
directions and are oscillating with 256 different frequencies.
Various combinations of qWPs form multiple frames in the 2D
signal space.

The combination of the exceptional properties of the designed
qWPs, such as unlimited directionality and oscillating structure
of the waveforms, vanishing moments and refined frequency
resolution, make them a powerful tool for image processing
applications. The algorithms based on the qWPs proved to
be competitive with the best existing methods in solving such
classical image processing problems as denoising, inpainting
and deblurring. The qWP algorithms are especially efficient for
capturing edges and fine texture and oscillating patterns even in
severely degraded images.

Due to the above properties and next to unlimited diversity of
testing waveforms, the qWPs have strong capabilities for extrac-
tion characteristic features from signals and images, which are
utilized in the image classification algorithms in conjunction with
Support Vector Machines and Convolutional Neural Networks.

I. PRELIMINARIES

In the recent years our group has developed a toolbox which
perfectly fits to signal/image processing purposes. The tool-
box is based on the so-called quasi-analytic wavelet packets
(qWPs), which are described in [1]. It consists of a versatile
library of testing waveforms whose shapes vary from smooth
well localized spline curves to fast oscillating either symmetric
or antisymmetric transients. The shapes of their magnitude
spectra vary from smooth bumps to near rectangular and the
spectra produce a variety of refined splits of the frequency
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domain. The toolbox comprises very fast qWP transforms,
which enable real-time processing, advanced algorithms for
the signal denoising, narrow-band filtering, feature extraction
and classification.

The qWPs are complex-valued signals, whose spectra oc-
cupy either the right or the left half-band of the frequency
domain. The real parts of the qWPs are symmetric wavelet
packets (sWPs) (Chapter 4 in [2]) originating from splines of
different orders. They are denoted by ψp

[m],l, l = 0, 2m − 1 ,
where p is the generating spline order, m is the decomposition
level and l is the index of an m-level waveform. Various
combinations of shifts of the sWPs provide orthonormal bases
of the signal space. The imaginary parts of the qWPs are anti-
symmetric. They are referred to as the complementary wavelet
packets (cWPs) and denoted by φp

[m],l, l = 0, 2m − 1. Their
magnitude spectra coincide with the spectra of the sWPs and,
similarly to the sWPs, the shifts of the cWPs provide orthonor-
mal bases of the signal space. The cWPs are slightly modified
Hilbert transforms of the sWPs. There are two families of the
qWPs: {Ψp

+[m],l = ψp
[m],l+ iφ

p
[m],l}, l = 0, ..., 2m−1,, whose

spectra occupy the right half-band of the frequency domain
and {Ψp

−[m],l = ψp
[m],l − iφp

[m],l}, l = 0, ..., 2m − 1, whose
spectra occupy the left half-band of the frequency domain.

Figure 1 displays the third-level sWPs originating from
ninth-order splines; corresponding cWPs; their DFT magni-
tude spectra, magnitude DFT spectra of two kinds of the
complex qWPs.



Fig. 2. Top left: WPs θ9
+[2],j,l

from the second decomposition; Top right:
WPs θ9−[2],j,l

; Bottom: their magnitude spectra

level m 1 2 3 4 5 6 ...
# of directions 6 22 86 314 1218 4606 ...

A standard procedure for the design of two-dimensional
(2D) WPs is to compute the tensor products of 1D WPs:

ψp
[m],λ,l[k, n] = ψp

[m],λ[k]ψ
p
[m],l[n].

These 2D sWPs are separable and lack a directionality. To
derive a collection of 2D WPs oriented in multiple directions,
we compute the tensor products 1D qWPs:

Ψp
+[m],λ,l[k, n] = Ψp

+[m],λ[k] Ψ
p
+[m],l[n],

Ψp
−[m],λ,l[k, n] = Ψp

+[m],λ[k] Ψ
p
−[m],l[n]

and take real parts of these complex-valued WPs:

θp±[m],λ,l[k, n]
def
= Re(Ψp

±[m],λ,l[k, n]) (1)

= ψp
[m],λ[k]ψ

p
[m],l[n]∓ φp

[m],λ[k]φ
p
[m],l[n].

Figure 2 displays WPs θ9±[2],j,l from the second decomposition
level and their magnitude spectra. It is seen from the figure
that the 2D WPs look like windowed cosine waves which
are oscillating in different directions with different frequen-
cies. These properties stem from different dispositions and
fine localization of their spectra (see [1]). Table I provides
numbers of different orientations of qWPs

{
ϑp±[m],j,l

}
, j, l =

0, ..., 2m − 1, for different decomposition levels.

