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Abstract

We propose MiniMol, an open-source founda-
tion model for molecular machine learning which
outperforms the best previous foundation model
on 17/22 downstream tasks from the Therapeu-
tic Data Commons (TDC) ADMET group while
having ten times fewer parameters. This effi-
ciency is achieved through the use of a graph neu-
ral network (GNN), pre-trained on about 3,300
sparsely defined graph- and node-level tasks, us-
ing a dataset of 6 million molecules and 500 mil-
lion quantum and biological labels. The model
learns via multi-task, multi-label supervised train-
ing to produce embeddings that generalize well
to a wide range of biological tasks, and that can
be efficiently used by simple Multi-Layer Percep-
tron (MLP) models for the downstream task, as
demonstrated by our experiments.

1. Introduction
Biological machine learning often faces a paucity of data,
due to time-consuming and highly specialist wet-lab pro-
cesses. Traditional ML models struggle in such low-data
regimes. In domains such as computer vision and natural
language processing (NLP), foundation models pre-trained
on large quantities of data have proved to be highly effec-
tive in low-data tasks, spurring the search for molecular
foundation models (MFMs).

Work on MFMs has followed two main avenues: adapting
the successful transformer architectures from NLP to oper-
ate on the SMILES representations of molecules (Honda
et al., 2019; Wang et al., 2019; Méndez-Lucio et al., 2022;
Ahmad et al., 2022; Taylor et al., 2022; Masters et al.,
2023b); and architectures which explicitly operate on the
molecular graph (Beaini et al., 2024; Ying et al., 2021;
Veličković et al., 2017; Dwivedi & Bresson, 2020). While
SMILES are abundant, they encode chemically vital ge-
ometric information only implicitly, so models based on
SMILES strings may require more capacity and training
data to represent the symmetries underlying the molecu-
lar graphs. Conversely, models such as GNNs and graph
transformers may use model capacity more efficiently.

Figure 1. Schematic of the MiniMol architecture. An example
molecule is featurized. Node feature vectors combine chemical
features with positional and structural encodings. Edge features
are generated using RDKit, and a random initial global vector is
generated. Each initial vector is processed with an embedding MLP.
The backbone consists of GINE layers, outputting the molecular
fingerprint ψ after pooling. The pre-pooling output is used for
pre-training on node-level tasks (LN ), e.g., PCQM4M N4. The
fingerprint ψ is used for pre-training on graph-level tasks (LG) or
as input to fine-tune downstream tasks (Ltask), including the full
set of ADMET tasks from the TDC benchmarks.

MFMs may also be categorized by how they are adapted to
downstream tasks: fine-tuning or fingerprinting. In the for-
mer, all the model weights are adjusted on each downstream
task, in the latter, a single frozen model processes the input
molecules to generate a fingerprint1, and each downstream
task learns a simple MLP on its limited task data. This paper
adopts the fingerprinting strategy, which is more efficient for
the downstream tasks, and which can be easily packaged for
use by biological ML practitioners addressing such tasks.

MiniMol is pre-trained on the Graphium LargeMix
dataset with around 6 million molecules and 526 million
data labels. The pre-training strategy is multi-level and
multi-task (Beaini et al., 2024; Shoghi et al., 2023), wherein
over 3300 sparsely defined tasks on both graph and node
level are trained jointly. The key training innovation in
MiniMol is to weight the biological and quantum tasks to
maximize small-task performance.

Evaluation of MFMs should reflect the real-world scenar-
ios in which they will be used. In this paper, we evalu-
ate MFMs by measuring their downstream performance on
tasks which reflect the low-data applications common in the
life sciences. In particular, a foundation model is measured
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by its performance on 22 tasks from the Therapeutic Data
Commons (TDC) ADMET group of datasets (Huang et al.,
2021). The established ADMET leaderboard shows the per-
formance of specialized models for each of the tasks, with
a different model typically being first ranked for each task.
For a foundation model, we require that the same model is
used on each task, albeit with task-specific fine-tuning or an
MLP “task head”. The current state of the art for a single
model applied to all tasks is MolE (Méndez-Lucio et al.,
2022), which achieves a mean rank of 5.2 when compared
against the specialized per-task models on the leaderboard.
MiniMol achieves a mean rank of 3.4 and outperforms
MolE on 17 tasks.

Our evaluation also includes a performance correlation anal-
ysis between the pre-training datasets and downstream tasks.
We found, for example, that one quantum dataset often has
a negative correlation with downstream tasks thus highlight-
ing the importance of understanding the correlation between
pre-training tasks and downstream tasks.

To summarize our contribution: MiniMol is a new molec-
ular foundation model which is efficient both in terms of
model size and in its downstream task deployment. Its effi-
ciency comes from the use of the molecular graph structure,
and its use of fingerprinting rather than fine-tuning. Our
experimental paradigm and correlation analysis further give
confidence in the applicability of this model, and we hope
will spur the development of future models which exceed
ours in both efficiency and accuracy. MiniMol will be
fully open source: datasets, weights, and all source code.

2. Method
Here, we present our architecture for pre-training on the
LargeMix datasets (Beaini et al., 2023), extracting finger-
prints and subsequently fine-tuning to downstream tasks
(see Figure 1).

Each molecule is modelled as a graph G with N nodes rep-
resenting the atoms and M edges representing the bonds.
We denote the set of edges with E . The atom and bond
features are generated using RDKit, providing a set of cat-
egorical and floating values. The Laplacian eigenvectors,
eigenvalues, and the random walk probabilities from (Mas-
ters et al., 2023b; Rampášek et al., 2022) are used as po-
sitional and structural embeddings. The input node and
edge feature vectors are the concatenation of these features:

1Molecular fingerprinting also has a long history, with ex-
amples such as ECFP (Rogers & Hahn, 2010), RDkit finger-
prints (Landrum et al., 2013) and MAP4 (Capecchi et al., 2020)
used for many of the same low-data downstream tasks. However,
as they encode the presence of particular substructures within
the molecule, performance varies across problem classes (Kim,
2021; Awale & Reymond, 2014; Probst et al., 2022). Nevertheless,
fingerprints remain the baseline over which MFMs must improve.

nodes X0 =
[
Xatom|XLapVec|XLapVal|XRW

]
, and edges

E0 =
[
Ebond

]
.

A global node is added to each graph, providing an addi-
tional connection to every node. It was shown in (Li et al.,
2017) that the global node dramatically improves graph-
level representation. This acts both as routing between oth-
erwise distant portions of the graph and as a readout node
for the graph property. The features are initially embedded
into the model dimensions using a two-layer MLP each.

Given the initial node, edge and graph embeddings we up-
date them through multiple layers of message-passing to ob-
tain final node embeddings xfinal = GNN(x0, e0, g0), where
GNN is a chosen GNN backbone (i.e. GCN, GINE, MPNN).
As described in Section 3, we try three different backbone
GNNs, namely GCN (Kipf & Welling, 2017), GINE (Hu
et al., 2020b; Xu et al., 2019) and MPNN++ (Masters et al.,
2023a) (see Appendix A.1).

Table 1. Overview of the datasets in LargeMix.

Dataset # Molecules # Labels # Data Points % of All Data Points
PCQM4M G25 3.81M 25 (G) 93M 17%
PCQM4M N4 3.81M 4 (N) 197.7M 37%
PCBA 1328 1.56M 1328 (G) 224.4M 41%
L1000 VCAP 15K 978 (G) 15M 3%
L1000 MCF7 12K 978 (G) 11M 2%

Pre-training. MiniMol is jointly pre-trained with
many supervised tasks on both the graph and node lev-
els. The LargeMix datasets, consisting of approximately
6M molecules and a total of 526M targets, are summarized
in Table 1, more details in Appendix A.3. The total loss
minimized during training is a weighted summation of each
of the pre-training tasks, accounting for label sparsity per
molecule. The mean absolute error (MAE) loss is used for
the PCQM dataset (N4 and G25 tasks), the binary cross-
entropy (BCE) loss is used for the PCBA tasks, and the
hybrid cross-entropy (HCE) loss from (Beaini et al., 2023)
is used for the L1000 datasets.

Following (Méndez-Lucio et al., 2022), we filter out
molecules with more than 100 heavy atoms. In addition,
we remove molecules in the ADMET group test sets from
our pre-training data to avoid potential leakage of test la-
bels (7% of MCF7, 4% of VCAP, 0.6% of PCBA, 0.07%
of PCQM4M G25/N4). During pre-training, we split the
dataset into 92% training, 4% validation, and 4% test data.

To cover a range of GNN backbones with increasing com-
plexity, we pre-train GCN, GINE, and MPNN++ models
and subsequently evaluate their downstream performance on
the TDC ADMET datasets. Each model consists of 16 GNN
layers with hidden dimensions adjusted such that all mod-
els have 10M ±4% parameters. We train each model for
100 epochs using the Adam optimizer, with a maximum
learning rate of 3e−4, 5 warm-up epochs and linear learning
rate decay. We present pre-training results in Appendix A.7.
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Table 2. Results on downstream evaluation of MiniMol (GINE) with max pooling (see Appendix A.4 for pooling experiments) on TDC
ADMET benchmarks, and comparison to the TDC leaderboard and MolE. The rank is determined for each dataset individually, on a set of
7 scores, which include the test results from the TOP5 leaderboard, MolE and MiniMol. The best result is shown in green and the top-3
results are highlighted in purple.

TDC Dataset Leaderboard MolE MiniMol (GINE)

Name Size Metric SOTA Result Result Rank Result Rank

A
B

S
O

R
P

T
IO

N Caco2 Wang 906 MAE (↓) 0.276 ± .005 0.310 ± .010 6 0.324 ± .012 7
Bioavailability Ma 640 AUROC (↑) 0.748 ± .033 0.654 ± .028 7 0.699 ± .008 6
Lipophilicity AZ 4,200 MAE (↓) 0.467 ± .006 0.469 ± .009 3 0.455 ± .001 1
Solubility AqSolDB 9,982 MAE (↓) 0.761 ± .025 0.792 ± .005 5 0.750 ± .012 1
HIA Hou 578 AUROC (↑) 0.989 ± .001 0.963 ± .019 7 0.994 ± .003 1
Pgp Broccatelli 1,212 AUROC (↑) 0.938 ± .002 0.915 ± .005 7 0.994 ± .002 1

D
IS

T
R

IB
. BBB Martins 1,975 AUROC (↑) 0.916 ± .001 0.903 ± .005 7 0.923 ± .002 1

PPBR AZ 1,797 MAE (↓) 7.526 ± .106 8.073 ± .335 6 7.807 ± .188 4
VDss Lombardo 1,130 Spearman (↑) 0.713 ± .007 0.654 ± .031 3 0.570 ± .015 7

M
E

TA
B

O
L

IS
M CYP2C9 Veith 12,092 AUPRC (↑) 0.859 ± .001 0.801 ± .003 5 0.819 ± .001 4

CYP2D6 Veith 13,130 AUPRC (↑) 0.790 ± .001 0.682 ± .008 6 0.718 ± .003 5
CYP3A4 Veith 12,328 AUPRC (↑) 0.916 ± .000 0.867 ± .003 7 0.878 ± .001 5
CYP2C9 Substrate 666 AUPRC (↑) 0.441 ± .033 0.446 ± .062 2 0.481 ± .013 1
CYP2D6 Substrate 664 AUPRC (↑) 0.736 ± .024 0.699 ± .018 7 0.726 ± .006 2
CYP3A4 Substrate 667 AUROC (↑) 0.662 ± .031 0.670 ± .018 1 0.644 ± .006 6

E
X

C
R

E
T. Half Life Obach 667 Spearman (↑) 0.562 ± .008 0.549 ± .024 4 0.493 ± .002 7

Clearance Hepatocyte 1,102 Spearman (↑) 0.498 ± .009 0.381 ± .038 7 0.448 ± .006 4
Clearance Microsome 1,020 Spearman (↑) 0.630 ± .010 0.607 ± .027 6 0.652 ± .007 1

T
O

X
IC

IT
Y LD50 Zhu 7,385 MAE (↓) 0.552 ± .009 0.823 ± .019 7 0.588 ± .010 3

hERG 648 AUROC (↑) 0.880 ± .002 0.813 ± .009 7 0.849 ± .007 6
Ames 7,255 AUROC (↑) 0.871 ± .002 0.883 ± .005 1 0.856 ± .001 5
DILI 475 AUROC (↑) 0.925 ± .005 0.577 ± .021 7 0.944 ± .007 1

TDC Leaderboard Mean Rank: 5.2 3.4

Downstream tasks. For downstream tasks, we generate the
global embeddings of the final layer of MiniMol from a
given molecule, referred to as molecular fingerprints. These
fingerprints are used as inputs to an MLP for making task-
specific predictions.

3. Experimental Details
In our experiments, we pre-train MiniMol on LargeMix
(Beaini et al., 2023) for various GNN backbones and sub-
sequently fine-tune to all 22 tasks in the ADMET Group of
the TDC benchmark.

Benchmarking on TDC ADMET Group. We use
the ADMET group of the Therapeutics Data Commons
(TDC) (Huang et al., 2021) benchmark to evaluate the
downstream performance of MiniMol. Within TDC, the
ADMET Benchmark Group specializes in single-instance
prediction, offering a standardized suite of 22 datasets for
molecular property prediction. These datasets vary in size,
ranging from 475 to 13,130 molecules, with both regression
and classification tasks. The datasets are categorized into
Absorption, Distribution, Metabolism, Excretion, and Toxi-

city. To ensure a fair comparison, scaffold splits are used,
with an 80:20 training/testing split. Because downstream
models are small and efficient, for each dataset we search
through a narrow set of hyperparameters (see Appendix A.2)
to optimize an ensemble which consists of 5 models trained
on different cross-validation folds (see Appendix A.5).

4. Empirical Results
We observe that pre-training performance is only marginally
affected by the choice of the backbone GNN. Moreover, the
pre-training performance of a given GNN backbone also
varies with tasks (see Appendix A.6 for more details).

Our fine-tuning results on the ADMET group datasets of
TDC show that MiniMol with GINE backbone achieves
top-1 performance on 8 tasks, setting a new state-of-the-art
on these datasets. Moreover, MiniMol (GINE) achieves
top-3 performance on 11 tasks. Therefore, MiniMol
(GINE) is shown to be a versatile model across a wide
range of tasks, competing with or exceeding the perfor-
mance of the best task-specialized architectures. We report
TDC leaderboard results up until June 2024. In addition,
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Table 3. Comparison of MiniMol to other molecular fingerprint-
ing models using the same evaluation method as ours, including
ensembles.

Model Mean rank >MoIE TOP1 TOP3
MiniMol 3.4 17 8 11
AGBT (Chen et al., 2021a) 5.4 10 2 4
MolFormer (Ross et al., 2022) 5.6 7 0 5
BET (Chen et al., 2021b) 6.0 7 1 2

MiniMol (GINE) outperforms MolE on 17 datasets, indi-
cating that with only 10% of the parameters, our MiniMol
approach is favourable to MolE in downstream performance
across many molecular tasks. In Table 3, we compare
MiniMol to other fingerprinting methods using the same
evaluation downstream adaptation method as ours, so the
only difference is the quality of generated fingerprints.

5. Discussion
For the fine-tuning results in Section 3, our analysis re-
veals that while the three GNN backbones, namely, GCN,
GINE and MPNN++, all achieve similar pre-training perfor-
mance, the GINE backbone shows a significant advantage
when fine-tuning to downstream tasks. To give a potential
explanation for this finding, recall that we adjust hidden di-
mensions of the different backbone GNNs to roughly align
to 10M parameters. Here, the higher model complexity of
MPNN++ leads to substantially smaller hidden dimension
sizes than GINE. Our results thus suggest that the architec-
tural complexity of MPNN++ is less effective in downstream
performance than a simple increase in hidden dimensions.
If we match the hidden dimension size of GINE in MPNN,
the model would reach the size of roughly 50M parameters.

At the same time, while less complex and allowing for even
larger hidden dimensions, GCN layers might be expressive
enough for strong downstream performance. Specifically,
the GCN omits the use of edge features and is shown to be
less powerful than the 1-WL test (Xu et al., 2019) while
GINE is as expressive as the 1-WL test. As such, we hypoth-
esize that the GINE allows for a trade-off between a suffi-
cient level of architectural complexity and a more effective
use of parameter budget in terms of larger hidden dimen-
sions translating into stronger downstream performance.

Finally, our results also reveal the general robustness of the
MiniMol pipeline to the choice of backbone GNNs, where
all three variants were better than MolE on the ADMET
group in many tasks (see Table 2) while having significantly
fewer parameters and being employed in an efficient finger-
printing pipeline, as opposed to fine-tuning all weights.

To explore which pre-training datasets impact downstream
task performance, we performed a correlation analysis.
Spearman’s rho coefficients (Sedgwick, 2014) were calcu-

Table 4. Correlation analysis (Spearman’s rho) between pre-
training validation and downstream performance. The green colour
indicates a beneficial correlation and the red indicates a detrimental
correlation. Results with a p-value over 0.1 are blank.

Dataset Metric MCF VCAP PCBA G25 N4

AUROC AUROC AUROC MAE MAE

Caco2 Wang MAE 0.590 0.651 0.718
Bioavailability Ma AUROC
Lipophilicity AZ MAE 0.568 0.539 0.627 -0.389
Solubility AqSolDB MAE 0.588 0.7 0.704
HIA Hou AUROC 0.603 0.548 0.645 -0.337
Pgp Broccatelli AUROC 0.361 -0.387
BBB Martins AUROC 0.583 0.378 0.483 -0.492
PPBR AZ MAE
VDss Lombardo Spearman 0.343
CYP2C9 Veith AUPRC 0.649 0.711 0.829 0.551
CYP2D6 Veith AUPRC 0.641 0.487 0.704 0.585
CYP3A4 Veith AUPRC 0.649 0.713 0.818 0.608
CYP2C9 Subst. AUPRC -0.377 -0.445 -0.586
CYP2D6 Subst. AUPRC
CYP3A4 Subst. AUROC 0.409
Half Life Obach Spearman 0.503 0.498
Clearance Hepato. Spearman
Clearance Micro. Spearman
LD50 Zhu MAE 0.543 0.522 0.617 0.342
hERG AUROC 0.57 0.453
AMES AUROC 0.591 0.486 0.643 -0.628 0.528
DILI AUROC 0.49 0.416 0.454

Sum 6.496 7.959 7.749 -2.232 2.028

lated for each pair of pre-training and downstream metrics
(see Table 4). A p-value threshold of 0.1 was used. Overall,
improved pre-training metrics correlate with downstream
performance. However, while the node-level quantum data
is positively correlated with the downstream biological tasks,
the graph-level quantum data is not. This suggests that quan-
tum data may be more helpful in learning the node represen-
tations within the backbone than the graph-level fingerprints,
which is an interesting avenue for future exploration.

6. Conclusion
In this work, we propose a novel parameter-efficient foun-
dation model for molecular learning called MiniMol.
MiniMol is pre-trained on over 3,300 biological and quan-
tum tasks on graph- and node-level molecules and subse-
quently evaluated on the ADMET group of the TDC bench-
mark. MiniMol outperforms the previous state-of-the-art
foundation model on ADMET, MolE, with only 10M pa-
rameters, 10 × fewer than MolE. In addition, fine-tuning
with MLPs on the fingerprints extracted from pre-trained
MiniMol, allows for efficient fine-tuning, and a correla-
tion analysis gives insight into how to utilize pre-training
datasets for downstream biological tasks.

We have recently become aware of concurrent work, Mol-
GPS (Sypetkowski et al., 2024), an ensemble of 1B param-
eter models, that beats MolE in 18 (vs 17 for MiniMol)
ADMET group tasks and is top-ranked in 12 (MiniMol
is 8), although it is not clear whether it is open source.
This provides a data point at the other end of the effi-
ciency/accessibility spectrum for MFMs, encouraging future
work in this important area.
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A. Appendix
A.1. MPNN architecture

In what follows, we describe the MPNN architecture in (Masters et al., 2023b) in detail. Here, the embeddings are
incrementally updated with each MPNN layer in the model as:

xℓ+1, eℓ+1, gℓ+1 = MPNN(xℓ, eℓ, gℓ) (1)

The edge embedding is updated by concatenation of the edge feature with the node features at each end of the bond, with the
global features. This is processed with the edge MLP and then summed with the skip connection, shown in 2.

ēℓuv = MLPedge
( [

xℓ
u |xℓ

v | eℓuv | gℓ
] )

(2)

The node embedding, shown in eq.3 concatenates the node features with the summed edge features of all edges connected
(senders and receiver) and the global features before passing this vector through an MLP and finally adding the skip
connection.

x̄ℓ
i = MLPnode

xℓ
i

∣∣∣∣∣∣
∑

(u,i)∈E

ēℓui

∣∣∣∣∣∣
∑

(i,v)∈E

ēℓiv

∣∣∣∣∣∣
∑

(u,i)∈E

xℓ
u

∣∣∣∣∣∣ gℓ
 (3)

The global node is concatenated with the sum of all node and edge features in the graph (eq. 4).

ḡℓ =

gℓ
∣∣∣∣∣∣
∑
j∈V

x̄ℓ
j

∣∣∣∣∣∣
∑

(u,v)∈E

ēℓuv

 (4)

Where the final components are computed with skip-connections as:

xℓ+1
i = x̄ℓ

i + xℓ
i ; eℓ+1

uv = ēℓuv + eℓuv; gℓ+1 = ḡℓ + gℓ; (5)

This is represented diagrammatically in Fig. 2.

A.2. Hyperparameter selection

We select hyperparameters for our fine-tuning as follows. We compute a hyperparameter sweep over the maximum number
of epochs; the learning rate; the dropout rate and whether to use none, batch or layer normalization in the task head.
Optionally, we sweep over the width and depth of the task head MLP. Each configuration is run on the same random seed.
Following the instructions provided by TDC2, we use the provided scaffold splits for our train/validation splits via the
method get train valid split and take the benchmark test split also provided by TDC. Then, for each dataset, we
select the hyperparameters resulting from the model with the smallest validation loss and subsequently re-run this model
on k random seeds. Here, we distinguish between two sweep configurations. In the first configuration, we only sweep
over the learning rate ∈ {0.001, 0.0005, 0.0003, 0.0001, 5e−5} and set the number of epochs to 25, dropout to 0.1, hidden
dimension to 1024 and the number of layers to 3. In the second configuration, we set the number of epochs to 25 and
sweep over whether or not to use a skip connection, the learning rate ∈ {0.0005, 0.0003, 0.0001}, the hidden dimension
∈ {512, 1024, 2048}, the number of layers ∈ {3, 4}, dropout ∈ {0.0, 0.1}, the number of warmup epochs ∈ {0, 5} and the
learning rate schedule ∈ {constant, linear, cosine}.

A.3. Pre-training datasets

PCQM4M G25 N4. This dataset contains 3.8M molecules from the PCQM dataset (Hu et al., 2021), from the OGB-LSC
challenge. The dataset consists of quantum chemistry calculations for 25 molecular graph-level properties, and 4 node-level
properties per atom, resulting in about 400M labelled data points.

PCBA. This dataset contains 1.5M molecules from the OGBG-PCBA dataset (Hu et al., 2020a). This bioassay dataset,
derived experimentally from high-throughput screening methods, details the impact of the molecules on living cells across
1328 sparse labels. This results in about 100M labelled data points.

2Available at https://tdcommons.ai/benchmark/overview/
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xℓ eℓ gℓ

MLPx

MLPe

gℓ+1
eℓ+1xℓ+1

×L

Figure 2. Example of the MPNN block architecture given in Eq.1. The edge update in Eq.2 gathers the nodes and edges before passing
through the MLP first, then this output is used for the node update in Eq.3, gathering all connected node features and updated edge
features. The global update in Eq.4 connects all nodes and edges, before finally the skip connections in Eq.5.

L1000 VCAP and L1000 MCF7. These datasets contain 26k molecules from the L1000 dataset (Subramanian et al., 2017)
which details the change to gene expression profiles and cellular processes when exposed to the molecules in the dataset
across about 1000 labels and 26M data points.

These diverse labels from fundamental quantum chemistry properties to macro-scale cellular impact encourage a single
general representation of the molecule suitable for downstream tasks. The combined LargeMix contains multiple task
labels per molecule. The datasets only partially overlap thus requiring the model to generalize across domains from sparse
labels on molecules.

A.4. Experimentation with pooling methods

We evaluated three different pooling strategies when going from the node level to graph level representation and summarized
our findings in A.4.

Mean rank MoIE TOP1 TOP3
sum 3.9 16 4 10
mean 3.5 16 6 11
max 3.4 17 8 11

A.5. Downstream evaluation strategy

The strategy used for evaluating and ensembling the models is explained in the form of pseudo-code below.

While building the ensemble, the best epoch is selected based on validation loss, and to distinguish which ensemble to select
for testing (e.g. while choosing one out of the sweep), the ensemble’s mean validation metric is used. Final test scores are
derived from the top ensemble, with error bars reported from five trials.

Since our fingerprinting approach permits fast evaluation of downstream predictors, we conduct extensive hyperparameter
sweeping across all tasks. For CPU-only runs, training a downstream model only takes 1 to 10 minutes per model per
dataset.
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Algorithm 1 Downstream evaluation strategy
Input: a set of hyperparameter combinations HPs, number of repetitions n neps, number of cross-validation folds
n folds
for each hi in HPs do

for repi in range(n reps) do
select seed
for foldi in range(n folds) do

train a model on foldi
save best model based on val loss

end for
build ensemble of n folds models
evaluate on ensemble
save val and test scores

end for
calculate mean and std of val and test scores across all n reps models

end for

A.6. MiniMol backbone choice

Table 5 presents the mean performance of three GNN architectures (GCN, GINE, MPNN++) across all 22 downstream tasks
from TDC ADMET. GINE demonstrates a significant empirical advantage as the GNN backbone for downstream tasks.

Table 5. The effect of specific GNN architectures in the backbone of the fingerprinting model on the downstream performance. The rank
is determined for each dataset individually, on a set of 7 scores, which include the test results from the TOP5 TDC leaderboard, MolE and
MiniMol. Here, all models used sum pooling, whereas our best model uses max pooling.

MiniMol backbone Mean Rank # Top1 Results # Top3 Results

MPNN++ 4.5 3 6
GCN 4.3 4 8

GINE 3.9 4 10

A.7. LargeMix Results

Table 6 presents the performance of three GNN architectures (GCN, GINE, MPNN++) across various pertaining datasets.

Table 6. Results for GNN 10M baselines on LARGEMIX dataset. We report performance metrics on the test set for each dataset in
LARGEMIX separately. The best scores per metric per dataset are marked in bold.

Model
Dataset Metric GCN GINE MPNN

PCQM4M G25
MAE ↓ 0.218 0.208 0.200
Pearson ↑ 0.884 0.889 0.892
R2 ↑ 0.790 0.799 0.803

PCQM4M N4
MAE ↓ 0.025 0.022 0.021
Pearson ↑ 0.975 0.979 0.980
R2 ↑ 0.952 0.959 0.961

PCBA 1328
CE ↓ 0.033 0.033 0.033
AUROC ↑ 0.777 0.784 0.782
AP ↑ 0.286 0.302 0.287

L1000 VCAP
CE ↓ 0.061 0.061 0.061
AUROC ↑ 0.500 0.514 0.500
AP ↑ 0.504 0.504 0.506

L1000 MCF7
CE ↓ 0.059 0.058 0.059
AUROC ↑ 0.533 0.531 0.519
AP ↑ 0.513 0.516 0.514
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