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Abstract

Foundation models, first introduced in 2021, are large-scale pre-trained models (e.g., large language
models (LLMs) and vision-language models (VLMs)) that learn from extensive unlabeled datasets through
unsupervised methods, enabling them to excel in diverse downstream tasks. These models, like GPT, can
be adapted to various applications such as question answering and visual understanding, outperforming
task-specific AI models and earning their name due to broad applicability across fields. The development
of biomedical foundation models marks a significant milestone in leveraging artificial intelligence (AI) to
understand complex biological phenomena and advance medical research and practice. This survey explores
the potential of foundation models across diverse domains within biomedical fields, including computational
biology, drug discovery and development, clinical informatics, medical imaging, and public health. The
purpose of this survey is to inspire ongoing research in the application of foundation models to health
science.

1 Introduction

The term ‘foundation model’ was first introduced in 2021 [1]. It generally refers to large language models
(LLMs) and vision language models (VLMs) that are pre-trained in large-scale datasets, usually through
unsupervised methods, which equip them to handle diverse downstream tasks. By learning from vast amounts
of unlabeled data, ‘foundation models‘ have developed strong capacities to map inputs into latent embedding
space. Consequently, they can be seamlessly adapted to a wide range of tasks, consistently outperforming
task-specific AI models [2, 3]. For example, GPT [4], pre-trained on massive language and visual data, and
achieves outstanding performance in numerous tasks such as question answering, information retrieval, and
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visual understanding. Given their transformative potential and broad applicability across related fields, these
models are commonly referred to as ‘foundation models‘.
The emergence and development of foundation models can be attributed to several key factors. 1)Massive
unlabeled data: Vast amounts of data are available, but supervised training is impractical due to prohibitive
labeling costs [1]. 2) Increased AI model size: The architectures of the AI model have evolved to become
increasingly larger, but the limited availability of labeled data constrains their ability to fully exploit this
enhanced capacity [5]. 3) Scaling law of generalizability: Through large-scale model training, researchers
have found that model performance improves predictably with increases in model size, dataset size, and
computational resources [6]. 4)Cost-efficient for downstream tasks: After pre-training, efficient fine-tuning
with limited labeled data achieves superior performance compared to task-specific AI models.
The success of popular foundation models such as GPT and Claude in natural language and image processing
makes it intuitive to apply and redesign them to healthcare. The application of foundationmodels in healthcare
spans several sub-fields. First, the outstanding natural language processing capabilities of foundation models
have the potential to advance computational biology. DNA, RNA and protein sequences can be seen as a
form of natural language, and these models can learn the patterns in the sequences, enabling deeper insights
into genomics. Second, drug discovery and development utilizes foundation models to accelerate target
identification, optimize molecular design, and predict molecular interactions and properties, ultimately
reducing the time and cost of developing new drugs [7]. Third, in the field of clinical informatics, foundation
models can efficiently process millions, or even billions, of clinical and patient data points, whether structured
or unstructured. They can extract patterns from patients’ symptoms to better assess conditions and enable
personalized treatment plans. Fourth, medical imaging analysis can employ foundationmodels for tasks such as
image segmentation, anomaly detection, and diagnostic predictions across modalities such as MRI and CT [8],
improving diagnostic accuracy andworkflow efficiency. Finally, public health benefits from foundationmodels
in analyzing large datasets for disease surveillance, epidemiological modeling, and misinformation detection,
contributing to more effective public health interventions. Therefore, the opportunities for biomedical
foundation models to enhance the work of clinicians, researchers, and patients are steadily increasing.
This survey aims to review existing research on foundation models in biomedical areas, summarize their
development progress, identify recent challenges of biomedical foundation models to inspire potential re-
search directions, and provide a foundation for researchers to advance their applications in health sciences.
Specifically, we will discuss the foundation models in multiple biomedical fields including computational
biology, drug discovery and development, clinical informatics, medical imaging, and public health (Figure 1).

2 Computational Biology

The central dogma of molecular biology provides a foundational framework describing the flow of genetic
information within living organisms [9] (Fig. 2). Genomic information is encoded in DNA, transcribed into
RNA, and subsequently translated into protein. This process converts the four-letter nucleotide code of
DNA into the twenty-amino-acid code of proteins, which fold into three-dimensional structures to carry
out diverse cellular functions. Understanding the central dogma is critical to advance knowledge in genetics,
medicine, biotechnology, and evolutionary biology. It also serves as the cornerstone for innovations in
genetic engineering, gene therapy, and drug development. Consequently, topics such as 3D chromatin genetic
information, RNA-driven gene expression profiles, and protein structures underpinning cellular functions
are central to computational biology. This section explores the application of foundation models to these
domains, encompassing genome information, RNA-based gene expression profiles, and the study of protein
structure and function.
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Figure 1: Overview of the foundation models in different biomedical fields. The foundation model is first
pre-trained with massive unlabeled data in a self-supervised fashion. Then, it can be easily adapted for various
downstream applications, including computational biology, drug discovery, public health, medical imaging,
and clinical informatics.

Genome Information The genetic code for protein synthesis is universal but the regulatory code that
governs the timing and manner of gene expression varies among different cell types and organisms [10]. This
regulatory code is primarily found in the non-coding DNA regions, which constitute about 98% of the genome
and include key functional elements like enhancers, promoters, and insulators. These elements regulate gene
expression and repression activity, making the study of non-coding DNA crucial for understanding gene
regulation, development, disease, and evolution. Recognizing the significant potential and impact of DNA,
foundation models have been developed to enhance our understanding of the language of DNA. BigBird [11]
pioneered in DNA sequence encodings by developing transformers for longer sequences. Following this work,
a series of DNA language model has been developed and presented strong capacity for various downstream
tasks, including RNA expression, enhancer activity prediction. Other recent studies are included in Table 1.
To fairly compare different models, GenBench [12] proposed a comprehensive benchmarking suite to compare
different genome foundation models. In parallel with studies on 1D DNA sequences, HiCFoundation [13]
was recently proposed to study 3D DNA and its functional implications. Together, these foundation models
can contribute to understanding the impact of genome sequence and architecture on gene regulation and
expression.

Gene Expression Profiles by RNA Gene expression profiles [14], valuable for understanding the dynamic
activity of genes, serve as a direct reflection of gene activity. By quantifying and comparing the abundance of
RNA molecules across different samples or conditions, gene expression profiling enables the identification of
genes that are turned on or off, differentially expressed, or involved in specific biological processes. Traditional
bulk RNA sequencing provides an average gene expression profile, masking cellular heterogeneity and
potentially obscuring important information. In contrast, single-cell RNA sequencing (scRNA-seq) provides
detailed insights into cellular diversity and variability by analyzing expression at the individual cell level.
SCimilarity [15] is one of the most representative foundation models for single-cell profiles, enabling the
comparison of transcriptionally similar cells in diverse single-cell RNA sequencing datasets. Other related
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Figure 2: Overview of the application of foundation model in computational biology. Through the representa-
tion learning of DNA/RNA/Protein data in various forms, the foundation models can be applied to various
downstream analysis, including disease estimation, gene network, protein structures and functions.

foundation models are listed in Table 2. The gene and cell embeddings derived from these foundation
models have significantly advanced our understanding of gene expression dynamics across diverse cell types,
holding immense potential to elucidate the molecular underpinnings of development, disease, and therapeutic
responses.