II. APPLICATIONS

The 2D qWPs possess the following properties:
- The qWP transforms provide a variety of 2D wave-

forms oriented in multiple directions.
- The waveforms are close to directional cosine waves

with a variety of frequencies modulated by spatially
localized low-frequency 2D signals and can have any
number of local vanishing moments.

- The DFT spectra of the waveforms produce a refined
tiling of the frequency domain.

- Fast implementation of the transforms by using the
FFT enables us to use the transforms with increased
redundancy and iterative algorithms.

These properties of qWP transforms proved to be indis-
pensable while dealing with image processing problems. Due
to a variety of orientations, the qWPs capture edges even in
severely degraded images and their oscillatory shapes with a
variety of frequencies enable to recover fine structures. Multi-
ple experiments on image denoising ( [3]) and inpainting ( [4])
demonstrate that qWP-based methods are quite competitive
with the best state-of-the-art algorithms.

A. Image denoising

One of the best image denoising methods is the BM3D
algorithm ( [5]), which exploits the non-local self-similarity
(NSS) and sparsity of images in a transform domain. This
method is incomparable in restoration of moderately noised
images. However, the BM3D tends to over-smooth and smear
the image fine structure and edges when noise is strong. Also,
the BM3D is not success when the image contains many
edges oriented in multiple directions. Some improvement over
BM3D was achieved by the BM3D-SAPCA [6] and WNNM
[7] algorithms which rely on NSS as well. Both that methods,
especially WNNM, produce state-of-the-art results in image
denoising, although over-smoothing and loss some fine details
while restoration of severely degraded images persists. On
the other hand, algorithms that use directional oscillating
waveforms provide an opportunity to capture lines, edges
and texture details. Therefore, it is natural to combine the
qWP-based and either BM3D [3] or WNNM [8] algorithms
in order to retain strong features of both algorithms and
to get rid of their drawbacks. The qWP-based denoising
method (qWPdn) consists of multiscale qWP transform of
the degraded image, application of adaptive localized soft
thresholding to the transform coefficients using the Bivariate
Shrinkage methodology [9], and restoration of the image from
the thresholded coefficients from several decomposition levels.
The combined qWPdn–WNNM method consists of several
iterations of qWPdn and WNNM algorithms in a way that
at each iteration, the output from one algorithm boosts the
input to the other. Multiple experiments, which compared
the proposed methodology with six advanced denoising algo-
rithms, including WNNM, confirmed that the combined cross-
boosting algorithm outperformed most of them in terms of
both quantitative measure and visual perception. In practically
all the experiments, the PSNR values for all compared al-
gorithms are very close to each other but the SSIM values
achieved by the hybrid algorithms are significantly higher than
those achieved by all other algorithms. This is especially true
for texture-rich images. The hybrid algorithms succeeded in
restoration of the structure of even severely degraded images.
It is illustrated in Fig. 3, which displays restoration of the
“Mandrill” image from the input degraded by Gaussian noise
with STD σ = 80 dB. The figure comprises 12 frames,



Fig. 3. Restoration of “Mandrill” image corrupted by Gaussian noise with
STD σ = 80 dB. PSNR/SSIM for BM3D– 20.9/0.2439; for WNNM–
21.1/0.2645; for BM3D-SAPCA–20.92/0.2649; for Hybrid1–20.68/0.3513;
for Hybrid2–20.31/0.3565

which are arranged in a 4 × 3 order:


f11 f12 f13
f21 f22 f23
f31 f32 f33
f41 f42 f43

 .

Here frame f11 displays noised image; frame f21 – image
restored by BM3D; f12 – image restored by BM3D-SAPCA;
f22 – image restored by WNNM; f13 – image restored by
Hybrid1; f23 – image restored by Hybrid2. Frame f31 dis-
plays a fragment of the original image. The remaining frames
{f32, f33, f41, f42, f43} display the fragments of the restored
images shown in frames {f12, f13, f21, f22, f23}, which are
arranged in the same order.

