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Abstract— Evaluations in the real world are time-consuming,
and the relatively small number of experiments that can
realistically be run may not explain the performance on the
combinatorially large space of instructions that language can
specify in complex scenes. In this work, we provide the first
real-world evaluation of the Vision-and-Language Navigation
in Continuous Environments (VLN-CE) task, a benchmark for
evaluating language-guided navigation in simulation. To address
the challenges of real-world evaluation in VLN-CE, we propose
key desiderata for efficiently evaluating the linguistic and visual
components of end-to-end robot policies. We introduce a con-
trast set-based evaluation based on our proposed criteria that
strategically modify test instructions and scenes to efficiently
gain component-level insights about a language-guided policy.
We hope to spark discussion with the community on efficient
evaluation of language-guided policies to bring these robots
closer to real-world deployment.

I. INTRODUCTION

To seamlessly integrate robots human environments, they
must demonstrate the ability to understand and execute natu-
ral language instructions. Language can be used for providing
guidance on tasks like high-level task planning, manipula-
tion, and navigation. However, benchmarks for language-
guided robotics are almost exclusively in simulation, such as
VLMBench [1], ALFRED [2], and CALVIN [3]. Vision-and-
Language Navigation (VLN) is a popular task for language-
guided navigation, where an embodied agent receives a
description on how to navigate to a goal location. Bringing
these methods to the real world is difficult as real-world data
collection is expensive and past work has found sim2real
for VLN to be difficult [4]. Then evaluating these physical
robot policies is time-consuming, especially as one needs to
evaluate various policies. In this work, we propose desiderata
to evaluate the language and visual components of language-
guided robot policies efficiently, and we design a contrast
set-based evaluation method to probe these components of
VLN policies in the real world.

To evaluate a manipulation task, an experimenter has
to simply move small tabletop items to modify a scene;
however, navigation tasks are harder to evaluate as the
environment is often difficult to change. Changing the en-
vironment in navigational settings often means moving fur-
niture or adding new large objects, which is labor-intensive.
Additionally, when language is involved, these objects must
also be semantically-relevant. As a consequence, it is harder
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Fig. 1: Much work on Vision-and-Language Navigation
(VLN) is conducted exclusively on simulation as there is
a large amount of data to experiment on and it takes very
little time to run evaluation. However, evaluating language-
guided policies such as VLN in the real world is difficult as
it is time-consuming while using less diverse scenes. In this
work, we consider how to efficiently evaluate VLN policies
on a physical robot.

to probe the capabilities of a language-guided navigation
policy at scale.

We characterize three important components to consider
when evaluating VLN policies: language, scene, and actions.
Language serves as the source of task specification in the
form of step-by-step instructions. Language must then be
grounded through vision to understand object references and
actions about how an agent should move. Subsequently,
these instructions guide actions to be carried out within the
environment, whether it is within a simulated environment
with artificial actuator noise or on a physical robot.

We take inspiration from contrast sets [5] and propose to
strategically perturb the language and scene components to
understand the behavior of a VLN policy. For example, one
can add new objects to a scene or present different instances
of known objects. These scene-level perturbations probe a
model’s ability to generalize to different scenes. Similarly,
these scene-level perturbations, or similar language-level
perturbations, can effect the correct sequence of actions
needed to succeed. These ablations are particularly impor-
tant for language-guided tasks as performance hinges on a
combination of the task specification and the environment.



The embodied AI community has introduced many simu-
lated environments such as AI2-THOR [6], [7] and Habitat
[8]. After training a policy on a task in these simulators, the
policy is typically evaluated by comparing performance to
a large number of predefined or collected testing examples
within simulation. Since these simulations are often insuf-
ficient for understanding a policy’s real-world performance
[4], [7], it becomes evident that there is a need for a
straightforward evaluation framework to assess language-
guided robot policies in the physical world.

Therefore, a crucial objective in the field of VLN research
is to understand the performance of an agent’s linguistic
and visual capabilities in the real world. In this work, we
propose desiderata for VLN on physical robots that push
toward targeted evaluation of real-world VLN policies. We
explore the use of contrast sets as a first step in this direction
of developing efficient protocols under these criteria. These
criteria are intended to guide efforts toward the realization of
practical language-guided robots suitable for the real world,
and we are excited to further discuss methods for efficient
evaluation with the community.

In particular, our contributions are:
• We showcase the first real-world sim2real transfer of

VLN-CE on a physical robot, for which we provide
additional ablations to provide insights on this task

• We propose several key desiderata for VLN evaluation
methods that encourage targeted evaluation of the lin-
guistic and visual capabilities of physical ground robots
without the need for dramatic physical costs required to
make simulations-sized test sets

• We showcase an evaluation method based on contrast
sets that allow us to gain a component-level under-
standing of the overall performance of a language-
conditioned robot policy

II. RELATED WORK

We discuss methods and evaluations used for language-
guided robot manipulation and navigation.

Language-Conditioned Robot Learning. Several works
have focused on instructing robots with natural language,
mostly focusing on navigation or manipulation. Some works
deconstruct instructions by separating task planning and
action generation [9]–[11], while others have unified, end-
to-end architectures [12], [13]. Within language-guided ma-
nipulation, language is used to define the objects to be
manipulated, specifying the desired end state or providing
instructions on how to interact with specific objects. There-
fore, probing the capabilities of these manipulation policies
is relatively easy, as instructions can be easily changed. For
example, changing the task instruction from “pick up the
coke can” to “grasp the coffee mug” is simple. New objects
are small and light, and the environment can be quickly reset.

Language-guided navigation, on the other hand, presents
distinct challenges when evaluating these models’ capa-
bilities. Vision-and-language navigation focuses on using
fine-grained instructions to control a navigation agent from
visual observations [14]. Some work adds the ability for

navigation agents to manipulate objects, further increasing
complexity [2], [15]. SayCan [11] takes a modular approach
and separates language understanding from taking actions
to execute household tasks in the real world. Methods that
are modular can often evaluate each component separately,
such as a language model’s output generation in SayCan.
However, for end-to-end policies, it is expensive to evaluate
a robot hundreds of times and understand which component
contributes to performance improvement or degradation.

It is evident in these examples that simulated benchmarks
are popular for training and evaluating robot policies as it
is easy to scale. However, there is a need for well-defined
probing criteria to effectively understand the capabilities of
end-to-end language-guided navigation policies.

Vision-and-Language Navigation. Vision-and-Language
Navigation (VLN) [14], [16] is a task for language-guided
navigation, where an agent receives instructions on how to
reach a goal location. There are multiple variations of the
VLN task based on different task objectives. In this work,
we focus on fine-grained navigation, where an agent is given
step-by-step descriptions of its route. The Room-to-Room
(R2R) dataset [16] contains these instructions in the Matter-
port3D simulator, where an agent must traverse the edges
of a navigation graph. The RxR dataset [17] builds a larger
dataset with English, Hindi, and Telegu instructions. Since
these datasets use navigation graphs, it is not well-designed
for physical robots. VLN-CE [18] converts trajectories in
R2R and RxR on the navigation graph into a continuous
environment in Habitat [8] that is more suitable for robots.
In this work, we pretrain our policy on the RxR VLN-CE
task and then finetune the policy on a robot.

Sim2Real Evaluation. Sim2real transfer strategies en-
compass various approaches, often employing domain ran-
domization [19] or using generative adversarial networks
to shift the target domain observation closer to the source
domain [20]. However, this work’s focus is not on the actual
sim2real transfer process. Instead, our aim is to evaluate
policies more effectively in the real world.

Simulated environments for understanding sim2real trans-
fer, such as RoboTHOR [7], CODA [4], [21], and oth-
ers [22], often recreate physical counterparts to run con-
trolled experiments. These works generally show ineffective
direct sim2real performance unless domain randomization
or real-world finetuning strategies are used. While these
environments are effective in evaluating task performance
in simulation, there are no guarantees about real-world
performance. VLN-CE poses unique challenges, including
language grounding, compositionality of instructions, and
diverse scenes. We find that a policy trained only on
simulation does not perform well, and finetuning on real-
world demonstrations improves performance. However, to
know how well a policy performs in the real world and
which components contribute to that performance requires
a large number of evaluations which is expensive. In this
work, we discuss strategies to evaluate these components by
strategically perturbing these components.
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Fig. 2: To ensure we have a good policy in the real world, we first pretrain a Cross-Modal Attention (CMA) policy [18] in
simulation on the VLN-CE tas. Then we use 50 collected real-world demonstrations to finetune our policy using behavior
cloning. We then consider how to efficiently evaluate our policy based on three desiderata.