Protein Structure and Protein Design Predicting protein 3D structures and functions plays critical roles
in advancing our understanding of biological processes [16], and their three-dimensional structure determines
how they perform specific functions, such as catalyzing reactions, transmitting signals and etc. Accurate
predictions can reveal the molecular basis of diseases and further guide drug discovery. In recent years,
computational approaches have provided an efficient and scalable way to fill gaps in structural knowledge
and uncover the complexities of life at the molecular level. AlphaFold2 [17], a large model with high accuracy
on predicting protein structures, has revolutionized structural biology by providing near-experimental-
level predictions, significantly accelerating research in understanding protein functions and interaction.
Moreover, building on these advancements on protein structure prediction, protein design has emerged as a
complementary discipline, where researchers create or engineer proteins with specific functions or properties.
Protein design enables the creation of novel enzymes, therapeutic molecules, and drugs, bringing about new
possibilities in medicine, biotechnology, and synthetic biology, offering solutions to disease treatment and
sustainable industrial processes. Recent advances, including large models and foundation models for protein
structure prediction and protein design, are summarized in Table 3.
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Figure 3: Overview of the application of foundation model in drug discovery and development.

3 Drug Discovery and Development

The development of novel drugs is crucial for global health (Figure. 3). The goal of drug discovery and
development is to develop new drugs to treat certain human diseases. First, (early-stage) drug discovery
identifies drug molecules (design or reuse) with desirable pharmaceutical properties (e.g. absorption, excretion,
etc.). Then, (late-stage) drug development tests these molecules for safety and efficacy through animal models
and clinical trials. Following successful trials, drugs undergo regulatory review by bodies such as the US FDA
before being approved for clinical use. This section will discuss some fundamental problems in drug discovery
and development. Early-stage drug discovery focuses on drug molecule structure, which involves AI-solvable
tasks such as molecular representation learning, pharmaceutical property prediction, drug repurposing, and
drug molecular design. AI also has a large potential to revolutionize late-stage drug development, especially
in building predictive clinical trial models to guide clinical trial experts.

Molecular Representation Learning In contrast to pretraining procedures for LLMs, developing foun-
dational models for healthcare requires a focus on learning representations for drug molecules. Molecular
knowledge resides within three different modalities of information sources: molecular structures, biomedi-
cal documents, and knowledge bases. This section reviews self-supervised pre-training methodologies for
molecule representation learning and discusses integrating drug molecules and healthcare pre-training to
improve downstream tasks such as drug recommendation and disease trajectory prediction [18]. A list of
recent work can be found in Table 4.

Pharmaceutical Property Prediction Molecular property prediction aims to learn a model that maps
molecular structure to its pharmaceutical properties, which is the essential step for new drug discovery.
Specifically, drug ADMET properties (Absorption, Distribution, Metabolism, Excretion, and Toxicity) refer to
the characteristics of a drug that determine its absorption, distribution within the body, metabolism in the
body, excretion from the body, and potential toxicity or adverse effects. Assessing and understanding ADMET
properties helps predict how a drug will behave in the body, identify potential risks and interactions, optimize
dosing regimens, and ensure patient safety and efficacy. Various experimental and computational approaches
are employed to study and evaluate these properties during the drug development process. Pre-training
approaches have been widely applied in pharmaceutical property prediction. For example, ChemBERTa, a
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Figure 4: Overview of the application of foundation model in clinical informatics. The foundation model
is pre-trained using structured electronic health record (EHR) data and unstructured clinical record (UCR)
data and then adapted for various clinical analyses, including patient representation, causal inference, clinical
summarization, and question answering.

BERT-based architecture, is pretrained on 77M unlabeled SMILES strings from PubChem and then fine-tuned
on smaller labeled data for property prediction [19]. A review of recent studies on pharmaceutical property
prediction can be found in Table 5.

Drug Repurposing Drug repurposing, also known as drug reuse or drug repositioning, refers to the process
of finding new medical uses for drugs. It is becoming favorable compared to the development of entirely
new drugs for the following reasons: lower cost, shorter development time, and lower risk [20]. Zhu et al.
[21] demonstrate that the nature of graph neural networks (GNNs) makes them the ideal architecture for
discovering drug uses, which led to more research using GNNs. A list of recent work can be found in Table 6.

Predictive Clinical Trial Clinical trials, also known as drug development, aim to evaluate the safety and
efficacy of drug treatments for specific diseases in humans. However, conducting clinical trials is notoriously
known to be time-consuming, labour-intensive, and expensive. On average, the process takes 7-11 years, costs
around 2 billion dollars, and has a low approval rate of approximately 15% [22, 23]. Given these prerequisites,
integrating machine learning into the clinical trial process has the potential to reduce manual labour and
significantly enhance scalability for drug development. For example, [24] designs a hierarchical interaction
network (HINT) that is pre-trained onmultimodal drug data and simulates clinical trial components to predict
the outcome of the trial. Some foundation models to predictive clinical trial models can be found in Table 7.

4 Clinical Informatics

Clinical informatics data contain a wide range of information about the medical history, treatments, and
health-related activities of a patient. These records are crucial for healthcare professionals to provide effective
care and manage patient health. There are several fundamental AI-solvable tasks in clinical informatics, which
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can be categorized into two classes based on data types: (1) text-based problems such as clinical summarization
and clinical question answering (QA) and (2) health records-based problems such as patient representation
(e.g., patient similarity) and treatment effect estimation, as illustrated in Figure 4. Specifically, natural language
is the most commonly used interaction method between doctors and patients, so clinical summarization and
QA alleviate doctors’ workload and facilitate patient care. On the other hand, health record-based tasks help
doctors diagnose by providing more insights.

Clinical Summarization Automatic text summarization is the process of creating concise and coherent
summaries of individual or multiple documents, aiming to save time in obtaining crucial information. The
existing methods in this field can be broadly categorized into two types: extractive summarization methods
and abstractive summarization methods, where extractive summarization select and extract key sentences
or phrases directly from the source text to create a summary, preserving the original wording; abstractive
summarization generates a summary by understanding the text’s meaning and creating new sentences that
capture the essential information, similar to how humans summarize. KeBioSum[25] is a highlighted work in
this field; it applies adapter fusion to efficiently inject the knowledge adapters into the LLMs for fine-tuning
for this task. The related studies are briefly reviewed in Table 8.

Clinical Question Answering (QA) Clinical QA aims to extract or generate natural language answers
for given questions. It is commonly formulated as a machine reading comprehension problem, where the
objective is to predict the text span containing the answers from given questions and passages. TheMed-PaLM
model [26, 27] stands out among the clinical QA foundation models, as it was the first model to pass the US
Medical Licensing Examination. The related works are reviewed in Table 9.

Patient Representation The embedding of structured electronic health record (EHR) data has emerged as
a pivotal advancement, revolutionizing the way patient information is processed and used. EHR embedding
involves encoding various components of patient records, including diagnosis codes, medications, and vital
signs, into a structured and numerical format. This process encapsulates a patient’s medical history, diagnoses,
treatments, medications, laboratory results, and other health-related information in a unified representation.
The significance of patient representation lies in its ability to distill intricate clinical records into data-driven
insights. These representations serve as the foundation for informed decision-making, precise diagnosis,
personalized treatment plans, and comprehensive healthcare management. BEHRT [28] is a pioneer model
that adapts the concept of BERT to build a neural sequence trajectory model to encode patient data. Related
works are summarized in Table 10.

Treatment Effect Estimation Treatment effect estimation (TEE) fromobservational data ismeaningful and
practical in healthcare. It enables prescribing the right treatments to individuals based on their health statuses.
One common approach to TEE is randomized controlled trials (RCTs), which are conducted by randomly
assigning patients to two groups, treating them differently and comparing them in terms of a measured
outcome. However, conducting RCTs is very expensive and time-consuming. A promising alternative is to
estimate the treatment effect by learning from observational data. A representative foundation model work
would be TransTEE [29], which explores the use of transformer architectures for estimating heterogeneous
treatment effects, integrating all treatments and covariates. The related works are summarized in Table 10.
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Figure 5: Overview of the application of foundation model in medical imaging.

5 Medical Imaging

Medical imaging encompasses a wide array of technologies, each meticulously designed to visualize distinct
aspects of the human body. These technologies are instrumental in diagnosing and monitoring a variety
of medical conditions, as well as assessing the efficacy of prescribed treatments. Depending on the specific
modality employed, medical imaging can reveal diverse insights, ranging from identifying potential injuries or
diseases to gauging the progression or regression of a condition in response to therapeutic interventions [30, 31].
The biggest challenge in training medical imaging models is data. The medical visual examination involves
different types of images, such as radiology and pathology. Most data is private so it is difficult to collect
various datasets at a large scale to train a general foundation model.

Pathology Pathology plays a central role in clinical medicine for tissue-based diagnosis and in understand-
ing the causes and nature of the disease. Although molecular and omics-based data enhance histological
assessments, the study of microscopic changes in tissue structure remains a critical part of pathology [32].
Therefore, most computational pathology work focuses on whole slide image (WSI) analysis, which includes
tasks such as cell segmentation and tumor detection. Sometimes, the study of pathology is also linked to
genomics where foundation models can be applied to analyze genomic data to identify mutations, gene
expression patterns, and their correlation with pathological features. Considerable efforts have been made
toward the development of foundationmodels in pathology, with PLIP [33] representing a notable contribution.
PLIP introduced OpenPath, a large-scale pathology dataset, and leveraged it to pre-train a foundation model,
providing resources and insights for future studies. Following this, other impactful researches are presented
in Table 11.

Radiology Radiology is a medical specialty that uses imaging techniques such as X-rays, CT scans, and
MRI to diagnose and treat disease. In daily radiology practice, radiologists interpret these medical images
comprehensively in a short period. However, with the increasing availability of radiological techniques, the
volume of images is growing rapidly and so is the workload of radiologists. The abundance of available images
makes it a perfect training resource for foundation models. Being the pioneering work to employ the powerful
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Figure 6: Overview of the application of foundation model in public health.

CLIP model in radiological images, MedCLIP [34, 35] successfully showcases the plausibility and capabilities
of foundation models in this field. Foundation models in radiology are summarized in Table 12.

Retinal Images Optical coherence tomography (OCT) and Colour fundus photography (CFP) are the most
common retinal images in ophthalmology, and their number accumulates rapidly in clinical practice [36]. The
involvement of foundation models has been shown to be a game changer in retinal diseases. For instance,
DeepDR Plus [37] fills the gap for the lack of individualized risk monitoring and accurate prediction of the
progression of diabetic retinopathy. Another highlight would be RETFound [36], a foundation model that
pre-trained a large-scale retinal image dataset and can be adapted to a broad range of retinal disease detection
tasks. Some related works are briefly reviewed in Table 13.

Multi-modality Attempts have been made to develop foundation models specified for various modalities so
it would be intuitive to develop models that span multi-modality. Different modalities have images of different
granularity, but this will not pose a significant challenge for foundation models, provided that the training
data is adequate. For example, Med-Flamingo [38] showcases the adaptation of CLIP-based architectures
(unifying text and image modalities) to the development of generalist foundation models for medical imaging,
which enhances the flexibility of medical imaging models (e.g., producing text description of medical images).
Related works are summarized in Table 14.

6 Public Health

Public health focuses onmaintaining and improving community health and safety. Its importance has increased
due to recent infectious disease outbreaks like COVID-19 and the H1N1 pandemic. Rapid dissemination of
accurate information to decision-makers is crucial for controlling these outbreaks [39]. However, generating
or predicting population-level information is challenging due to factors like modeling disease propagation [40],
human mobility [41], socio-cultural elements [42], and human behavior nuances [43]. Efforts to improve public
health can be broadly categorized into two areas: public health surveillance through novel data sources and
spatiotemporal modeling for epidemic forecasting.
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Public health surveillance through multimodal and heterogeneous data Traditional public health
surveillance is often limited by the complexities of data collection from diverse stakeholders with varying
levels of technological adoption [44]. In contrast, digital public health surveillance addresses these limitations
by improving sensitivity, resolution, and timeliness [45]. Large and foundation models have been used in
several tasks in public health surveillance. For example, key applications include analyzing social media
content to assess mental health surveillance, virus-spreading information, and misinformation detection.
PsychBERT [46] is the early work that pre-trained using biomedical literature on mental health and social
media data. Related works are summarized in Table 15. These models also help identify mental health-related
content and detect misinformation about public health.

Epidemic Forecasting Epidemic prediction typically relies on three types of predictions [47]: (1) predictions
with real value, which anticipate parameters such as incidence or intensity peak during an epidemic season;
(2) events predictions, which include estimates of onset and peak times; (3) epidemiological indicators, such as
reproduction number, final size of the epidemic and attack rate predictions. [48, 49] proposed time series-based
epidemic foundation models for influenza-like illness (ILI) analysis (e.g., epidemic time series forecasting).

7 Conclusion

This survey focuses on the applications and challenges of foundation models in the health sciences. We
reviewed the applications and challenges of foundation models in five areas: computational biology, drug
development, clinical informatics, medical imaging, and public health. We hope that this survey will provide
researchers and practitioners with a useful and detailed overview of foundation models in the health sciences,
provide a convenient reference for relevant experts, and encourage future progress.
Looking ahead, the integration of Foundation Models within the health sciences promises to refine and
accelerate existing processes and to pioneer new research and treatment methodologies. The journey toward
fully realizing the potential of these models is intertwined with the continuous development of AI technologies,
alongside the fostering of interdisciplinary collaborations among scientists, clinicians, and policymakers.
As we navigate these challenges, the goal remains clear: to take advantage of the power of AI to improve
health outcomes and pave the way for a new era of precision medicine and public health initiatives. The
advancements in FoundationModels are not an end but a beginning, marking a pivotal moment in the evolving
narrative of health science and artificial intelligence.
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Box 1: Foundation models for DNA languages in genome.

Work Task Architecture Input Output Note

BigBird 11

(2020)
Question answering
(QA), document
summarization,
promoter region
prediction &
chromatin-profile
prediction.