B. Image inpainting

The described qWPs demonstrated a high efficiency in deal-
ing with the image inpainting problem, that means restoration
of images degraded by the loss of a significant share of pixels
and possible addition of noise. We designed a qWP-based
iterative algorithm, which combines the split Bregman iteration
scheme ( [10]) with the adaptive decreasing thresholding
( [11]). In multiple experiments on restoration of images
corrupted by missing a large amount of pixels and addition of
Gaussian noise with various intensities, we compared the per-
formance of our qWP-based algorithm with the performance
of a number of the state-of-the-art algorithms. The description
of the algorithm and results of from multiple experiments on
image inpainting are presented in the paper [4]. Similarly
to denoising experiments, the qWP algorithm QA prevailed
in restoration of edges and fine structure even in severely
degraded images. This fact is reflected in highest values of

Fig. 4. Restoration of the “Mandrill” image. Top left: clean image. Top right:
image degraded by loss of 80% of pixels and additive Gaussian noise with
σ = 50 dB. Bottom right: QA restoration, PSNR=18.93 dB, SSIM=0.2343.
Bottom left: DAS-2 restoration, PSNR=19.81 dB, SSIM=0.1414

SSIM. This method succeeds in capturing fine details in the
images in cases where other state-of-the-art algorithms fail.
This fact is illustrated in Fig. 4, which displays the restoration
results of the ‘Mandrill” image from the input where 80% of
pixels are missing and additive Gaussian noise with σ = 50
dB is present. The output from the DAS-2 algorithm ( [12])
(which is one of the best in the field) has PSNR=19.81 dB
compared to 18.93 dB produced by QA. On the other hand, the
SSIM from the QA restoration is 0.2343 compared to 0.1414
produced by DAS-2. We can see that many texture patterns
that were blurred by DAS-2, are restored by QA.

C. Image classification

A key point in image classification is the extraction of a
limited number of features that characterize single images
and sets of images to be classified. We claim that due to the
exceptional properties of the directional qWPs they can serve
as a perfect tool for that purpose. Such characteristic pattern
in images as edges and texture patches oriented in different
directions are successfully captured by qWPs. Most important
is the fact that the extracted features have a clear physical
meaning. Namely, the features are correlation coefficients of
fragments of the image with certain qWP waveforms. This is
illustrated in Fig. 5.

We conducted a few experiments with the MNIST database
of handwritten digits to test feasibility of the qWP-based
feature extraction scheme for the image classification. The
MNIST database contains 60,000 training images and 10,000
testing images. We explored two options of the qWPs’ utiliza-
tion:

1) Extraction of qWP-based characteristic features from
limited numbers of training images and using them



Fig. 5. Illustration of physical meaning of feature extraction by qWPs

for training the Support Vector Machine (SVM, [13])
classifier. Then, the trained SVM was used for the classi-
fication of 10,000 testing images. Preliminary results of
the experiments confirmed efficiency of such a scheme
even with small reference datasets used for training
SVM.

2) Convolutional Neural Networks (CNNs) achieve extraor-
dinary success in image classification. The convolution
layers in a CNN extract the characteristic features from
the training data by convolving the input data with filters
that are derived in the training process. Consequently,
the structure of the filters and the meaning of the ex-
tracted features remain unclear. Such a scheme requires
a huge amount of data and a large number of convolution
layers. Thus, it is natural to replace at least some of
the convolution layers in the CNN by filtering with
predefined filters whose properties are favourable to the
class of images under processing. This is done in our
second series of the experiments where absolute values
of the qWP transform coefficients serve as the inputs
to a CNN with a small number of convolution layers.
Recall that the qWP transform coefficients have a clear
physical meaning.

Some results, which are given in Table I, indicate that the
qWP-based feature extraction methods have a potential to
handle image classification problems. The table shows per-
centage of correct answers from the SVM classifiers and the
CNNs, which are trained on reference sets comprising different
numbers of images, for the validation set comprising of 10,000
images.

Note that in the cases when the training database is small,
the classification results from SVM prevail over those from
CNN and vice versa for the big databases.

Size of ref. set 60000 20000 10000 5000 2000 1000 500 300
SVM class% 98.42 98.61 98.2 97.76 97.32 96.49 94.53 94.19
CNN class% 99.51 99.18 98.79 98.26 97.38 96.08 94.12 92.67

TABLE I
CLASSIFICATION RESULTS FOR THE VALIDATION SET OF 10,000 IMAGES

III. CONCLUSION

The designed directional qWPs provide powerful tools for
solving various signal and image processing problems. A vast
diversity of the directional oscillating waveforms enables ex-
traction of characteristic features with clear physical meaning
from images. The current field of our research is coupling
those feature extraction capabilities with Deep Learning meth-
ods. Our first experiments with MNIST and CIFAR10 image
databases reveal a strong potential of such a combination.
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[2] A. Averbuch, P. Neittaanmäki, and V. Zheludev, Splines and spline
wavelet methods with application to signal and image processing,
Volume III: Selected topics. Springer, 2019.
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[8] A. Averbuch, P. Neittaanmäki, V. Zheludev, M. Salhov, and J. Hauser,
“Cross-boosting of WNNM image denoising method by directional
wavelet packets,” arXiv:2206.04431 [eess.IV], 2022.
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