III. DESIDERATA FOR REAL-ROBOT VLN-CE
EVALUATION

Recent work has focused on scaling training data for VLN
policies [23], [24]; however, as the capabilities of these
agents increase, the research community needs to develop
criteria to probe what these methods learn. Unlike single-
task or multi-task robot policies, language-guided policies
can combinatorially scale in the number of instructions they
can be given, so these policies are typically evaluated in
simulation given thousands of language instructions. When
brought to the physical world, several works have evaluated
image-based navigation policies in Airbnbs or rented homes
[22], [25]. The outcomes of these evaluations are often then
aggregated, providing a measure of a policy’s performance.
For example, the RxR-Habitat Challenge test set of the RxR
VLN-CE task has 17 unique houses with a total of 11k
instructions, 1.3k of which are in English. Assuming we
have access to many houses and conservatively estimate that
a single trial takes an experimenter 5 minutes to set up and
run, executing the 1.3k English instructions from the test
set would take around 108 hours. This paradigm is clearly
not scalable in the real world, as even a subset of this test
set would require dozens of hours to evaluate just a single
model. Therefore, the most fundamental desiderata for an
evaluation framework for VLN-CE on physical robots is that
it must be easy to run. Thus, we must carefully consider our
expectations and capabilities for these robots as we develop
other guidelines.

A VLN task consists of three components: language
instructions, the scene, and the actions executed by the robot.
Any VLN-CE method that is trained in a simulated environ-
ment should be able to transfer some key abilities into the
physical world. Specifically, a language-guided policy should
handle changes in the visual scene while still demonstrat-
ing proficiency in handling complex, long-horizon language

instructions. Thus, we can define two more desiderata for
an efficient evaluation framework: the framework should
be capable of measuring a policy’s robustness to visual
perturbations and it should also measure a policy’s robustness
to compositional language instructions.

A. Desiderata for Evaluation

Easy to Run. Given that VLN evaluations must be
conducted in the physical world, evaluation should prioritize
targeted easy deployment. Rather than gathering a random
set of instructions to evaluate a language-guided policy and
computing aggregate metrics, evaluation methods should
efficiently assess a policy’s capabilities.

Robust within the scene. VLN agents in the physical
world should be adaptable to new scenes. Visual scenes can
vary drastically between houses, with objects in unexpected
locations or lighting fluctuations causing objects to appear
differently. An effective evaluation method should measure
this robustness in the face of such visual differences. This
entails assessing the model’s capability to navigate and make
decisions in real-world scenarios that may deviate from its
training environment.

Robust in language. Language understanding in VLN-
CE extends beyond simpler single-step instructions. Models
should demonstrate robustness in handling complex, multi-
step language compositions that involve sequential reasoning.
An evaluation method should encompass these language
compositions, measuring the model’s ability to comprehend
and execute instructions of varying lengths and levels of
complexity.

To design an evaluation method around our proposed
desiderata, we propose selectively perturbing various axes
that can tell us more about the component-level capabilities
of our agent. We can measure the differences between these
perturbations to gain insights about the performance of
each of these axes. In particular, we propose investigating



∆L ∆V ∆T Language Instruction (L) and Scene (S)

Original Instruction
L: “You are currently facing a couch. Turn left and you will see a bed.

Go to the bed and then stop when you reach it.”
S: Seen environment

X
L: (Rephrase) “You find yourself in front of a couch. Rotate left, and there’s a bed.

Head to the bed and come to a stop upon reaching it.”
S: Same as Original Instruction

X X
L: “You are currently facing a couch. Turn left and you will see a nightstand.

Go to the nightstand and then stop when you reach it.”
S: Same as Original Instruction

X
L: Same as Original Instruction
S: Change the color of the bed

X X
L: Same as Original Instruction
S: Move the bed much further away

TABLE I: Given an original instruction, we propose four different perturbation strategies on the language instruction (∆L),
the visual scene (∆V ), and the expected trajectory (∆T ): language changes, trajectory same; language changes, trajectory
changes; vision changes, trajectory same; and vision changes, trajectory changes.

three axes: language, vision, and trajectories. We use four
experiments: two each for probing the robustness in language
and the robustness within the environment.

IV. VLN-CE EVALUATION ON A PHYSICAL ROBOT

In this work, we use a Locobot [26] robot platform to
run VLN-CE in the real world. We pretrain a policy for this
robot on the VLN-CE task in the Habitat simulator using
the RxR training set. To facilitate evaluation, we designed
a physical VLN-CE test environment. This environment is
populated with furniture similar to those found in simulation
to resemble a studio apartment.

A. Robot Platform

We use a low-cost Locobot robot with an iRobot Create 3
base [27]. The Locobot uses an Intel Realsense D435 camera
for RGB and depth images. In addition, the Create 3 base
has a bump sensor that reverses backward if the sensor is
triggered after a collision. All compute is done onboard on an
Intel NUC. Similar to the simulator, the action space for the
robot is constrained to forward, left 30 degrees, and right 30
degrees actions. While the simulator has no drift when taking
actions, the physical robot has noisy actions and does not
have perfect odometry information. We expect that finetuning
in the real world accounts for this drift.

B. Simulator Training

We train our policies in the Habitat simulator using
imitation learning. We use the Cross-Modal Attention (CMA)
model from VLN-CE [18]. We train the policy for 10 epochs
on the RxR dataset using teacher forcing. Unlike other work
using the VLN-CE simulator which uses panoramic inputs,
we do not use a panoramic camera. On standard robot
platforms, the use of a panoramic input would require a robot
to spin in place to build a 3D observation at every move,
which contradicts our easy-to-run criteria as it is unrealistic
and inconvenient for real-world evaluation. Additionally, we
train in the VLN-CE simulator with a height that is shorter
than the original CMA agent in VLN-CE to match the height
of the LoCoBot. The pretrained policy achieves a success rate
of 15.2% and an SPL of 0.15 on the validation unseen set.

C. Real-World Room Design

For the evaluation of our VLN-CE agent, we constructed
an artificial room. The 100-square-foot room is built to
resemble a simple studio apartment. Unlike past work that
requires renting large spaces [22], [25], which does not lead
to easy-to-run evaluations, we intentionally designed our
space to be cost-effective. Overall, the cost was approxi-
mately $500 and can be easily iterated on. We construct
the walls using wheeled, standing curtains so that the depth
sensor can detect the makeshift walls. This choice also lets us
construct multiple rooms within the space and easily change
the floorplan. We populate the studio apartment with a bed,
couch, bookshelf, nightstands, and plants.

We do note that our room design is still artificial and lacks
clutter and thus lacks visual diversity. However, we are trying
to evaluate the robustness of our policies to various kinds
of visual and linguistic shifts with our real-world finetuned
policy, so we believe that this setup is sufficient for the
purposes of this work.

D. Navigation Instructions

Each step-by-step instruction can be decomposed into a
series of subgoals that correspond to a single object an agent
has to reason over. We consider each subgoal as a “step,” and
an instruction with n-subgoals is an n-step instruction. For
instance, a 1-step instruction would involve reasoning over
a singular object, as exemplified by an instruction like “go
walk towards the bed to your left and stop in front of it”.
A 2-step instruction, such as “drive towards the bed, and
towards the right you will see a nightstand. stop in front of
it,” introduces the challenge of navigating and reasoning over
two objects.

To finetune our policy in the real world, we construct
a real-world training dataset. The training instructions are
based on our physical training setup. We created 25 in-
structions: 17 1-step instructions, 6 2-step instructions, and
2 3-step instructions. Each instruction has a predefined
starting position, orientation, and goal destination for the
robot. The navigation instructions were similar to those in
simulation training, with common words and phrases like
“go,” “towards,” “move,” “turn,” “forward,” “stop,” “to your



right,” and “to your left,” and the names of the objects. We
collected two demonstrations per instruction for a total of
50 episodes, each consisting of sequential RGB, Depth, and
action data.

E. Real-World Finetuning

Using this real-world training dataset, we use behavior
cloning to finetune a policy originally trained in simulation.
The contribution of this work is to explore our evaluation
framework, so we use finetuning as a simple method to take
our policy from simulation to reality. This choice of using a
finetuned policy allows us to focus on the evaluation frame-
work rather than explore sim2real strategies such as domain
randomization. We also avoid issues with visual distribution
shift but may have issues with transferring key capabilities
from simulation, which our evaluation framework will allow
us to investigate. We hope that our framework can inspire
more work on physical robots for VLN-CE.

V. CONTRAST SET EVALUATION

Given our three desiderata, we want our evaluation to
be easy to run, robust with the environment, and robust in
language. In line with recent work in contrast sets [5], we
propose to perturb different axes with respect to a set of
original instructions so that we can efficiently gain insights
on the component-level performance of our policies.

In NLP, contrast sets are perturbed variants of the test
set that help characterize the decision boundary of a clas-
sification model. A contrast set is a collection of perturbed
instances that are tightly clustered in input space around a
single test instance. Evaluating on a contrast set allows one
to measure how similar a model’s decision boundary is to
the correct decision boundary in the neighborhood of the
contrast set. In NLP datasets, contrast sets for language are
constructed by perturbing the input or output such that the
meaning/label of a test instance is inverted. For image-based
perturbation strategies, the NVLR2 [28] contrast set perturbs
an image by finding a new image that makes one minimal
change in some concrete aspect. In this work, we design
similar perturbation strategies in the language, image, and
expected trajectory axes.

We propose four contrast set-based experiments to get us
a better understanding of our robot’s policy, with examples
depicted in Table I. Given a specific instruction and environ-
ment, we investigate robustness within the environment in
two ways: 1) perturb the environment such that the expected
trajectory is the same and 2) perturb the environment such
that the expected trajectory is different. In the first case, we
simply add objects that change what the agent sees, such
as changing bedsheets or adding new distractor objects to
the scene. This contrast set probes the visual robustness of a
model directly. In the second case, we move furniture around
the room so that they are located in different places such
that the expected trajectory is different while the language
instruction remains the same. This involves moving objects
further or closer to the robot in the start scene at varying
degrees so the robot has to take a different path. This contrast

∆L ∆V ∆T Success
Rate

Percent
Completion

Percent Completion
Difference

Original Instruction 30 50.0 -
X 10 38.3 −11.7
X X 30 55.0 + 5.0

X 0 28.3 −21.7
X X 40 65.0 +15.0

TABLE II: Evaluation of contrast sets on success rate,
percent completion, and the difference between contrast
set against the original instruction. We find performance
degradation for language changes, trajectory same and vision
changes, trajectory same suggesting weaknesses in language
and vision robustness.

set probes the model’s ability to move around and find
objects that may be in more difficult locations.

Similarly, to investigate robustness in language, we use
two more experiments: 1) we perturb the language instruction
such that the expected trajectory is the same and 2) perturb
language instruction such that the expected trajectory is
different. In the first case, the instruction is simply reworded.
This contrast set tests a policy’s ability to handle textual
variations. In the second case, the instruction is changed
to refer to different objects in the same room such that
the expected trajectory is different. This contrast set tests
a policy’s ability to generalize to other objects.

We define a set of five original instructions given a
fixed scene that are perturbed according to each of the
experiments. We evaluated each instruction two times for
a total of 10 trials per experiment.

To evaluate any given policy, we need a metric to deter-
mine performance. Since every task has 1, 2, or 3 subgoals,
using an overall success rate is likely too coarse of a measure.
We choose to focus on percent subgoal completion based
on the n-step instructions. We also investigate the Percent
Completion Difference between the original instructions and
scene versus the perturbed contrast sets. This is simply
the difference between the average Percent Completion of
perturbed instances minus the original experiments.

VI. RESULTS

Given our contrast set evaluation, we investigate what
insights we are able to learn about our VLN-CE policy.
Additionally, we provide ablations on our real-world policy.

A. Contrast Set Evaluation

How well does our model perform? Table II illustrates
our policy’s performance on the physical robot. We denote
∆L, ∆V , ∆T to represent language, visual scene, and tra-
jectory changes with respect to the original instructions,
respectively. We find that with the original instructions,
our policy has a percent subgoal completion rate of 50%
However, only 30% of instructions are completed in full.
Each experiment has five instructions and ten trials, for a
total of 50 trials.

Our experiments allow us to understand our robot’s per-
formance in a few key dimensions. First, we find through
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Fig. 3: Average percent completion in seen and unseen scene
layouts as a function of the number of demonstrations used in
finetuning. As more data is provided, performance improves
linearly across scenes.

the language changes, trajectory same experiment that the
Percent Completion Difference is negative. This directly
means that our policy is not robust to rewording. However,
since our rewording strategy was relatively simple, this
may suggest that experiments that perform poorly might
be severely impacted simply due to the wording of the
instruction itself, not the semantic meaning of the instruction.

Second, the vision changes, trajectory same experiment
reveals that seemingly minor visual alterations, like adding
a plant or changing bed sheet colors, significantly reduce
success rates. The Percent Completion Difference of -21.7
means these visual changes are causing a dramatic drop in
performance. Often these objects are not in the instruction
and are simply in the background. They do not require the
policy to reason over these objects. This indicates that our
policy has a weakness in visual robustness, which it was not
able to fully transfer from its training in simulation.

Third, the vision changes, trajectory changes experi-
ment, and language changes, trajectory changes experiment
demonstrated positive Percent Completion Difference results.
The performance gains on these contrast set experiments
suggest that our model surprisingly exhibits robustness to
furniture rearrangements and new instructions, respectively.
These improvements might indicate that these perturbed
scenarios were easier and motivate future work that considers
the impact of environmental factors on performance.

Overall, we ran a total of 50 trials split among the original
instructions and four contrast set experiments. We argue that
our targeted contrast set evaluation offers richer insights than
aggregated experiments, allowing us to get a fuller picture of
our policy’s capabilities. If we had simply run 50 randomly
selected instructions and scenes, we would not have been
able to gain insights through this comparative evaluation.
Therefore, our proposed evaluation protocol offers quick
and reliable insights into a policy’s performance through the
comparison of original instances against perturbed contrast
sets. Our four experiments collectively provide us with a
better holistic understanding of our policy’s performance and
how to improve it.

Train/Test
Percent

Completion
All Data

Percent
Completion

1-step

Percent
Completion

2-step

Percent
Completion

3-step

All Data 53.0 25.0 75.0 66.6

1-step only 31.6 0.0 62.5 33.3
2-step only 30.0 0.0 50.0 50.0
3-step only 18.0 0.0 37.5 16.5

TABLE III: Ablations on Compositional Generalization of
Instructions. Given a policy trained on n-step data, we find
that the model trailed on All Data performs the best across
n-step evaluation splits.

B. Ablations

In addition to the contrast set evaluation, we provide
various feature ablations on the original instructions during
the finetuning step to get a sense of what the model learned.

How much data do we need? To explore the data
requirements for finetuning our policy on the physical robot,
we analyze the relationship between the number of demon-
strations used for training on the physical robot and the
average percent completion of tasks, as depicted in Figure 3.
In the previous experiments, the original scene was the same
as that in the finetuning dataset. We define an unseen house,
where the position of furniture – specifically the bookshelf,
the table, and the couch – is moved around. This is meant to
investigate whether the policy implicitly learned the locations
of these objects. We find that both the seen and unseen sets
perform similarly.

The policy improves linearly on both the seen and unseen
layouts as the policy is finetuned on more data without
plateauing, suggesting that more data could potentially en-
hance the policy’s performance.

To our knowledge, Anderson et al. (2021) [4] is the only
sim2real work on VLN. They found that sim2real trans-
fer on VLN using topological navigation graphs performs
poorly unless map data is provided in advance. We have a
similar problem formulation; however, we evaluate in our
reconstructed physical setup using continuous actions and
a single camera. In contrast, Anderson et al. (2021) [4]
use a large office space using a waypoint-based method
given panoramic views. Similar to their results, we find that
the policy performs poorly 0-shot from simulation, most
likely due to the large visual distribution shift. Although
we acknowledge these visual distribution shifts may lead to
worse performance, the emphasis of this work is on efficient
evaluation, so we are not overly concerned with collecting
additional data.

Does compositional generalization of instructions
transfer well? In Table III, we present additional exper-
iments to understand the performance between different
subsets of n-step instructions. We trained a model on only
1-step, 2-step, or 3-step data, and evaluated it on the robot.
We would like to note that this evaluation encompasses a
total of 10 trials for each model: four trials featuring 1-step
instructions, four with 2-step instructions, and two with 3-
step instructions. We hope to increase this evaluation set to



better understand which subset of data contributes most to
performance. We find that training on all the data leads to
the highest percent completion.

VII. CONCLUSION

In this work, we explore ways to evaluate VLN-CE poli-
cies trained on physical hardware. We address fundamental
desiderata crucial for assessing language-guided policies in
real-world settings. The first criterion for our evaluation
framework is ease of use, acknowledging the practical
constraints of deploying robots in physical environments.
We propose and carry out pilot studies using contrast set
perturbations of test instances that probe linguistic and visual
variations. Our real-world evaluations easily unveil problems
that exist in language and visual reasoning. After training
a finetuned policy on VLN-CE, we are able to isolate
potential performance issues in the linguistic reasoning and
visual reasoning components of our policy. In this work,
we only focused on evaluating a single policy. In future
work, we hope to use this approach to quickly compare the
performance of multiple language-guided policies.

In conclusion, our work serves as an initial step toward the
practical deployment of language-guided robots in real-world
scenarios. By emphasizing ease of evaluation and probing of
language-guided policies, we hope this work can initiate a
community discussion on how to efficiently evaluate these
robot policies.
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