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Abstract

We study the problem of recovering an unknown
d1 × d2 rank-r matrix from m random linear
measurements. Convex methods achieve the op-
timal sample complexity m = Ω(r(d1 + d2)) but
are computationally expensive. Non-convex ap-
proaches, while more computationally efficient,
often require suboptimal sample complexity m =
Ω(r2(d1 + d2)). A recent advance achieves m =
Ω(rd1) for a fast non-convex approach but relies
on the restrictive assumption of positive semidef-
inite (PSD) matrices and suffers from slow con-
vergence in ill-conditioned settings. Bridging this
gap, we show that Riemannian gradient descent
(RGD) achieves both optimal sample complexity
and computational efficiency without requiring the
PSD assumption. Specifically, for Gaussian mea-
surements, RGD exactly recovers the low-rank
matrix with m = Ω(r(d1 + d2)), matching the
information-theoretic lower bound, and converges
linearly to the global minimum with an arbitrarily
small convergence rate.

1 INTRODUCTION

In this work, we study the problem of recovering an un-
known matrix X⋆ ∈ Rd1×d2 from its random linear mea-
surements b := A(X⋆) ∈ Rm, where the linear operator
A : Rd1×d2 → Rm is defined as

[A(X)]i :=
1√
m

⟨Ai,X⟩ , i = 1, 2, . . . ,m. (1)

Here, Ai ∈ Rd1×d2 are measurement matrices, ⟨·, ·⟩ is the
standard inner product in Rd1×d2 , and m ≪ d1d2, making
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the problem inherently underdetermined. To overcome this
challenge, we assume that X⋆ has rank r, effectively reduc-
ing the degrees of freedom in the matrix to r(d1 + d2 − r).
Under this assumption, exact recovery of X⋆ becomes the-
oretically feasible when the number of measurements m
scales on the order of this degree of freedom. This prob-
lem, known as low-rank matrix recovery problem, lies at the
intersection of theoretical and applied mathematics, with
profound implications across machine learning, signal pro-
cessing, and statistics. It encompasses several classical prob-
lems, such as matrix completion [Candes and Tao, 2010,
Gross, 2011, Sun and Luo, 2016], phase retrieval [Candès
et al., 2013], and quantum state tomography [Hsu et al.,
2024], among others [Chi et al., 2019]. The core challenge
lies in recovering X⋆ using as few measurements m as
possible, ideally matching the information-theoretic lower
bound of Ω(r(d1 + d2 − r)), while ensuring that the recov-
ery method remains computationally efficient, operating in
polynomial time as problem dimensions grow.

A prominent line of research focuses on convex relax-
ation methods, where the low-rank matrix is represented
in Rd1×d2 , and the nuclear norm ∥ · ∥∗ is used as a convex
surrogate for the rank function. For applications such as
matrix sensing [Recht et al., 2010], matrix completion [Can-
des and Tao, 2010, Gross, 2011], and blind deconvolution
and demixing [Jung et al., 2017], it has been shown that
this approach can achieve exact recovery with m scaling
as Ω(r(d1 + d2)), up to logarithmic factors, matching the
information-theoretically optimal sample complexity. How-
ever, these convex methods are computationally demanding,
as they require optimization in the entire space Rd1×d2 , and
the low-rank structure of the solution is not easily exploited.

To address these computational challenges, non-convex
approaches have gained prominence. Factorization-based
methods address this by representing the low-rank matrix
as LRT , where L ∈ Rd1×r and R ∈ Rd2×r. This reduces
the number of optimization variables to r(d1 + d2), signifi-
cantly fewer than the d1d2 variables in convex approaches.
Simple algorithms such as gradient descent and alternat-
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ing minimization, when initialized appropriately, have been
shown to converge linearly to the global minimum under
suitable assumptions on A and X⋆ [Jain et al., 2013, Tu
et al., 2016, Chen et al., 2020, Sun and Luo, 2016, Tong
et al., 2021, Charisopoulos et al., 2021, Zilber and Nadler,
2022]. Another class of non-convex methods leverages man-
ifold optimization, eliminating redundancy in the factoriza-
tion parametrization either by representing factors on quo-
tient Riemannian manifolds [Keshavan et al., 2009, Huang
et al., 2017, Zheng et al., 2025] or by optimizing directly
on the Riemannian manifold of rank-r matrices embedded
in Rd1×d2 [Wei et al., 2016, Cai and Wei, 2024, Hsu et al.,
2024]. These methods are often more efficient and have also
been proven to converge linearly to X⋆ with the spectral ini-
tialization under appropriate conditions. However, a critical
limitation of fast non-convex approaches is their suboptimal
sample complexity, typically requiring m = Ω(r2(d1+d2))
or higher, which scales quadratically with r. Iterative Hard
Thresholding (IHT) [Tanner and Wei, 2013, Tu et al., 2016]
achieves m = Ω(r(d1 + d2)), but its computational cost is
higher than the aforementioned fast non-convex methods
due to repeated r-truncated singular value decompositions
(SVD) on full matrices, which incur larger constant fac-
tors compared to matrix multiplication (MM) of the same
computational order.

The feasibility of simultaneously achieving optimal sample
complexity and low computational cost remains an open
research question. Recently, Stöger and Zhu [2025] made
progress in this direction for the special case of low-rank
positive semidefinite (PSD) matrix sensing. By assuming
Gaussian measurement matrices and representing the PSD
matrix as LLT , the authors demonstrated that factorized
gradient descent can recover X⋆ with sample complexity
m = Ω(rd1). However, their approach suffers from slow
convergence for ill-conditioned matrices due to the depen-
dence of the step size on the condition number of X⋆. More-
over, extending these results to the more general case of
non-PSD matrix recovery introduces additional challenges,
particularly in balancing the factors L and R without ex-
plicit regularization [Chen et al., 2020].

In this paper, we present a theoretical result showing that
Riemannian gradient descent (RGD) [Wei et al., 2016]
achieves both optimal sample complexity and low com-
putational cost for recovering rectangular low-rank matrices.
Specifically, we prove that RGD can recover a rank-r matrix
with optimal sample complexity m = Ω(r(d1 + d2)) when
A is a Gaussian measurement operator, achieving an arbi-
trarily small convergence rate. Unlike factorized gradient
descent, our approach eliminates the need for additional
regularization terms, simplifying both the theoretical anal-
ysis and the practical implementation. Furthermore, RGD
is computationally efficient, as it parameterizes matrices
on the Riemannian manifold with only Θ(r(d1 + d2)) vari-
ables. By reducing the sample complexity from quadratic to

linear dependence on r, our work bridges the gap between
optimal sample complexity and computational efficiency,
establishing RGD as a state-of-the-art method for low-rank
matrix recovery. Table 1 provides a summary of the sample
complexity m and computational efficiency for represen-
tative non-convex methods in low-rank matrix sensing (all
quantities are stated up to order O(·)). The per-iteration
computational cost consists of two parts: (1) the common
cost of applying A∗A (dominated by matrix multiplication,
MM), and (2) method-specific cost highlighted in Table 1.
It may include extra MM and complex operations like QR
decomposition, matrix inversion, and SVD.

The rest of the paper is organized as follows. In Section 2,
we formulate the non-convex optimization problem for low-
rank matrix recovery, describe the Riemannian gradient
descent algorithm, and present our main theoretical result,
Theorem 1. Section 3 provides the proof of the main theo-
rem, with the Restricted Isometry Property (RIP) and the
decoupling technique as key tools. Most technical details
are deferred to the Appendix. Finally, we conclude with
a discussion of potential directions for future research in
Section 5.

2 ALGORITHMS AND RESULTS

In this section, we first formulate low-rank matrix recovery
as a non-convex optimization problem on the Riemannian
manifold of all rank-r matrices embedded in Rd1×d2 . We
then describe the Riemannian gradient descent algorithm
for solving this optimization problem. Finally, we present
our main theoretical result.

2.1 ALGORITHMS

To recover the rank-r matrix X⋆ ∈ Rd1×d2 from its mea-
surement b = A(X⋆), we solve the constrained least-
squares problem:

min
X∈Rd1×d2

L(X) :=
1

2
∥b−A (X)∥22

s.t. rank(X) = r.

(2)

Solving (2) is challenging due to the non-convexity intro-
duced by the low-rank constraint. A common approach to
overcome this is to use matrix factorization, parametrizing
the low-rank matrix as X = LRT with L ∈ Rd1×r,R ∈
Rd2×r. This leads to the following optimization problem:

min
L∈Rd1×r,R∈Rd2×r

L(LRT ). (3)

However, the factorization X = LRT is redundant and
non-unique. Specifically, X = (LQ)(RQ−T )T for any



Table 1: Comparison of Non-Convex Methods for Low-Rank Matrix Sensing (d1 = d2).

Method m Iterations Extra Cost/Iter
SVP [Jain et al., 2010], NIHT [Tanner and Wei, 2013] d1r log(1/ε) d21r (SVD)

RGD [Wei et al., 2016] d1r
2κ2 log(1/ε) d21r (MM) + d1r

2(QR) + r3 (SVD)
Scaled GD [Tong et al., 2021] d1r

2κ2 log(1/ε) d21r (MM) + r3 (Inversion)
Factorized GD (PSD only) [Stöger and Zhu, 2025] d1rκ

2 κ2 log(1/ε) d21r (MM)
RGD (this paper) d1rκ

2 log(1/ε) d21r (MM) + d1r
2(QR) + r3 (SVD)

invertible r × r matrix Q. This invariance causes the crit-
ical points of L to be unbounded and not isolated in pa-
rameter space, leading to potential optimization difficul-
ties. To address this issue, some works simply assume that
L = R to recover PSD matrices [Stöger and Zhu, 2025],
while others introduce an imbalance regularization term
∥LTL−RTR∥F to the loss function in (3) [Tu et al., 2016,
Ge et al., 2017]. Despite these approaches, the factoriza-
tion LRT can still lead to an ill-conditioned Hessian. To
analyze this, assume A is random and E[A∗A] = I . This as-
sumption holds in many common low-rank matrix recovery
problems, such as Gaussian matrix sensing, matrix com-
pletion, and quantum state tomography. We then consider
the behavior of the expected loss function in (3), which
is E[L(LRT )] = 1

2∥LRT −X⋆∥2F . The Hessian of E[L]
with respect to (w.r.t.) L and R is given by:

∇2
(L,R)(E[L(LRT )]) =

[
(RTR)⊗ Id1 •

•T (LTL)⊗ Id2

]
,

where • = Ir ⊗ (LRT − X⋆) + (RT ⊗ L)K(d2,r) and
K(d2,r) is the commutation matrix [Von Rosen, 1988].

The condition number of the Hessian depends on those of L
and R, which slows convergence and ties the convergence
rate to the condition number of X⋆. To mitigate this, various
approaches have been proposed, including preconditioning
in parameter space by the inversion of the block diagonal
of ∇2

(L,R)(E[L(LRT )]) [Tong et al., 2021], optimization
on quotient Riemannian manifolds [Keshavan et al., 2009,
Huang et al., 2017, Zheng et al., 2025], and on the Rieman-
nian manifold of rank-r matrices embedded in Rd1×d2 [Wei
et al., 2016, Cai and Wei, 2024, Hsu et al., 2024].

We consider the optimization over the embedded Rieman-
nian manifold of rank-r matrices, which offers several
advantages. First, the manifold representation is intrinsic,
eliminating redundancy and the need for regularization in
factorization-based methods. Second, the embedded mani-
fold lies in Rd1×d2 , where the expected loss function simpli-
fies to E[L(X)] = 1

2∥X−X⋆∥2F and the expected Hessian
becomes I, with a perfect condition number. This ensures
fast convergence. Third, the operator A acting on matrices
in Rd1×d2 is well-studied, with benign properties such as
RIP that can simplify analysis. In contrast, its behavior in
the parameter space is less understood, requiring additional
work to generalize these properties [Tong et al., 2021, Stöger
and Zhu, 2025].

Let Mr = {X ∈ Rd1×d2 : rank(X) = r} be the embedded
manifold of all rank-r matrices in Rd1×d2 . For X ∈ Mr,
given its compact singular value decomposition (SVD) of
X = UΣV T , the tangent space at X is

TX :=
{
URT +LV T : L ∈ Rd1×r,R ∈ Rd2×r

}
.

The orthogonal projection PTX
: Rd1×d2 → TX has the

closed-form expression

PTX
(Z) = UUTZ +ZV V T −UUTZV V T .

Then the constrained least-squares problem (2) becomes
minX∈Mr L(X). We solve it using Riemannian gradient
descent (RGD) [Absil et al., 2008, Vandereycken, 2013]:

Xt+1 = Hr(Xt − µPTXt
A∗(A(Xt)− b)),∀t ∈ N, (4)

where:

• Hr(·) is the hard thresholding operator and serves as
a retraction, which is defined via the r-truncated SVD
Hr(Z) :=

∑r
i=1 σiuiv

T
i provided the SVD of Z =∑

i σiuiv
T
i with σ1 ≥ σ2 ≥ · · · ,

• µ is the step size, and

• PTXt
A∗(A(Xt) − b) is the Riemannian gradient of

L(X) at Xt.

The computational cost per iteration of (4) is low. Aside
from applying A and A∗, the most expensive operations
are Hr and PTXt

. Since Xt can be stored in a compact
SVD form as Xt = UtΣtV

T
t , computing PTXt

requires
only O(r) matrix-vector products. Besides, in (4), Hr is
applied to a matrix Wt in TXt

, which has rank at most 2r.
As shown in [Wei et al., 2016], Hr(Wt) can be efficiently
computed using two QR decompositions of a tall matrix of
width r, one SVD of a 2r × 2r matrix, and a few matrix-
vector products. Thus, the per-iteration computational cost
of RGD is of the same order as that of gradient descent
based on factorization or the quotient Riemannian manifolds.
Moreover, RGD achieves a more favorable convergence rate
that is independent of the condition number of the ground
truth matrix and can be arbitrarily small. This results in
fewer iterations to reach the target accuracy, as demonstrated
in our theoretical results.

Due to the non-convexity of the problem, we also need a
good initialization X0. We use the spectral initialization out-
lined in [Jain et al., 2013]. We initialize X0 as Hr(A∗(b)),



where A∗ : Rm → Rd1×d2 is the adjoint operator of A.
Spectral initialization is a natural and common choice since
E[A∗(b)] = X⋆ and the operator Hr extracts the rank-r
structure.

We summarize our algorithm in Algorithm 1. For simplicity,
we denote Tt and PTt

as TXt
and PTXt

, respectively.

Algorithm 1: Riemannian Gradient Descent (RGD) for
Low-Rank Matrix Recovery

Input: Measurement operator A : Rd1×d2 → Rm,
observations b ∈ Rm, step size µ > 0

Stage 1 (Spectral Initialization): Define the
initialization X0 ∈ Rd1×d2 as

X0 = Hr(A∗(b)).

Stage 2 (Iteration): for t = 0, 1, 2, . . . do

Wt = Xt − µPTtA∗(A(Xt)− b),

Xt+1 = Hr(Wt).

2.2 MAIN RESULT

The main result of this paper provides a recovery guarantee
for Algorithm 1 with optimal sample complexity. We first
define the condition number of X⋆ as

κ :=
∥X⋆∥2

σmin (X⋆)
,

where ∥ ·∥2 is the spectral norm (also called 2-norm) for ma-
trices, and σmin (X⋆) := σr(X⋆) is the smallest non-zero
singular value of X⋆. We call A a Gaussian measurement
operator when the measurement matrices {Ai}mi=1 in (1)
have i.i.d. entries drawn from N (0, 1). Our main theorem is
stated as follows:

Theorem 1. Let A be a Gaussian measurement operator.
Let X⋆ ∈ Rd1×d2 be a rank-r matrix and b = A (X⋆) ∈
Rm. Let {Xt}t∈N be the sequence generated by Algorithm
1 with step size µ = 1. Then, for any ρ ∈ (0, 1), there exists
a constant C depending only on ρ such that: if the number
of measurements m satisfies

m ≥ Cκ2r(d1 + d2),

with probability at least 1− 7 exp(−(d1 + d2)), it holds for
all iterations t ≥ 0 that

∥Xt −X⋆∥F ≤
√
2rρtσmin (X⋆) . (5)

The proof of the theorem is deferred to Section 3. Our result
attains optimal sample complexity and high computational
efficiency. The key advantages of our approach are:

• The constant C in Theorem 1 depends only on the
convergence rate ρ, which allows our result to achieve
optimal sample complexity m = Ω(κ2r(d1 + d2)).
Importantly, this result does not require the positive
semidefinite (PSD) assumption on X⋆, which is a key
limitation in [Stöger and Zhu, 2025]. Their work relies
on the PSD structure to derive a sample complexity of
m = Ω(κ2rd1), restricting its applicability to PSD ma-
trices. By contrast, our approach applies to general rect-
angular matrices, significantly broadening the scope of
problems that can be addressed. This generality, com-
bined with optimal sample complexity, underscores the
versatility and strength of our method.

• The convergence rate ρ in Theorem 1 can be
made arbitrarily small by choosing a sufficiently
large C. Thus, our method achieves ε-accuracy for
∥Xt − X⋆∥F in O

(
log
(√

rσmin (X⋆) ε
−1
))

iter-
ations. In contrast, the step size in [Stöger and
Zhu, 2025] is O((κ∥X⋆∥2)−1), leading to a con-
vergence rate of 1 − O(κ−2). This results in
O
(
κ2 log

(√
rσmin (X⋆) ε

−1
))

iterations to achieve
ε-accuracy for ∥LtLTt − X⋆∥F , where LtL

T
t corre-

sponds to Xt in our setting. Our method is significantly
more efficient, particularly for ill-conditioned matrices.

3 THEORETICAL ANALYSIS

In this section, we prove Theorem 1. We begin by intro-
ducing the Restricted Isometry Property (RIP), which is
commonly used in prior analyses. Next, we highlight the
primary theoretical challenge that introduces the r2 term
in the sample complexity. To address this issue, we present
the key decoupling technique, inspired by [Stöger and Zhu,
2025]. Following this, we provide the necessary supporting
lemmas and conclude with the proof of the main theorem
based on these results.

3.1 RESTRICTED ISOMETRY PROPERTY

The Restricted Isometry Property (RIP) is a fundamental
tool in the analysis of low-rank matrix recovery problems,
particularly under random Gaussian measurements. This
property ensures that a measurement operator approximately
preserves the geometry of low-rank matrices, which is cru-
cial for analyzing the performance of various recovery al-
gorithms. We introduce the definition and properties of the
Restricted Isometry Property (RIP), which plays a crucial
role in our analysis.

Definition 1. The linear measurement operator A :
Rd1×d2 → Rm satisfies the Restricted Isometry Property



(RIP) of rank r with RIP-constant δr ∈ (0, 1) if it holds that

(1− δr) ∥Z∥2F ≤ ∥A(Z)∥22 ≤ (1 + δr) ∥Z∥2F ,
∀ Z ∈ Rd1×d2 : rank(Z) ≤ r.

The RIP is a uniform result, as it holds for all low-rank
matrices rather than just specific matrices of interest, such
as Xt − X⋆. The RIP is widely used in the theoretical
analysis of matrix sensing problems. If m = Ω(r(d1+d2)),
then the measurement operator A satisfies the RIP of order
r with high probability. The results from [Candes and Plan,
2011, Lemma 3.1] and [Stöger and Zhu, 2025, Lemma 2.2]
directly extend to rectangular matrices:

Lemma 1. Let A : Rd1×d2 → Rm be a Gaussian mea-
surement operator as described above. Then, A satisfies the
RIP of rank-r with constant δr satisfying δr = δ ≤ 1 with
probability 1− ε when

m ≥ Cδ−2
(
r(d1 + d2) + log

(
2ε−1

))
,

where C > 0 is a universal constant. In particular, with
probability at least 1−exp(−(d1+d2)), A satisfies the RIP
of rank r and constant δ provided m ≥ Cδ−2r(d1 + d2).

The following properties of the RIP will be used throughout
our proofs. The mapping I : Rd1×d2 → Rd1×d2 represents
the identity.

Lemma 2. Let A : Rd1×d2 → Rm be a linear measurement
operator satisfying the RIP with r0 and RIP constant δr0 for
any r0 ≤ 3r. Then, the following statements hold:

1. Let V ∈ Rd2×r
′

be any matrix with orthonormal
columns, i.e., V ⊤V = I . Then, for any matrix Z ∈
Rd1×d2 satisfying rank(Z) ≤ r, it holds that

∥(I − A∗A) (Z)V ∥F ≤ δr+2r′∥Z∥F . (6)

In particular, if we take r′ = 1, then we have

∥(I − A∗A) (Z)∥2 ≤ δr+2∥Z∥F . (7)

2. Let x ∈ Rd1 be such that ∥x∥2 = 1, and let y ∈ Rd2 be
such that ∥y∥2 = 1. Define the orthogonal projection
operators

PxyT (Z) :=
〈
xyT ,Z

〉
xyT ,

P⊥
xyT (Z) := Z −

〈
xyT ,Z

〉
xyT .

Then, for any matrix Z ∈ Rd1×d2 satisfying
rank(Z) ≤ r, we have∣∣ 〈A(xyT ) ,A(P⊥

xyT (Z)
)〉∣∣ ≤ δr+2∥Z∥F . (8)

3. Let X ∈ Rd1×d2 be a matrix of rank r. Then, it holds
that

sup
∥Z∥F=1

∥(PTX
− PTX

A∗APTX
) (Z)∥F ≤ δ2r. (9)

4. Let Z ∈ Rd1×d2 be a matrix of rank at most r. Then,

∥PTX
A∗A(I − PTX

)(Z)∥F
≤ δ3r ∥(I − PTX

) (Z)∥F .
(10)

The proof is in Appendix B.

3.2 LIMITATIONS OF RIP-BASED ANALYSIS

Before presenting our proof, we first highlight why uniform
results based solely on the RIP are insufficient for achieving
optimal sample complexity. A standard RIP-based analysis
[Wei et al., 2016] typically yields a sample complexity that
scales as r2 rather than r. They show that a sufficiently
small yet O(1) RIP constant, requiring m = Ω(r(d1+d2)),
ensures

∥PTt
(I − A∗A) (X⋆ −Xt)∥F ≪ ∥X⋆ −Xt∥F . (11)

This inequality guarantees linear convergence of {Xt}t≥T
to X⋆ in Frobenius norm for some T ∈ N whenever XT

satisfies
∥XT −X⋆∥F ≪ σmin(X⋆). (12)

To achieve this, they simply take T = 0 and use spectral ini-
tialization, which only achieve ∥XT −X⋆∥2 ≪ σmin(X⋆)
with m = Ω(r(d1 + d2)κ

2). They use ∥XT − X⋆∥F ≤√
2r∥XT − X⋆∥2 and require a RIP constant scaling as

O(1/
√
r) to ensure (12), which in turn necessitates a sam-

ple complexity of Ω(r2).

Alternatively, one could analyze convergence in the 2-norm,
which would require a 2-norm counterpart of (11):

∥PTt
(I − A∗A) (X⋆ −Xt)∥2 ≪ ∥X⋆ −Xt∥2. (13)

However, deriving (13) is challenging. Attempting to prove
(13), we may consider proving a uniform result such as
∥PTt

(I − A∗A) (∆t)∥2 ≪ ∥∆t∥2 for all possible 2r-
rank matrices ∆t, but it is highly likely to fail with Ω(r) in
sample complexity. Indeed, [Stöger and Zhu, 2025] provides
a related negative result:

sup
rank(Z)≤r

∥(I − A∗A) (Z)∥2 ≥ 1

16
∥Z∥2

√
r2d1
m

.

Although their setting differs slightly from ours, this result
underscores the difficulty of establishing uniform 2-norm
bounds analogous to RIP.

Instead of relying on the uniform results, we leverage the
fact that {Xt}t∈N is a discrete sequence and approach (13)
directly. However, since {Xt}t∈N is generated by A and
is thus dependent on it, the absence of a uniform result
necessitates techniques to decouple them. One common
way is resampling [Candès et al., 2015], but it increases
the sample complexity. Inspired by [Stöger and Zhu, 2025],
we used a delicate decoupling technique, which will be
elaborated in the following section.



3.3 KEY DECOUPLING TECHNIQUE

Define ∆t := X⋆ − Xt. As illustrated in the previous
section, the key is to control ∥(A∗A− I) (∆t)∥2. We first
recall a typical method to control the 2-norm of a general
random matrix M ∈ Rd1×d2 [Vershynin, 2018]. Define
Sd−1 :=

{
x ∈ Rd : ∥x∥2 = 1

}
and S := Sd1−1 × Sd2−1.

We can construct an ε-net N1 ∈ Sd1−1 and an ε-net N2 ∈
Sd2−1 with ε = 1

4 , and let

N := N1 ×N2 ∈ S. (14)

It is well known that the size of ε-net for Sd−1 can be smaller
than ( 3ε )

d, so |N | ≤ 12d1+d2 . Then we have:

∥M∥2 = sup
(x,y)∈S

∣∣〈xyT ,M〉∣∣
≤ sup

(x,y)∈N

∣∣〈xyT ,M〉∣∣+ 2

4
sup

(x,y)∈S

∣∣〈xyT ,M〉∣∣ ,
which imples

∥M∥2 ≤ 2 sup
(x,y)∈N

∣∣〈xyT ,M〉∣∣ .
Substituting M = (A∗A− I) (∆t), we turn to estimate
sup(x,y)∈N

∣∣〈xyT , (A∗A− I) (∆t)
〉∣∣ .

For any (x,y) ∈ N , we have

|
〈
xyT , (A∗A− I) (∆t)

〉
|

≤ |
〈
xyT , (A∗A− I)

(
PxyT∆t

)〉
|

+
∣∣∣〈xyT , (A∗A− I)

(
P⊥
xyT∆t

)〉∣∣∣ .
The first term on the right-hand side is smaller than

O(
√

r(d1+d2)
m )∥∆t∥2 by (7) in Lemma 1 if RIP is satis-

fied, and the second one equals to

I :=
∣∣∣ 1
m

m∑
i=1

⟨Ai,xy
T ⟩⟨P⊥

xyT (Ai),∆t⟩
∣∣∣. (15)

We define

A
(x,y)
i := P⊥

xyT (Ai) = Ai −
〈
xyT ,Ai

〉
xyT . (16)

Using the rotation invariance property of Gaussian ran-
dom variables,

{
A

(x,y)
i

}m
i=1

are stochastically indepen-
dent of

{〈
Ai,xy

T
〉}m
i=1

. If ∆t is independent of{〈
Ai,xy

T
〉}m
i=1

, it is not difficult to deal with it.

Lemma 3. For any (x,y) ∈ N and Z independent of{〈
Ai,xy

T
〉}m
i=1

, it holds with probability at least 1 −
2 exp(−8(d1 + d2)) that∣∣〈xyT , (A∗A)

(
P⊥
xyT (Z)

)〉∣∣
≤ 4

√
d1 + d2

m

∥∥∥A(P⊥
xyT

(
Z
))∥∥∥

2

(17)

Proof. Under the assumption,
{〈

Ai,xy
T
〉}m
i=1

are inde-

pendent of
{〈

P⊥
xyT (Ai),Z

〉}m
i=1

. Then, for all x > 0,

with probability at least 1− 2 exp
(
−x2/2

)
,∣∣〈xyT , (A∗A)

(
P⊥
xyT

(
Z
))〉∣∣

=
∣∣∣ 1
m

m∑
i=1

〈
xyT ,Ai

〉 〈
P⊥
xyT (Ai),Z

〉∣∣∣
≤ x

m

√√√√ m∑
i=1

〈
P⊥
xyT (Ai),Z

〉2
=

x√
m

∥∥∥A(P⊥
xyT

(
Z
))∥∥∥

2
.

The inequality follows from the fact that, conditioning on
{⟨P⊥

xyT (Ai),Z⟩}mi=1,
∑m
i=1

〈
xyT ,Ai

〉 〈
P⊥
xyT (Ai),Z

〉
is a Gaussian variable with mean 0 and variance∑m
i=1

〈
P⊥
xyT (Ai),Z

〉2
. Then it holds directly from the

tail probability of Gaussian random variables. Choose
x = 4

√
d1 + d2, and the failure probability is at most

2 exp (−8(d1 + d2)).

We assume that Z has a rank less than 2r here, since all
the matrices we care about in this section have rank less
than 2r. If we rely solely on RIP, we can bound this term

as O(
√

r2(d1+d2)
m )∥Z∥2 using (8). In contrast, this lemma

converts it into the right-hand side of (17), and we can elimi-

nate the factor r and bound the term as O(
√

r(d1+d2)
m )∥Z∥2

using (7).

However, we can not take Z = ∆t since the {Xt}t∈N is
generated by A and thus dependent on

{〈
Ai,xy

T
〉}m
i=1

.
To relieve the statistical dependence between {Xt}t∈N

and
{〈

Ai,xy
T
〉}m
i=1

, the central idea is to introduce

a virtual sequence
{
X

(x,y)
t

}
t∈N

that is independent
of
{〈

Ai,xy
T
〉}m
i=1

to approximate the real sequence
{Xt}t∈N .

To this end, we construct a modified measurement operator
A(x,y) : Rd1×d2 → Rm+1 that is statistically independent
of {⟨Ai,xy

T ⟩} to approximate A as follows:

[
A(x,y)(Z)

]
i
:=

{
1√
m

〈
A

(x,y)
i ,Z

〉
, for i ∈ [m],〈

xyT ,Z
〉
, for i = m+ 1.

The first m terms are Gaussian random measurements of
P⊥
xyT (Z) and independent of

{〈
Ai,xy

T
〉}m
i=1

by (16),
and the m+ 1-th term is introduced to collect the informa-
tion of PxyT (Z) deterministically. From this construction,
EA∗

(x,y)A(x,y) = E(PxyT + P⊥
xyTA∗AP⊥

xyT ) = I =
EA∗A, which means A∗

(x,y)A(x,y) approximates A∗A well
in terms of expectation. For more properties of A(x,y) and
its relationship with A, see Lemma 13 in the Appendix.

Finally we define the virtual sequence {X(x,y)
t }t∈N to be

the sequence generated by Algorithm 1 with input data



A(x,y) and A(x,y)(X⋆) as follows: for t = 0,

X
(x,y)
0 = Hr

(
A∗

(x,y)A(x,y) (X⋆)
)
,

and, for t ≥ 0,

W
(x,y)
t = X

(x,y)
t

− µP
T(x,y)
t

A∗
(x,y)A(x,y)

(
X

(x,y)
t −X⋆

)
,

X
(x,y)
t+1 = Hr(W

(x,y)
t ),

where T(x,y)
t is the tangent space of the manifold Mr at

X
(x,y)
t .

Consequently,
{
X

(x,y)
t

}
t∈N

is independent of{〈
Ai,xy

T
〉}m
i=1

and approximates {Xt}t∈N. The
stochastic independence properties and approximation
properties inherent in the construction of the virtual se-
quence significantly benefit the analysis. A straightforward
analysis yields a corollary of Lemma 3 specified for our
virtual sequence {X(x,y)

t }t∈N. For simplicity, we denote
[m] = {1, . . . ,m} and [m]− 1 = {0, . . . ,m− 1}.

Lemma 4. With probability at least 1−2 exp(−2(d1+d2)),
it holds that∣∣∣〈xyT , (A∗A)

(
P⊥
xyT

(
X⋆ −X

(x,y)
t

))〉∣∣∣
≤ 4

√
d1 + d2

m

∥∥∥A(P⊥
xyT

(
X⋆ −X

(x,y)
t

))∥∥∥
2
,

∀ (x,y) ∈ N in (14) and t ∈ [12d1+d2 ]− 1.
(18)

Proof. Notice that X⋆ − X
(x,y)
t is independent of

{⟨Ai,xy
T ⟩}mi=1, so we can take Z = X⋆ − X

(x,y)
t for

any t and (x,y) in Lemma 3. We simply take a union
bound, and then (18) is satisfied with probability at least 1−
2|N |T exp(−8(d1 + d2)) ≥ 1− 2 exp(−2(d1 + d2)).

Using Lemma 4, we can finally get an estimation of
∥(A∗A− I) (X⋆ −Xt)∥2:

Lemma 5. Let N be in (14). Let {X(x,y)
t }t∈N be the vir-

tual sequence constructed for (x,y) ∈ N . Assume that A
satisfies RIP of rank 6r, and let δ = δ6r ≤ 1. Assume that
(18) holds. Then we have

∀t ∈ [12d1+d2 ]− 1, ∥(A∗A− I) (X⋆ −Xt)∥2
≤ σ1 ∥X⋆ −Xt∥2 + σ2 sup

(x,y)∈N

∥∥∥Xt −X
(x,y)
t

∥∥∥
F
,

(19)

where σ1 = 16
√

2r(d1+d2)
m +2δ and σ2 = 4δ+16

√
d1+d2
m .

Its proof is deferred to Appendix C. When A is Gaussian
measurement operator, δ = O( r(d1+d2)m ) with high proba-
bility from Lemma 1, so σ1 and σ2 can become arbitrarily

close to 0 as m increases. This result approaches (13), with
an additional error term arising from the distance between
the real and virtual sequences. Consequently, we are going
to control both the distances from Xt to X⋆ and from Xt

to X
(x,y)
t at initialization and demonstrate that these dis-

tances contract during the iterations. Although (19) is not
uniform and holds for at most T steps, it enables (12) with
T = O(ln r), allowing convergence analysis in [Wei et al.,
2016] available with m = Ω(κ2r(d1 + d2)) .

3.4 PROOF OF THE MAIN THEOREM

In this section, we provide of proof of Theorem 1. The
proof is divided into three phases: the initialization, the
first T steps to meet ∥XT −X⋆∥F ≪ σmin(X⋆) in (12),
and the subsequence steps where the linear convergence
in Frobenius norm is guaranteed [Wei et al., 2016]. For
simplicity, we denote for t ∈ N:

Et := ∥Xt −X⋆∥2 + sup
(x,y)∈N

∥∥∥Xt −X
(x,y)
t

∥∥∥
F
. (20)

Phase I: Initialization. We show in Lemma 6 (whose
proof is in Appendix D) that E0 can be small with high
probability provided m = Ω(κ2r(d1 + d2)) . This is a non-
PSD version of [Stöger and Zhu, 2025, Lemma 4.1].

Lemma 6. Let c1 > 0 be arbitrarily given. Then there exists
a constant C > 0 such that when m ≥ Cκ2r(d1+d2), with
probability at least 1− 4 exp(−(d1 + d2)), it holds that:

E0 ≤ c1σmin(X⋆), (21)

where E0 is defined in (20).

Phase II: Contraction in 2-norm in the first T steps.
Using (18) and (19), we estimate Et by induction starting
from (21).

Lemma 7. Let c1 be an absolute constant such that c1 ∈
(0, 0.001). Assume that A satisfies RIP of rank 6r, and let
δ = δ6r < 1

24c1. Assume that (18) and (21) hold. Then
there exists a constant C > 0 depending on c1 only such
that when m ≥ Cκ2r(d1 + d2),

Et ≤ (1000c1)
tc1σmin(X⋆), ∀ t ∈ [12d1+d2 ]. (22)

This lemma is critical, and its proof differs significantly from
the parallel one for factorized gradient descent in [Stöger
and Zhu, 2025]. Specifically, the gradient is projected onto
the tangent space of Xt, requiring careful analysis of the pro-
jection operator, as detailed in Lemma 11 in the Appendix.
Additionally, our algorithm incorporates a hard-thresholding
operator after the gradient descent step, for which Lemma 10
is necessary to bound the error introduced by thresholding.
The detailed proof is provided in Appendix E.

By choosing c1 sufficiently small and T = O(ln r),
Lemma 7 implies ∥XT −X⋆∥F ≤

√
2r ∥XT −X⋆∥2 ≤√

2rET ≪ σmin(X⋆).



Phase III: Contraction in Frobenius norm in the subse-
quent steps. With ∥XT −X⋆∥F ≪ σmin(X⋆), we can
directly apply the result from [Wei et al., 2016] to estab-
lish the convergence of Xt to X⋆ in Frobenius norm with
m = Ω(κ2r(d1 + d2)). For completeness, we introduce the
following lemma (whose proof is in Appendix E).

Lemma 8 ([Wei et al., 2016]). Let c2 be an arbitrary con-
stant that satisfies 0 < 6c2 < 1. Assume that the measure-
ment operator A satisfies the RIP of rank 6r with constant
δ6r < c2. Assume that

∥XT −X⋆∥F ≤ c2σmin (X⋆) (23)

for some T ∈ N. Then it holds for all t ≥ T that

∥Xt −X⋆∥F ≤ (6c2)
t−T ∥XT −X⋆∥F .

Combining these three phases, we can give the proof of
Theorem 1.

Proof of Theorem 1. Recall that ρ ∈ (0, 1) is the target
convergence rate, and we have denoted E0 = ∥X0 −
X⋆∥2 + sup(x,y)∈N ∥X0 −X

(x,y)
t ∥F . We define the con-

stants c2 = ρ/6, c1 = min{ ρ
1000 ,

1
2000 , e

ln 2− 1
2

2 c2} < 1,
and δ = min{c2, 1

24c1}.

The proof relies on the following events:

• A satisfies RIP of rank 6r with δ6r < δ. By Lemma 1,
this event holds with probability at least 1−exp(−(d1+
d2)) provided that m ≥ C ′κ2r(d1 + d2).

• The inequality (18) holds. By Lemma 4, this occurs
with probability at least 1− 2 exp(−2(d1 + d2)).

• The initial error satisfies E0 ≤ c1σmin(X⋆), i.e., (21)
holds. By Lemma 6, this is true with probability at least
1− 4 exp(−(d1 + d2)) when m ≥ C ′′κ2r(d1 + d2).

Applying a union bound, the probability that all these three
events occur simultaneously is at least 1 − 7 exp(−(d1 +
d2)).

Assuming these events hold, we proceed with the proof.
Combining the RIP, (18), and (21), it follows from Lemma 7
that for all t ∈ [12d1+d2 ],

∥Xt −X⋆∥F ≤
√
2r∥Xt −X⋆∥2 ≤

√
2rρt1E0

≤
√
2rρt1c1σmin(X⋆) ≤

√
2rρtσmin(X⋆),

(24)

where ρ1 = 1000c1 ≤ ρ < 1, and the number of measure-
ments satisfies m ≥ C ′′′κ2r(d1 + d2).

Let T = ln(2r) ≤ 12d1+d2 . A straightforward calculation
shows that

1
2 ln 2r + ln c1

c2

ln 2r
≤ 1

2
+2 ln

c1
c2

c1<e
ln 2− 1

2
2 c2

< ln 2 < ln
1

1000c1
.

This implies
√
2rρT1 c1σmin(X⋆) < c2σmin(X⋆), which en-

sures that (23) holds. Using this result and the RIP, Lemma 8
guarantees that for t ≥ T ,

∥Xt −X⋆∥F ≤ ρt−T ∥XT −X⋆∥F . (25)

Combining (24) for t ∈ [T ] and (25) for t ≥ T , we obtain
the convergence result (5).

To conclude, we determine the number of measurements
required by taking the maximum of the conditions on m
throughout the proof:

m ≥ Cκ2r(d1 + d2),

where C = max{C ′, C ′′, C ′′′}.

4 EXPERIMENT

In this section, we evaluate the performance of the Rieman-
nian Gradient Descent (RGD) algorithm, as described in Al-
gorithm 1, on Gaussian matrix sensing problems. We present
phase transition diagrams to illustrate the relationship be-
tween sample complexity m and the rank r or condition
number κ of X⋆. Furthermore, we compare the efficiency
of RGD with factorized gradient descent (GD) methods in
ill-conditioned settings.

Phase Transition Diagram We study the phase transition
behavior of RGD by systematically varying the rank r and
the number of measurements m in Gaussian matrix sens-
ing problems, with fixed dimensions (d1 = 60, d2 = 80)
and condition number κ = 2. For each (r,m) pair, we
perform 20 independent trials. A trial is considered suc-
cessful if ∥XN−X⋆∥F

∥X⋆∥F
≤ 10−2 after N = 100 iterations.

This setup allows us to empirically estimate the success rate
as a function of m and r. Figure 1 (left) reveals a sharp
phase transition, where the minimal sample complexity m
required for successful recovery increases linearly with the
rank r. We further examine how the condition number κ
affects the sample complexity m. Keeping the dimensions
fixed as before and setting the rank r = 10, we vary κ from
1 to 280. The nearly horizontal boundary in Fig. 1 (right)
indicates that increasing the condition number κ has little
effect on the sample complexity m required for successful
recovery. Explaining this empirical insensitivity may require
new theoretical insights.

Comparison with Factorized GD We also compare
the convergence speed of RGD and factorized GD in ill-
conditioned settings. We use square matrices (d1 = d2 =
80), rank r = 15, m = 13200, and condition number
κ = 20. Stepsizes are set to µ = 1 for RGD, and µ = 0.9
(empirically optimal) and µ = 1 for GD. The ground truth
X⋆ is PSD, following [Stöger and Zhu, 2025]. As shown
in Fig. 2, RGD is stable and converges rapidly, while GD
becomes unstable at larger stepsizes.
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Figure 1: Phase transition diagrams for Gaussian matrix sensing: (left) m vs. r; (right) m vs. κ.
Black indicates failure; white indicates success.

Figure 2: Error versus time for RGD and factorized GD. GD
with a large stepsize (µ = 1, blue) oscillates, while RGD
(dashed) is stable and efficient. GD with the empirically
optimal stepsize (µ = 0.9, red) is also shown.

5 CONCLUSION AND OPEN PROBLEMS

In this work, we proved that the Riemannian gradient de-
scent algorithm with spectral initialization can recover a
rank-r matrix X⋆ of size d1 × d2 using O(r(d1 + d2)κ

2)
Gaussian measurements, which is optimal among fast non-
convex methods. Furthermore, its convergence rate is inde-
pendent of κ, making it computationally efficient even when
X⋆ is ill-conditioned.

Convex approaches based on nuclear norm minimization
need only Ω(r(d1 + d2)) samples in the matrix sensing sce-
nario, while our result is suboptimal by a factor of κ2. As a
local search algorithm operating on the rank-r matrix man-
ifold, our RGD method’s performance naturally depends
on the geometric properties at the solution point X⋆. Ex-
isting analyses of the embedded manifold’s local geometry
(e.g., Lemma 5 in [Luo and Trillos, 2022]) demonstrate that
the curvature at X⋆ scales with the condition number κ.
This relationship is further evidenced in our two lemmas in
Appendix A.3, which show κ-dependence in tangent space
perturbations. This dependence on κ is a common feature
of fast non-convex methods, as shown in Table 1. Interest-
ingly, our experiment result suggests that m might decouple
from κ, opening pathways for future research into improved
initialization strategies or refined geometric analyses.

Moreover, the proof relies on a decoupling technique that
critically depends on the rotational invariance of Gaussian
random variables, posing an interesting and challenging
direction for future research to establish optimal sample
complexity in other settings, such as matrix completion and
quantum state tomography.
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A PRELIMINARY THEOREMS AND LEMMAS

In this section, we present some preliminary theorems and lemmas, which are fundamental and will be frequently used in
our proofs.

A.1 SUPPORTING THEOREMS

We begin with Weyl’s inequality, which is useful for estimating the singular values of a perturbed matrix.

Theorem 2 (Weyl’s inequality). Let A,B ∈ Rd1×d2 be two matrices with singular values σ1(A) ≥ σ2(A) ≥ · · · ≥
σmin{d1,d2}(A) and σ1(B) ≥ σ2(B) ≥ · · · ≥ σmin{d1,d2}(B). Then for any i ∈ [min{d1, d2}] it holds that:

|σi(A)− σi(B)| ≤ ∥A−B∥2.

The following Bernstein inequality helps control the tail probabilities of certain random events.

Theorem 3 ([Vershynin, 2018, Theorem 2.8.1], Bernstein’s inequality). Let X1, . . . , XN be independent, mean-zero,
sub-exponential random variables. Then, for every t ≥ 0, we have

P

{∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t

}
≤ 2 exp

[
−cmin

(
t2∑N

i=1 ∥Xi∥2ψ1

,
t

maxi ∥Xi∥ψ1

)]
, (26)

where ∥ · ∥ψ1
is the sub-exponential norm and c > 0 is an absolute constant.

A.2 PERTURBATION BOUNDS FOR EIGENSPACE

For a matrix Z ∈ Rd1×d2 with SVD Z = UZΣZV
⊤
Z , we let UZ,r ∈ Rd1×r be the matrix consisting of the first r columns

of UZ , and UZ,r,⊥ ∈ Rd1×(d1−r) be the matrix consisting of the remaining d1 − r columns. The matrices VZ,r and VZ,r,⊥
are defined similarly. The matrix ΣZ,r is an r × r diagonal matrix consisting of the first r singular values of ΣZ . The
singular values of Z are ordered such that their magnitudes are decreasing, i.e., σ1(Z) ≥ σ2(Z) ≥ . . . ≥ σmin{d1,d2}(Z).
For simplicity, we use U1 to denote UZ1 , U1,r to denote UZ1,r, and U2,r to denote UZ2,r. Other notations are simplified
similarly.

The following lemma bounds the perturbation of the subspace spanned by the first r singular vectors of Z1 in terms of the
spectral gap of Z1 and the perturbation on the matrix itself:

*This work is partially supported by Hong Kong Research Grant Council GRFs 16307023 and 16306124.
†Main contributor.
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Lemma 9 ([Wedin, 1972], Non-symmetric version of Davis-Kahan inequality). Let Z1 and Z2 ∈ Rd1×d2 be two matrices
with singular value decompositions

Z1 =
[
U1,r U1,r,⊥

] [Σ1,r 0
0 Σ1,r,⊥

] [
V T
1,r

V T
1,r,⊥

]
,

and

Z2 = Z1 +∆ =
[
U2,r U2,r,⊥

] [Σ2,r 0
0 Σ2,r,⊥

] [
V T
2,r

V T
2,r,⊥

]
,

respectively. If σr(Z1) > σr+1(Z1) and

∥Z1 −Z2∥2 ≤
(
1− 1√

2

)
(σr(Z1)− σr+1(Z1)) , (27)

then

max
{∥∥U⊤

2,r,⊥U1,r

∥∥
F
,
∥∥V ⊤

2,r,⊥V1,r

∥∥
F

}
≤

√
2
(∥∥UT

1 ∆
∥∥
F
+ ∥∆V1∥F

)
σr(Z1)− σr+1(Z1)

.

The following lemma bounds the distance between two matrices after applying the thresholding operator Hr, assuming they
are sufficiently close. To use this result, we first provide a lower bound on the spectral gap of Z1 and show that it is large
enough compared to both ∥Z1 −Z2∥2 and σr(Z1).

Lemma 10. Let Z1 and Z2 satisfy the same conditions as in Lemma 9. Assume further that the spectral gap is large enough
such that

s := σr(Z1)− σr+1(Z1) ≥
1

c0
σr+1(Z1)

for some constant c0 > 0. Then, there exist constants C1 and C2 depending only on c0 and satisfying C1 ≤ C2 ≤ 6c0 + 10
such that

∥Hr(Z1)−Hr(Z2)∥2 ≤ C1 (σr(Z1)− σr+1(Z1)) ,

and
∥Hr(Z1)−Hr(Z2)∥F ≤ C2

(
∥(Z1 −Z2)V1,r∥F +

∥∥UT
1,r (Z1 −Z2)

∥∥
F

)
≤ 2C2 ∥Z1 −Z2∥F .

Proof. Recall that we have defined
s = σr(Z1)− σr+1(Z1).

By Weyl’s inequality (see Theorem 2) and (27), it follows that

σr (Z2)− σr+1 (Z2) ≥ σr (Z1)− σr+1 (Z1)− 2∥Z1 −Z2∥2 ≥ (
√
2− 1)s.

Therefore, for i = 1, 2, the rank-r approximation Zi,r = Hr(Zi) is uniquely defined, as σr(Zi) > σr+1(Zi). Moreover,
by Weyl’s inequality and (27), we have

|σr+1(Z2)| ≤ |σr+1(Z1)|+ (1− 1/
√
2)s ≤ (c0 + 1− 1/

√
2)s.

Let c := c0 + 1− 1/
√
2, noting that c > c0. We then derive the following estimate:

∥Z1,r −Z2,r∥2 ≤ ∥Z1,r −Z1∥2 + ∥Z1 −Z2∥2 + ∥Z2 −Z2,r∥2
≤ |σr+1(Z1)|+ |σr+1(Z2)|+ (1− 1/

√
2) (|σr (Z1)| − |σr+1 (Z1)|)

≤ (2c+ 1− 1/
√
2)︸ ︷︷ ︸

C1

s,
(28)

where the constant C1 satisfies C1 ≤ 2c0 + 3.

Let Z1,r = U1,rΣ1,rV
T
1,r and Z2,r = U2,rΣ2,rV

T
2,r be the SVDs of Z1 and Z2, respectively. Since

∥Z1,r −Z2,r∥2F ≤ ∥(Z1,r −Z2,r)V1∥2F = ∥(Z1,r −Z2,r)V1,r∥2F + ∥(Z1,r −Z2,r)V1,r,⊥∥2F ,



taking the square root of both sides and using
√
a2 + b2 ≤ |a|+ |b|, we obtain

∥Z1,r −Z2,r∥F ≤ ∥(Z1,r −Z2,r)V1,r∥F + ∥(Z1,r −Z2,r)V1,r,⊥∥F . (29)

We now estimate the two terms on the right-hand side separately.

• For the first term, we have:

∥(Z1,r −Z2,r)V1,r∥F = ∥(Z1 −Z2,r)V1,r∥F
≤ ∥(Z1 −Z2)V1,r∥F + ∥(Z2 −Z2,r)V1,r∥F
= ∥(Z1 −Z2)V1,r∥F + ∥U2,r,⊥Σ2,r,⊥V

T
2,r,⊥V1,r∥F

(a)
≤

(
1 +

√
2|σr+1(Z2)|

|σr (Z1)| − |σr+1 (Z1)|

)
∥(Z1 −Z2)V1,r∥F

+

√
2|σr+1(Z2)|

|σr (Z1)| − |σr+1 (Z1)|
∥∥UT

1,r (Z1 −Z2)
∥∥
F

≤ (1 +
√
2c) ∥(Z1 −Z2)V1,r∥F +

√
2c
∥∥UT

1,r (Z1 −Z2)
∥∥
F
,

where step (a) follows from

∥U2,r,⊥Σ2,r,⊥V
T
2,r,⊥V1,r∥F ≤ |σr+1(Z2)|∥V T

2,r,⊥V1,r∥F

and Lemma 9.

• For the second term, we further split it into two parts:

∥(Z1,r −Z2,r)V1,r,⊥∥F ≤ ∥UT
1,r(Z1,r −Z2,r)V1,r,⊥∥F + ∥UT

1,r,⊥(Z1,r −Z2,r)V1,r,⊥∥F
≤ ∥UT

1,r(Z1,r −Z2,r)∥F + ∥UT
1,r,⊥Z2,rV1,r,⊥∥F .

The last term is estimated as:

∥UT
1,r,⊥Z2,rV1,r,⊥∥F = ∥UT

1,r,⊥U2,rΣ2,rV
T
2,rV1,r,⊥∥F

≤ ∥UT
1,r,⊥U2,rΣ2,r∥2∥V T

2,rV1,r,⊥∥F
= ∥UT

1,r,⊥U2,rΣ2,rV
T
2,r∥2∥V T

2,rV1,r,⊥∥F
(a)
= ∥UT

1,r,⊥Z2,r∥2∥V T
2,r,⊥V1,r∥F

= ∥UT
1,r,⊥(Z2,r −Z1,r)∥2∥V T

2,r,⊥V1,r∥F
≤ ∥Z2,r −Z1,r∥2∥V T

2,r,⊥V1,r∥F
(b)
≤

√
2(2c+ 1− 1/

√
2)s

s

(
∥(Z1 −Z2)V1,r∥F +

∥∥UT
1,r (Z1 −Z2)

∥∥
F

)
=

√
2(2c+ 1− 1/

√
2)
(
∥(Z1 −Z2)V1,r∥F +

∥∥UT
1,r (Z1 −Z2)

∥∥
F

)
,

where step (a) uses ∥V T
2,rV1,r,⊥∥F = ∥V T

2,r,⊥V1,r∥F [Chen et al., 2021, Lemma 2.5], and step (b) follows from (28).

Combining these estimates, we obtain

∥Z1,r −Z2,r∥F ≤ C2

(
∥(Z1 −Z2)V1,r∥F +

∥∥UT
1,r (Z1 −Z2)

∥∥
F

)
,

where C2 =
√
2(2c+ 1− 1/

√
2) + (1 +

√
2c) ≤ 6c0 + 10 is a constant.



A.3 BOUNDS ON THE DISTANCE BETWEEN PROJECTIONS

We introduce key lemmas used in the convergence analysis of the RGD algorithm, which have been stated and proved
in [Wei et al., 2016]. The following result bounds the projection distance between the singular vector subspaces of two
matrices:

Lemma 11. Let Xt and X be two rank-r matrices with compact SVDs Xt = UtΣtV
T
t and X = UΣV T , respectively.

1. The distance between the projection matrices of their singular vector subspaces satisfies the following bounds:∥∥UtU
T
t −UUT

∥∥
2
≤

∥Xt −X∥2
σmin(X)

,
∥∥VtV T

t − V V T
∥∥
2
≤

∥Xt −X∥2
σmin(X)

;

∥∥UtU
T
t −UUT

∥∥
F
≤

√
2 ∥Xt −X∥F
σmin(X)

,
∥∥VtV T

t − V V T
∥∥
F
≤

√
2 ∥Xt −X∥F
σmin(X)

.

2. Let PTt and PT be the projection operators onto the tangent spaces of the rank-r matrix manifold at Xt and X ,
respectively. Then, the following bounds hold:

sup
∥Z∥2=1

∥(PTt
− PT)Z∥2 ≤

2 ∥Xt −X∥2
σmin(X)

and sup
∥Z∥2=1

∥(PTt
− PT)Z∥F ≤

2
√
2 ∥Xt −X∥F
σmin(X)

.

Proof. We prove only the second assertion, as the first assertion is identical to [Wei et al., 2016, Lemma 4.2].

By the definition of PTt
and PT, we have

(PTt
− PT)Z =

(
UtU

T
t Z +ZVtV

T
t −UtU

T
t ZVtV

T
t

)
−
(
UUTZ +ZV V T −UUTZV V T

)
=
(
UtU

T
t −UUT

)
Z
(
I − VtV

T
t

)
+
(
I −UUT

)
Z
(
VtV

T
t − V V T

)
.

Taking the spectral norm on both sides yields:

sup
∥Z∥2=1

∥(PTt
− PT)Z∥2 ≤ ∥UtU

T
t −UUT ∥2 + ∥VtV T

t − V V T ∥2 ≤
2 ∥Xt −X∥2
σmin(X)

.

Similarly, taking the Frobenius norm on both sides gives:

sup
∥Z∥2=1

∥(PTt − PT)Z∥F ≤ ∥UtU
T
t −UUT ∥F + ∥VtV T

t − V V T ∥F ≤
2
√
2 ∥Xt −X∥F
σmin(X)

.

The following lemma provides second-order information about Mr, the smooth manifold of all rank-r matrices.

Lemma 12 ([Wei et al., 2016], Lemma 4.1). Let Xt ∈ Mr with compact SVD Xt = UtΣtV
T
t , and let Tt denote the

tangent space of Mr at Xt. Let X ∈ Mr be another rank-r matrix. Then, the following inequalities hold:

∥(I − PTt
)X∥F ≤ 1

σmin(X)
∥Xt −X∥2 ∥Xt −X∥F ≤ 1

σmin(X)
∥Xt −X∥2F ,

∥(I − PTt
)X∥2 ≤ 1

σmin(X)
∥Xt −X∥22 .

Proof. By the definition of the projection operators PTt
and PT, we have:

(I − PTt
)X = (PT − PTt

)X

=
(
UUT −UtU

T
t

)
X
(
I − VtV

T
t

)
+
(
I −UUT

)
X
(
V V T − VtV

T
t

)
=
(
UUT −UtU

T
t

)
X
(
I − VtV

T
t

)
=
(
UUT −UtU

T
t

)
(X −Xt)

(
I − VtV

T
t

)
.

Taking the spectral and Frobenius norms on both sides and applying Lemma 11 completes the proof.



B PROOF IN RESTRICTED ISOMETRY PROPERTY

For completeness, we provide the proof and relevant references regarding the properties of the Restricted Isometry Property
(RIP) in this section.

Proof of Lemma 2. Assertions 1, 2, and 4 follow directly from a non-symmetric version of [Stöger and Zhu, 2025, Lemma
2.4] and [Wei et al., 2016, Lemma 4.4].

We now prove Assertion 3. Consider the following chain of inequalities:

sup
∥Z∥F=1

∥(PTX
− PTX

A∗APTX
) (Z)∥F

(a)
= sup

∥Z∥F=1

|⟨(PTX
− PTX

A∗APTX
) (Z),Z⟩|

= sup
∥Z∥F=1

∣∣∣∥PTX
(Z)∥2F − ∥APTX

(Z)∥22
∣∣∣

(b)
≤ sup

∥Z∥F=1

δ2r ∥PTX
(Z)∥2F ≤ δ2r,

where:

• Step (a) follows because PTX
− PTX

A∗APTX
is a self-adjoint operator, and the operator norm is expressed in its

variational form.

• Step (b) holds because PTX
(Z) has rank at most 2r, and RIP applies.

This completes the proof of Assertion 3.

C PROOFS IN DECOUPLING TECHNIQUE

The following lemma describes the properties of the operator A(x,y) and its relationship with A. It follows directly from the
definition of A(x,y).

Lemma 13. For any matrix Z ∈ Rd1×d2 , the following properties hold:(
A∗

(x,y)A(x,y)

) (
PxyT (Z)

)
= PxyT (Z),(

A∗
(x,y)A(x,y)

) (
P⊥
xyT (Z)

)
= (A∗A)

(
P⊥
xyT (Z)

)
−
〈
A
(
xyT

)
,A
(
P⊥
xyT (Z)

)〉
xyT ,(

A∗A−A∗
(x,y)A(x,y)

)
(Z) = (A∗A− I)PxyT (Z) +

〈
xyT ,A∗A

(
P⊥
xyT (Z)

)〉
xyT .

(30)

Proof. We prove each assertion separately.

First assertion: By the definition of Ai,(x,y), we have
〈
Ai,(x,y),PxyT (Z)

〉
= 0. Consequently,(

A∗
(x,y)A(x,y)

) (
PxyT (Z)

)
=

1

m

m∑
i=1

〈
Ai,(x,y),PxyT (Z)

〉
Ai,(x,y) +

〈
xyT ,Z

〉
xyT =

〈
xyT ,Z

〉
xyT .

This establishes the first assertion.

Second assertion: For the orthogonal projection P⊥
xyT (Z), we observe that(

A∗
(x,y)A(x,y)

)(
P⊥
xyT (Z)

)
=

1

m

m∑
i=1

〈
Ai,(x,y),P⊥

xyT (Z)
〉
Ai,(x,y) +

〈
xyT ,P⊥

xyT (Z)
〉
xyT

=
1

m

m∑
i=1

〈
Ai,(x,y),P⊥

xyT (Z)
〉
Ai,(x,y) =

1

m

m∑
i=1

〈
Ai,P⊥

xyT (Z)
〉
Ai,(x,y)

=
1

m

m∑
i=1

〈
Ai,P⊥

xyT (Z)
〉
Ai −

1

m

m∑
i=1

〈
Ai,P⊥

xyT (Z)
〉 〈

xyT ,Ai

〉
xyT

= (A∗A)
(
P⊥
xyT (Z)

)
−
〈
A
(
xyT

)
,A
(
P⊥
xyT (Z)

)〉
xyT .



This proves the second assertion.

Third assertion: For the difference A∗A−A∗
(x,y)A(x,y), we decompose Z as Z = PxyTZ + P⊥

xyTZ. Then,

(A∗
(x,y)A(x,y) − I)Z = (A∗

(x,y)A(x,y) − I)(PxyTZ + P⊥
xyTZ)

(a)
= (A∗

(x,y)A(x,y) − I)P⊥
xyTZ

(b)
= (A∗A− I)(P⊥

xyTZ)−
〈
A
(
xyT

)
,A
(
P⊥
xyT (Z)

)〉
xyT

= (A∗A− I)(Z − PxyTZ)−
〈
A
(
xyT

)
,A
(
P⊥
xyT (Z)

)〉
xyT ,

where (a) follows from the first assertion and (b) follows from the second assertion. Rearranging terms completes the proof
of the third assertion.

Now we can prove Lemma 5, which bounds ∥(A∗A− I) (X⋆ −Xt)∥2 using the virtual sequence {X(x,y)
t }t∈N.

Proof of Lemma 5. Let ∆t := X⋆ −Xt and ∆
(x,y)
t := X⋆ −X

(x,y)
t . From the construction of the net N , we have

∥(A∗A− I) (∆t)∥2 = sup
(x,y)∈Sd1−1×Sd2−1

∣∣〈xyT , (A∗A− I) (∆t)
〉∣∣ ≤ 2 sup

(x,y)∈N

∣∣〈xyT , (A∗A− I) (∆t)
〉∣∣ .

For every (x,y) ∈ N , applying the triangle inequality yields∣∣〈xyT , (A∗A− I) (∆t)
〉∣∣

≤
∣∣∣〈xyT , (A∗A− I)

(
∆

(x,y)
t

)〉∣∣∣+ ∣∣∣〈xyT , (A∗A− I)
(
∆

(x,y)
t −∆t

)〉∣∣∣
≤
∣∣∣〈xyT , (A∗A− I)

(
∆

(x,y)
t

)〉∣∣∣+ ∥∥∥(A∗A− I)
(
∆

(x,y)
t −∆t

)∥∥∥
2

(a)
≤
∣∣∣〈xyT , (A∗A− I)

(
∆

(x,y)
t

)〉∣∣∣+ δ
∥∥∥∆t −∆

(x,y)
t

∥∥∥
F

≤
∣∣∣〈xyT , (A∗A− I)

(
P⊥
xyT

(
∆

(x,y)
t

))〉∣∣∣+ ∣∣∣〈xyT , (A∗A− I)
(
PxyT

(
∆

(x,y)
t

))〉∣∣∣+ δ
∥∥∥∆t −∆

(x,y)
t

∥∥∥
F
,

where (a) follows from (7) in Lemma 2, which is a consequence of RIP of A. We now estimate the first two terms in the last
line.

• Second term: The second term can be bounded as∣∣∣〈xyT , (A∗A− I)
(
PxyT

(
∆

(x,y)
t

))〉∣∣∣
=
∣∣∣〈xyT , (A∗A− I)xyT

〉 〈
xyT ,∆

(x,y)
t

〉∣∣∣ = ∣∣∣(∥∥A (xyT )∥∥2
2
− 1
)〈

xyT ,∆
(x,y)
t

〉∣∣∣
(a)
≤ δ

∣∣∣〈xyT ,∆(x,y)
t

〉∣∣∣ ≤ δ∥∆(x,y)
t ∥2 ≤ δ sup

(x,y)∈N

∥∥∥∆t −∆
(x,y)
t

∥∥∥
F
+ δ ∥∆t∥2 ,

where (a) follows from the definition of the RIP property.

• First term: Under the assumption that (18) holds, the first term can be estimated as∣∣∣〈xyT , (A∗A)
(
P⊥
xyT

(
∆

(x,y)
t

))〉∣∣∣
≤ 4

√
d1 + d2

m

∥∥∥A(P⊥
xyT

(
∆

(x,y)
t

))∥∥∥
2

(a)
≤ 8

√
d1 + d2

m

∥∥∥P⊥
xyT

(
∆

(x,y)
t

)∥∥∥
F
≤ 8

√
d1 + d2

m

∥∥∥∆(x,y)
t

∥∥∥
F

≤ 8

√
d1 + d2

m
∥∆t∥F + 8

√
d1 + d2

m
sup

(x,y)∈N

∥∥∥∆t −∆
(x,y)
t

∥∥∥
F

(b)
≤ 8

√
2r(d1 + d2)

m
∥∆t∥2 + 8

√
d1 + d2

m
sup

(x,y)∈N

∥∥∥∆t −∆
(x,y)
t

∥∥∥
F
,



where (a) follows from the RIP property of A, rank(P⊥
xyT (∆

(x,y)
t )) ≤ 2r + 2, and 1 + δ2r+2 ≤ 2, and (b) follows

from rank(∆t) ≤ 2r.

Combining all the estimated terms and taking the supreme over (x,y) ∈ N , we obtain the final bound:

∥(A∗A− I) (∆t)∥2 ≤

(
2δ + 16

√
2r(d1 + d2)

m

)
∥∆t∥2 +

(
2δ + 2δ + 16

√
d1 + d2

m

)
sup

(x,y)∈N

∥∥∥∆t −∆
(x,y)
t

∥∥∥
F
.

This completes the proof.

D PROOF OF INITIALIZATION

The proof of Lemma 6 follows a structure similar to that of [Stöger and Zhu, 2025, Lemma 4.1].

Proof of Lemma 6. To prove this lemma, we establish the following two inequalities:

∥X⋆ −X0∥2 ≤ 1

2
c1σmin(X⋆), (31)

and ∥∥∥X0 −X
(x,y)
0

∥∥∥
F
≤ 1

2
c1σmin(X⋆), ∀ (x,y) ∈ N . (32)

First, from Lemma 1, with probability at least 1− exp(−(d1 + d2)), the operator A satisfies RIP of rank 6r with δ6r = δ
when m ≥ cδ−2r(d1 + d2), where c is a universal constant. This implies that, with the same probability, A satisfies RIP of

rank 6r with constant δ =
√

cr(d1+d2)
m . We choose m > cr(d1 + d2) to ensure that δ < 1.

Then, we have

∥(A∗A) (X⋆)−X⋆∥2 ≤ 2 sup
(x,y)∈N

1

m

m∑
i=1

xT (⟨Ai,X⋆⟩Ai −X⋆)y

= 2 sup
(x,y)∈N

1

m

m∑
i=1

(
⟨Ai,X⋆⟩xTAiy − xTX⋆y

)
.

The expectation can be computed as E⟨Ai,X⋆⟩xTAiy = xTX⋆y. From [Vershynin, 2018], we have

∥⟨Ai,X⋆⟩xTAiy∥ψ1 ≤ ∥⟨Ai,X⋆⟩∥ψ2∥xTAiy∥ψ2 ≤ K∥X⋆∥F ,

where K is a universal constant, and therefore the centered version satisfies

∥⟨Ai,X⋆⟩xTAiy − xTX⋆y∥ψ1
≤ K∥X⋆∥F .

Applying Bernstein’s inequality, we obtain:

P

(∣∣∣∣∣ 1m
m∑
i=1

(
⟨Ai,X⋆⟩xTAiy − xTX⋆y

)∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−C ′ min

{
mt2

∥X⋆∥2F
,

mt

∥X⋆∥F

})
.

Setting t = C ′′(
√

d1+d2
m + d1+d2

m )∥X⋆∥F , the probability is less than 2 exp(−C ′′C ′(d1 + d2)) for a fixed pair (x,y).
Taking a union bound over all (x,y) ∈ N , we obtain

sup
(x,y)∈N

∣∣∣∣∣ 1m
m∑
i=1

(
⟨Ai,X⋆⟩xTAiy − xTX⋆y

)∣∣∣∣∣ ≤ C ′′(

√
d1 + d2

m
+

d1 + d2
m

)∥X⋆∥F

with probability at least 1−2 exp((ln 12−C ′′C ′)(d1+d2)). We choose C ′′ sufficiently large such that ln 12−C ′′C ′ < −4,
ensuring a high success probability. Consequently, with probability at least 1− 2 exp (−4(d1 + d2)),

∥(A∗A) (X⋆)−X⋆∥2 ≤ 2C ′′(

√
d1 + d2

m
+

d1 + d2
m

)∥X⋆∥F ≤ 2C ′′(

√
d1 + d2

m
+

d1 + d2
m

)
√
rκσmin(X⋆).



We choose a proper constant C1 and let m ≥ C1κ
2r(d1 + d2) to make the constant before σmin(X⋆) less than or equal to

min{ 1
4c1,

1
10}, and then we obtain

∥(A∗A) (X⋆)−X⋆∥2 ≤ min
{1
4
c1,

1

10

}
σmin(X⋆). (33)

This, together with Weyl’s inequality, implies that the spectral gap for (A∗A) (X⋆) satisfies:

s1 := σr ((A∗A) (X⋆))− σr+1 ((A∗A) (X⋆)) ≥
4

5
σmin(X⋆) > 0. (34)

As a result, X0 = Hr(A∗A(X⋆)) is uniquely defined. Using the best rank-r approximation property of X0, we obtain

∥X⋆ −X0∥2 ≤ ∥X⋆ − (A∗A) (X⋆)∥2 + ∥(A∗A) (X⋆)−X0∥2
≤ 2 ∥X⋆ − (A∗A) (X⋆)∥2 .

Thus, combining it with (33), we obtain (31).

From Lemma 13, we have(
A∗A−A∗

(x,y)A(x,y)

)
(X⋆) =

〈
xyT ,X⋆

〉
(A∗A− I)

(
xyT

)
+
〈
xyT ,A∗A

(
P⊥
xyT (Z)

)〉
xyT . (35)

Therefore,∥∥∥(A∗A−A∗
(x,y)A(x,y)

)
(X⋆)

∥∥∥
2
≤ ∥X⋆∥2∥ (A∗A− I)

(
xyT

)
∥2 +

∣∣∣〈A (xyT ) ,A(P⊥
xyT (X⋆)

)〉∣∣∣
:= I1 + I2.

(36)

From (7) in Lemma 2, it follows that

I1 ≤ ∥X⋆∥2 · δ ≤ κσmin(X⋆)

√
cr(d1 + d2)

m
.

To estimate I2, we use 〈
A
(
xyT

)
,A
(
P⊥
xyT (X⋆)

)〉
=

1

m

m∑
i=1

〈
xyT ,Ai

〉 〈
Ai,P⊥

xyT (X⋆)
〉
.

Here,
∑m
i=1

〈
xyT ,Ai

〉 〈
Ai,P⊥

xyT (X⋆)
〉

is a sum of m independent sub-exponential random variables with mean zero
due to the rotation invariance of the Gaussian measure. Each term has a sub-exponential norm K ∥X⋆∥F with constant K.
Applying Bernstein’s inequality, we obtain that for each fixed (x,y), with probability at least 1− exp(−4(d1 + d2)),

I2 =
∣∣∣〈A (xyT ) ,A(P⊥

xyT (X⋆)
)〉∣∣∣ ≤ c2κσmin (X⋆)

√
r

(√
d1 + d2

m
+

d1 + d2
m

)
,

where c2 is a constant depending only on K. Taking a union bound over all (x,y) ∈ N and combining I1 and I2, we obtain
that, with probability at least 1− exp(−(d1 + d2)),∥∥∥(A∗A−A∗

(x,y)A(x,y)

)
(X⋆)

∥∥∥
2
≤ c3κσmin (X⋆)

√
r

(√
d1 + d2

m
+

d1 + d2
m

)
, ∀ (x,y) ∈ N . (37)

By choosing a proper C2 and letting m ≥ C2κ
2r(d1 + d2), (37) implies∥∥∥(A∗A−A∗

(x,y)A(x,y)

)
(X⋆)

∥∥∥
2
≤ 4(1− 1/

√
2)

5
σmin(X⋆) ≤ (1− 1/

√
2)s1, (38)

where in the last inequality we have used (34). Furthermore, by using (34) and (33), we obtain

c0 :=
σr+1(A∗A(X⋆))

s1
≤

1
10
4
5

≤ 1.



Applying Lemma 10 to Z1 := A∗A(X⋆) and Z2 := A∗
(x,y)A(x,y)(X⋆) and noticing that X0 = Hr(Z1) and X

(x,y)
0 =

Hr(Z2), we obtain
∥X0 −X

(x,y)
0 ∥2 ≤ 16

∥∥∥(A∗A−A∗
(x,y)A(x,y)

)
(X⋆)

∥∥∥
2

≤ c′3κσmin (X⋆)
√
r

(√
d1 + d2

m
+

d1 + d2
m

)
,

(39)

where we have used (37) in the last inequality, and

∥X0 −X
(x,y)
0 ∥F

≤ 16
(
∥(A∗A−A∗

(x,y)A(x,y)) (X⋆)V1,r∥F + ∥UT
1,r(A∗A−A∗

(x,y)A(x,y))(X⋆)∥F
)

(a)
≤ 16

∣∣〈xyT ,X⋆

〉∣∣ ∥∥(A∗A− I)
(
xyT

)
V1,r

∥∥
F
+ 16

∣∣〈xyT ,X⋆

〉∣∣ ∥∥UT
1,r (A∗A− I)

(
xyT

)∥∥
F

+ 16
∣∣∣〈A (xyT ) ,A(P⊥

xyT (X⋆)
)〉∣∣∣ ∥xyTV1,r∥F + 16

∣∣∣〈A (xyT ) ,A(P⊥
xyT (X⋆)

)〉∣∣∣ ∥UT
1,rxy

T ∥F

(b)
≤ 64cκσmin (X⋆)

√
r

(√
d1 + d2

m
+

d1 + d2
m

)
,

(40)

where (a) follows from (35), and (b) follows from (6) and (8) in Lemma 2, ∥U1,r∥2 ≤ 1, and ∥V1,r∥2 ≤ 1. We choose a
proper constant C ′

2 > C2 and let m ≥ C ′
2κ

2r(d1 + d2) to ensure that the last term in (40) is not greater than 1
2σmin(X⋆)

and thus (32).

Throughout the proof, we have imposed several lower bounds on m. We then take their maximum, i.e., m ≥ Cκ2r(d1 + d2)
with C = max{c, C1, C

′
2}, to complete the proof.

E PROOFS IN CONVERGENCE ANALYSIS

This section presents the proof of Lemma 7, a key result in our analysis. Unlike the corresponding argument for factorized
gradient descent in [Stöger and Zhu, 2025], our proof requires analyzing the projection of the gradient onto the tangent
space of Xt, which relies on Lemma 11 and Lemma 12. Additionally, the use of a hard-thresholding operator after the
gradient step introduces errors that are bounded using Lemma 10.

Proof of Lemma 7. From the assumption of this lemma,

c1 <
1

1000
, (41)

and we have A satisfies RIP of rank 6r with
δ = δ6r ≤

1

24
c1 < 1. (42)

Besides, (19) holds with this δ for t ≤ T ≤ 12d1+d2 .

We prove this theorem by induction. The assumption (21) of this lemma gives E0 ≤ c1σmin(X⋆). Assume that

E0 ≤ c1σmin(X⋆), E1 ≤ (1000c1)c1σmin(X⋆), · · · , Et ≤ (1000c1)
tc1σmin(X⋆).

We will need to show that Et+1 ≤ (1000c1)
t+1c1σmin(X⋆), i.e.,

∥Xt+1 −X⋆∥2 + sup
(x,y)∈N

∥Xt+1 −X
(x,y)
t+1 ∥F ≤ c1(1000c1)

t+1σmin(X⋆).

For this purpose, we estimate ∥Xt+1 −X⋆∥2 and sup(x,y)∈N ∥Xt+1 −X
(x,y)
t+1 ∥F , respectively. Notice that the inductive

assumption Et ≤ (1000c1)
tc1σmin(X⋆) implies

∥Xt −X⋆∥2 ≤ c1σmin(X⋆) and sup
(x,y)∈N

∥Xt −X
(x,y)
t ∥F ≤ c1σmin(X⋆). (43)



Estimate ∥Xt+1 −X∗∥2. We first compute ∥Wt −X⋆∥2. By decomposing X⋆ −Xt onto Tt and T⊥
t , we obtain

∥Wt −X⋆∥2
= ∥(I − PTtA∗A) (X⋆ −Xt)∥2
≤ ∥(I − PTt) (X⋆ −Xt)∥2 + ∥PTt (I −A∗A) (X⋆ −Xt)∥2
(a)
≤ 1

σmin(X⋆)
∥Xt −X⋆∥22 + ∥PTt

(I −A∗A) (X⋆ −Xt)∥2

(b)
≤

(
c1 + 3

(
16

√
2r(d1 + d2)

m
+ 2δ

))
∥Xt −X⋆∥2 + 12

(
δ + 4

√
d1 + d2

m

)
sup

(x,y)∈N

∥∥∥Xt −X
(x,y)
t

∥∥∥
F

≤

(
3

2
c1 + 48

√
2r(d1 + d2)

m

)
∥Xt −X⋆∥2 +

(
1

2
c1 + 48

√
d1 + d2

m

)
sup

(x,y)∈N

∥∥∥Xt −X
(x,y)
t

∥∥∥
F
,

where (a) follows from Lemma 12, and (b) from (19) in Lemma 5, the first equation in (43), and sup∥Z∥2=1 ∥PTt
Z∥2 ≤

3. We choose a proper constant C ′ and let m ≥ C ′κ2r(d1 + d2) to make the coefficients before ∥Xt − X⋆∥2 and
sup(x,y)∈N

∥∥∥Xt −X
(x,y)
t

∥∥∥
F

above are both smaller than 2c1. Then we have:

∥X⋆ −Wt∥2 ≤ 2c1

(
∥Xt −X⋆∥2 + sup

(x,y)∈N

∥∥∥Xt −X
(x,y)
t

∥∥∥
F

)
≤ c1σmin(X⋆), (44)

where in the last inequality we used the fact that 2c1 < 1 and the inductive assumption. This, together with Weyl’s inequality,
implies that σr(Wt) ≥ (1− c1)σmin(X⋆) > c1σmin(X⋆) ≥ σr+1(Wt) and

s := σr(Wt)− σr+1(Wt) ≥ (1− 2c1)σmin(X⋆) > 0, (45)

i.e., the spectral gap of Wt is positive. Then, Xt+1 = Hr(Wt) is uniquely defined, which is the best rank-r approximation
to Wt. Therefore,

∥Xt+1 −X⋆∥2 ≤ ∥Xt+1 −Wt∥2 + ∥Wt −X⋆∥2 ≤ 2 ∥Wt −X⋆∥2

≤ 4c1

(
∥Xt −X⋆∥2 + sup

(x,y)∈N

∥∥∥Xt −X
(x,y)
t

∥∥∥
F

)
,

(46)

where in the last inequality we have used (44).

Estimate ∥Xt+1 −X
(x,y)
t+1 ∥F . Since Xt+1 = Hr(Wt) and X

(x,y)
t+1 = Hr(W

(x,y)
t ), applying Lemma 10, we can upper

bound ∥Xt+1 −X
(x,y)
t+1 ∥F by ∥Wt −W

(x,y)
t ∥F . We first bound ∥Wt −W

(x,y)
t ∥F by

∥Wt −W
(x,y)
t ∥F

= ∥(Xt − PTt
A∗A(Xt −X⋆))− (X

(x,y)
t − P

T(x,y)
t

A∗
(x,y)A(x,y)(X

(x,y)
t −X⋆))∥F

≤ ∥(I − PTt)X
(x,y)
t ∥F + ∥PTt

(
Xt −A∗A(Xt −X⋆)−X

(x,y)
t +A∗A(X

(x,y)
t −X⋆)

)
∥F

+ ∥PTt
(A∗A−A∗

(x,y)A(x,y))(X
(x,y)
t −X⋆)∥F + ∥(PTt

− P
T(x,y)
t

)A∗
(x,y)A(x,y)(X

(x,y)
t −X⋆)∥F

:= I1 + I2 + I3 + I4.

(47)

We estimate the four terms respectively.

• Bounding I1. I1 is a second-order term about ∥Xt −X
(x,y)
t ∥F . Indeed, Lemma 12 implies

I1 ≤ 1

σmin(X
(x,y)
t )

∥Xt −X
(x,y)
t ∥2F . (48)

We need to derive a lower bound for σmin(Xt) and σmin(X
(x,y)
t ) respectively. From Weyl’s inequality and the

inductive assumption (43), we have

σmin(Xt) ≥ σmin(X⋆)− ∥Xt −X⋆∥2 ≥ σmin(X⋆)− c1σmin(X⋆) ≥ (1− c1)σmin(X⋆)



and
σmin(X

(x,y)
t ) ≥ σmin(Xt)−

∥∥∥Xt −X
(x,y)
t

∥∥∥
F
≥ (1− 2c1)σmin(X⋆). (49)

Plugging it in (48) gives

I1 ≤ 1

(1− 2c1)σmin(X⋆)

∥∥∥Xt −X
(x,y)
t

∥∥∥2
F
≤ c1

1− 2c1
∥Xt −X

(x,y)
t ∥F ≤ 2c1∥Xt −X

(x,y)
t ∥F , (50)

where we have used the inductive assumption (43) in the second inequality and (41) in the last inequality.

• Bounding I2. We estimate I2 by projecting Xt −X
(x,y)
t onto Tt and T⊥

t respectively as follows:

I2 = ∥PTt(I − A∗A)(Xt −X
(x,y)
t )∥F

≤ ∥PTt(I − A∗A)PTt(Xt −X
(x,y)
t )∥F + ∥PTt(I − A∗A)(I − PTt)(Xt −X

(x,y)
t )∥F

(a)
≤ δ2r∥Xt −X

(x,y)
t ∥F + δ3r∥(I − PTt)(Xt −X

(x,y)
t )∥F

(b)
≤ δ2r∥Xt −X

(x,y)
t ∥F + δ3r

1

σmin(X
(x,y)
t )

∥∥∥Xt −X
(x,y)
t

∥∥∥2
F

(c)
≤
(
δ2r +

c1δ3r
1− 2c1

)
∥Xt −X

(x,y)
t ∥F

(d)
≤ 2c1∥Xt −X

(x,y)
t ∥F ,

(51)

where:

– step (a) follows from the properties 3 and 4 of RIP in Lemma 2,
– step (b) follows from Lemma 11,
– step (c) follows from the inductive assumption (43) and (49),
– step (d) follows from c1 < 1

1000 and δ < 1
24c1.

• Bounding I3. For I3, we denote ∆t := Xt −X⋆ and ∆
(x,y)
t := X

(x,y)
t −X⋆. Then, I3 is estimated as follows:

I3 = ∥PTt
(A∗A−A∗

(x,y)A(x,y))(X
(x,y)
t −X⋆)∥F

(a)
≤ ∥PTt(A∗A− I)⟨xyT ,∆(x,y)

t ⟩xyT ∥F + ∥⟨A
(
xyT

)
,A(P⊥

xyT (∆
(x,y)
t )⟩PTt(xy

T )∥F

≤ ∥PTt
(A∗A− I)⟨xyT ,∆(x,y)

t ⟩xyT ∥F +
∣∣⟨A (xyT ) ,A(P⊥

xyT (∆
(x,y)
t )⟩

∣∣
(b)
≤ ∥PTt

(A∗A− I)⟨xyT ,∆(x,y)
t ⟩xyT ∥F

+

(
8

√
2r(d1 + d2)

m
∥∆t∥2 + 8

√
d1 + d2

m
sup

(x,y)∈N

∥∥∥∆t −∆
(x,y)
t

∥∥∥
F

)
≤ ∥∆(x,y)

t ∥2
(
∥PTt

(A∗A− I)PTt
xyT ∥F + ∥PTt

(A∗A)(I − PTt
)xyT ∥F

)
+

(
8

√
2r(d1 + d2)

m
∥∆t∥2 + 8

√
d1 + d2

m
sup

(x,y)∈N

∥∥∥∆t −∆
(x,y)
t

∥∥∥
F

)
(c)
≤

(
8

√
2r(d1 + d2)

m
+ δ2r + δ3r

)
∥∆t∥2

+

(
8

√
d1 + d2

m
+ δ2r + δ3r

)
sup

(x,y)∈N

∥∥∥∆t −∆
(x,y)
t

∥∥∥
F

(d)
≤

(
8

√
2r(d1 + d2)

m
+

1

12
c1

)
∥∆t∥2

+

(
8

√
d1 + d2

m
+

1

12
c1

)
sup

(x,y)∈N

∥∥∥∆t −∆
(x,y)
t

∥∥∥
F
,

(52)

where:



– step (a) follows form (30) in Lemma 13,
– step (b) follows from (18) in Lemma 4,

– step (c) from ∥∆(x,y)
t ∥2 ≤ ∥∆t∥2 + ∥∆t −∆

(x,y)
t ∥F and Lemma 1,

– step (d) from δ2r ≤ δ3r ≤ δ ≤ 1
24c1 by assumption (42).

We further denote the upper bound for I3 in the last inequality as I ′3, that is

I3 ≤ I ′3 :=

(
8

√
2r(d1 + d2)

m
+

1

12
c1

)
∥∆t∥2 +

(
8

√
d1 + d2

m
+

1

12
c1

)
sup

(x,y)∈N

∥∥∥∆t −∆
(x,y)
t

∥∥∥
F
.

• Bounding I4. We estimate I4 as in the following:

I4 ≤ ∥(PTt
− P

T(x,y)
t

)A∗A(X
(x,y)
t −X⋆)∥F + ∥PTt

(A∗A−A∗
(x,y)A(x,y))(X

(x,y)
t −X⋆)∥F

+ ∥P
T(x,y)
t

(A∗A−A∗
(x,y)A(x,y))(X

(x,y)
t −X⋆)∥F

(a)
≤ ∥(PTt

− P
T(x,y)
t

)A∗A(X
(x,y)
t −X⋆)∥F + 2I ′3

≤ ∥(PTt
− P

T(x,y)
t

)(A∗A− I)(X(x,y)
t −X⋆)∥F + ∥(PTt

− P
T(x,y)
t

)(X
(x,y)
t −X⋆)∥F + 2I ′3

(b)
≤ 4

√
2

σmin(Xt)

∥∥∥Xt −X
(x,y)
t

∥∥∥
F

(
∥(A∗A− I)(∆(x,y)

t )∥2 + ∥∆(x,y)
t ∥2

)
+ 2I ′3

(c)
≤ 4

√
2c1

1− 2c1

(
∥(A∗A− I)(∆(x,y)

t )∥2 + ∥∆(x,y)
t ∥2

)
+ 2I ′3

≤ 4
√
2c1

1− 2c1

(
∥∆t∥2 + ∥∆t −∆

(x,y)
t ∥F + ∥(A∗A− I)∆t∥2 + ∥(A∗A− I)(∆t −∆

(x,y)
t )∥2

)
+ 2I ′3

(d)
≤ 4

√
2c1

1− 2c1

(
1 + 16

√
2r(d1 + d2)

m
+ 2δ

)
∥∆t∥2

+
4
√
2c1

1− 2c1

(
1 + 4δ + 16

√
d1 + d2

m
+ δr+2

)
∥∆t −∆

(x,y)
t ∥F + 2I ′3

(e)
≤ 4

√
2× 500

499
×

(
1 + 16

√
2r(d1 + d2)

m
+

1

500

)
c1∥∆t∥2

+ 4
√
2× 500

499
×

(
1 + 16

√
d1 + d2

m
+

1

200

)
c1∥∆t −∆

(x,y)
t ∥F + 2I ′3,

(53)

where:

– step (a) follows from ∥P
T(x,y)
t

(A∗A−A∗
(x,y)A(x,y))(X

(x,y)
t −X⋆)∥F and be estimated similarly as in (52),

– step (b) follows from Lemma 11,
– step (c) follows from (43) and (49),

– step (d) follows from Lemma 5 and ∥(A∗A− I)(∆t −∆
(x,y)
t )∥2 ≤ δr+2∥∆t −∆

(x,y)
t ∥F ,

– step (e) follows from δ < c1 < 1
1000 .

We choose a proper constant C ′′ and let m ≥ C ′′κ2r(d1 + d2) to make the coefficients before ∥∆t−∆
(x,y)
t ∥F and ∥∆t∥2

in the last term of (52) are both smaller than 2c1, and those in the last term (excluding 2I ′3) of (53) are smaller than 8c1. As
a result, I3 ≤ I ′3 ≤ 2c1Et, and I4 ≤ 8c1Et + 2I ′3 ≤ 12c1Et. Besides, we have I1 ≤ 2c1Et by (50) and I2 ≤ 2c1Et by
(51). Substituting all these in (47) gives:

∥Wt −W
(x,y)
t ∥F ≤ (2 · 3 + 12)c1

(
∥Xt −X⋆∥2 + sup

(x,y)∈N

∥∥∥Xt −X
(x,y)
t

∥∥∥
F

)
≤ c1σmin(X⋆), (54)

where we use 18c1 < 1 and the inductive assumption (43) in the last inequality.



To estimate ∥Xt+1 −X
(x,y)
t+1 ∥F , we check the validity of Lemma 10. First, from (45) and (54),

∥Wt −W
(x,y)
t ∥2 ≤ ∥Wt −W

(x,y)
t ∥F ≤ c1

1− 2c1
(σr(Wt)− σr+1(Wt))

(41)
< (1− 1/

√
2)s.

Second, we define c0 := c1
1−2c1

, and we have σr+1(Wt) ≤ c0s by (45). Then all conditions in Lemma 10 are met, and
therefore it implies that: there exists a constant C2 that is only related to c1 such that

∥Xt+1 −X
(x,y)
t+1 ∥F ≤ 2C2∥Wt −W

(x,y)
t ∥F ≤ 2(

6c1
1− 2c1

+ 10)∥Wt −W
(x,y)
t ∥F

≤ 996c1

(
∥Xt −X⋆∥2 + sup

(x,y)∈N

∥∥∥Xt −X
(x,y)
t

∥∥∥
F

)
,

(55)

where we use (54) in the last inequality. Summing up (55) and (46) gives

∥Xt+1 −X⋆∥2 + sup
(x,y)∈N

∥Xt+1 −X
(x,y)
t+1 ∥F ≤ 1000c1(∥Xt −X⋆∥2 + sup

(x,y)∈N
∥Xt −X

(x,y)
t ∥F )

≤ c1(1000c1)
t+1σmin(X⋆),

(56)

where in the last inequality we have used (43) and (41).

Throughout the proof, we have imposed two lower bounds on m. We then take their maximum, i.e., m ≥ Cκ2r(d1 + d2)
with C = max{C ′, C ′′}, to complete the proof.

For completeness, we also include the proof of Lemma 8, which was established in prior work given the initialization
Hr(A∗(b)) [Wei et al., 2016, Theorem 2.2]. We slightly modify the proof and show that whenever ∥XT − X⋆∥F is
sufficiently small, RGD will converge linearly to X⋆.

Proof of Lemma 8. The proof follows the same structure as [Wei et al., 2016, Theorem 2.2]. Since Xt+1 = Hr(Wt) is the
best rank-r approximation to Wt, we have

∥Xt+1 −X⋆∥F ≤ ∥Xt+1 −Wt∥F + ∥Wt −X⋆∥F ≤ 2 ∥Wt −X⋆∥F .

Substituting Wt = Xt + PTt
A∗A (X⋆ −Xt) into the above inequality yields:

∥Xt+1 −X⋆∥F ≤ 2 ∥(I − PTt
A∗A) (X⋆ −Xt)∥F

≤ 2 ∥(I − PTt
) (X⋆ −Xt)∥F + 2 ∥PTt

(I −A∗A) (X⋆ −Xt)∥F
(a)
≤ 2

σmin(X⋆)
∥Xt −X⋆∥2F + 2 ∥PTt

(I −A∗A)PTt
(X⋆ −Xt)∥F

+ 2 ∥PTt
(I −A∗A) (I − PTt

) (X⋆ −Xt)∥F
(b)
≤ 2

σmin(X⋆)
∥Xt −X⋆∥2F + 2δ2r∥X⋆ −Xt∥F + 2δ3r ∥X⋆ −Xt∥F

≤
(
2
∥X⋆ −Xt∥F
σmin(X⋆)

+ 4c2

)
∥X⋆ −Xt∥F ,

where (a) follows from Lemma 12, and (b) follows from Lemma 2 and the inequalities δ2r ≤ δ3r ≤ δ6r ≤ c2.

Define

γt = 2
∥X⋆ −Xt∥F
σmin(X⋆)

+ 4c2.

By the condition (23), we have γT ≤ 6c2 < 1. The remainder of the proof proceeds by induction. Assume γk < 6c2 for
k = T, T + 1, . . . , t. Then, we have

∥Xt −X⋆∥F ≤ (6c2)
t−T ∥XT −X⋆∥F ≤ ∥XT −X⋆∥F ≤ c2σmin(X⋆).

Therefore, γt+1 ≤ 6c2. By induction, we conclude that γt < 6c2 for all t ≥ T .
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