
EFFICIENT, STABLE, AND ANALYTIC DIFFERENTIA-
TION OF THE SINKHORN LOSS

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimal transport and the Wasserstein distance have become indispensable build-
ing blocks of modern deep generative models, but their computational costs
greatly prohibit their applications in statistical machine learning models. Recently,
the Sinkhorn loss, as an approximation to the Wasserstein distance, has gained
massive popularity, and much work has been done for its theoretical properties.
To embed the Sinkhorn loss into gradient-based learning frameworks, efficient
algorithms for both the forward and backward passes of the Sinkhorn loss are re-
quired. In this article, we first demonstrate issues of the widely-used Sinkhorn’s
algorithm, and show that the L-BFGS algorithm is a potentially better candidate
for the forward pass. Then we derive an analytic form of the derivative of the
Sinkhorn loss with respect to the input cost matrix, which results in an efficient
backward algorithm. We rigorously analyze the convergence and stability proper-
ties of the advocated algorithms, and use various numerical experiments to vali-
date the performance of the proposed methods.

1 INTRODUCTION

Optimal transport (OT, Villani, 2009) is a powerful tool to characterize the transformation of proba-
bility distributions, and has become an indispensable building block of generative modeling. At the
core of OT is the Wasserstein distance, which measures the difference between two distributions. For
example, the Wasserstein generative adversarial network (WGAN, Arjovsky et al., 2017) uses the
1-Wasserstein distance as the loss function to minimize the difference between the data distribution
and the model distribution, and a huge number of related works emerge afterwards.

Despite the various appealing theoretical properties, one major barrier for the wide applications
of OT is the difficulty in computing the Wasserstein distance. For two discrete distributions, OT
solves a linear programming problem of nm variables, where n andm are the number of Diracs that
define the two distributions. Assuming n = m, standard linear programming solvers for OT have
a complexity of O(n3 log n) (Pele & Werman, 2009), which quickly becomes formidable as n gets
large, except for some special cases (Peyré et al., 2019).

To resolve this issue, many approximate solutions to OT have been proposed, among which the
Sinkhorn loss has gained massive popularity (Cuturi, 2013). The Sinkhorn loss can be viewed as
an entropic-regularized Wasserstein distance, which adds a smooth penalty term to the original ob-
jective function of OT. The Sinkhorn loss is attractive as its optimization problem can be efficiently
solved, at least in exact arithmetics, via Sinkhorn’s algorithm (Sinkhorn, 1964; Sinkhorn & Knopp,
1967), which merely involves matrix-vector multiplications and some minor operations. There-
fore, it is especially suited to modern computing hardware such as the graphics processing units
(GPUs). Recent theoretical results show that Sinkhorn’s algorithm has a computational complexity
of O(n2ε−2) to output an ε-approximation to the unregularized OT (Dvurechensky et al., 2018).

Many existing works on the Sinkhorn loss focus on its theoretical properties, for example Mena
& Niles-Weed (2019) and Genevay et al. (2019). In this article, we are mostly concerned with
the computational aspect. Since modern deep generative models mostly rely on the gradient-based
learning framework, it is crucial to use the Sinkhorn loss with differentiation support. One simple
and natural method to enable Sinkhorn loss in back-propagation is to unroll Sinkhorn’s algorithm,
adding every iteration to the auto-differentiation computing graph (Genevay et al., 2018; Cuturi
et al., 2019). However, this approach is typically costly when the number of iterations are large.

1

Instead, in this article we have derived an analytic expression for the derivative of Sinkhorn loss
based on quantities computed from the forward pass, which greatly simplifies the back-propagation
of the Sinkhorn loss.

More importantly, one critical pain point of the Sinkhorn loss, though typically ignored in theoretical
studies, is that Sinkhorn’s algorithm is numerically unstable (Peyré et al., 2019). We show in numer-
ical experiments that even for very simple settings, Sinkhorn’s algorithm can quickly lose precision.
Various stabilized versions of Sinkhorn’s algorithm, though showing better stability, still suffer from
slow convergence in these cases. In this article, we have rigorously analyzed the solution to the
Sinkhorn optimization problem, and have designed both forward and backward algorithms that are
provably efficient and stable. The main contribution of this article is as follows:

• We have derived an analytic expression for the derivative of the Sinkhorn loss, which can
be efficiently computed in back-propagation.

• We have rigorously analyzed the advocated forward and backward algorithms for the
Sinkhorn loss, and show that they have desirable efficiency and stability properties.

• We have implemented the Sinkhorn loss as an auto-differentiable function in the PyTorch
and JAX frameworks, using the analytic derivative obtained in this article.

The code to reproduce the results in this article is available at https://1drv.ms/u/s!
ArsORq8a24WmoFjNQtZYE_BERzDQ.

2 THE (SHARP) SINKHORN LOSS AS APPROXIMATE OT

Throughout this article we focus on discrete OT problems. Denote by ∆n = {w ∈ Rn
+ : wT1n =

1} the n-dimensional probability simplex, and let µ =
∑n

i=1 aiδxi
and ν =

∑m
j=1 bjδyj

be two
discrete probability measures supported on data points {xi}ni=1 and {yj}mj=1, respectively, where
a = (a1, . . . , an)

T ∈ ∆n, b = (b1, . . . , bm)T ∈ ∆m, and δx is the Dirac at position x. Define
Π(a, b) = {T ∈ Rn×m

+ : T1m = a, TT1n = b}, and let M ∈ Rn×m be a cost matrix with entries
Mij , i = 1, . . . , n, j = 1, . . . ,m. Without loss of generality we assume that n ≥ m, as their roles
can be exchanged. Then OT can be characterized by the following optimization problem,

W (M,a, b) = min
P∈Π(a,b)

⟨P,M⟩, (1)

where ⟨A,B⟩ = tr(ATB). An optimal solution to (1), denoted as P ∗, is typically called an optimal
transport plan, and can be viewed as a joint distribution whose marginals coincide with µ and ν. The
optimal valueW (M,a, b) = ⟨P ∗,M⟩ is then called the Wasserstein distance between µ and ν if the
cost matrix M satisfies some suitable conditions (Proposition 2.2 of Peyré et al., 2019).

As is introduced in Section 1, solving the optimization problem (1) can be difficult even for moderate
n and m. One approach to regularizing the optimization problem is to add an entropic penalty term
to the objective function, leading to the entropic-regularized OT problem (Cuturi, 2013):

S̃λ(M,a, b) = min
T∈Π(a,b)

Sλ(T) := min
T∈Π(a,b)

⟨T,M⟩ − λ−1h(T), (2)

where h(T) =
∑n

i=1

∑m
j=1 Tij(1− log Tij) is the entropy term. The new objective function Sλ(T)

is λ−1-strongly convex on Π(a, b), so (2) has a unique global solution, denoted as T ∗
λ . In this article,

T ∗
λ is referred to as the Sinkhorn transport plan. The entropic-regularized Wasserstein distance, also

known as the Sinkhorn distance or Sinkhorn loss in the literature (Cuturi, 2013), is then defined as
Sλ(M,a, b) = ⟨T ∗

λ ,M⟩.
To simplify the notation, we omit the subscript λ in T ∗

λ hereafter when no confusion is caused. It is
worth noting that in the literature, Sλ and S̃λ are sometimes referred to as the sharp and regularized
Sinkhorn loss, respectively. The following proposition from Luise et al. (2018) suggests that Sλ

achieves a faster rate at approximating the Wasserstein distance than S̃λ. Due to this reason, in this
article we focus on the sharp version, and simply call Sλ the Sinkhorn loss for brevity.
Proposition 1 (Luise et al., 2018). There exist constants C1, C2 > 0 such that for any λ > 0,
|Sλ(M,a, b)−W (M,a, b)| ≤ C1e

−λ and |S̃λ(M,a, b)−W (M,a, b)| ≤ C2/λ. The constants C1

and C2 are independent of λ, and depend on µ and ν.

2

https://1drv.ms/u/s!ArsORq8a24WmoFjNQtZYE_BERzDQ
https://1drv.ms/u/s!ArsORq8a24WmoFjNQtZYE_BERzDQ

3 DIFFERENTIATION OF THE SINKHORN LOSS

To use the Sinkhorn loss in deep neural networks or other machine learning tasks, it is also cru-
cial to obtain the derivative of Sλ(M,a, b) with respect to its input parameters. Differentiating
the Sinkhorn loss typically involves two stages, the forward and backward passes. In the forward
pass, the Sinkhorn loss or the transport plan is computed using some optimization algorithm, and in
the backward pass the derivative is computed, using either an analytic expression or the automatic
differentiation technique. In this section we analyze both passes in details.

Throughout this article we use the following notations. For x, y ∈ R, x ∧ y means min{x, y}.
For a vector v = (v1, . . . , vk)

T, let v−1 = (v−1
1 , . . . , v−1

k)T, ṽ = (v1, . . . , vk−1)
T, and denote by

diag(v) the diagonal matrix formed by v. Let u = (u1, . . . , ul)
T be another vector, and denote

by u ⊕ v the l × k matrix with entries (ui + vj). For a matrix A = (aij) = (A1, . . . , Ak) with
column vectors A1, . . . , Ak, let Ã = (A1, . . . , Ak−1), and eλ[A] be the matrix with entries eλaij .
The symbol ⊙ denotes the elementwise multiplication operator between matrices or vectors. ∥ · ∥
and ∥ · ∥F stand for the Euclidean norm for vectors and Frobenius norm for matrices, respectively.
Finally, we globally define η ≡ λ−1 for simplicity.

3.1 ISSUES OF SINKHORN’S ALGORITHM

In the existing literature, one commonly-used method for the forward pass of the Sinkhorn loss
is Sinkhorn’s algorithm (Sinkhorn, 1964; Sinkhorn & Knopp, 1967). Unlike the original linear
programming problem (1), the solution to the Sinkhorn problem has a special structure. Cuturi
(2013) shows that the optimal solution T ∗ can be expressed as

T ∗ = diag(u∗)Mediag(v
∗) (3)

for some vectors u∗ and v∗, where Me =
(
e−λMij

)
. Sinkhorn’s algorithm starts from an initial

vector v(0) ∈ Rm
+ , and generates iterates u(k) ∈ Rn

+ and v(k) ∈ Rm
+ as follows:

u(k+1) ← a⊙ [Mev
(k)]−1, v(k+1) ← b⊙ [MT

e u
(k+1)]−1. (4)

It can be proved that u(k) → u∗ and v(k) → v∗, and then the Sinkhorn transport plan T ∗ can be
recovered by (3).

Sinkhorn’s algorithm is very efficient, as it only involves matrix-vector multiplication and other
inexpensive operations. However, one major issue of Sinkhorn’s algorithm is that the entries of
Me =

(
e−λMij

)
may easily underflow when λ is large, making some elements of the vectorsMev

(k)

and MT
e u

(k+1) close to zero. As a result, some components of u(k+1) and v(k+1) would overflow.
Therefore, Sinkhorn’s algorithm in its original form is unstable, and in practice the iterations (4)
are typically carried out in the logarithmic scale, which we call the Sinkhorn-log algorithm for
simplicity. Besides, there are some other works also attempting to improve the numerical stability
of Sinkhorn’s algorithm (Schmitzer, 2019; Cuturi et al., 2022).

Despite the advancements of Sinkhorn’s algorithm, one critical issue observed in practice is that
Sinkhorn-type algorithms may be slow to converge, especially for small regularization parameters.
This would severely slow down the computation, and may even give misleading results when the
user sets a moderate limit on the total number of iterations. Below we show a motivating example to
highlight this issue. Consider a triplet (M,a, b) for the Sinkhorn problem, and fix the regularization
parameter η to be 0.001, where the detailed setting is provided in Appendix B.1. The true T ∗ matrix
is visualized in Figure 1, along with the solutions given by various widely-used algorithms, including
Sinkhorn’s algorithm, Sinkhorn-log, the stabilized scaling algorithm (Stabilized, Algorithm 2 of
Schmitzer, 2019), and the Greenkhorn algorithm (Altschuler et al., 2017; Lin et al., 2022). The
maximum number of iterations is 10000 for Greenkhorn and 1000 for other algorithms.

In Figure 1, it is clear that the plans given by Sinkhorn’s algorithm and Greenkhorn are farthest to
the true value, and Greenkhorn generates NaN values reflected by the white stripes in the plot. In
contrast, the stable algorithms Sinkhorn-log and Stabilized greatly improve them. Sinkhorn’s algo-
rithm and Sinkhorn-log are equivalent in exact arithmetics, so their numerical differences highlight
the need for numerically stable algorithms. However, Sinkhorn-log and Stabilized still have visible
inconsistencies with the truth even after 1000 iterations.

3

0 20 40 60
0

10

20

30

40

50

60

70

80

90
Truth Sinkhorn Sinkhorn-log Stabilized Greenkhorn L-BFGS

Figure 1: Visualization of Sinkhorn plans computed by different algorithms.

3.2 THE ADVOCATED ALTERNATIVE FOR FORWARD PASS

To this end, we advocate an alternative scheme to solve the optimal plan T ∗, and we show both
theoretically and empirically that this method enjoys great efficiency and stability. Consider the
dual problem of (2), which has the following form (Proposition 4.4 of Peyré et al., 2019):

max
α,β
L(α, β) := max

α,β
αTa+ βTb− η

n∑
i=1

m∑
j=1

e−λ(Mij−αi−βj), α ∈ Rn, β ∈ Rm. (5)

Let α∗ = (α∗
1, . . . , α

∗
n)

T and β∗ = (β∗
1 , . . . , β

∗
m)T be one optimal solution to (5), and then the

Sinkhorn transport plan T ∗ can be recovered as T ∗ = eλ[α
∗⊕β∗−M]. Remarkably, (5) is equivalent

to an unconstrained convex optimization problem, so a simple gradient ascent method suffices to
find its optimal solution. But in practice, quasi-Newton methods such as the limited memory BFGS
method (L-BFGS, Liu & Nocedal, 1989) can significantly accelerate the convergence. Using L-
BFGS to solve (5) is a known practice (Cuturi & Peyré, 2018; Flamary et al., 2021), but little
is known about its stability in solving the regularized OT problem. We first briefly describe the
algorithm below, and in Section 4 we rigorously prove that L-BFGS converges fast and generates
stable iterates.

It is worth noting we can reduce the number of variables to be optimized in (5) based on the follow-
ing two findings. First, as pointed out by Cuturi et al. (2019), the variables (α, β) have one redundant
degree of freedom: if (α∗, β∗) is one solution to (5), then so is (α∗+c1n, β

∗−c1m) for any c. There-
fore, we globally set βm = 0 without loss of generality. Second, let α∗(β) = argmaxα L(α, β)
for a given β = (β̃T, βm)T = (β̃T, 0)T, and define f(β) = −L(α∗(β), β). Then we only need to
minimize f(β) with (m− 1) free variables to get β∗, and α∗ can be recovered as α∗ = α∗(β∗). In
the appendix we show that α∗(β), f(β), and ∇β̃f have simple closed-form expressions:

f(β) = −α∗(β)Ta− βTb+ η, α∗(β)i = η log ai − η log

 m∑
j=1

eλ(βj−Mij)

 , (6)

∇β̃f = T̃ (β)T1n − b̃, T (β) = eλ[α
∗(β)⊕ β −M].

With f(β) and ∇β̃f , the L-BFGS algorithm can be readily used to minimize f(β) and obtain
β∗. Each gradient evaluation requires O(mn) exponentiation operations, which is comparable to
Sinkhorn-log. Although exponentiation is more expensive than matrix-vector multiplication as in
Sinkhorn’s algorithm, this extra cost can be greatly remedied by modern hardware such as GPUs.
On the other hand, we would show in Section 4 that L-BFGS has a strong guarantee on numerical
stability, which is critical for many scientific computing problems.

For the motivating example in Section 3.1, we demonstrate the advantage of L-BFGS by showing
its transport plan in the rightmost plot of Figure 1. We limit its maximum number of gradient eval-
uations to 1000, and hence comparable to other methods. Clearly, the L-BFGS solution is visually
identical to the ground truth. To study the difference between L-BFGS and Sinkhorn’s algorithm in
more depth, we compute the objective function value of the dual problem (6) at each iteration for
both Sinkhorn-log and L-BFGS. The results are visualized in Figure 2, with three different η values,
η = 0.1, 0.01, 0.001. Since each L-BFGS iteration may involve more than one gradient evaluation,
for L-BFGS we plot the values against both the outer iteration and gradient evaluation counts.

4

0 20 40 60 80 100
2.5

2.0

1.5

1.0

0.5

0.0

0.5

O
bj

ec
ti

ve
 F

un
ct

io
n

Va
lu

e

1 = 0.1

0 100 200 300 400 500
Iteration Count

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1 = 0.01

0 200 400 600 800 1000

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1 = 0.001

Sinkhorn-log
L-BFGS Gradient Eval.
L-BFGS Iteration

Figure 2: Comparing the convergence speed of Sinkhorn-log and L-BFGS.

Figure 2 gives a clear clue to the issue of Sinkhorn-log: it has a surprisingly slow convergence speed
compared to L-BFGS when η is small. Theoretically, Sinkhorn algorithms will eventually converge
with sufficient iterations, but in practice, a moderate limit on computational budget may prevent
them from generating accurate results. To this end, L-BFGS appears to be a better candidate when
one needs a small η for better approximation to the OT problem. In Appendix B.2 we have designed
more experiments to study the forward pass stability and accuracy of different algorithms.

3.3 THE ANALYTIC BACKWARD PASS

For the backward pass, one commonly-used method is unrolled Sinkhorn’s algorithm, which is
based on the fact that Sinkhorn’s forward pass algorithm is differentiable with respect to a, b, and
M . Therefore, one can use automatic differentiation software to compute the corresponding deriva-
tives in the backward pass. This method is used in Genevay et al. (2018) for learning generative
models with the Sinkhorn loss, but in practice it may be extremely slow if the forward pass takes a
large number of iterations. To avoid the excessive cost of unrolled algorithms, various implicit dif-
ferentiation methods have been developed for the Sinkhorn loss (Feydy et al., 2019; Campbell et al.,
2020; Xie et al., 2020; Eisenberger et al., 2022), but they still do not provide the most straightforward
way to compute the gradient.

To this end, we advocate the use of analytic derivatives of the Sinkhorn loss, which solves the
optimization problem (2) in the forward pass, and use the optimal dual variables (α∗, β∗) for the
backward pass. The analytic form for ∇a,bSλ(M,a, b) has been studied in Luise et al. (2018), and
to our best knowledge, few result has been presented for ∇MSλ(M,a, b). Our first main theorem,
given in Theorem 1, fills this gap and derives the analytic form for∇MSλ(M,a, b).

Theorem 1. For a fixed λ > 0,

∇MSλ(M,a, b) = T ∗ + λ(su ⊕ sv −M)⊙ T ∗,

where T ∗ = eλ[α
∗ ⊕ β∗ −M], su = a−1 ⊙ (µr − T̃ ∗s̃v), sv = (s̃Tv , 0)

T, µr = (M ⊙ T ∗)1m,

µ̃c = (M̃ ⊙ T̃ ∗)T1n, s̃v = D−1
[
µ̃c − T̃ ∗T(a−1 ⊙ µr)

]
, and D = diag(b̃) − T̃ ∗Tdiag(a−1)T̃ ∗.

In addition, D is positive definite, and hence invertible, for any λ > 0, a ∈ ∆n, b ∈ ∆m, and M .

Assuming n ≥ m, the main computational cost is in forming D, which requiresO(m2n) operations
for matrix-matrix multiplication, and in computing s̃v , which costs O(m3) operations for solving a
positive definite linear system.

4 CONVERGENCE AND STABILITY ANALYSIS

In Sections 3.2 and 3.3, we have introduced the advocated forward and backward algorithms for
the Sinkhorn loss, respectively. In this section, we focus on the theoretical properties of these algo-
rithms, and show that they enjoy provable efficiency and stability. As a first step, we consider the
target of the optimization problem (6), and show that f(β) has a well-behaved minimizer, which
does not underflow or overflow.

Theorem 2. Denote by f∗ the minimum value of f(β) and β∗ an optimal solution, and let α∗ =
α∗(β∗). Then f∗ > −∞, β∗ is unique, ∥α∗∥ < ∞, and ∥β∗∥ < ∞. In particular, let I =

5

argmaxi T
∗
im, amax = maxi ai, and c = log(n/bm). Then Lαi

≤ Lαi
≤ α∗

i ≤ Uαi
and

Lβj ≤ β∗
j ≤ Uβj ≤ Uβj for all i = 1, . . . , n and j = 1, . . . ,m, where

Uαi
=Mim + η · log(ai ∧ bm), Uβj

=MIj−MIm+η [log(aI ∧ bj) + c] ,

Lαi
= η · log(ai/m)−max

j
(Uβj
−Mij), Lβj

= η · log(bj/n)−max
i

(Uαi
−Mij),

Uβj
= max

i
{Mij−Mim}+ η [log(amax ∧ bj) + c] , Lαi

= η · log(ai/m)−max
j

(Uβj
−Mij).

Theorem 2 shows that the optimal dual variables γ∗ are bounded, and more importantly, the bounds
are roughly at the scale of the cost matrix entries Mij and the log-weights log(ai) and log(bj).
Therefore, at least the target of the optimization problem is well-behaved. Moreover, one useful
application of Theorem 2 is to impose a box constraint on the variables, adding further stability to
the optimization algorithm.

After verifying the properties of the optimal solution, a more interesting and critical problem is to
seek a stable algorithm to approach the optimal solution. Indeed, in Theorem 3 we prove that the
L-BFGS algorithm for minimizing (6) is one such method.
Theorem 3. Let {β̃(k)} be a sequence of iterates generated by the L-BFGS algorithm starting from
a fixed initial value β̃(0), and define β(k) = (β̃(k)T, 0)T, T (k) = eλ[α

∗(β(k)) ⊕ β(k) −M], and
f (k) = f(β(k)). Then there exist constants 0 ≤ r < 1 and C1, C2 > 0 such that for each k > 0:

(a) f (k) − f∗ ≤ rk(f (0) − f∗) := ε(k). (Linear convergence for the objective value)

(b) ∥β(k) − β∗∥2 ≤ C1ε
(k). (Linear convergence for the iterates)

(c) T (k)1m=a, ∥∇β̃f(β
(k))∥2=∥T̃ (k)T1n − b̃∥2 ≤ C2ε

(k). (Exponential decay of the gradient)

(d) T (k)
ij < min{ai, bj +

√
C2ε(k)}, 1 ≤ j ≤ m− 1. (T (k) does not overflow)

(e) maxj T
(k)
ij >ai/m, maxi T

(k)
ij >(bj−

√
C2ε(k))/n, 1 ≤ j ≤ m− 1. (T (k) does not underflow)

The explicit expressions for the constants C1, C2, r are given in Appendix A.

Theorem 3 reveals some important information. First, both the objective function value and the iter-
ates have linear convergence speed, so the forward pass using L-BFGS takesO(log(1/ε)) iterations
to obtain an ε-optimal solution. Second, the marginal error for µ, measured by ∥T (k)1m − a∥, is
exactly zero due to the partial optimization on α. The other marginal error ∥T̃ (k)T1n− b̃∥, which is
equal to the gradient norm, is also bounded at any iteration, and decays exponentially fast to zero.
This validates the numerical stability of the L-BFGS algorithm. Third, the estimated transport plan
at any iteration k, T (k), is also bounded and stable. This result can be compared with the formulation
in (3): it is not hard to find that u∗, v∗, and Me, when computed individually, can all be unstable due
to the exponentiation operations, especially when η is small. In contrast, T ∗ and T (k), thanks to the
results in Theorem 3, do not suffer from this issue.

We emphasize that Theorem 3 provides novel results that are not direct consequences of the L-BFGS
convergence theorem given in Liu & Nocedal (1989). First, classical theorems only guarantee the
convergence of objective function values and iterates as in (a) and (b), whereas we provide richer
information such as the marginal errors and transport plans specific to OT problems. More impor-
tantly, our results are all nonasymptotic with computable constants. To achieve this, we carefully
analyze the eigenvalue structure of the dual Hessian matrix, which is of interest by itself.

Likewise, we show that the derivative of∇MSλ(M,a, b) as in Theorem 1 can also be computed in a
numerically stable way. Let ∇̂MS be the k-step approximation to ∇MS := ∇MSλ(M,a, b) using
the L-BFGS algorithm, i.e., replacing every T ∗ in ∇MS by T (k). Then we show that the error on
gradient also decays exponentially fast.
Theorem 4. Using the symbols defined in Theorems 1 and 3, let σ = 1/σmin(D), where σmin(D)
is the smallest eigenvalue of D. Assume that for some k0,

ε(k0) < C−1
1

[
min{1, (6σ∥D∥F)−1}

4λ

]2
,

6

and then for every k ≥ k0, ∥∇̂MS −∇MS∥F ≤ CS

√
ε(k) = CS

√
f (0) − f∗ · rk/2, where the ex-

plicit expression for CS is given in Appendix A. k0 always exists as ε(k) decays to zero exponentially
fast as ensured by Theorem 3(a).

5 APPLICATION: SINKHORN GENERATIVE MODELING

The Sinkhorn loss is useful in unsupervised learning tasks that attempt to match two distributions pθ
and p∗, where p∗ stands for the data distribution, and pθ is the model distribution. If pθ and p∗ can
be represented or approximated by two discrete measures µθ and ν, respectively, then one would
wish to minimize the Sinkhorn loss Sλ(Mθ, aθ, bθ) between µθ and ν, where the cost matrix M and
weights a, b may depend on learnable parameters θ. In gradient-based learning frameworks, the key
step of seeking the optimal parameter θ that minimizes Sλ(Mθ, aθ, bθ) is to compute the gradient
∇θSλ(Mθ, aθ, bθ), which further reduces to evaluating∇a,bSλ(M,a, b) and ∇MSλ(M,a, b).

Luise et al. (2018) assumes that M is fixed, and studies the gradients ∇a,bSλ(M,a, b). However,
in many generative models it is more important to derive ∇MSλ(M,a, b), as the weights a and b
are typically fixed, whereas the cost matrix M is computed from the output of some parameterized
layers. Consider a data set X1, . . . , Xn that follows the distribution p∗, Xi ∈ Rp, and our target
is to fit a deep neural network gθ : Rr → Rp such that gθ(Z) approximately follows p∗, where
Z ∼ N(0, Ir). To this end, we first generate random variates Z1, . . . , Zm ∼ N(0, Ir), and let
Yj = gθ(Zj). The two weight vectors are simply taken to be a = n−11n, b = m−11m, and the cost
matrix between Xi and Yj is given by Mθ ∈ Rn×m, where (Mθ)ij = ∥Xi − gθ(Zj)∥2. Then we
learn the network parameter θ by minimizing the Sinkhorn loss ℓ(θ) = Sλ(Mθ, n

−11n,m
−11m).

We show such applications in Section 7.

6 RELATED WORK

In Table 1 we list some related work on the differentiation of the Sinkhorn loss, and provide a brief
summary of the contribution and limitation of each work. The target of our work is closest to that
of Genevay et al. (2018), i.e., to differentiate the Sinkhorn loss with respect to the input cost matrix.
However, they use unrolled Sinkhorn’s algorithm, so there is no analytic form for∇MSλ. Our work
is mostly motivated by Luise et al. (2018), but they consider the derivative with respect to the weights
instead of the cost matrix. Similarly, Cuturi et al. (2019) and Cuturi et al. (2020) consider gradients
on weights and data points, but not the general cost matrix. Campbell et al. (2020); Xie et al.
(2020); Eisenberger et al. (2022) all consider the derivative of the transport plan T ∗ using implicit
differentiation. Although this is a more general problem than computing∇MSλ, it loses the special
structure of the Sinkhorn loss. As a result, the compact matrix form of the derivative presented in
Theorem 1 is unique. Furthermore, the storage requirement for our result is O(nm), whereas some
existing works need to store much larger matrices. Finally, very few work has rigorously analyzed
the stability of the algorithm, in both the forward and backward passes.

7 NUMERICAL EXPERIMENTS

7.1 RUNNING TIME OF FORWARD AND BACKWARD PASSES

In our subsequent experiments, we compare three algorithms for differentiating the Sinkhorn loss:
the proposed method (“Analytic”) using L-BFGS for the forward pass and the analytic derivative for
backward pass, the implicit differentiation method (“Implicit”), and the unrolled Sinkhorn algorithm
(“Unroll”). Both Implicit and Unroll use Sinkhorn-log for the forward pass, and are implemented in
the OTT-JAX library (Cuturi et al., 2022).

We simulate cost matrices of different dimensions, and compare the forward time and total time
of different algorithms with both η = 0.1 and η = 0.01. The detailed experiment setting and
results are given in Appendix B.3, Table 2, and Table 3. The main conclusion is that under the same
accuracy level, the forward pass of Analytic is typically faster than those of the other two algorithms,
and the backward time is significantly faster. Overall, the proposed analytic differentiation method
demonstrates visible advantages on computational efficiency.

7

Table 1: A brief summary of existing literature on differentiation of Sinkhorn loss.

Reference Target
Analytic
solution

Derivative
w.r.t. the

cost matrix

Compact
matrix form

Minimum
storage

requirement

Stability
analysis

Genevay et al. (2018) ∇MSλ ✗ ✓ ✗ ✗ ✗

Luise et al. (2018) ∇a,bSλ ✓ ✗ — ✓ ✗

Cuturi et al. (2019) ∇a,xT
∗ ✗ ✗ — ✗ ✓

Cuturi et al. (2020) ∇b,xT
∗ ✓ ✗ — ✓ ✗

Campbell et al. (2020) ∇MT
∗ ✓ ✓ ✗ ✓ ✗

Xie et al. (2020) ∇MT
∗ ✓ ✓ ✗ ✓ ✗

Eisenberger et al. (2022) ∇MT
∗ ✓ ✓ ✗ ✗ ✗

This article ∇MSλ ✓ ✓ ✓ ✓ ✓

7.2 GENERATIVE MODELS ON TOY DATA SETS

In this section we apply the Sinkhorn loss to generative modeling, and test the accuracy and effi-
ciency of the proposed algorithm. Following the methods in Section 5, we consider a toy data set
with n = 1000 and p = 2 (shown in Figure 3), and we attempt to learn a neural network gθ such
that gθ approximately pushes forward Z1, . . . , Zm ∼ N(0, Ir) to the data distribution. In our ex-
periments, gθ is a fully-connected ReLU neural network with input dimension r = 5 and hidden
dimensions 64-128-64. The number of latent data points is m = 1000.

In the first setting, we intentionally keep both the observed data and the latent points Z1, . . . , Zm

fixed, so that the optimization of gθ is a deterministic process without randomness, and the optimiza-
tion variable obtained from each forward pass is used as the warm start for the next training iteration.
At every ten iterations, we compute the 2-Wasserstein distance between the observed data and the
pushforward points {gθ(Zi)}, and we train gθ for 2000 iterations using the Adam optimizer with a
learning rate of 0.001. This setting, though not common in generative modeling, helps us to monitor
the computation of gradients without the impact of random sampling. Moreover, the Wasserstein
distance has an achievable lower bound of zero if gθ is sufficiently expressive, so we can study the
accuracy and efficiency of gradient computation by plotting the metric against running time.

The comparison results for the three algorithms are shown in the second and third plots of Figure
3, from which we have the following findings. First, when η = 0.5, the 2-Wasserstein distance
will increase after certain number of iterations, indicating that the Sinkhorn loss is not an accu-
rate approximation to the Wasserstein distance when η is large. Second, it is clear that the Unroll
method has the slowest computation, as it needs to unroll a potentially large computational graph in
automatic differentiation. Third, the proposed analytic differentiation shows visible advantages on
computational efficiency, thanks to the closed-form expression for the derivative.

Finally, to examine the performance of differentiation methods in a genuine generative modeling
setting, we use a regular training scheme that randomly samples the observed data and latent points
at each iteration. Due to the first finding above, we choose the smaller η value for the Sinkhorn
loss, and use a mini-batch of size n = m = 256 for training. We run 5000 iterations in total, and
the metric curves are shown in the last plot of Figure 3. It can be found that the performance of
the three algorithms are similar to the fixed-Z case: all three methods properly reduce the Wasser-
stein distance over time, but the proposed algorithm uses less time to accomplish the computation.
Additional experiments on simulated data sets are given in Appendix B.4.

7.3 DEEP GENERATIVE MODELS

Finally, we use the Sinkhorn loss to train larger and deeper generative models on the MNIST (Le-
Cun et al., 1998) and Fashion-MNIST (Xiao et al., 2017) data sets. In this experiment, we do not
pursue training the best possible generative model; instead, we primarily validate our claims on the

8

3 2 1 0 1 2 3
X1

3

2

1

0

1

2

3

4

X2

True data points

0 50 100 150 200 250 300 350
Elapsed Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2-
W

as
se

rs
te

in
 D

ist
an

ce

Fixed Z, = 0.5
Method

Analytic
Implicit
Unroll

0 10 20 30 40 50 60 70
Elapsed Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2-
W

as
se

rs
te

in
 D

ist
an

ce

Fixed Z, = 0.1
Method

Analytic
Implicit
Unroll

0 100 200 300 400 500 600
Elapsed Time (seconds)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2-
W

as
se

rs
te

in
 D

ist
an

ce

Sampled Z, = 0.1
Method

Analytic
Implicit
Unroll

Figure 3: From left to right: the true observed data; the measured Wasserstein distance over time in
the fixed Z setting with η = 0.5; the similar plot for η = 0.1; the random Z setting with η = 0.1.

0 50 100 150 200 250 300 350

Elapsed Time (seconds)

30

40

50

60

70

80

90

Te
st

 D
at

a
Si

nk
ho

rn
 D

iv
er

ge
nc

e

MNIST Data
Analytic
Implicit
Unroll

(a)

0 50 100 150 200 250 300 350

Elapsed Time (seconds)

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Te
st

 D
at

a
W

as
se

rs
te

in
 D

ist
an

ce

MNIST Data
Analytic
Implicit
Unroll

(b) (c)

0 50 100 150 200 250 300 350

Elapsed Time (seconds)
20

30

40

50

60

70

80

90

Te
st

 D
at

a
Si

nk
ho

rn
 D

iv
er

ge
nc

e

Fashion-MNIST Data
Analytic
Implicit
Unroll

(d)

0 50 100 150 200 250 300 350

Elapsed Time (seconds)

5

6

7

8

9

Te
st

 D
at

a
W

as
se

rs
te

in
 D

ist
an

ce

Fashion-MNIST Data
Analytic
Implicit
Unroll

(e) (f)

Figure 4: (a)(d) Sinkhorn divergence between randomly sampled test data and model-generated
images over iterations. (b)(e) Similar to (a)(d) but using 2-Wasserstein distance. (c)(f) Randomly
generated images from the models trained using the analytic differentiation.

efficiency of the proposed analytic differentiation method. The architecture of neural networks and
details of the training process are given in Appendix B.5. During the training process, we com-
pute the Sinkhorn divergence (Feydy et al., 2019) and 2-Wasserstein distance between randomly
sampled test data and model-generated images over iterations, and Figure 4 show the results of
Analytic, Implicit, and Unroll algorithms. The conclusion is similar: the proposed analytic differ-
entiation method achieves the same learning performance as existing methods, but is able to reduce
the overall computing time. This once again demonstrates the value of the proposed method.

8 CONCLUSION

In this article we study the differentiation of the Sinkhorn loss with respect to its cost matrix, and
have derived an analytic form of the derivative, which makes the backward pass of the differentiation
easy to implement. Moreover, we study the numerical stability of the forward pass, and rigorously
prove that L-BFGS is a stable and efficient algorithm that complements the widely-used Sinkhorn’s
algorithm and its stabilized versions. In particular, L-BFGS typically converges faster for Sinkhorn
problems with a weak regularization. It is worth noting that the proposed analytic differentiation
method can be combined with different forward algorithms, and a reasonable scheme is to use L-
BFGS for weakly regularized OT problems, and to choose Sinkhorn’s algorithm otherwise. The
differentiable Sinkhorn loss has many potential applications in generative modeling and permutation
learning (Mena et al., 2018), and we anticipate that the technique developed in this article would
boost future research on those directions.

9

REFERENCES

Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. Near-linear time approximation algo-
rithms for optimal transport via Sinkhorn iteration. In Advances in neural information processing
systems 30, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International Conference on Machine Learning, 2017.

Richard H Byrd, Jorge Nocedal, and Ya-Xiang Yuan. Global convergence of a cass of quasi-Newton
methods on convex problems. SIAM Journal on Numerical Analysis, 24(5):1171–1190, 1987.

Dylan Campbell, Liu Liu, and Stephen Gould. Solving the blind perspective-n-point problem end-
to-end with robust differentiable geometric optimization. In European Conference on Computer
Vision, pp. 244–261. Springer, 2020.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in
neural information processing systems 26, 2013.

Marco Cuturi and Gabriel Peyré. Semi-dual regularized optimal transport. arXiv preprint
arXiv:1811.05527, 2018.

Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Differentiable ranking and sorting using
optimal transport. In Advances in Neural Information Processing Systems 32, 2019.

Marco Cuturi, Olivier Teboul, Jonathan Niles-Weed, and Jean-Philippe Vert. Supervised quantile
normalization for low rank matrix factorization. In International Conference on Machine Learn-
ing, 2020.

Marco Cuturi, Laetitia Meng-Papaxanthos, Yingtao Tian, Charlotte Bunne, Geoff Davis, and Olivier
Teboul. Optimal transport tools (OTT): A JAX toolbox for all things Wasserstein. arXiv preprint
arXiv:2201.12324, 2022.

Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal transport:
Complexity by accelerated gradient descent is better than by Sinkhorn’s algorithm. In Interna-
tional conference on machine learning, pp. 1367–1376, 2018.

Marvin Eisenberger, Aysim Toker, Laura Leal-Taixé, Florian Bernard, and Daniel Cremers. Scalable
Sinkhorn backpropagation. OpenReview preprint id:uR77O7SL55h, 2022.

Yizheng Fan. Schur complements and its applications to symmetric nonnegative and Z-matrices.
Linear algebra and its applications, 353(1-3):289–307, 2002.

Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouvé, and
Gabriel Peyré. Interpolating between optimal transport and MMD using Sinkhorn divergences. In
The 22nd International Conference on Artificial Intelligence and Statistics, pp. 2681–2690, 2019.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon, Stanis-
las Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. POT:
Python optimal transport. Journal of Machine Learning Research, 22(78):1–8, 2021.

Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with Sinkhorn diver-
gences. In International Conference on Artificial Intelligence and Statistics, 2018.

Aude Genevay, Lénaic Chizat, Francis Bach, Marco Cuturi, and Gabriel Peyré. Sample complexity
of Sinkhorn divergences. In International Conference on Artificial Intelligence and Statistics,
2019.

Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Tianyi Lin, Nhat Ho, and Michael I Jordan. On the efficiency of entropic regularized algorithms for
optimal transport. Journal of Machine Learning Research, 23(137):1–42, 2022.

10

Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

Giulia Luise, Alessandro Rudi, Massimiliano Pontil, and Carlo Ciliberto. Differential properties of
Sinkhorn approximation for learning with Wasserstein distance. In Advances in Neural Informa-
tion Processing Systems 31, 2018.

Albert W Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: Theory of Majorization and
Its Applications, Second Edition. Springer Science & Business Media, 2011.

Gonzalo Mena and Jonathan Niles-Weed. Statistical bounds for entropic optimal transport: sample
complexity and the central limit theorem. In Advances in Neural Information Processing Systems
32, 2019.

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
with Gumbel-Sinkhorn networks. arXiv preprint arXiv:1802.08665, 2018.

Jorge Nocedal and Stephen J Wright. Numerical optimization, 2nd edition. Springer, 2006.

Jorge Nocedal, Annick Sartenaer, and Ciyou Zhu. On the behavior of the gradient norm in the
steepest descent method. Computational Optimization and Applications, 22(1):5–35, 2002.

Ofir Pele and Michael Werman. Fast and robust earth mover’s distances. In 2009 IEEE 12th inter-
national conference on computer vision, pp. 460–467. IEEE, 2009.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

R Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

Bernhard Schmitzer. Stabilized sparse scaling algorithms for entropy regularized transport problems.
SIAM Journal on Scientific Computing, 41(3):A1443–A1481, 2019.

Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matri-
ces. The annals of mathematical statistics, 35(2):876–879, 1964.

Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matri-
ces. Pacific Journal of Mathematics, 21(2):343–348, 1967.

Gui-Xian Tian and Ting-Zhu Huang. Inequalities for the minimum eigenvalue of M-matrices. The
Electronic Journal of Linear Algebra, 20:291–302, 2010.

I Tolstikhin, O Bousquet, S Gelly, and B Schölkopf. Wasserstein auto-encoders. In 6th International
Conference on Learning Representations (ICLR 2018), 2018.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yujia Xie, Hanjun Dai, Minshuo Chen, Bo Dai, Tuo Zhao, Hongyuan Zha, Wei Wei, and Tomas
Pfister. Differentiable top-k with optimal transport. In Advances in Neural Information Processing
Systems 33, 2020.

11

A EXPLICIT EXPRESSIONS FOR CONSTANTS

We first define a few user constants for the L-BFGS algorithm. Let m0 be the maximum number of
correction vectors used to construct the BFGS matrix Bk, and c1 ∈ (0, 1/2), c2 ∈ (c1, 1) are two
constants related to the Wolfe condition: we assume the L-BFGS algorithm uses some line search
algorithm to select the step sizes αk that satisfy:

f(xk + αkdk) ≤ f(xk) + c1αkg
T
k dk,

g(xk + αkdk)
Tdk ≥ c2gTk dk,

where f(·) and g(·) stand for the objective function and gradient function, respectively, xk is the
k-th iterate, gk = g(xk), dk = −B−1

k gk is the search direction, and Bk is the BFGS matrix that
approximates the Hessian matrix. m0, c1, and c2 are selected by the user.

For Theorem 3, let β̃(0) be the initial value, and let µ = MTa and ui = maxj Mij , i = 1, . . . , n.
Then we define the following constants:

Uc = b−1
m

[(
max

1≤j≤m−1
µj

)
+ η

n∑
i=1

ai log ai − η + f(β(0))

]
+

Ai = η log ai − Uc − η log

e−λ(Mim+Uc) +

m−1∑
j=1

e
−λMij

 , i = 1, . . . , n

M1 = λ · n−m+ 2

2(n−m+ 1)
· min
1≤i≤n

eλ(Ai−Mim), M2 = λ

[
1−

n∑
i=1

eλ(Ai−Mim)

]
M3 =M2 − logM1 − 1, M4 = m− 1 +m0M2 −m0 [logM1 − log(1 +m0M2)]

C1 = 2/M1, C2 = 2M−1
1 M2

2

r = 1− c1(1− c2)M1/M2e
−(M3+M4).

For Theorem 4,

CS = 4λ
√
C1 [∥∇MS∥F + 2λ∥T ∗∥F (Cv + Cu)]

Cv = 2σ(∥µc∥+ 3∥T ∗T(a−1 ⊙ µr)∥+ 3∥D∥F ∥sv∥)
Cu = ∥µr∥+ 2Cv∥diag(a−1)T ∗∥F + ∥a−1 ⊙ (T ∗sv)∥.

B ADDITIONAL EXPERIMENT DETAILS

B.1 SETTINGS OF THE MOTIVATING EXAMPLE

Consider a small problem of n = 90 and m = 60. Let xi = 5(i − 1)/(n − 1), i = 1, . . . , n be
equally-spaced points on [0, 5], and similarly define yj = 5(j − 1)/(m − 1), j = 1, . . . ,m. The
cost matrix is set to Mij = (xi − yj)2, and the weights a and b are specified as follows. Let f1 be
the density function of an exponential distribution with mean 1, and f2 be the density function of a
mixture of two normal distributions, 0.2·N(1, 0.04)+0.8·N(3, 0.25). And then we set ãi = f1(xi),
b̃j = f2(yj), ai = ãi/

∑n
k=1 ãk, and bj = b̃j/

∑m
k=1 b̃k.

We fix the regularization parameter η to be 0.001. This value is selected such that the resulting
Sinkhorn plan T ∗

λ is visually close to the OT plan P ∗. In Figure 5, we show the Wasserstein and
Sinkhorn transport plans under different values of η. It can be seen that when η ≤ 0.001, T ∗

λ is
visually indistinguishable from P ∗.

We compute the true T ∗
λ using the ε-scaling algorithm (Algorithm 3 of Schmitzer, 2019). This

algorithm is typically accurate, but it requires solving a sequence of Sinkhorn problems with in-
creasing λ’s, where the solution corresponding to the previous λ is used as a warm start for the
next one. Therefore, its computational cost is typically large, and it does not compare fairly with
other methods. Due to this reason, in this article we mainly use the ε-scaling algorithm to compute
high-precision reference values, and do not include it for method comparison.

12

0 20 40 60
0

10

20

30

40

50

60

70

80

90
Wasserstein Sinkhorn 0.1 Sinkhorn 0.01 Sinkhorn 0.001 Sinkhorn 0.0001

Figure 5: Visualization of Sinkhorn plans with different η values.

B.2 FORWARD PASS STABILITY AND ACCURACY

To further compare the numerical stability and accuracy of different algorithms for computing the
Sinkhorn loss, we consider the following experiment. First, we simulate data X1, . . . , Xn ∼ f1(x)
and Y1, . . . , Ym ∼ f2(y) from some specific distributions f1(x) and f2(y), x, y ∈ Rp, and construct
the cost matrix as M = (Mij), where Mij = ∥Xi−Yj∥2. The weights are fixed as a = n−11n and
b = m−11m. For each of the five methods compared in the motivating example in Section 3.1, let
T = (Tij) be the computed Sinkhorn transport plan and T ∗ be the true value (computed using the
ε-scaling algorithm), and then we compute two types of errors: the error on the transport plan,

Errplan(T) =

√∑
i,j

(Tij − T ∗
ij)

2,

and the error on the Sinkhorn loss value,
Errloss(T) = |⟨T,M⟩ − ⟨T ∗,M⟩| = |⟨T − T ∗,M⟩| .

For each configuration of the experiment, we simulate the data 100 times, and visualize the distribu-
tion of the errors using boxplots.

In our experiment, we fix n = 150, m = 200, and consider varying dimensions p = 1, 10, 50. The
Sinkhorn regularization parameters compared are η = 0.01, 0.001, and for each η we set a specific
maximum number of iterations for all algorithms. Two data generation models are considered:

(a) Both f1(x) and f2(y) are multivariate normal distributions N(0, Ip);
(b) Both f1(x) and f2(y) have independent components. Each marginal distribution of f1 is an

exponential distribution with mean 1, and each marginal distribution of f2 is a mixture of two
normal distributions, 0.2 ·N(1, 0.04) + 0.8 ·N(3, 0.25).

The final results are demonstrated in Figure 6, where all the errors are shown in the log-scale.

In Figure 6, many boxplots for the Stabilized and Greenkhorn algorithms are missing, since they
produce all NaN values in the 100 simulations due to numerical overflows. For Sinkhorn, even if it
generates no NaNs values explicitly for η = 0.001, it does not give any meaningful results either.
This implies that numerical stability is a critical issue in computing the Sinkhorn loss.

For Sinkhorn-log, it gives reasonably small errors when the regularization is large (η = 0.01) with
sufficient number of iterations, but its accuracy quickly deteriorates when η decreases to 0.001.
Moreover, we can find that Sinkhorn-log is sensitive to the limits on number of iterations. For
example, when p = 1 and η = 0.01, the loss value error can be as small as 10−6 given 1000
maximum number of iterations, but if we restrict the limit to 200, the error can be as large as 10−2

or even 100, depending on the data distribution.

In contrast, the difference on maximum number of iterations has a minor effect on the L-BFGS
algorithm, indicating that it converges fast, and additional iterations are not needed. These find-
ings demonstrate the advantage of the advocated L-BFGS method in both numerical stability and
accuracy.

13

Dim: p = 1 Dim: p = 10 Dim: p = 50

D
istribution: norm

al
D

istribution: exp−
m

ix

Sink
ho

rn

Sink
ho

rn
−lo

g

Sta
bil

ize
d

Gre
en

kh
or

n

L−
BFGS

Sink
ho

rn

Sink
ho

rn
−lo

g

Sta
bil

ize
d

Gre
en

kh
or

n

L−
BFGS

Sink
ho

rn

Sink
ho

rn
−lo

g

Sta
bil

ize
d

Gre
en

kh
or

n

L−
BFGS

−6

−4

−2

−6

−4

−2

Algorithm

Lo
g−

sc
al

e
E

rr
or

η/MaxIter

0.01/300
0.01/1000
0.001/600
0.001/2000

Errors on the Sinkhorn transport plan

(a) Sinkhorn transport plan

Dim: p = 1 Dim: p = 10 Dim: p = 50

D
istribution: norm

al
D

istribution: exp−
m

ix

Sink
ho

rn

Sink
ho

rn
−lo

g

Sta
bil

ize
d

Gre
en

kh
or

n

L−
BFGS

Sink
ho

rn

Sink
ho

rn
−lo

g

Sta
bil

ize
d

Gre
en

kh
or

n

L−
BFGS

Sink
ho

rn

Sink
ho

rn
−lo

g

Sta
bil

ize
d

Gre
en

kh
or

n

L−
BFGS

−8

−6

−4

−2

0

2

−4

−2

0

2

Algorithm

Lo
g−

sc
al

e
E

rr
or

η/MaxIter

0.01/300
0.01/1000
0.001/600
0.001/2000

Errors on the Sinkhorn loss value

(b) Sinkhorn loss value

Figure 6: Comparing different algorithms on the errors of Sinkhorn transport plan and loss value.
The missing boxplots indicate that the corresponding results are NaNs.

B.3 RUNNING TIME OF FORWARD AND BACKWARD PASSES

In this section we compare the running time of three algorithms on differentiating the Sinkhorn loss.

(a) The proposed algorithm “Analytic”: L-BFGS in the forward pass, and analytic differentiation
in the backward pass.

(b) “Implicit” implemented in the OTT-JAX library (Cuturi et al., 2022): Sinkhorn-log in the for-
ward pass, and implicit differentiation in the backward pass.

(c) “Unroll” implemented in the OTT-JAX library: Sinkhorn-log in the forward pass, and unrolled
automatic differentiation in the backward pass.

We use the second data generation model in Section B.2 to simulate data points, and use the three
algorithms above to compute the Sinkhorn loss and its derivative with respect to the cost matrix.
For each configuration, we randomly generate the data 100 times, and compute their mean forward
time and mean total time. The stopping rule implemented in the OTT-JAX library is ∥T1m − a∥+

14

∥TT1n − b∥ < εott, and one of the terms would be exactly zero in the last iteration. The stopping
rule for L-BFGS is ∥TT1n−b∥∞ < εlbfgs. To account for such a difference, we set εlbfgs = 10−6,
and let εott =

√
max{n,m}·εlbfgs. In fact, this setting favors the competing method, as its stopping

criterion is strictly weaker than the proposed one. To test whether the algorithms actually converge
under the given criteria, we also report the number of converging cases within the 100 repetitions.

Results for different data dimensions and regularization parameters are given in Table 2 and Table
3, where the former uses 1000 maximum number of iterations, and the latter uses 10000.

Table 2: Running time of three algorithms for differentiating the Sinkhorn loss, with maximum 1000
iterations.

Mean forward
time (ms)

Std. of
forward time

Mean total
time (ms)

Std. of total
time Converged

m = n = 64
p = 8
η = 0.1

Analytic 19.07 2.11 19.33 2.13 100

Implicit 27.77 0.69 39.66 3.41 0

Unroll 27.53 0.13 101.30 0.36 0

m = n = 64
p = 8
η = 0.01

Analytic 23.21 3.45 23.48 3.46 100

Implicit 27.33 0.05 50.52 5.19 0

Unroll 27.39 0.12 100.66 0.39 0

m = n = 128
p = 16
η = 0.1

Analytic 23.79 2.96 24.19 2.96 100

Implicit 29.81 0.61 58.21 4.91 0

Unroll 29.75 0.06 107.18 0.19 0

m = n = 128
p = 16
η = 0.01

Analytic 32.24 4.99 32.68 5.00 100

Implicit 29.73 0.05 85.56 7.48 0

Unroll 29.65 0.08 106.66 0.46 0

m = n = 256
p = 32
η = 0.1

Analytic 28.60 3.82 29.40 3.85 100

Implicit 33.69 0.32 82.53 4.21 0

Unroll 33.60 0.23 123.25 0.07 0

m = n = 256
p = 32
η = 0.01

Analytic 43.94 6.08 44.86 6.12 100

Implicit 33.75 0.20 137.46 11.66 0

Unroll 33.78 0.10 122.99 0.27 0

m = n = 512
p = 64
η = 0.1

Analytic 41.35 5.64 43.05 5.53 100

Implicit 46.06 0.05 130.96 11.97 0

Unroll 46.02 0.04 167.64 0.22 0

m = n = 512
p = 64
η = 0.01

Analytic 67.76 9.65 69.42 9.65 100

Implicit 46.08 0.05 230.34 11.72 0

Unroll 46.09 0.05 167.68 0.20 0

B.4 MORE EXPERIMENTS ON SIMULATED DATA

We experiment on more simulated data to compare the computational efficiency of Analytic and
Implicit. We do not include Unroll since it is too time-consuming. The results are given in Figure
7, as analogues of Figure 3. Three more simulated data sets are studied, and we also include the
Sinkhorn loss as a metric to evaluate the model performance over time.

15

Table 3: Running time of three algorithms for differentiating the Sinkhorn loss, with maximum
10000 iterations.

Mean forward
time (ms)

Std. of
forward time

Mean total
time (ms)

Std. of total
time Converged

m = n = 64
p = 8
η = 0.1

Analytic 19.01 2.10 19.27 2.10 100

Implicit 267.95 24.57 277.86 24.58 12

Unroll 269.49 24.76 986.46 90.67 12

m = n = 64
p = 8
η = 0.01

Analytic 23.28 3.46 23.54 3.48 100

Implicit 275.42 0.34 284.84 4.74 0

Unroll 275.54 0.49 1011.70 0.75 0

m = n = 128
p = 16
η = 0.1

Analytic 23.76 2.92 24.16 2.90 100

Implicit 297.36 0.34 320.29 4.32 0

Unroll 297.93 0.63 1074.47 1.33 0

m = n = 128
p = 16
η = 0.01

Analytic 32.21 5.00 32.68 5.01 100

Implicit 297.79 0.30 324.95 9.99 0

Unroll 297.90 0.32 1073.24 0.84 0

m = n = 256
p = 32
η = 0.1

Analytic 28.72 3.84 29.57 3.83 100

Implicit 342.23 1.53 386.80 9.22 0

Unroll 343.18 0.70 1256.10 2.94 0

m = n = 256
p = 32
η = 0.01

Analytic 44.45 6.14 45.32 6.18 100

Implicit 343.57 2.01 411.12 18.92 0

Unroll 341.00 2.02 1253.67 3.33 0

m = n = 512
p = 64
η = 0.1

Analytic 41.50 5.60 43.27 5.53 100

Implicit 469.04 0.77 552.64 15.31 0

Unroll 465.03 1.82 1705.51 6.36 0

m = n = 512
p = 64
η = 0.01

Analytic 67.97 9.69 69.68 9.67 100

Implicit 464.59 1.04 624.28 26.48 0

Unroll 464.16 0.55 1707.04 3.31 0

B.5 ARCHITECTURES FOR DEEP GENERATIVE MODELS

For the deep generative models on MNIST and Fashion-MNIST data in Section 7.4, the architectures
of the generators are given in Table 4, where FCd stands for a fully-connected layer with d output
dimensions, and Convc,k,s,pin,pout is the transposed convolutional layer with c output channels,
kernel size k, stride s, input padding pin, and output padding pout.

Both models are trained using the Adam optimizer with learning rate 0.0001, on mini-batches of
size 600. The Sinkhorn regularization parameter is set to η = 0.1, and the training process consists
of two stages. In the first stage, we use the squared L2 distance to construct the cost matrix, and
in the second stage we switch to the L1 distance. The intuition is that the squared L2 distance has
smoother derivatives, thereby making the training more stable in early steps; on the other hand, the
L1 distance makes the generated images sharper. The two stages are run for 20 and 30 epochs,
respectively. The Wasserstein distances values in Figure 4 are computed in the first stage.

16

3 2 1 0 1 2 3
X1

3

2

1

0

1

2

3

4

X2

Circle8

3 2 1 0 1 2 3
X1

3

2

1

0

1

2

3

X2

Grid9

3 2 1 0 1 2 3
X1

3

2

1

0

1

2

3

X2

Grid25

1.0 0.5 0.0 0.5 1.0 1.5 2.0
X1

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

X2

Moon

0 10 20 30 40 50 60
Elapsed Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Si
nk

ho
rn

 D
iv

er
ge

nc
e

Fixed Z, = 0.5
Method

Analytic
Implicit

0 5 10 15 20 25
Elapsed Time (seconds)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Si
nk

ho
rn

 D
iv

er
ge

nc
e

Fixed Z, = 0.5
Method

Analytic
Implicit

0 5 10 15 20 25 30 35
Elapsed Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

Si
nk

ho
rn

 D
iv

er
ge

nc
e

Fixed Z, = 0.5
Method

Analytic
Implicit

0 2 4 6 8 10 12
Elapsed Time (seconds)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Si
nk

ho
rn

 D
iv

er
ge

nc
e

Fixed Z, = 0.5
Method

Analytic
Implicit

0 10 20 30 40 50 60
Elapsed Time (seconds)

0.2

0.4

0.6

0.8

1.0

1.2

2-
W

as
se

rs
te

in
 D

ist
an

ce

Fixed Z, = 0.5
Method

Analytic
Implicit

0 5 10 15 20 25
Elapsed Time (seconds)

0.2

0.4

0.6

0.8

1.0

1.2

2-
W

as
se

rs
te

in
 D

ist
an

ce
Fixed Z, = 0.5

Method
Analytic
Implicit

0 5 10 15 20 25 30 35
Elapsed Time (seconds)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2-
W

as
se

rs
te

in
 D

ist
an

ce

Fixed Z, = 0.5
Method

Analytic
Implicit

0 2 4 6 8 10 12
Elapsed Time (seconds)

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

2-
W

as
se

rs
te

in
 D

ist
an

ce

Fixed Z, = 0.5
Method

Analytic
Implicit

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Elapsed Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Si
nk

ho
rn

 D
iv

er
ge

nc
e

Fixed Z, = 0.5
Method

Analytic
Implicit

0 5 10 15 20 25 30
Elapsed Time (seconds)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Si
nk

ho
rn

 D
iv

er
ge

nc
e

Fixed Z, = 0.5
Method

Analytic
Implicit

0 20 40 60 80 100 120
Elapsed Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Si
nk

ho
rn

 D
iv

er
ge

nc
e

Fixed Z, = 0.5
Method

Analytic
Implicit

0 5 10 15 20
Elapsed Time (seconds)

0.00

0.02

0.04

0.06

0.08

Si
nk

ho
rn

 D
iv

er
ge

nc
e

Fixed Z, = 0.5
Method

Analytic
Implicit

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Elapsed Time (seconds)

0.2

0.4

0.6

0.8

1.0

1.2

2-
W

as
se

rs
te

in
 D

ist
an

ce

Fixed Z, = 0.5
Method

Analytic
Implicit

0 5 10 15 20 25 30
Elapsed Time (seconds)

0.2

0.4

0.6

0.8

1.0

1.2

2-
W

as
se

rs
te

in
 D

ist
an

ce

Fixed Z, = 0.5
Method

Analytic
Implicit

0 20 40 60 80 100 120
Elapsed Time (seconds)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2-
W

as
se

rs
te

in
 D

ist
an

ce

Fixed Z, = 0.5
Method

Analytic
Implicit

0 5 10 15 20
Elapsed Time (seconds)

0.05

0.10

0.15

0.20

0.25

0.30

2-
W

as
se

rs
te

in
 D

ist
an

ce

Fixed Z, = 0.5
Method

Analytic
Implicit

0 25 50 75 100 125 150 175 200
Elapsed Time (seconds)

0.2

0.4

0.6

0.8

1.0

1.2

Si
nk

ho
rn

 D
iv

er
ge

nc
e

Sampled Z, = 0.1
Method

Analytic
Implicit

0 50 100 150 200
Elapsed Time (seconds)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Si
nk

ho
rn

 D
iv

er
ge

nc
e

Sampled Z, = 0.1
Method

Analytic
Implicit

0 50 100 150 200
Elapsed Time (seconds)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Si
nk

ho
rn

 D
iv

er
ge

nc
e

Sampled Z, = 0.1
Method

Analytic
Implicit

0 10 20 30 40
Elapsed Time (seconds)

0.00

0.01

0.02

0.03

0.04

0.05

Si
nk

ho
rn

 D
iv

er
ge

nc
e

Sampled Z, = 0.1
Method

Analytic
Implicit

0 25 50 75 100 125 150 175 200
Elapsed Time (seconds)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2-
W

as
se

rs
te

in
 D

ist
an

ce

Sampled Z, = 0.1
Method

Analytic
Implicit

0 50 100 150 200
Elapsed Time (seconds)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

2-
W

as
se

rs
te

in
 D

ist
an

ce

Sampled Z, = 0.1
Method

Analytic
Implicit

0 50 100 150 200
Elapsed Time (seconds)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

2-
W

as
se

rs
te

in
 D

ist
an

ce

Sampled Z, = 0.1
Method

Analytic
Implicit

0 10 20 30 40
Elapsed Time (seconds)

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

2-
W

as
se

rs
te

in
 D

ist
an

ce

Sampled Z, = 0.1
Method

Analytic
Implicit

Figure 7: More experiments on simulated data. The plots are analogues of Figure 3, with three
additional data sets and the extra Sinkhorn divergence metric to evaluate model performance.

B.6 APPLYING THE SINKHORN LOSS TO WASSERSTEIN AUTO-ENCODER

Finally, we illustrate the application of the Sinkhorn loss in an Wasserstein auto-encoder (WAE,
Tolstikhin et al., 2018) generative model, based on the CelebA data set (Liu et al., 2015). The
training data consist of 20000 human face images, each of size 64 × 64. The WAE model learns
an encoder Q : Rp → Rr and a decoder G : Rr → Rp as a solution to the following optimization

17

Table 4: Architectures of the neural networks for MNIST and Fashion-MNIST data.

MNIST Fashion-MNIST

Layer Output shape Layer Output shape

Input z 16 Input z 32
FC3136 +ReLU 3136 FC6272 +ReLU 6272

Reshape 64× 7× 7 Reshape 128× 7× 7
Conv32,4,2,1,0 +ReLU 32× 14× 14 Conv64,4,2,1,0 +ReLU 64× 14× 14
Conv32,4,2,1,1 +ReLU 32× 29× 29 Conv64,4,2,1,1 +ReLU 64× 29× 29

Conv1,4,1,2,0 1× 28× 28 Conv1,4,1,2,0 1× 28× 28

problem:

min
Q,G

EpX
∥X −G(Q(X))∥2 + ξ · D(pZ , pQ(X)), (7)

where pX , pQ(X), and pZ are the distribution of data points X , the distribution of Q(X), and a
pre-specified latent distribution, respectively, and ξ is a regularization parameter to balance the two
terms. The first term in (7) is the reconstruction error, and the second term quantifies the divergence
of the distribution of Q(X) to the latent distribution pZ . We simply take pZ to be a multivariate
standard normal distribution, and use the Sinkhorn divergence (Genevay et al., 2018) to defineD(·):

D(µ, ν) = Sλ(µ, ν)−
1

2
Sλ(µ, µ)−

1

2
Sλ(ν, ν),

where µ and ν are two discrete distributions, and with slight abuse of notation, Sλ(µ, ν) is the
Sinkhorn loss studied in this article. In actual implementation, µ and ν are Diracs of data points
from pZ and pQ(X), respectively. To generate new images, we sample latent data points Z1, . . . , Zn

from the latent distribution pZ , and then pass them to the generator to obtain images Yi = G(Zi),
i = 1, . . . , n.

Since the focus of this article is on the computation and differentiation of the Sinkhorn loss, we do
not attempt to build and train the model with full complexity. Instead, to compare computing time,
we only run 10 epochs for illustration purpose. The architectures of the encoder and the decoder are
given in Table 5, and we set the latent dimension to r = 64, the WAE regularization parameter to
ξ = 1, and the Sinkhorn loss parameter to η = 0.1. We use the Adam optimizer with a learning
rate of 0.001 and a mini-batch size of 500. We have found that the Implicit method generates NaNs
after 72 mini-batch iterations, so we only show the results for the proposed Analytic algorithm and
the existing Unroll method. Figure 8(a) shows the training process of the WAE model based on the
Sinkhorn divergence for 10 epochs, and Figure 8(b) shows the randomly generated images using the
Analytic method after 50 epochs. It is clear that the proposed Analytic method is more efficient than
the Unroll method in training.

Table 5: Architectures of the neural networks for CelebA data.

Encoder Decoder

Layer Output shape Layer Output shape

Input x 3× 64× 64 Input z 64
Conv32,4,2,1,0 +ReLU 32× 32× 32 Conv256,4,1,0,0 +ReLU 256× 4× 4
Conv64,4,2,1,0 +ReLU 64× 16× 16 Conv128,4,2,1,0 +ReLU 128× 8× 8
Conv128,4,2,1,0 +ReLU 128× 8× 8 Conv64,4,2,1,0 +ReLU 64× 16× 16
Conv256,4,2,1,0 +ReLU 256× 4× 4 Conv32,4,2,1,0 +ReLU 32× 32× 32

Conv64,4,2,0,0 64× 1× 1 Conv3,4,2,1,0 3× 64× 64

18

0 200 400 600 800
Elapsed Time (seconds)

55

56

57

58

59

60

61

62

Lo
ss

 Fu
nc

tio
n

Va
lu

e

Training Process of WAE using the Sinkhorn Divergence
Analytic
Unroll

(a) (b)

Figure 8: (a) Training process of WAE for the CelebA data for 10 epochs, based on the Sinkhorn
divergence. (b) Randomly generated images using the Analytic method after 50 epochs of training.

B.7 COMPUTING ENVIRONMENT

All of the experiments in this article were conducted on a personal computer with an Intel i9-11900K
CPU and an Nvidia RTX 3090 GPU.

For the motivating example in Section 3.1 and the experiments in Section B.2, results for Sinkhorn’s
algorithm, Sinkhorn-log, Stabilized, and Greenkhorn are computed using the Python Optimal Trans-
port (POT) library (Flamary et al., 2021). For the experiments in Sections 7.2, 7.3, B.3, B.4, and B.6,
the Implicit and Unroll algorithms are implemented in the OTT-JAX library (Cuturi et al., 2022).

C PROOFS OF THEOREMS

C.1 TECHNICAL LEMMAS

In this section we state a few technical lemmas that are used to prove our main theorems. Lemma 1
to Lemma 3 below are standard conclusions in vector calculus, Lemma 4 and Lemma (5) are derived
from the eigenvalue theory, and Lemma (7) and Lemma (8) are related to the Sinkhorn problem.

We first introduce the following notations. For any x ∈ R, let [x]+ = max{x, 0}. For a matrix
A = (aij) ∈ Rn×m, the vectorization operator, vec(A), creates a vector by stacking the column
vectors of A together, i.e.,

vec(A) = (a11, . . . , an1, a12, . . . , an2, . . . , a1m, . . . , anm)T.

For two matrices A = (aij) ∈ Rn×m and B ∈ Rp×q , the Kronecker product of A and B is defined
as

A⊗B =

a11B · · · a1mB
...

. . .
...

an1B · · · anmB

 .

For a differentiable vector-valued function f : Rn → Rm, the partial derivative of f with respect to
x is defined as

∂f(x)

∂xT
=

∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

...
. . .

...
∂fm(x)
∂x1

· · · ∂fm(x)
∂xn

 .

We use In to denote the n × n identity matrix, and σmax(·) and σmin(·) stand for the largest and
smallest eigenvalues of some symmetric matrix, respectively.

Lemma 1. Given two matrices A ∈ Rm×n and B ∈ Rn×r,

vec(AB) = (Ir ⊗A)vec(B) = (BT ⊗ Im)vec(A).

19

Lemma 2. Let f : Rm → Rn and g : Rm → Rn be two vector-valued differentiable functions of
x ∈ Rm. Then

∂

∂xT
f(x)Tg(x) = g(x)T

∂f(x)

∂xT
+ f(x)T

∂g(x)

∂xT
.

Lemma 3. Let f : Rm → Rl and g : Rm → Rr be two vector-valued differentiable functions of
x ∈ Rm. Then

∂

∂xT
vec(f(x)g(x)T) = (g(x)⊗ Il)

∂f(x)

∂xT
+ (Ir ⊗ f(x))

∂g(x)

∂xT
.

Lemma 4. Let A and B be two n × n positive definite matrices, and let α1 ≥ · · · ≥ αn > 0 and
β1 ≥ · · · ≥ βn > 0 be the ordered eigenvalues of A and B, respectively. Then for any x ∈ Rn,

xTA1/2BA1/2x ≤ α1β1∥x∥2.

Proof. Let U1×n = xTA1/2, and then u := UUT = xTAx ≤ α1∥x∥2, and UBUT =
xTA1/2BA1/2x. By Theorem A.4 in page 788 of Marshall et al. (2011), we immediately get

UBUT = tr(UBUT) ≤ β1u ≤ α1β1∥x∥2.

Lemma 5. Let A and B be two symmetric matrices of the same size. Then

σmin(A) + σmin(B) ≤ σmin(A+B) ≤ σmax(A+B) ≤ σmax(A) + σmax(B).

Proof. Using the well-known identity σmax(A) = max∥x∥=1 x
TAx, we have

σmax(A+B) = max
∥x∥=1

xT(A+B)x ≤ max
∥x∥=1

xTAx+ max
∥x∥=1

xTBx = σmax(A) + σmax(B).

Applying the inequality above to −(A+B), we get the result on the opposite direction.

Lemma 6. Let x = (x1, . . . , xn)
T and y = (y1, . . . , yn)

T be two vectors. Define LSE(x) =
log
∑n

i=1 e
xi , and then for any x, y ∈ Rn,

−∥x− y∥∞ ≤ min
i

(xi − yi) ≤ LSE(x)− LSE(y) ≤ max
i

(xi − yi) ≤ ∥x− y∥∞.

Proof. It is easy to find that ∇xLSE(x) = softmax(x) = (s1, . . . , sn)
T is the softmax function,

where si = exi/
∑n

k=1 e
xk ∈ (0, 1). By the mean value theorem, we have

LSE(x)− LSE(y) = softmax(wx+ (1− w)y)T(x− y)

for some 0 < w < 1. Let z = softmax(wx+ (1− w)y), and then

LSE(x)− LSE(y) =

n∑
i=1

zi(xi − yi) ≤
[
max

i
(xi − yi)

]
·

n∑
i=1

zi = max
i

(xi − yi) ≤ ∥x− y∥∞,

and similarly, LSE(x)− LSE(y) ≥ mini(xi − yi) ≥ −∥x− y∥∞.

Lemma 7. Let f(β) be defined as in (6), and let µ = MTa and ui = maxj Mij , i = 1, . . . , n. If
f(β) ≤ c, then we have maxj βj ≤ Uc and minj βj ≥ Lc, where

Uc = b−1
m

[(
max

1≤j≤m−1
µj

)
+ η

n∑
i=1

ai log ai − η + c

]
+

(8)

Lc = −
(

min
1≤j≤m−1

bj

)−1
[

n∑
i=1

aiui + η

n∑
i=1

ai log ai − η + c

]
+

. (9)

20

Proof. By definition,

f(β) = η

n∑
i=1

ai log

 m∑
j=1

eλ(βj−Mij)

− η n∑
i=1

ai log ai − βTb+ η.

If f(β) ≤ c, then

c0 := c+ η

n∑
i=1

ai log ai − η ≥ η
n∑

i=1

ai log

 m∑
j=1

eλ(βj−Mij)

− βTb.

By definition we have βm = 0, and let J = argmax1≤j≤m−1 βj . Then

c0 ≥ η
n∑

i=1

ai log
[
eλ(βJ−MiJ)

]
− βTb =

n∑
i=1

ai(βJ −MiJ)−
m−1∑
j=1

βjbj

≥ βJ −
n∑

i=1

aiMiJ − βJ
m−1∑
j=1

bj = bmβJ − µJ ≥ bmβJ − max
1≤j≤m−1

µj ,

which verifies (8) by noting that maxj βj = [βJ]+.

Next, let K = argmin1≤j≤m−1 βj . We can assume that βK < 0, since otherwise the trivial bound
minj βj = βm = 0 is already met. Consider the sets S+ = {j : βj > 0} and S− = {j : βj < 0}.
Then clearly,

βTb = βKbK +
∑
j ̸=K
j∈S+

βjbj +
∑
j ̸=K
j∈S−

βjbj ≤ βKbK + [βJ]+ ·
∑
j ̸=K
j∈S+

bj +0 ≤ βKbK + [βJ]+(1− bm).

Also note that log(
∑m

j=1 e
xj) ≥ maxj xj for any x1, . . . , xn ∈ R, so

η

n∑
i=1

ai log

 m∑
j=1

eλ(βj−Mij)

 ≥ η n∑
i=1

ai log

 m∑
j=1

eλ(βj−ui)

 = η

n∑
i=1

ai

log
 m∑

j=1

eλβj

− λui

= η log

 m∑
j=1

eλβj

− n∑
i=1

aiui ≥ η ·max
j

(λβj)−
n∑

i=1

aiui

= max
j
βj −

n∑
i=1

aiui = [βJ]+ −
n∑

i=1

aiui.

As a result,

c0 ≥ η
n∑

i=1

ai log

 m∑
j=1

eλ(βj−Mij)

− βTb ≥ [βJ]+ −
n∑

i=1

aiui − βKbK − [βJ]+(1− bm)

= bm[βJ]+ −
n∑

i=1

aiui − βKbK ≥ −
n∑

i=1

aiui − βKbK ,

and then

βK ≥ −b−1
K

[
n∑

i=1

aiui + c0

]
+

≥ −
(

min
1≤j≤m−1

bj

)−1
[

n∑
i=1

aiui + c0

]
+

,

which verifies (9).

Lemma 8. Let T be an n×m matrix with strictly positive entries, and suppose that n ≥ m. Define
µ = T1m, ν = TT1n, and

H =

(
diag(µ) T̃

T̃T diag(ν̃)

)
, D = diag(ν̃)− T̃Tdiag(µ)−1T̃ .

21

Then
σmax(D) ≤ max

1≤j≤m−1
νj ,

σmin(D) ≥ σmin(H) ≥ n−m+ 2

2(n−m+ 1)
· min
1≤i≤n

Tim,

σmin(D) ≥ min
1≤i≤m−1

m−1∑
j=1

Dij = min
1≤j≤m−1

n∑
i=1

µ−1
i TijTim.

Proof. Consider the matrix S = H − sJ , where J is an (n+m− 1)× (n+m− 1) matrix filled
of ones, and s is a positive scalar. Let

Rk =
∑
j ̸=k

|Skj |, k = 1, . . . , n+m− 1.

Suppose s ≤ min1≤i≤n,1≤j≤m−1 Tij ,and then for k = 1, . . . , n, it is easy to find that

Rk = (n− 1)s+

m−1∑
j=1

(Tkj − s) = (n− 1)s+ µk − Tkm − (m− 1)s = (n−m)s+ µk − Tkm,

and for k = n+ 1, . . . , n+m− 1,

Rk = (m− 2)s+

n∑
i=1

(Ti,k−n − s) = (m− 2)s+ νk−n − ns = (m− n− 2)s+ vk−n.

Then it is easy to see that

Skk −Rk =

{
µk −Rk = Tkm − (n−m)s, k = 1, . . . , n

νk−n −Rk = (n+ 2−m)s, k = n+ 1, . . . , n+m− 1
.

Let
min

1≤i≤n
Tim − (n−m)s = (n+ 2−m)s,

and then s = min1≤i≤n Tim/(2n− 2m+ 2), and

Skk −Rk ≥ L :=
n−m+ 2

2(n−m+ 1)
· min
1≤i≤n

Tim > 0

for all k. By the Gershgorin circle theorem, every eigenvalue of S must be greater than L. Since
H = S + sJ and J is nonnegative definite, we also have σmin(H) ≥ L > 0, implying that H is
positive definite.

For the second formula, it is easy to find that the D matrix is the Schur complement of the block
diag(µ) of the H matrix. So by Theorem 3.1 of Fan (2002), we have σmin(D) ≥ σmin(H) and
σmax(D) ≤ σmax(diag(ν̃)) = max1≤j≤m−1 νj .

Finally, let c = max1≤j≤m−1 νj , and then D can be expressed as D = cIm−1 − B, where B =

T̃Tdiag(µ)−1T̃ +diag(c1m−1− ν̃) is a matrix that have nonnegative entries. In addition, we have
proved thatD is positive definite, soD is a nonsingularM -matrix by the definition in Tian & Huang
(2010). Then Theorem 3.2 of Tian & Huang (2010) shows that

σmin(D) ≥ min
1≤i≤m−1

m−1∑
j=1

Dij .

Let δ = D1m−1, and then clearly min1≤i≤m−1

∑m−1
j=1 Dij = mini δi. Note that

δ = D1m−1 = ν̃ − T̃Tdiag(µ)−1T̃1m−1 = ν̃ − T̃Tdiag(µ)−1(T1m − Tm)

= ν̃ − T̃Tdiag(µ)−1(µ− Tm) = ν̃ − T̃T1n + T̃Tdiag(µ)−1Tm = T̃Tdiag(µ)−1Tm,

where Tm stands for the m-th column of T . Therefore,

min
1≤i≤m−1

δi = min
1≤j≤m−1

n∑
i=1

µ−1
i TijTim.

22

C.2 PROOF OF (6)

Let T = eλ[α⊕ β −M], and then it is easy to find that ∇αL(α, β) = a− T1m and ∇β̃L(α, β) =
b̃ − T̃T1n. Since α∗(β) = argmaxα L(α, β), we find that αi ≡ α∗(β)i is the solution to the
equation a− T1m = 0. By definition, we have

ai =

m∑
j=1

eλ(αi+βj−Mij) = eλαi

m∑
j=1

eλ(βj−Mij), i = 1, . . . , n,

so the solution is αi = η log ai − η log
(∑m

j=1 e
λ(βj−Mij)

)
. Since T1m = a, we immediately get

1T
nT1m = 1, so

L(α∗(β), β) = α∗(β)Ta+ βTb− η1T
nT1m = α∗(β)Ta+ βTb− η,

and we get the expression for f(β) = −L(α∗(β), β). Finally,

∇β̃L(α
∗(β), β) =

[
∂α∗(β)

∂β̃T

]T
∇αL(α, β)|α=α∗(β) + ∇β̃L(α, β)

∣∣∣
α=α∗(β)

.

Since α∗(β) = argmaxα L(α, β) implies that ∇αL(α, β)|α=α∗(β) = 0, we have

∇β̃L(α∗(β), β) = ∇β̃L(α, β)
∣∣∣
α=α∗(β)

, and hence

∇β̃f(β) = −∇β̃L(α
∗(β), β) = T̃ (β)T1n − b̃.

C.3 PROOF OF THEOREM 1

By definition we have
Sλ(M,a, b) = ⟨T ∗,M⟩ = vec(T ∗)Tvec(M),

so Lemma 2 gives
∂Sλ(M,a, b)

∂vec(M)T
= vec(M)T

∂vec(T ∗)

∂vec(M)T
+ vec(T ∗)T

∂vec(M)

∂vec(M)T
. (10)

Obviously, ∂vec(M)/∂vec(M)T is the (nm)× (nm) identity matrix I(nm), so the second term of
(10) is essentially vec(T ∗)T, and the remaining task is to derive ∂vec(T ∗)/∂vec(M)T.

Let R = α∗ ⊕ β∗ −M = α∗1T
m + 1nβ

∗T −M , and then T ∗ = eλ[R]. Using the chain rule of
derivatives, we have

∂vec(T ∗)

∂vec(M)T
=
∂vec(T ∗)

∂vec(R)T
· ∂vec(R)

∂vec(M)T
. (11)

It is easy to find that ∂vec(T ∗)/∂vec(R)T is an (nm) × (nm) diagonal matrix with diagonal
elements vec(λT ∗), so

vec(M)T
∂vec(T ∗)

∂vec(R)T
= λvec(M ⊙ T ∗)T. (12)

Furthermore,
∂vec(R)

∂vec(M)T
=
∂vec(α∗1T

m + 1nβ
∗T −M)

∂vec(M)T

= (1m ⊗ In)
∂α∗

∂vec(M)T
+ (Im ⊗ 1n)

∂β∗

∂vec(M)T
− I(nm), (13)

where the second identity is an application of Lemma 3. Combine (11), (12) and (13), and then we
get

vec(M)T
∂vec(T ∗)

∂vec(M)T
= λvec(M ⊙ T ∗)T

∂vec(R)

∂vec(M)T

= λvec(M ⊙ T ∗)T(1m ⊗ In)
∂α∗

∂vec(M)T

+ λvec(M ⊙ T ∗)T(Im ⊗ 1n)
∂β∗

∂vec(M)T

− λvec(M ⊙ T ∗)T,

23

which is the first term of (10).

Using the identities in Lemma 1, we have

vec(M ⊙ T ∗)T(1m ⊗ In) =
[
(1m ⊗ In)Tvec(M ⊙ T ∗)

]T
=
[
(1T

m ⊗ In)vec(M ⊙ T ∗)
]T

= [vec((M ⊙ T ∗)1m)]
T := µT

r ,

vec(M ