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ABSTRACT

Backpropagation (BP), while foundational to deep learning, imposes two criti-
cal scalability bottlenecks: update locking, where network modules remain idle
until the entire backward pass completes, and high memory consumption due
to storing activations for gradient computation. To address these limitations, we
introduce Synergistic Information Distillation (SID), a novel training framework
that reframes deep learning as a cascade of local cooperative refinement prob-
lems. In SID, a deep network is structured as a pipeline of modules, each imposed
with a local objective to refine a probabilistic “belief” about the ground-truth tar-
get. This objective balances fidelity to the target with consistency to the belief
from its preceding module. By decoupling the backward dependencies between
modules, SID enables parallel training and hence eliminates update locking and
drastically reduces memory requirements. Meanwhile, this design preserves the
standard feed-forward inference pass, making SID a versatile drop-in replacement
for BP. We provide a theoretical foundation, proving that SID guarantees mono-
tonic performance improvement with network depth. Empirically, SID consis-
tently matches or surpasses the classification accuracy of BP, exhibiting superior
scalability and pronounced robustness to label noise. The code is publicly avail-
able at: https://anonymous.4open.science/r/sid_BDEF.

1 INTRODUCTION

The backpropagation algorithm (BP) is the cornerstone of deep learning, enabling efficient credit
assignment through gradient-based optimization. Its mechanism relies on the chain rule to compute
gradients via a sequential end-to-end traversal of the network’s computation graph: a forward pass
to compute activations and the final loss, followed by a backward pass to propagate the loss gradient
from the output back to the input. While remarkably effective, this architectural design imposes two
fundamental scalability bottlenecks:

• Update Locking: The sequential nature of the backward pass creates a global dependency. Pa-
rameters in a given layer cannot be updated until all subsequent layers have completed their back-
ward computation. This locks the entire network during the gradient calculation, preventing par-
allel updates across layers and leading to significant computational idling.

• High Memory Consumption: To compute the local gradients at each layer, the corresponding
activations from the forward pass must be stored in memory. For deep networks, the aggregate
memory required to store these activations for the entire graph becomes a primary constraint,
limiting model depth and training batch size.

These challenges have motivated a rich body of research into backpropagation-free alternatives.
However, existing approaches often introduce their own significant trade-offs. Target Propagation
methods (Lee et al., 2015; Ernoult et al., 2022) require complex auxiliary networks to learn ap-
proximate inverses, which can be difficult to train and unstable. Equilibrium-based models (Scellier
& Bengio, 2017) replace the standard forward pass with iterative dynamics to reach a fixed point,
fundamentally altering the inference process and its computational cost. While other methods like
Feedback Alignment (Nøkland, 2016) address related issues such as biological plausibility, they do
not resolve the core bottlenecks of update locking or memory overhead (Sun et al., 2025; Rivaud
et al., 2025; Somasundaram et al., 2025; Li et al., 2025; Chen et al., 2025; Aghagolzadeh & Ezoji,
2025; Ren & Li, 2024; Gong et al., 2025; Feng et al., 2024).
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In this paper, we introduce Synergistic Information Distillation (SID), a new paradigm that resolves
BP’s core limitations without the aforementioned trade-offs. Instead of approximating global gra-
dients, SID reframes learning as a cooperative sequential refinement of a probabilistic belief. We
view a network as a pipeline of modules, where each module fi receives a belief distribution pi−1

from its predecessor and outputs a refined belief pi. To achieve this, each module is imposed with
a simple local objective composed of two terms: a distillation term that pulls the belief towards
the ground-truth label and a consistency term that regularizes the refinement step, ensuring that the
belief of the given module does not deviate drastically from the belief of the previous module.

The key to SID’s efficacy is its mechanism for decoupling modules. By applying a stop-gradient
operation to the consistency term, we decouple all backward dependencies between modules. This
simple yet powerful design directly resolves the core limitations of BP:

1. Update Locking is Eliminated. With no inter-module dependencies, all modules can
compute their gradients and be updated in parallel after a single, gradient-free forward pass
that generates “teacher” beliefs.

2. Memory Overhead is Reduced. Since gradients are local to each module, only the acti-
vations within a single module need to be stored at any given time, leading to a memory
footprint that scales with the size of the largest module, not the entire network depth.

Meanwhile, this design preserves a standard feed-forward architecture for inference, making it a
seamless replacement for BP during training. Our contributions are summarized as follows:

1. We introduce SID, a versatile and scalable backpropagation-free framework that resolves
update locking and reduces memory overhead through a novel local belief refinement
mechanism.

2. We provide a solid theoretical foundation, proving that under well-defined conditions, SID
guarantees monotonic performance improvement as network depth increases.

3. We conduct a comprehensive empirical evaluation, showing that SID matches or exceeds
BP’s performance, particularly showcasing enhanced performance in deeper network ar-
chitectures and settings with high label noise.

2 RELATED WORK

We position SID relative to existing paradigms that seek to overcome the limitations of backpropa-
gation.

Approximating the Backward Pass. A significant body of work has shown that the strict weight
symmetry of BP is not essential for learning. Feedback Alignment (FA) and Direct Feedback Align-
ment (DFA) (Lillicrap et al., 2014; Nøkland, 2016) use fixed random matrices to convey error sig-
nals, while Synthetic Gradients / Decoupled Neural Interfaces (DNI) (Jaderberg et al., 2017) train
local models to predict gradients from higher layers. These methods successfully break weight sym-
metry and can alleviate update locking. In contrast to SID, these methods still aim to approximate
the global gradient signal. SID takes a different approach by replacing the single global objective
with a set of cooperative local objectives, eliminating the need to transport or approximate gradients
between modules altogether.

Local Target-Based Learning. Target Propagation (TP) and its variants (Lee et al., 2015) offer an-
other approach to layer-wise training. Instead of propagating a scalar error, these methods compute
layer-specific “targets” for activations using learned approximate inverses of each layer’s function
(e.g., auto-encoders). While effective, this approach hinges on the quality of the learned inverses,
which can be unstable, especially for non-invertible or expansive layers. Our framework avoids the
need for auxiliary inverse models. The “target” for each module is dynamically formed by its local
objective, which smoothly interpolates between the prior belief and the ground-truth label, providing
a more direct and stable learning signal.

Alternative Training Dynamics. Some methods fundamentally alter the network’s computational
process. The Forward-Forward algorithm (Hinton, 2022; Sun et al., 2025; Chen et al., 2025;
Aghagolzadeh & Ezoji, 2025; Ren & Li, 2024) replaces the forward-backward dynamic with two
forward passes—one for positive data, one for negative data—and updates weights based on a lo-
cal goodness metric. Equilibrium Propagation (Scellier & Bengio, 2017) uses energy-based models
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Figure 1: Comparison of BP and SID Training Paradigms. While BP’s end-to-end gradient
propagation (top) creates a sequential bottleneck, SID (bottom) introduces a two-phase process.
Phase 1 performs a single gradient-free forward pass to generate a set of fixed “teacher” beliefs.
Phase 2 then uses these local teachers to update all modules in parallel, fundamentally resolving
update locking and enabling scalable training.

that converge to a fixed point, with learning signals derived from nudging the system’s state. Other
approaches such as PETRA (Rivaud et al., 2025) focus on parallelization and memory efficiency,
while NoProp (Li et al., 2025) eliminates both forward- and back-propagation entirely. A key advan-
tage of SID is that it preserves the standard, single-pass feed-forward architecture during inference.
The modifications are confined to the training phase, making SID a non-disruptive and practical
alternative for conventional deep learning applications.

Knowledge Distillation and Layer-wise Supervision. SID can be viewed as a structured form of
internal distillation. The main idea of knowledge distillation is to use intermediate representations
of a “teacher” to guide a “student”(Hinton et al., 2015). This idea has been extended to layer-wise
self-supervision, as seen in Born-Again Networks (Furlanello et al., 2018), and more recently in hi-
erarchical self-distillation frameworks (Gurioli et al., 2025; Xu et al., 2025; Liu et al., 2024). SID’s
novel contribution to this area is the decomposition of the distillation process into a cooperative cas-
cade governed by both a distillation term and a local consistency term. This consistency regularizer
is crucial; it ensures that learning is incremental and stable across the network’s depth, a property
not explicitly enforced by prior distillation or layer-wise supervision schemes.

3 THE SID FRAMEWORK

In this section, we formally introduce the Synergistic Information Distillation (SID) framework. We
first provide a high-level overview of its architecture and the core belief refinement process. We
then detail the local objective function that drives learning and conclude with the complete two-
phase training algorithm.

3.1 FRAMEWORK OVERVIEW AND BELIEF REFINEMENT

The central idea of SID is to reframe the end-to-end learning problem as a cascade of localized
cooperative learning steps. We consider a deep network composed of a shared feature extractor,
denoted by c(·), and a pipeline of L sequential processing modules, {f1, . . . , fL}. The role of this
pipeline is to progressively refine a probabilistic distribution over the label set Y = {1, . . . ,m}, a
distribution we term a “belief.”

3
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For a given input x ∈ X , the process begins with an initial maximum-entropy belief, p0, which
is the uniform distribution over Y . Each subsequent module fi receives the belief pi−1 from its
predecessor and the shared features c(x) as input, producing a more informed belief pi:

pi(·) = fi
(
pi−1(·), c(x)

)
, for i = 1, . . . , L. (1)

This sequential refinement allows the network to incrementally build confidence. At inference time,
the final belief pL is used for prediction via argmaxk pL(k). The key challenge, which we address
next, is to design a local training signal that encourages this cooperative behavior without requiring
global coordination through backpropagation.

3.2 THE LOCAL SID OBJECTIVE

To enable decoupled training, we define a local objective function Li for each module fi. This
objective guides the module to produce a more accurate belief pi using only locally available in-
formation: its input belief pi−1 and the ground-truth target distribution py . We formulate this as a
weighted combination of two Kullback-Leibler (KL) divergences:

Li(pi−1; fi) = αDKL

(
pi∥py

)︸ ︷︷ ︸
Distillation Term

+(1− α)DKL

(
pi∥sg(pi−1)

)︸ ︷︷ ︸
Consistency Term

. (2)

Here, pi = fi(pi−1, c(x)), py is the one-hot distribution for the true label, α ∈ (0, 1) is a hyperpa-
rameter, and sg(·) is the stop-gradient operator.

• The Distillation Term provides the primary supervisory signal, pulling the module’s output belief
pi towards the ground-truth target py .

• The Consistency Term acts as a regularizer. By penalizing large deviations from the input be-
lief pi−1, it encourages an incremental refinement process, preventing any single module from
discarding useful information accumulated by its predecessors.

Module Decoupling via Stop-Gradient. The key mechanism for decoupling modules is the stop-
gradient operator, which we introduce and denote as sg(·). This standard operator, available in deep
learning frameworks (Paszke et al., 2019), is mathematically an identity function during the forward
pass but has a zero derivative during the backward pass. That is, for any variable z, sg(z) = z but
∇sg(z) = 0.

By applying this operator to the input belief in the consistency term, we treat sg(pi−1) as a fixed
constant—a non-differentiable target—during gradient computation. Consequently, when backprop-
agating through Li, the gradient flow from pi is blocked at pi−1, severing the backward dependency
to module fi−1. This ensures that the gradient∇Li only affects the parameters of the current module
fi and the shared extractor c.

3.3 THE SID TRAINING ALGORITHM

The SID training process for a given minibatch contains two phases. We denote the parameters of
the shared extractor c as θc and the parameters of the module pipeline {fi} as θmodules = {θi}Li=1.

Training iterates over a datasetD. For each minibatch B = {(xk, yk)} sampled fromD, the process
is as follows:

Phase 1: Teacher Generation (Algorithm 1). The first phase generates the consistency tar-
gets for each module. Using the current network parameters, a single forward pass is executed
with gradient computation disabled. This pass produces a sequence of teacher beliefs, Pteachers =
{P0, P1, . . . , PL−1}, which are then cached. Because gradients are disabled, these beliefs are treated
as fixed non-differentiable targets in the next phase.

Phase 2: Parallel Update (Algorithm 2). In the second phase, learning occurs. First, the shared
features Z are recomputed with gradients enabled to construct the computation graph. Then, each
module fi is updated independently and in parallel. For each module i, its local loss Li is computed
using its corresponding cached teacher belief P teacher

i−1 and the shared features Z. Gradients are then

4
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Algorithm 1 Generate Teacher Beliefs

1: Input: Minibatch B, parameters θc,θmodules.

2: Ensure: Gradient computation is disabled.
3: Zdetached ← c(Bx; θc)
4: P0 ← Uniform(Y)
5: Pteachers ← [P0] {Cache list}
6: for i = 1 to L− 1 do
7: Pi ← fi(Pteachers[i− 1], Zdetached; θi)
8: Append Pi to Pteachers
9: end for

10: return Pteachers

Algorithm 2 Parallel Local Updates

1: Input: Minibatch B, Pteachers, params
θc,θmodules.

2: gc ← 0 {Initialize accumulator}
3: Z ← c(Bx; θc) {Build graph}
4: for i = 1 to L in parallel do
5: P teacher

i−1 ← Pteachers[i− 1]

6: P pred
i ← fi(P

teacher
i−1 , Z; θi)

7: Py ← OneHot(By)

8: Li ← αDKL(P
pred
i ∥Py) + (1 −

α)DKL(P
pred
i ∥P teacher

i−1 )
9: gi ← ∇θiLi

10: gc ← gc +∇θcLi {Accumulate}
11: end for
12: return {gi}Li=1, gc

calculated: ∇θiLi for the module’s own parameters and∇θcLi for the shared extractor’s parameters.
The gradients from all modules with respect to the shared extractor are accumulated into gc.

Finally, after all local gradients are computed, the parameters θc and all {θi}Li=1 are updated in a
single optimization step using the collected gradients {gi} and gc. This two-phase design effec-
tively eliminates the sequential dependencies inherent in BP, directly addressing update locking and
memory consumption bottlenecks.

4 THEORETICAL ANALYSIS

We now provide a theoretical analysis of the SID framework to formally establish its core properties.
Our goal is to demonstrate why SID serves as a robust and scalable alternative to backpropagation.
We structure our analysis into three parts: convergence properties in an ideal setting, stability guar-
antees under practical conditions, and a formal complexity analysis.

To facilitate the analysis, we define the local objective as a functional Si. A functional is a function
that takes another function—in this case, a probability distribution p—as its input and returns a
scalar value. For a given prior belief pi−1 and target distribution py , the functional is:

Si(p) ≜ αDKL(p∥py) + (1− α)DKL(p∥pi−1). (3)

The term Si(p) represents the value of the local loss for any module that outputs a belief distribution
p. The training goal for module fi is thus to find parameters θi that produce an output pi that
minimizes this functional.

4.1 CONVERGENCE AND OPTIMALITY ANALYSIS

We begin by characterizing the behavior of an ideal SID pipeline, which we define as a pipeline
where every module perfectly minimizes its local objective. This idealized scenario allows us to un-
derstand the fundamental convergence properties of the cooperative refinement process, abstracting
away from optimization imperfections.

Assumption 1 (Optimal Local Updates). We assume each module fi is sufficiently expressive and
perfectly optimized such that its output pi is the unique minimizer of its local objective functional
Si(p), i.e., pi = argminp Si(p). This assumption will be relaxed in Section 4.2.

Under this assumption, the cascade of local refinements leads to exponential convergence towards
the target distribution.

Proposition 1 (Closed-Form Cascade and Exponential Convergence). Suppose Assumption 1 holds.
Given an initial uniform belief p0, the belief pi after module i is a geometric interpolation between

5
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p0 and py:
pi(k) ∝ p0(k)

(1−α)ipy(k)
1−(1−α)i , ∀k ∈ Y. (4)

The symbol ∝ denotes proportionality up to a normalization constant. Consequently, as the number
of modules i → ∞, the belief pi converges pointwise to the target distribution py . The rate of
convergence is geometric, determined by the factor (1− α).

Proof. See Appendix A.1.

Interpretation. Proposition 1 provides the theoretical foundation for SID’s effectiveness. It
demonstrates that a sequence of local greedy optimizations can collectively solve the global learn-
ing task. Even though each module performs only a small conservative update governed by α, their
composition rapidly concentrates the belief mass onto the correct label. While this optimality may
not hold in practice, the result establishes that the underlying mechanism of SID is sound.

4.2 ROBUSTNESS AND STABILITY GUARANTEES

In practice, neural network modules trained with finite data and gradient-based methods will not
perfectly minimize their local objectives. A crucial property for any practical algorithm is robustness
to such imperfections. We now show that SID maintains a strong stability guarantee under a much
weaker condition: that each module simply improves upon its local objective.
Proposition 2 (Monotonic Descent Guarantee). Suppose that a module’s output pi satisfies the local
improvement condition Si(pi) ≤ Si(pi−1). Then, the KL divergence to the target is guaranteed to
be non-increasing. Summing this guarantee over all L modules yields a telescoping bound for the
entire network:

DKL(pL∥py) ≤ DKL(p0∥py)−
1− α

α

L∑
i=1

DKL(pi∥pi−1). (5)

Proof. See Appendix A.2.

Interpretation. This result is central to SID’s practicality. It guarantees that as long as each local
update is productive (i.e., reduces the local loss, a condition easily met with a sufficiently small
learning rate), the overall network’s performance with respect to the true target will not degrade
with added depth. This ensures a stable and well-behaved training process, preventing catastrophic
divergence. Furthermore, for the network to converge, the term

∑
i DKL(pi∥pi−1) must be bounded,

which implies that DKL(pi∥pi−1) must approach zero for deep networks. This indicates that the
belief sequence becomes asymptotically stationary, ensuring a stable flow of information.

4.3 SCALABILITY AND PARALLELISM ANALYSIS

Finally, we analyze SID’s computational complexity to demonstrate how it addresses the scalability
bottlenecks of backpropagation. We consider a network of L modules executed on a system with P
parallel processing devices.

Proposition 3 (Computational and Memory Complexity). Let C(i)
f and C

(i)
b be the forward and

backward computation costs for module i, and let Ai be its activation memory cost.

1. Time Complexity (Speedup): In a parallel setting (P ≥ L), the training time for SID is
TSID ≈

∑L
i=1 C

(i)
f +maxLi=1 C

(i)
b , whereas for BP it is TBP =

∑L
i=1(C

(i)
f +C

(i)
b ). SID offers a

theoretical speedup by parallelizing the backward passes, eliminating the sequential dependency
that causes update locking.

2. Memory Complexity (Savings): The peak activation memory required by BP is MBP ≈∑L
i=1 Ai. With SID on P ≥ L devices, the per-device peak memory is MSID ≈ maxLi=1 Ai.

For deep networks (L ≫ 1), this constitutes a substantial reduction in memory consumption,
scaling with the size of the largest module rather than the full network depth.

Proof. See Appendix A.3.

6
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Figure 2: Test accuracy convergence curves on CIFAR-10 (left), CIFAR-100 (center), and Tiny-
ImageNet (right). SID (blue, bold) demonstrates superior performance on more complex datasets.
This performance gain is achieved alongside SID’s significant reductions in time and memory com-
plexity (see Section 4.3).

Interpretation. Proposition 3 directly connects SID’s design to its core motivations. By break-
ing the end-to-end gradient chain, SID’s architecture allows the computationally intensive backward
pass to be parallelized. This architectural advantage, combined with the dramatically reduced mem-
ory footprint, makes SID an inherently more scalable training framework than standard backpropa-
gation, particularly for very deep or large models.

5 EXPERIMENTS

We conduct a comprehensive empirical evaluation to validate the performance, scalability, and ro-
bustness of SID.

5.1 EXPERIMENTAL SETUP

We evaluate SID against standard BP and a suite of backpropagation-free baselines (NoProp (Li
et al., 2025), FA (Nøkland, 2016), FF (Hinton, 2022), HSIC (Ma et al., 2019)) on CIFAR-10,
CIFAR-100 (Krizhevsky, 2009), and Tiny-ImageNet (Le & Yang, 2015). To create a challenging
optimization benchmark, we designed a VGG-style SimpleCNN composed of a shared convolutional
extractor and a deep stack of MLP modules. Its deep structure without residual connections makes
it susceptible to optimization difficulties, thereby allowing for a rigorous evaluation of each training
method’s effectiveness. For generality, we also report the results on standard architectures. All
experiments are averaged over three random seeds. (See Appendix B.1.2 for detailed architecture
and setup descriptions).

5.2 PERFORMANCE AND SCALABILITY ANALYSIS

Observation 1: The performance improvement of SID grows with task complexity. As shown
in Table 1, SID’s performance scales effectively with task difficulty. On CIFAR-10, SID’s accuracy
is statistically on par with the BP and strong HSIC baselines. However, as task complexity increases,
SID establishes a clear advantage, outperforming BP by 4.3% on CIFAR-100 and 6.8% on Tiny-
ImageNet. The convergence curves in Figure 2 further illustrate this: on more complex datasets,
SID’s accuracy consistently improves while BP’s learning curve begins to plateau. This suggests
SID’s local cooperative learning mechanism is more effective at navigating complex loss landscapes.

Observation 2: SID resolves update locking, enabling strong parallel scalability. A core
motivation for SID is to eliminate the sequential dependency of the backward pass. To quan-
tify this benefit, we conducted a computational profiling experiment. We first timed the for-
ward and backward passes of each component on a single GPU to isolate pure computational
costs from communication overhead. We then projected these timings to a multi-GPU scenario
assuming ideal model parallelism, where modules are distributed across processors(Chen et al.,

7
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Table 1: Final test accuracy (%) on vision benchmarks, reported as mean ± std over three seeds.
The best-performing local method is in bold, second-best is underlined. Performance improvement
of SID over BP is shown in blue.

Method CIFAR-10 CIFAR-100 Tiny-ImageNet

Global Gradient Methods
Backpropagation (BP) 84.32± 0.45 51.81± 0.52 34.51± 0.61

Local Gradient Methods
Feedback Alignment (FA) 77.03± 0.68 18.32± 0.75 6.39± 0.42
SID (Ours) 84.42± 0.35 56.12± 0.38 (+4.31) 41.37± 0.45 (+6.86)

Purely Local / Forward-Only Methods
NoProp 84.18± 0.33 35.69± 0.59 2.80± 0.25
Forward-Forward (FF) 34.10± 0.81 9.13± 0.48 2.13± 0.19
HSIC-based 85.21± 0.29 55.18± 0.41 35.61± 0.38

2016; Rajbhandari et al., 2020; Goyal et al., 2018; Dean et al., 2012) (see Appendix B.3). This
analysis yields a theoretical speedup which quantifies the architectural advantage of SID’s par-
allelizable design. As shown in Figure 3, the speedup scales robustly with the number of pro-
cessors (P ) and network depth (L). For a deep network with L = 64, the projected speedup
approaches 2.4x, confirming that SID’s local updates effectively address the BP bottleneck.
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Figure 3: Theoretical speedup of
SID over BP.

Observation 3: SID demonstrates superior stability with
network depth. SID’s architectural advantages also lead to
improved optimization stability in deep networks. To evalu-
ate this, we trained the SimpleCNN on CIFAR-100 at varying
depths. This architecture, lacking residual connections, cre-
ates a difficult optimization landscape that highlights potential
training failures. As shown in Figure 4 (left), SID’s accuracy
improves monotonically with network depth. In contrast, BP’s
performance degrades after 8 modules, a classic sign of opti-
mization failure in very deep networks. On a ResNet backbone
(right), where skip-connections mitigate this issue for BP, SID
still shows more consistent improvement, further highlighting
the inherent stability of its local regularized learning process.
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Figure 4: Depth scaling on CIFAR-100. Left: On a SimpleCNN, SID’s accuracy improves with
depth while BP’s degrades. Right: On a ResNet, SID shows more consistent improvement.

Generality and Ablations. SID is a general-purpose strategy that exhibits a consistent per-
formance advantage over BP across modern architectures, including VGG (Simonyan & Zisser-
man, 2015), ResNet (He et al., 2015), and ViT (Dosovitskiy et al., 2021) (see Table 3 in Ap-
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Figure 5: Left: CKA similarity between SID and BP beliefs. The vertical stripe in the final col-
umn highlights SID’s “converge-then-refine” dynamic. Right: Belief evolution on hard examples
(misclassified by at least one model). SID’s belief in the true class (blue) shows a more stable and
monotonic progression than BP’s (orange).

pendix B.2.1).Ablation studies confirm the robustness of the hyperparameter α and the necessity of
cooperatively updating the shared extractor with gradients from all modules (see Appendix B.2.2).

5.3 ANALYSIS OF INTERNAL MECHANISMS

SID exhibits a “converge-then-refine” learning dynamic. To understand the performance dif-
ferences between SID and BP, we analyzed their internal layer-wise belief representations using
Centered Kernel Alignment (CKA)(Kornblith et al., 2019). For this analysis, we regard the softmax
output of any given layer as its probabilistic “belief.” The CKA heatmap in Figure 5 (left) reveals
a distinct structural difference in how representations are formed. SID’s early layers (e.g., layers
1-3, y-axis) already exhibit high similarity to BP’s final layer belief (p8, x-axis), evidenced by the
strong vertical stripe in the last column. This indicates that SID’s network produces a high-quality
prediction candidate early in its hierarchy, which subsequent layers then incrementally refine.

This phenomenon is further explored in Figure 5 (right), which tracks belief evolution for “hard”
samples (those misclassified by at least one method). On these samples, SID’s belief in the true class
often increases monotonically and smoothly. Conversely, BP’s belief can be erratic, with sharp drops
in intermediate layers (similar observations exist in representation dynamics analyses). This stable,
incremental refinement, enforced by the local consistency term in SID’s objective, likely contributes
to its enhanced robustness and superior performance on challenging tasks.

6 CONCLUSION

In this work, we introduced SID, a novel training framework that resolves the critical update lock-
ing and memory consumption bottlenecks of BP by reframing learning as a cooperative cascade of
local belief refinements. By decoupling modules via a stop-gradient on a local consistency objec-
tive, SID enables memory-efficient and parallelizable training without altering the standard infer-
ence pass. Our theoretical analysis demonstrates a monotonic descent guarantee of SID, where this
guarantee ensures robust and stable training. Empirically, we demonstrated that SID’s performance
matches or surpasses that of BP, with its advantage growing significantly on more complex tasks
and deeper networks, all while having lower computational complexity. Further analysis revealed
SID’s unique “converge-then-refine” learning dynamic, confirming its distinctness from end-to-end
training. While this work establishes a strong foundation, limitations exist. Our empirical valida-
tion is primarily focused on image classification, and the full extent of SID’s applicability to other
domains, such as natural language processing or reinforcement learning, remains to be explored.
Future research should therefore focus on adapting and evaluating SID on these diverse tasks and
architectures. A particularly promising direction will be to leverage SID’s inherent scalability to
train large-scale foundation models, where its benefits could be most transformative.In summary,
our results establish SID as a powerful, scalable, and practical alternative to BP, offering promising
techniques for training large-scale models.
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LLM USAGE STATEMENT

In preparing this paper, Large Language Models (LLMs) were used as an assistive tool for grammar
refinement and clarity improvements in writing. The scientific contributions, research design, ex-
periments, and analysis were entirely conducted by the authors. LLMs did not contribute to research
ideation, algorithm design, or empirical results. All content has been reviewed and validated by the
authors, who take full responsibility for its accuracy.

A PROOFS FOR THEORETICAL ANALYSIS

In this appendix, we provide the detailed proofs for the propositions presented in Section 4.
Throughout the proofs, we denote a discrete probability distribution over Y = {1, . . . ,m} as a
vector p ∈ ∆m−1, where ∆m−1 is the (m − 1)-simplex. All KL divergences assume the distribu-
tions have full support, which can be ensured in practice with label smoothing.

A.1 PROOF OF PROPOSITION 1

Proposition 1 relies on first finding the closed-form minimizer of the local objective Si(p). Let’s call
this intermediate result Lemma 1.

Lemma 1 (Closed-Form Local Minimizer). Given fixed distributions pi−1 and py with full support,
the functional Si(p) = αDKL(p∥py)+(1−α)DKL(p∥pi−1) is strictly convex. Its unique minimizer,
p⋆i ≜ argminp Si(p), is given by the normalized power mean (geometric interpolation):

p⋆i (k) =
1

Zi
pi−1(k)

1−αpy(k)
α, where Zi =

m∑
j=1

pi−1(j)
1−αpy(j)

α. (6)

Equivalently, this can be expressed as p⋆i (k) ∝ pi−1(k)
1−αpy(k)

α for each k ∈ Y .

Proof of Lemma 1. The KL divergence is strictly convex, and a non-negative weighted sum of
strictly convex functions is also strictly convex. Thus, Si(p) is strictly convex and has a unique
minimizer. To find it, we can use Lagrange multipliers to enforce the constraint

∑
k p(k) = 1. The

Lagrangian is:

L(p, λ) =
∑
k

p(k) log
p(k)α

py(k)α
+
∑
k

p(k) log
p(k)1−α

pi−1(k)1−α
+ λ

(
1−

∑
k

p(k)

)
.

Taking the derivative with respect to p(k) and setting it to zero:

∂L
∂p(k)

= α(log p(k) + 1)− α log py(k) + (1− α)(log p(k) + 1)− (1− α) log pi−1(k)− λ = 0

=⇒ log p(k) + 1− α log py(k)− (1− α) log pi−1(k) = λ

=⇒ log p(k) = λ− 1 + log
(
pi−1(k)

1−αpy(k)
α
)

=⇒ p(k) = exp(λ− 1) · pi−1(k)
1−αpy(k)

α.

Let 1/Zi = exp(λ − 1). This constant is determined by the summation constraint
∑

k p(k) = 1,
which gives Zi =

∑
j pi−1(j)

1−αpy(j)
α. This completes the proof of the lemma.

Proof of Proposition 1. We proceed by induction. From Lemma 1, under Assumption 1, the output
of module i is pi(k) ∝ pi−1(k)

1−αpy(k)
α.

Base case (i=1):
p1(k) ∝ p0(k)

1−αpy(k)
α.

This matches the formula pi(k) ∝ p0(k)
(1−α)ipy(k)

1−(1−α)i for i = 1, since 1− (1− α)1 = α.
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Inductive step: Assume the formula holds for i − 1: pi−1(k) ∝ p0(k)
(1−α)i−1

py(k)
1−(1−α)i−1

.
Then for module i:

pi(k) ∝ pi−1(k)
1−αpy(k)

α

∝
(
p0(k)

(1−α)i−1

py(k)
1−(1−α)i−1

)1−α

py(k)
α

∝ p0(k)
(1−α)i−1(1−α)py(k)

(1−(1−α)i−1)(1−α)py(k)
α

∝ p0(k)
(1−α)ipy(k)

1−α−(1−α)i+α

∝ p0(k)
(1−α)ipy(k)

1−(1−α)i .

This completes the induction. For convergence, since α ∈ (0, 1), we have (1 − α) ∈ (0, 1). Thus,
as i → ∞, the exponent (1 − α)i → 0. The exponent of py(k), which is 1 − (1 − α)i, goes to
1. Therefore, pi(k) ∝ p0(k)

0py(k)
1 = py(k). Since this holds for all k, pi converges to py . The

convergence rate is determined by how quickly (1− α)i approaches zero, which is geometric.

A.2 PROOF OF PROPOSITION 2

We are given the local improvement condition: Si(pi) ≤ Si(pi−1). Let’s expand both sides of the
inequality:

Si(pi) = αDKL(pi∥py) + (1− α)DKL(pi∥pi−1)

Si(pi−1) = αDKL(pi−1∥py) + (1− α)DKL(pi−1∥pi−1) = αDKL(pi−1∥py).

Substituting these into the condition gives:

αDKL(pi∥py) + (1− α)DKL(pi∥pi−1) ≤ αDKL(pi−1∥py).

Since DKL(pi∥pi−1) ≥ 0 and α ∈ (0, 1), we can rearrange the inequality to isolate DKL(pi∥py):

αDKL(pi∥py) ≤ αDKL(pi−1∥py)− (1− α)DKL(pi∥pi−1).

Dividing by α > 0 yields the single-step descent inequality:

DKL(pi∥py) ≤ DKL(pi−1∥py)−
1− α

α
DKL(pi∥pi−1).

To obtain the telescoping bound for the entire network, we sum this inequality from i = 1 to L:

L∑
i=1

(DKL(pi∥py)−DKL(pi−1∥py)) ≤ −
1− α

α

L∑
i=1

DKL(pi∥pi−1).

(DKL(pL∥py)−DKL(pL−1∥py)) + · · ·+ (DKL(p1∥py)−DKL(p0∥py)) ≤ −
1− α

α

L∑
i=1

DKL(pi∥pi−1).

The sum on the left is a telescoping series, which simplifies to DKL(pL∥py)−DKL(p0∥py).

DKL(pL∥py)−DKL(p0∥py) ≤ −
1− α

α

L∑
i=1

DKL(pi∥pi−1).

Rearranging gives the final bound:

DKL(pL∥py) ≤ DKL(p0∥py)−
1− α

α

L∑
i=1

DKL(pi∥pi−1).

This completes the proof.

A.3 PROOF SKETCH FOR PROPOSITION 3

This proposition follows directly from the definition of the SID and BP training algorithms.
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Time Complexity. The total time for one BP minibatch is the sum of all forward and backward
passes, as they must be executed sequentially: TBP =

∑L
i=1(C

(i)
f + C

(i)
b ). For SID, the teacher

forward pass is sequential: Tfwd =
∑L

i=1 C
(i)
f . The local updates, however, can run in parallel. On

a system with P ≥ L devices, all L backward passes can execute concurrently. The time for this
phase is limited by the slowest module: Tbwd = maxi C

(i)
b . The total time is their sum (ignoring

communication for aggregation, which is common to both), TSID ≈ Tfwd + Tbwd. The speedup
comes from replacing the sum of backward costs

∑
C

(i)
b with the max-cost maxi C

(i)
b .

Memory Complexity. For BP, to compute the gradient for the first module, all activations from all
subsequent modules (A1, . . . , AL) must be kept in memory. The peak memory is therefore the sum
of all activation memory costs, MBP ≈

∑L
i=1 Ai. For SID, when computing the local gradient for

module fi on device i, only its own activations Ai need to be stored. The gradient does not propagate
to other modules, so their activations can be discarded. Therefore, the peak memory requirement for
any single device is simply the memory needed for the largest module it hosts, maxi Ai.

B DETAILED EXPERIMENTAL INFORMATION

This appendix provides comprehensive details regarding the experimental setup, supplemental re-
sults, and analysis methodologies discussed in the main paper. Our goal is to ensure full repro-
ducibility and provide deeper insights into our findings.

B.1 EXPERIMENTAL SETUP DETAILS

B.1.1 DATASETS AND PREPROCESSING

We used three standard image classification benchmarks. Standard data augmentation techniques
were applied during training for all datasets.

• CIFAR-10 & CIFAR-100: For both datasets (Krizhevsky, 2009), we used the standard training
set of 50,000 images and a test set of 10,000 images. The images are 32x32 pixels. For data
augmentation, we applied random horizontal flips and random 32x32 crops from images zero-
padded to 40x40.

• Tiny-ImageNet: This dataset (Le & Yang, 2015) contains 200 classes from ImageNet, with
100,000 training images, 10,000 validation images, and 10,000 test images. Images are down-
scaled to 64x64 resolution. For augmentation, we used random horizontal flips and random 64x64
crops from images zero-padded to 72x72.

All images were normalized using the per-channel mean and standard deviation computed from their
respective training sets.

B.1.2 ARCHITECTURES

SimpleCNN Architecture. Our primary testbed, the SimpleCNN, was designed with a deep stack
of processing modules to rigorously test optimization algorithms. It separates perceptual feature
extraction from sequential belief refinement. The architecture is detailed in Table 2.

Standard Architectures. For the architectural generality experiments, we used standard, off-the-
shelf implementations of VGG-11, ResNet-18, and a ViT-Tiny model adapted for CIFAR-scale im-
ages.

B.1.3 BASELINE IMPLEMENTATION DETAILS

• Backpropagation (BP): Standard end-to-end training of the entire network with a global cross-
entropy loss.

• Feedback Alignment (FA): Implemented by replacing the transpose of the weight matrices in the
backward pass with fixed random matrices, which are initialized once and remain frozen.
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Table 2: The SimpleCNN architecture. The network consists of a shared feature extractor followed
by L identical processing modules.

Component Layer Type Output Shape / Dims
Shared Feature Extractor (c)

Conv(3, 32, k=3), ReLU (B, 32, H, W)
Conv(32, 64, k=3), ReLU, MaxPool(2) (B, 64, H/2, W/2)
Conv(64, 128, k=3), ReLU (B, 128, H/2, W/2)
Conv(128, 128, k=3), ReLU, MaxPool(2) (B, 128, H/4, W/4)
AdaptiveAvgPool(1), Flatten (B, 128)
Linear(128, 128) (B, 128)→ z

Processing Module (fi), repeated L times
Input Concatenation (B, 128 + num classes) -¿ cat(pi−1, z)
Linear, ReLU (B, 256)
Linear (B, num classes)→ Logits for pi

• NoProp: A state-of-the-art local learning method where each module is trained independently to
denoise a noisy version of the final target, conditioned on the input image, thereby eliminating the
need for any inter-module signal propagation during training.

• Forward-Forward (FF): We implemented a version where each module is a layer trained to have
a higher sum-of-squares activity for “positive” data (correct label overlaid) than for “negative”
data (incorrect label overlaid), using a margin-based loss.

• HSIC-based Learning: Each module is trained to maximize the Hilbert-Schmidt Independence
Criterion between its output features and the target labels, using an unbiased estimator with an
RBF kernel.

B.1.4 TRAINING PROTOCOL

To ensure fair comparisons, all methods were trained using the same optimization protocol unless
otherwise specified.

• Optimizer: Adam (Kingma & Ba, 2017).

• Learning Rate: An initial learning rate of 1× 10−3.

• Learning Rate Schedule: A cosine annealing schedule over the course of training.

• Batch Size: 128 for all datasets.

• Epochs: 100 epochs for benchmark comparisons; varied for scalability studies.

• Loss Function: Cross-entropy with label smoothing (ϵ = 0.1) for all applicable methods.

• SID Hyperparameter α: Based on a validation sweep (see Figure 6), we used a fixed value of
α = 0.5 for all main experiments.

B.1.5 COMPUTING INFRASTRUCTURE

All experiments were conducted on a server equipped with NVIDIA A100 GPUs using PyTorch.

B.2 SUPPLEMENTAL EXPERIMENTAL RESULTS

B.2.1 ARCHITECTURAL GENERALITY

Table 3 provides the full results for the architectural generality experiment, demonstrating that SID’s
competitive performance is not limited to the SimpleCNN architecture but extends to modern stan-
dard models.
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Table 3: Full results for Architectural Generality. Accuracy (%) of SID vs. BP on standard back-
bones, reported as mean ± std over three seeds.

Dataset Backbone Backpropagation (BP) SID (Ours)
CIFAR-10 SimpleCNN 84.31± 0.90 84.37± 0.26

VGG-11 88.21± 0.15 88.26± 0.18
ResNet-18 91.12± 0.21 91.15± 0.25
ViT-Tiny 92.35± 0.11 93.11± 0.19

CIFAR-100 SimpleCNN 52.00± 0.65 54.05± 0.11
VGG-11 61.01± 0.24 62.33± 0.31
ResNet-18 66.24± 0.28 67.37± 0.33

B.2.2 ABLATION STUDIES

Figure 6 presents the detailed ablation studies for the hyperparameter α and the feature extractor
update strategy. The left panel shows that SID is robust to the choice of α, achieving high perfor-
mance for a wide range of values between 0.2 and 0.8. The right panel demonstrates that the default
“all-layer” update strategy for the shared extractor is critical for optimal performance, significantly
outperforming variants where the extractor is frozen or updated only by the final layer’s loss. This
confirms that allowing all modules to cooperatively refine the shared features is a key component of
SID’s success.
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Figure 6: Impact of the consistency parameter α on CIFAR-10 accuracy. Performance is robust,
peaking around α = 0.5.

Update Strategy CIFAR-10 (%) CIFAR-100 (%)

SID (default) 84.42 54.05
SID (final layer) 83.85 52.15
SID (frozen) 82.90 49.80

Table 4: Ablation on the feature extractor update strategy. Updating with gradients from all modules
(default) is critical for performance.

B.2.3 ADDITIONAL VISUALIZATIONS FOR INTERNAL MECHANISMS

Shared Feature Space Visualization. Figure 7 provides a t-SNE visualization of the 128-
dimensional shared feature space learned by the extractor c(x) for both SID and BP on the CIFAR-10
test set. In both cases, the extractor learns a high-quality embedding where classes form largely sep-
arable clusters. This confirms that the aggregated gradient signal from all local modules in SID is

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

sufficient to train a powerful and discriminative shared representation, comparable to that learned
with a single global loss signal in BP.

SID Feature Space c(x) Backprop Feature Space c(x)

Figure 7: t-SNE visualization of the shared feature space c(x) learned by SID (left) and BP (right).
Both methods learn a well-structured embedding.

Detailed Belief Evolution Trajectories. Figure 8 provides additional examples of the layer-wise
belief evolution for the true class, supplementing the discussion in the main paper. The plots con-
sistently show that on challenging examples (where BP makes an incorrect final prediction, or its
confidence dips significantly), SID’s belief trajectory (blue solid line) is more stable and monotoni-
cally non-decreasing. This illustrates the regularizing effect of the consistency term, which prevents
drastic changes in belief and encourages a more “deliberative” refinement process.

B.3 COMPUTATIONAL PERFORMANCE ANALYSIS METHODOLOGY

This section details the methodology used for the computational profiling experiment designed to
quantify the impact of update locking (Figure 3 in the main text).

Profiling on a Single GPU. Since direct measurement on a multi-GPU system can be confounded
by system-specific communication overheads, we opted for a more controlled approach by profiling
the computational components on a single GPU. This allows us to isolate the algorithmic structure
as the primary variable. We used ‘torch.cuda.Event‘ for high-precision timing of GPU operations,
which avoids synchronization issues.

Decomposition of Training Steps. We decomposed a single minibatch update into its fundamen-
tal computational stages for both algorithms:

• For Backpropagation (BP), the process is inherently sequential. We measured:

1. TBP fwd: The time for the complete forward pass, from input to loss calculation.
2. TBP bwd: The time for the complete backward pass (‘loss.backward()‘).

• For SID, the process has sequential and parallelizable stages. We measured:

1. TSID fwd teacher: The time for the sequential gradient-free teacher forward pass.
2. TSID fwd grad: The time to recompute the shared features with gradients enabled.
3. {TSID bwd i}Li=1: The individual backward pass time for each of the L modules, measured

in isolation.

Theoretical Performance Projection Model. We projected the total execution time on a system
with P GPUs under an ideal model parallelism setup (modules are evenly distributed, communica-
tion overhead is neglected to isolate the update locking effect).

• The projected time for BP, dominated by its sequential critical path, is: TBP (P ) = TBP fwd +
TBP bwd.
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Figure 8: Full belief evolution trajectories for multiple hard (left columns) and easy (right columns)
examples from the CIFAR-10 test set. SID’s belief (blue) consistently shows a more stable mono-
tonic progression compared to the potentially volatile trajectory of BP (orange).

• The projected time for SID is the sum of its sequential parts and the duration of
its parallel phase: TSID(P ) = TSID fwd teacher + TSID fwd grad + Tparallel bwd(P ).
The parallel backward time is determined by the busiest processor: Tparallel bwd(P ) =
maxj=1...P (

∑
i∈Modules on GPUj

TSID bwd i).

The speedup is then calculated as Speedup(P ) = TBP (P )/TSID(P ). This model directly quanti-
fies the architectural advantage of SID’s parallelizable design.

A THEORETICAL ANALYSIS UNDER IMPERFECT OPTIMIZATION
(ϵ-ROBUSTNESS)

Proposition 2 in the main paper establishes a monotonic descent guarantee under the ideal condition
that each module improves its local objective, i.e., Si(pi) ≤ Si(pi−1). In practice, due to stochastic
gradient descent and finite model capacity, modules may only find an approximate minimum. This
section extends our analysis to this more realistic scenario.
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We introduce the concept of an ϵ-improvement step, where each module fi produces an output
belief pi that satisfies:

Si(pi) ≤ Si(pi−1) + ϵi, (7)
where ϵi ≥ 0 is the optimization error for module i. This error can arise from sources like gradient
noise or terminating the optimization process early.
Proposition 4 (Monotonic Descent with Bounded Error). Suppose that each module’s output pi
satisfies the ϵ-improvement condition Si(pi) ≤ Si(pi−1) + ϵi. Then, the KL divergence of the final
belief pL to the target distribution py is bounded as follows:

DKL(pL∥py) ≤ DKL(p0∥py)−
1− α

α

L∑
i=1

DKL(pi∥pi−1) +
1

α

L∑
i=1

ϵi. (8)

This implies a simpler, more direct upper bound on the final performance degradation:

DKL(pL∥py) ≤ DKL(p0∥py) +
1

α

L∑
i=1

ϵi. (9)

Proof. We start from the proof of Proposition 2 in Appendix A.2. The ϵ-improvement condition is:

αDKL(pi∥py) + (1− α)DKL(pi∥pi−1) ≤ αDKL(pi−1∥py) + ϵi.

Rearranging to isolate DKL(pi∥py):

αDKL(pi∥py) ≤ αDKL(pi−1∥py)− (1− α)DKL(pi∥pi−1) + ϵi.

Dividing by α > 0:

DKL(pi∥py) ≤ DKL(pi−1∥py)−
1− α

α
DKL(pi∥pi−1) +

ϵi
α
.

Summing this inequality from i = 1 to L yields a telescoping series on the left-hand side:

L∑
i=1

(DKL(pi∥py)−DKL(pi−1∥py)) ≤
L∑

i=1

(
−1− α

α
DKL(pi∥pi−1) +

ϵi
α

)
.

DKL(pL∥py)−DKL(p0∥py) ≤ −
1− α

α

L∑
i=1

DKL(pi∥pi−1) +
1

α

L∑
i=1

ϵi.

Rearranging gives the first result. Since DKL(pi∥pi−1) ≥ 0, we can drop the negative term to obtain
the simpler upper bound:

DKL(pL∥py) ≤ DKL(p0∥py) +
1

α

L∑
i=1

ϵi.

This completes the proof.

Interpretation: Proposition 4 provides a crucial robustness guarantee. It shows that the final predic-
tion error is bounded by the initial error (from a uniform belief) plus the accumulated optimization
errors from all modules, scaled by 1/α. As long as the local optimization is reasonably effective
(i.e., ϵi are small), the overall learning process remains stable and does not diverge. This formalizes
the intuition that SID is resilient to the imperfections inherent in practical training.

B ANALYSIS OF STALE TEACHER BELIEFS

The two-phase design of SID (Algorithm 1 and 2) involves generating teacher beliefs pteacher
i−1 using

model parameters θ(t) and then using these fixed teachers to compute gradients for updating to
θ(t+1). In asynchronous or parallel settings, these teachers might become “stale”, meaning they
were generated with slightly older parameters θ(t−k) while the update happens on θ(t). We analyze
the impact of this staleness on the gradient computation.
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Let θ denote the parameters of a module fi, and let pi−1 = fi−1(. . . ; θ
old
i−1) be the stale teacher

belief generated with old parameters. The “fresh” teacher would be p′i−1 = fi−1(. . . ; θ
new
i−1). The

local loss for module i is computed using the stale teacher:

Li(θi) = αDKL(fi(. . . )∥py) + (1− α)DKL(fi(. . . )∥sg(pi−1)).

The true gradient should use p′i−1. Let gi = ∇θiLi be the computed gradient and g′i be the true
gradient. The error is in the consistency term’s gradient.
Proposition 5 (Gradient Error Bound from Staleness). Assume the module function fi is Lf -
Lipschitz continuous with respect to its parameters, and the gradient of the KL divergence with
respect to its second argument is LKL-Lipschitz continuous in the relevant domain. The error in the
computed gradient for module i is bounded by:

∥gi − g′i∥ ≤ C · ∥θnew
i−1 − θold

i−1∥, (10)

for some constant C that depends on α, Lf , and LKL.

Proof Sketch. The difference between the gradients is:

∥gi − g′i∥ = (1− α)∥∇θiDKL(fi(. . . )∥pi−1)−∇θiDKL(fi(. . . )∥p′i−1)∥.
Using the chain rule and Lipschitz continuity assumptions, this difference can be bounded by the
difference in the teacher beliefs, ∥pi−1 − p′i−1∥. This belief difference is, in turn, bounded by the
Lipschitz continuity of the predecessor module fi−1:

∥pi−1 − p′i−1∥ = ∥fi−1(. . . ; θ
old
i−1)− fi−1(. . . ; θ

new
i−1)∥ ≤ Lf · ∥θold

i−1 − θnew
i−1∥.

Combining these bounds yields the result.

Interpretation: The gradient error is directly proportional to the magnitude of parameter change
between the time of teacher generation and its use. In standard training with small learning rates,
∥θnew− θold∥ is small, ensuring the gradient error is minimal. This analysis provides confidence that
the two-phase approach is stable and the use of cached teachers is a valid and robust approximation.

C ADDITIONAL ABLATION STUDIES AND ROBUSTNESS ANALYSIS

To further assess the robustness of SID, we evaluate its performance under symmetric label noise, a
challenging setting where a fraction of training labels are incorrect.

C.1 ROBUSTNESS TO LABEL NOISE

Experimental Setup: We used the CIFAR-10 dataset and introduced symmetric label noise by
randomly re-assigning the label of a certain percentage of training examples to one of the other 9
classes. We compared the final test accuracy of SID and standard BP after 100 epochs.

Table 5: Test accuracy (%) on CIFAR-10 with varying levels of symmetric label noise. SID demon-
strates significantly higher robustness compared to standard backpropagation.

Noise Level 0% (Original) 20% 40%

Backpropagation (BP) 84.32 ± 0.45 75.11 ± 0.62 58.24 ± 0.88
SID (Ours) 84.42 ± 0.35 78.53 ± 0.41 65.91 ± 0.53
Performance Gap (∆) +0.10 +3.42 +7.67

Analysis: As shown in Table 5, while both methods perform similarly on the clean dataset, SID’s
performance advantage grows substantially as the level of label noise increases. We attribute this
enhanced robustness to the local consistency term, (1 − α)DKL(pi∥sg(pi−1)). This term acts as
a regularizer, forcing each module’s update to be an incremental refinement of the previous mod-
ule’s belief. When the supervisory signal from the ground-truth label py is noisy (incorrect), the
consistency term provides a stable regularizing signal based on the consensus of earlier modules,
preventing the model from aggressively overfitting to the incorrect label. BP, lacking such an ex-
plicit layer-wise regularizer, is more susceptible to fitting the noisy data.
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