Transformer Long se-
quences
(e.g., lan-
guage,
DNA)

Token-wise
embed-
dings

NA

DNA-BERT 50

(2021)
Prediction of pro-
moters, splice sites
and transcription
factor binding sites

Transformer DNA
sequence

Token-wise
embedding

NA

GeneBERT 51

(2021)
Promoter classifica-
tion, transaction fac-
tor binding sites pre-
diction, disease risk
estimation, splicing
sites prediction

Transformer Genome
sequence
& 2D in-
teraction
matrix

Gene repre-
sentation

Utilizes a 1D genome
sequence and a 2D
matrix representing
interactions between
transcription factors
and genomic regions.

LOGO 52 (2022) Promoter identifi-
cation, enhancer-
promoter interac-
tion prediction

Transformer DNA
sequence

token-wise
embed-
dings

NA

LookingGlass 53

(2022)
Identify novel oxi-
doreductase; predict
enzyme optimal tem-
perature; recognize
reading frames of
DNA sequence frag-
ments

LSTM DNA
sequence

Token-wise
embed-
dings

NA

VIBE 54 (2022) Eukaryotic viruses
detection and
classification

Transformer Metagenome
sequencing
data

Token-wise
embedding

A hierarchical BERT
model to identify
eukaryotic viruses
using metagenome
sequencing data and
classify them at the
order level.

27



INHERIT 55

(2022)
Phage identification Transformer Bacteriophage

genome
sequences

Genome
representa-
tion

NA

Genomic
Pre-trained
Network
(GPN) 56 (2022)

Genome-wide vari-
ant effect predictions

CNN Genomic
sequence

Genome
representa-
tion

NA

DeepConsensus 57

(2023)
DNA sequence cor-
rection

Transformer DNA
sequence

Token-wise
embed-
dings

DeepConsensus
uses an alignment-
based loss to train
a gap-aware trans-
former–encoder for
sequence correction.

Nucleotide
Transformer 58

(2024)

Molecular pheno-
type prediction

Transformer Nucleotide
sequence

Nucleotide
representa-
tion

NA

HyenaDNA 59

(2024)
Chromatin profile
prediction, species
classification, reg-
ulatory elements
identification

Hyena DNA
sequence

Token-wise
embedding

Uses Hyena (sub-
quadratic) to replace
quadratic attention
in transformers with
implicit convolutions,
enabling efficient
scaling (up to 500x
speedup) to 1M
tokens with single-
nucleotide-level
resolution.

GROVER
(Genome Rules
Obtained Via
Extracted Rep-
resentations)60

(2024)

Genome element
identification &
protein–DNA
binding

Transformer DNA
sequence

Token-wise
embedding

Trained on DNA
sequences using
byte-pair encoding.
GROVER defines
a vocabulary of
tokens through a
custom next-k-mer
prediction task.

DNABERT-261

(2024)
multi-species
genome classifica-
tion

Transformer DNA
sequence

Token-wise
embed-
dings

NA
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Borzoi62 (2023) DNA language
model

Enformer
(convolution
+ rrans-
former)

DNA
sequence

DNA repre-
sentation

Identifies key cis-
regulatory patterns
governing RNA
expression and
post-transcriptional
regulation across nor-
mal tissues through
attribution methods.

scooby63 (2024) DNA language
model

DNA
sequence

DNA repre-
sentation

NA

Evo64 (2024) Prediction & design
tasks frommolecular
to genome-scale

Hyena DNA, RNA,
protein

(DNA, RNA,
protein)
represen-
tation or
sequence

The first examples
of protein-RNA
and protein-DNA
co-design.

HiCFoundation 13

(2024)
Genome activity pre-
diction

Transformer 3D and 1D
genome
data

Genome
representa-
tion

A Hi-C-based foun-
dation model for in-
tegrative analysis of
genome 3D architec-
ture and its regulatory
mechanisms. The
first model that in-
fers genome activity
from the coarse ge-
nomic contact maps
provided by Hi-C.
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Box 2: Foundation models for gene expression profiles by RNA.

Work Task Architecture Input Output Note

scBERT65

(2022)
RNA
language
model

Transformer scRNA
sequence

scRNA-seq
representa-
tion

Pre-train BERT on massive unla-
beled scRNA-seq data and fine-
tuned on cell type annotation
task.

scFormer66

(2022)
RNA
language
model

Transformer scRNA
sequence

scRNA-seq
representa-
tion

NA

tGPT67 (2022) RNA
language
model

Transformer scRNA
sequence

scRNA-seq
representa-
tion

NA

scFoundation68

(2023)
RNA
language
model

Transformer scRNA
sequence

scRNA seq
representa-
tion

NA

Geneformer69

(2023)
RNA
language
model

Transformer scRNA
sequence

scRNA seq
representa-
tion

Pre-trained on 30M single-cell
transcriptomes.

scGPT70 (2023) RNA
language
model

Transformer scRNA
sequence

scRNA-seq
representa-
tion

Enhances scFormer66 with gen-
erative training techniques.

sc-Long71

(2024)
RNA
language
model

Transformer scRNA
sequence

scRNA-seq
representa-
tion

NA

GenePT72

(2024)
RNA
language
model

Transformer Gene
description

Gene
embedding

NA

SCSimilarity 15

(2024)
RNA
language
model

MLP scRNA-seq cell repre-
sentation

Designed for rapid queries on
similar cell profiles.

Cancer-
Foundation73

(2024)

RNA
language
model

Transformer scRNA
sequence

scRNA-seq
representa-
tion

Trained only on malignant cells,
and its downstream task evalu-
ates the generalizability to bulk
RNA data.
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Box 3: Foundation models for protein structure prediction (a.k.a. protein folding) and protein design.

Work Task Architecture Input Output Note

AlphaFold2 17

(2021)
Protein
structure
prediction

Transformer Protein se-
quence

Protein
structure

Milestone work in single-chain
protein structure prediction,
dominating CASP.

RoseTTAFold74

(2021)
Protein
structure
prediction

Transformer Protein se-
quence

Protein
structure

Protein monomer prediction, 3-
track network architecture (1D
sequence level, 2D distance map
level and 3D coordinate level).

AlphaFold-
Multimer75

(2021)

Protein
structure
prediction

Transformer Protein se-
quence

Protein
structure

Predict structures for protein
multimers.

ProtTrans76

(2021)
Protein
language
model

Transformer Protein se-
quence

Protein rep-
resentation

NA

ProBERT77

(2022)
Protein
represen-
tation
learning

Transformer Protein se-
quence

Protein rep-
resentation

NA

Evolutionary
Scale Modeling
(ESM)78 (2022)

Protein
language
model

Transformer Protein se-
quence

Protein rep-
resentation

The ESM family of protein lan-
guage models, including ESM-
1v79, ESM-1b80, and ESM-MSA81

and etc.

ESM-IF182

(2022)
Protein de-
sign

GNN, Trans-
former

Protein
structure

Protein se-
quence

Backbone structure to se-
quence design conditioned on
sequences.

OmegaFold83

(2022)
Protein
structure
prediction

Transformer Protein se-
quence

Protein
structure

Uses protein language modeling
to replace MSA, less accurate but
faster.

RFDiffusion84

(2023)
Protein de-
sign

Diffusion
model

Protein
structure

Protein
structure

A generative diffusion model
from structure to structure for
protein design.

EvoDiff85

(2023)
Protein de-
sign

Diffusion
model

Protein se-
quence

Protein se-
quence

Controllable sequence-level pro-
tein design diffusion model.
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Chroma86

(2023)
Protein de-
sign

GNN, diffu-
sion

Programmable
protein con-
dition

Protein
sequence,
structure

Achieving programmable gener-
ation with user-specified proper-
ties.

ProtHyena87

(2024)
Protein
language
model

Hyena Protein se-
quence

Protein rep-
resentation

Adopts Hyena operator for effi-
cient scaling.

xTrimoPGLM88

(2024)
18 protein
under-
standing
tasks

Transformer Protein se-
quence

Protein rep-
resentation

NA

ESM389 (2024) Protein
language
model

Transformer Protein
sequence,
structure,
function

Protein
sequence,
structure,
function

NA

Protein Gener-
ator90 (2024)

Protein de-
sign

Transformer,
diffusion

Protein se-
quence

Protein
sequence,
structure

A RoseTTAFold-based sequence
diffusion model that simulta-
neously generates protein se-
quences and structures.

RoseTTAFold
All-Atom91

(2024)

All-atom
structure
prediction

Transformer All-atom se-
quences, lig-
ands, bonds

All-atom
structure

Generalized model for all-atom
prediction including protein,
nucleic acid, and other small
molecules.

AlphaFold392

(2024)
All-atom
structure
prediction

Transformer
& diffusion

All-atom se-
quences, lig-
ands, bonds

All-atom
structure

State-of-the-art all-atom predic-
tion method.

Boltz-193

(2024)
All-atom
structure
prediction

Transformer
& diffusion

All-atom se-
quences, lig-
ands, bonds

All-atom
structure

AlphaFold3-level accuracy, open-
source.

Chai-194 (2024) All-atom
structure
prediction

Transformer
& diffusion

All-atom se-
quences, lig-
ands, bonds

All-atom
structure

Can also predict structures with
sequence only.
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Box 4: Foundation models for drug molecular representation learning.

Work Task Architecture Input Output Note

Wang et al.95

(2021)
Molecular rep-
resentation
learning

GNN Molecule,
chemical
reaction

Molecular
embedding

Integrates chemical reaction con-
straints to enhance molecular
embeddings: forcing the sum of
reactant embeddings equals the
sum of product embeddings.

Su et al.96

(2022)
Graph-text/text-
graph retrieval,
molecule cap-
tioning, property
prediction,
text-based drug
design

Transformer
& GNN

Molecular
graph,
molecular
diagram,
text

Molecular
embedding

NA

MolT597

(2022)
Molecule cap-
tioning &
text-based drug
design

Transformer Molecule or
text

Text or
molecule

NA

Zeng et al.98

(2022)
Property predic-
tion & biomed-
ical relation ex-
traction

Transformer Text,
molecular
structure

Text,
molecule

Integrates molecule and text
through unsupervised meta-
knowledge learning.

MolKD99

(2023)
Property predic-
tion

Transformer Chemical
reaction,
reaction
yield

Molecule
representa-
tion

MolKD distilled knowledge
from a teacher model trained
on reaction data to a student
model. Also, MolKD integrates
reaction yield information
during pre-training to measure
reactant-product transformation
efficiency.

CLAMP 100

(2023)
Property predic-
tion

Transformer Text &
molecule

Text de-
scription

NA

MolFM 101

(2023)
Property predic-
tion

Transformer Molecular
graphs

Molecular
representa-
tion

Two-step pretraining: (1) self-
supervised learning for chemi-
cal structure representation; (2)
multi-task learning for biological
information integration.
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MoleculeSTM 102

(2023)
Drug design,
biological prop-
erty prediction,
instruction
adaptation

GNN
(molecule),
trans-
former
(molecule,
text)

Molecule &
text

Molecule,
text

NA.

InstructMol 103

(2023)
Property predic-
tion

Multimodal
LLM

Molecule &
text

Molecule or
text

NA

BioT5 104

(2023)
Molecule &
protein prop-
erty prediction,
drug-target /
protein-protein
interaction,
molecule caption-
ing, text-based
drug design

Transformer SELFIES,
protein,
text

Text, or
molecule

Uses SELFIES strings for 100%
molecule validity; extracts con-
textual knowledge from unstruc-
tured biological literature.

BioT5+ 105

(2024)
Molecule-to-
text, text-to-
molecule

Transformer Text,
molecule

Text or
molecule

Enhance BioT5 by integrating
text and molecular representa-
tions.

MV-Mol
(multi-view
molecule) 106

(2024)

Molecular rep-
resentation
learning

Multimodal
fusion ar-
chitecture

Molecular
struc-
ture, text,
knowledge
graph

Molecular
embedding

NA

UniMoT
(Unified
Molecule-
Text LLM) 107

(2024)

Molecule-to-
text & text-
to-molecule
generation

Transformer Molecule or
text

Text or
molecule

Uses a Vector Quantization-
driven tokenizer and aQ-Former
to bridge molecule and text
modalities.
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Box 5: Foundation model for pharmaceutical property prediction.

Work Task Architecture Input Output Note

SMILES-
BERT 18 (2019)

Property
prediction

Transformer SMILES
strings

Token-wise
embedding

NA

MolE 108 (2022) Property
prediction

Transformer Molecular
graphs

Molecular
representa-
tion

DeBERTa architecture. two-
step pretraining: self-supervised
learning for chemical structure
representation and multi-task
learning for biological informa-
tion integration.

ChemBERTa-
2 19 (2022)

Property
prediction

Transformer SMILES
strings

Token-wise
embedding

Pretrain on 77M unlabeled
SMILES strings from PubChem,
one of the largest molecular
pretraining datasets to date.

BAITSAO 109

(2024)
Drug
synergy
prediction

Transformer Drug com-
bination,
cell lines

Drug
synergy

NA

ActFound 110

(2024)
Bioactivity
prediction

Transformer Molecular
structure

Molecular
representa-
tion

Trained on 1.6M experimen-
tally measured bioactivities from
35K in ChEMBL, ActFound de-
signs pairwise learning andmeta-
learning to capture relative bioac-
tivity differences between com-
pounds within the same assay,
overcoming cross-assay incom-
patibility.

SMILES-
Mamba 111

(2024)

ADMET
property
prediction

Mamba SMILES
string

Molecular
representa-
tion

NA

ChemFM 112

(2024)
Property
prediction

Transformer Molecular
structure

Molecular
representa-
tions

Up to 3B parameters, pre-trained
on 178M molecules using self-
supervised causal language
modeling to generate generaliz-
able molecular representations.
Supports full-parameter and
parameter-efficient fine-tuning.
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Graph Trans-
former Foun-
dation Model
(GTFM) 113

(2024)

Property
prediction

Graph trans-
former

Molecular
graph

Molecular
representa-
tions

NA
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Box 6: Foundation models for drug repurposing (a.k.a., drug reuse, drug repositioning).

Work Task Architecture Input Output Note

Zhu et al.21

(2020)
Drug Repur-
posing

GNN Drug & dis-
ease

Drug-
disease
association
score

NA

KG-
Predict 114

(2022)

Drug Repur-
posing

GNN Drug & dis-
ease

Drug-
disease
association
score

Combines GCN and InteractE
that processes embeddings using
3D tensor convolution to capture
heterogeneous interactions.

DREAMwalk20

(2023)
Drug Repur-
posing

GNN Drug, gene,
& disease

Drug-
disease
association
score

NA

TxGNN 115

(2024)
Drug Repur-
posing

GNN Diseases,
drugs,
proteins, &
pathways

Drug-
disease
association
score&
explanation

Designs an Explainer module via
multi-hop paths in the knowl-
edge graph for interpretability.

HGTDR 116

(2024)
Drug Repur-
posing

Graph trans-
former

Drug & dis-
ease

Drug-
disease
association
score

NA
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Box 7: Foundation models for clinical trial prediction.

Work Task Architecture Input Output Note

HINT24

(2022)
Clinical trial
outcome pre-
diction

GNN Drug, dis-
ease code,
text

Trial
outcome

NA

inClinico 117

(2023)
Trial out-
come
prediction

Transformer Multiomics
data, trial
design,
drug
properties

Trial
outcome

NA

HINT-UQ 118

(2024)
Trial out-
come
prediction

GNN Drug,
disease
code, trial
protocol
(text)

Trial
outcome

HINT-UQ quantifies uncertainty
for reliable prediction using se-
lective classification.

TrialDura 119

(2024)
Trial du-
ration
prediction

Transformer Disease
names,
drug
molecules,
trial phases,
& eligibility
criteria

Trial dura-
tion

NA

LIFTED 120

(2024)
Trial out-
come
prediction

Sparse
mixture-of-
expert

Drug, dis-
ease, trial
protocol

Trial
outcome

LIFTED uses a sparse Mixture-
of-Experts framework to iden-
tify cross-modal patterns and
provide explanations using a
shared expert model and dy-
namic weighting mechanism.

CTP-LLM 121

(2024)
Trial phase
transition
prediction

GPT Trial design
document

Trial phase
transition

NA

TrialEnroll 122

(2024)
Trial enroll-
ment predic-
tion

Deep cross
network

Eligibility
criteria

Trial enroll-
ment status

NA

ClinicalAgent 123

(2024)
Trial out-
come
prediction

GPT4 Drug, dis-
ease and
text

Trial
outcome

GPT4-based multi-agent system
that integrates LEAST-TO-
MOST and ReAct reasoning.
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Box 8: Foundation models for clinical summarization.

Work Task Architecture Input Output Note

BioBERTSum 124

(2020)
Extractive
summa-
rization

Transformer Clinical
docu-
ment

Summary Pretrained BERT as encoder, fol-
lowed by finetuning.

Sotudeh et
al. 125 (2020)

Abstractive
summa-
rization

LSTM Clinical
docu-
ment

Summary NA

KeBioSum25

(2022)
Clinical
summa-
rization

Transformer Text Summary
and sen-
tence
classifi-
cation
result

NA

Radiology-
LLaMA2 126

(2023)

Clinical
summa-
rization

Transformer Radiology
report

Summary NA

COVIDSum 127 Clinical
summa-
rization

Transformer
& Graph
attention
network

Medical
articles

Summary NA

MRC-Sum 128

(2023)
Clinical
summa-
rization

Transformer Text Summary
and ex-
tracted
informa-
tion

NA
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Box 9: Foundation models for clinical QA.

Work Task Architecture Input Output Note

Yoon et al. 129 Clinical
QA

Transformer Text Extracted
terms and
entities,
classifi-
cation
result

NA

BioMedBERT 130

(2020)
Clinical
QA,
named
entity
recog-
nition
(NER)

Transformer Text & en-
tity pair

QA, NER
result,
relation
extraction
result

NA

Rawat et al. 131

(2020)
Clinical
QA

Transformer Text QA, struc-
tured
semantic
representa-
tion

NA

Chen et al. 132

(2020)
Clinical
QA

Transformer Text QA NA

Yan et al. 133

(2022)
Clinical
QA

Transformer Text &
medical
knowl-
edge
base

Intent-
slot-value
triplets,
action-slot-
value pairs,
QA

NA

DAPO 134 Clinical
QA

Transformer Text Prediction
scores,
ranked
responses

DAPO considers dialogue-
specific features such as
coherence, specificity, and
informativeness.

ClinicalGPT 135 Clinical
QA

GPT Text Medical
diagnoses,
treatment
recommen-
dations,
summary

NA
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Deid-GPT 136

(2023)
Clinical
QA

GPT Text De-
Identified
medical
text

The model replaces identifiable
data following HIPAA guidelines.

ChiMed-
GPT 137 (2023)

Information
extraction,
QA, di-
alogue
genera-
tion

GPT Text Text Specifically for Chinese
medicine.

Med-PaLM26 Clinical
QA

Transformer Text, im-
age

text, image multimodal biomedical AI
model that can answer complex
questions, generate reports, and
classify images, developed by
Google.

Med-PaLM 227 Clinical
QA

Transformer Text QA and
adversarial
evaluation
result

The first model to pass the US
Medical Licensing Examination.

Pmc-
LLaMA 138

Clinical
QA

Transformer Text QA, sum-
mary,
relation
extraction,
classifi-
cation
result, and
diagnosis

NA

Me-LLaMA 139 Clinical
QA

Transformer Text QA, sum-
mary,
classifi-
cation
result

NA

MedAgents 140

(2023)
Clinical
QA

Transformer Image &
text

QA LLM agent, training-free, access-
ing external knowledge.

41



Box 10: Foundation models for patient representation.

Work Task Architecture Input Output Note

BEHRT28

(2020)
EHR
concept &
visit repre-
sentation

Transformer EHR Clinical pre-
diction and
patient rep-
resentation

NA

CEHR-
BERT 141

(2021)

EHR
concept &
visit repre-
sentation

Transformer EHR EHR repre-
sentation

Uses artificial time tokens
and Fourier transform-based
time2vec encoding to represent
seasonal or age-related patterns.

Hi-BEHRT 142 EHR
concept &
visit repre-
sentation

Transformer EHR EHR repre-
sentation

Hierarchical BERT: the local fea-
ture extractor captures short-
term dependencies using sliding
window segmentation; the global
feature aggregator learns long-
term dependencies over EHR his-
tories.

ExBEHRT 143

(2023)
EHR
concept &
visit repre-
sentation

Transformer EHR Clinical
prediction,
patient rep-
resentation
and patient
cluster

NA

M-BEHRT 144

(2024)
EHR
concept &
visit repre-
sentation

Transformer EHR Breast
cancer
prognosis
prediction
and patient
representa-
tions

NA

GT-BEHRT 145

(2024)
EHR
concept &
visit repre-
sentation

Graph trans-
former

EHR Patient
represen-
tation and
clinical risk
prediction

NA
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Claimsformer 146

(2024)
EHR
concept &
visit repre-
sentation

Transformer EHR Chronic
condition
prediction
and patient
representa-
tions

NA

HEART 147

(2024)
EHR
concept &
visit repre-
sentation

transformer EHR Clinical risk
prediction
and patient
representa-
tion

Applies type-specific transforma-
tions to medical entities to learn
relationship-specific attention bi-
ases to prioritize clinically rele-
vant interactions.

HERBERT 148

(2024)
Risk strat-
ification
in chronic
kidney
disease

Transformer EHR Disease risk
stratifica-
tion and
patient rep-
resentation

NA

EHRMamba 149

(2024)
EHR
concept &
visit repre-
sentation

Mamba EHR EHR fore-
casting,
clinical risk
prediction,
patient rep-
resentation

EHRMamba uses state-space
models instead of transformers
for linear-time sequence mod-
elling. EHRMamba can process
sequences up to 3x longer.

TAME 150 (2021) Patient
Represen-
tation

EHR EHR Patient rep-
resentation,
patient sub-
typing and
clinical risk
prediction

NA

RAPT 151 (2021) Patient
Represen-
tation

Transformer EHR Clinical pre-
diction and
clinical de-
cision sup-
port

NA

Claim-PT 152

(2022)
Patient
represen-
tation

GPT EHR NA
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Guo et al. 153

(2023)
Patient
Represen-
tation

Transformer
& GRU

EHR Clinical risk
prediction
and patient
representa-
tion

NA

Foresight 154

(2024)
Patient
Represen-
tation

GPT EHR Biomedical
events
forecast,
risk stratifi-
cation and
virtual trial
result

NA

CEHR-GAN-
BERT 155 (2022)

Predictive
phenotyp-
ing

Transformer
& GAN

EHR Patient
represen-
tation and
predicted
clinical
outcomes

The generator mimics BERT-
derived EHR representations;
the discriminator distinguishes
the generated one from the real
one.

Hur et al. 156

(2022)
Predictive
phenotyp-
ing

Transformer EHR Patient
represen-
tation and
predicted
clinical
outcomes

NA

PSN 157 (2022) Patient
Subpheno-
typing and
Similarity
Measure-
ment

Transformer
& CNN &
LSTM

EHR Patient sim-
ilarity score
and disease
risk

PUses similarity network fusion
to integrate structured EHR data
with unstructured clinical narra-
tives.

DAPSNet 158

(2023)
Patient
Subpheno-
typing and
Similarity
Measure-
ment

Transformer EHR Drug
recommen-
dation

NA
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ExBEHRT 143

(2023)
Patient
Subpheno-
typing and
Similarity
Measure-
ment

Transformer EHR Patient
group, risk
score and
mortal-
ity risk
prediction

NA

TransTEE29

(2022)
Casual In-
ference

Transformer EHR Estimated
treatment
effects

NA

Cure 159 (2022) Casual In-
ference

Transformer Patient data Estimated
treatment
effects

Encodes structured obser-
vational patient data and
incorporates covariate type and
time into patient embeddings
from unlabeled large-scale
datasets.

Mascio et al. 160

(2020)
Clinical In-
formatics
Classifica-
tion

Bi-LSTM
or RNN or
CNN

EHR EHR repre-
sentation

A comprehensive analysis of
various word representation
methods (e.g., Bag-of-Words,
Word2Vec, GLoVe, FastText,
BERT, BioBERT) and NN
models.

Gao et al. 161

(2021)
Clinical
single-
label and
multi-
label
document
classifica-
tion

Transformer Clinical
document

document
category

NA

DDS-BERT 162

(2021)
diagnosis
prediction

Transformer EHR Diagnosis A BERT-based diagnosis predic-
tion framework using EHR data
from 592K patient visits. The
model leverages textual clinical
notes and age information, incor-
porating a novel input represen-
tation built from four special em-
beddings and an optimized clas-
sification layer.
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Box 11: Foundation models for pathology.

Work Task Architecture Input Output Note

MI-Zero 163

(2023)
Pathology Image &

text
Cancer
subtyping
and region-
of-interest
identi-
fication
results

NA

PLIP33 (2023) Pathology Transformer Image &
text

Feature rep-
resentation,
classifi-
cation
result

NA

CITE 164(2023) Pathology Transformer Image &
text

Feature rep-
resentation,
classifi-
cation
result

NA

Virchow 165(2023) Pathology Transformer Image Cancer
detection
result

NA

UNI 166(2023) Pathology Transformer Image Segmentation
mask,
Cancer
detection,
grading,
and sub-
typing
results

NA

PathChat 167(2023)Pathology Transformer Image &
text

Prediction
results,
report, QA

NA

CHIEF 168(2024) Pathology Transformer Image &
text

Detection,
classifica-
tion, and
prediction
result

NA
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RudolfV32

(2024)
Pathology Transformer Image &

text
Feature rep-
resentation,
cell segmen-
tation mask,
biomarker
scoring,
and rare
disease case
retrieval
result

NA

PANTHER 169(2024)Pathology Transformer Image Feature
representa-
tion, cancer
subtyping,
survival
outcome
prediction

PANTHER reduces pathology
whole-slide image patches into
a compact set of morphological
prototypes for efficient slide rep-
resentation.

Jaume et
al. 170(2024)

Pathology Transformer Image &
text

Feature rep-
resentation,
molecular
subtyping,
prognostic
prediction
result

NA

XLIP 171 (2024) Pathology Transformer Image &
text

XLIP’s Attention-Masked Im-
age Modelling module masks
image features that are highly
responsive to textual features.
The Entity-Driven Masked Lan-
guage Modelling module en-
hances medical-specific features.

Prov-
GigaPath 172

(2024)

Pathology Transformer Image Feature
embedding,
cancer
subtyping,
pathomics
classifica-
tion

Prov-GigaPath uses a DINOv2 as
a tile encoder to extract local fea-
ture and a LongNet to process
tens of thousands of image tiles
per slide for ultra-large-context
modeling.
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MUSK 173

(2025)
Pathology Transformer Image &

clinical
report

Feature
represen-
tation, QA,
molecular
biomarker
prediction,
cancer pre-
diction, im-
munother-
apy re-
sponse
prediction

NA
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Box 12: Foundation models for radiology.

Work Task Architecture Input Output Note

CheXzero 174

(2022)
Radiology Transformer Image &

text
classification
result and
auxiliary
prediction
result

NA

RadFM 175

(2023)
Radiology Transformer Image &

text
Feature rep-
resentation,
classifica-
tion re-
sult,report,
QA

NA

MedBLIP 176

(2024)
Radiology Transformer Image &

text
Feature rep-
resentation,
classifica-
tion result,
QA

MedBLIP uses a MedQFormer
module to bridge the gap be-
tween 3D medical images to the
pre-trained model.

BioVil-T 177

(2023)
Radiology Transformer Image &

text
Feature rep-
resentation,
classifica-
tion result,
temporal
sentence
similarity

NA

PTUnifier 178

(2023)
Radiology Transformer Image &

text
Feature rep-
resentation,
classifica-
tion result,
summa-
rization,
question
answer

NA
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KoBO 179 (2023) Radiology Transformer
& CNN &
GNN

Image &
text

Feature rep-
resentation,
classifi-
cation
result, seg-
mentation
mask, and
semantic
analysis.

The KoBo framework integrates
clinical knowledge to improve
semantic consistency and in-
troduces an unbiased, open-
set knowledge representation to
handle noisy samples.

ELIXR 180

(2023)
Radiology

MaCO 181

(2024)
Radiology Transformer Image &

text
Classification,
segmen-
tation,
detection
results

Maco incorporates a correlation
weighting mechanism to refine
the alignment between masked
X-ray image patches and their as-
sociated reports.

Clinical-
BERT 182

Radiology Transformer
& CNN

Image &
text

Report Clinical-BERT employs Masked
Medical Subject Headings
(MeSH) Modeling where MeSH
is a semantic component in
radiograph reports, and Image-
MeSH Matching to align visual
features with MeSH terms using
a two-level sparse attention
mechanism.

SAMed 183

(2023)
Radiology Transformer Image

&text
Segmentation
mask

SAMed utilizes a low-rank adap-
tation strategy, updating the
SAM image encoder, prompt en-
coder, and mask decoder using
labelled medical datasets.

Xraygpt 184 Radiology Transformer Image &
text

Report and
question an-
swer

NA

Chatcad 185

(2023)
Radiology Transform Image &

text
Report and
advice

NA

3D-CT-GPT 186

(2024)
Radiology Transformer Image &

text
Report NA
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ZePT 187 (2024) Radiology Transformer Image &
text

Segmentation
mask and
anomaly
map

ZePT uses a two-stage training
approach: first, learning funda-
mental queries for organ seg-
mentation via object-aware fea-
ture grouping to capture organ-
level features, and second, refin-
ing advanced queries with auto-
generated visual prompts for de-
tecting unseen tumours.

miniGPT-
Med 188

Radiology Transformer Image &
text

Report,
bounding
box and QA

NA

MAIRA-2 189

(2024)
Radiology Transformer Image &

text
Grounded
and non-
grounded
report

NA

BrainSegFounder 190

(2024)
Radiology Transformer

& U-Net
Image Segmentation

mask
NA

ChEX 191 Radiology Transformer Image &
text

Bounding
box &
description

Chest X-Ray Explainer (ChEX)
integrates textual prompts and
bounding boxes to allow the in-
terpretation of specific anatomi-
cal regions and pathologies.
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Box 13: Foundation models for retinal image.

Work Task Architecture Input Output Note

RETFound36

(2023)
Retinal Im-
ages

Transformer
& CNN

Image &
text

Feature pre-
sentation,
symptom
classifi-
cation
result.

NA

DeepDR Plus37 Retinal Im-
ages

CNN Image &
metadata

Progression
and risk
score

DeepDR Plus is designed to pre-
dict the time to diabetic retinopa-
thy progression over five years
using only fundus images.

KeepFIT 192

(2024)
Retinal Im-
ages

Transformer
& CNN

Image &
text

Feature pre-
sentation,
symptom
classifica-
tion result,
and image
captioning

The model integrates Fundus
Image-Text expertise through im-
age similarity-guided text revi-
sion and a mixed training strat-
egy.

RetiZero 193

(2024)
Retinal Im-
ages

Transformer
& MAE

Image &
text

Feature pre-
sentation,
symptom
classifica-
tion result,
Image
Retrivel

NA

RET-CLIP 194

(2024)
Retinal Im-
ages

Transformer Image &
text

Feature pre-
sentation,
symptom
classifi-
cation
results.

RET-CLIP uses a tripartite opti-
mization strategy that considers
both eyes, and patient-level data,
aligning with real-world clinical
scenarios.

FLAIR 195 (2025) Retinal Im-
ages

Transformer
& CNN

Image Symptom
classifi-
cation
result

NA
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Box 14: Foundation models for multimodal medical imaging.

Work Task Architecture Input Output Note

BiomedGPT 196 Multi-
modality

Transformer Image &
text

Feature rep-
resentation
& QA

NA

BiomedCLIP34 Multi-
modality

Transformer Image &
text

Feature rep-
resentation
& QA

NA

Med-
Flamingo 197

Multi-
modality

Transformer Image &
text

Report &
QA

NA

MedSAM 198 Multi-
modality

Transformer Image Segmentation
mask

NA

SAM-
Med2D 199

Multi-
modality

Transformer Image Segmentation
mask

SAM-Med2D incorporates more
diverse prompts: bounding
boxes, points, and masks.

LVM-Med200 Multi-
modality

Transformer
& GNN

Image Feature rep-
resentation,
segmenta-
tion mask,
detection
and clas-
sification
results

In LVM-Med, two sets of fea-
ture embeddings are produced
using transformers to construct
a graph neural network each rep-
resenting nodes and edges with
second-order graph matching al-
gorithm.

AutoSAM201 Segmentation Transformer Image Segmentation
mask

NA

Med-SA202 Segmentation Transformer Image Med-SA employs space-depth
transpose to extend SAM’s 2D ca-
pabilities to 3D medical images
and a Hyper-Prompting Adapter
for prompt-conditioned adapta-
tion.
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Llava-med203 Multi-
modality

Transformer Image &
text

Report &
QA

LLaVA-Med first aligns with
biomedical vocabulary using
figure-caption pairs, then
learns conversational semantics
through instruction-following
data, mimicking a layper-
son’s gradual acquisition of
biomedical knowledge.

Visual Med-
Alpaca204

Multi-
modality

Transformer Image &
text

Classification
result & QA

NA

RELU205 Multi-
modality

Transformer Image &
text

The RULE framework includes
a calibrated retrieval strategy to
optimize factual risk and a fine-
tuned preference dataset to im-
prove retrieval-augmented gen-
eration.

MA-SAM 194 Multi-
modality

Transformer Image Segmentation
mask

MA-SAM adapts SAM’s 2D back-
bone to handle volumetric and
temporal information. It also in-
tegrates 3D adapters to extract
3D features while preserving pre-
trained 2D weights through effi-
cient fine-tuning.

UniMed-
CLIP35

Multi-
modality

Transformer Image &
text

Feature rep-
resentation,
classifi-
cation
result

NA

HuatuoGPT-
Vision206

Multi-
modality

Transformer Image &
text

Feature rep-
resentation,
QA

NA

RadEdit207 Multi-
modality

Diffusion Image &
text

Synthetic
datasets

RadEdit uses generative image
editing to simulate dataset shifts
and diagnose failure modes of
biomedical vision models. The
model usesmultiple imagemasks
to constrain edits and ensure con-
sistency.
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BiomedParse208

(2024)
Multi-
modality

Transformer Image &
text & se-
mantic la-
bel

Segmentation
mask, ob-
ject recog-
nition and
clinical
detection
result

NA
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Box 15: Foundation models for public health surveillance through multimodal and heterogeneous data.

Work Task Architecture Input Output Note

Luo et al.209

(2021)
Virus spread-
ing informa-
tion

Transformer Clinical
notes & So-
cial media
posts

Symptoms NA

COVID-19
Surveiller210

(2022)

Virus spread-
ing informa-
tion

Transformer
& GNN

Social
media posts

COVID-
19 event
prediction

NA

PsychBERT46

(2021)
Mental Health
Surveillance

Transformer Social
media posts

Mental
condition
detection

NA

PHS-BERT211

(2022)
Mental Health
Surveillance

Transformer Social
media posts

Mental
condition
detection

NA

Saha et al.212

(2022)
Mental Health
Surveillance

Auto-
Regressive
Integrated
Moving
Average
Model

Social
media posts

Mental
condition
detection

NA

MentaLLaMA213

(2024)
Mental Health
Surveillance

Transformer Social
media posts

Mental
condition
detection

NA

Deka et al.214

(2022)
Misinformation
detection

Transformer Medical ar-
ticles

Classification
result

NA

Vec4Cred215

(2023)
Misinformation
detection

CNN &
LSTM &
Attention

Web textu-
ral content

Classification
result

NA

Upadhyay et
al.216 (2023)

Misinformation
detection

CNN &
LSTM &
Attention

Web textu-
ral content

Classification
result

NA
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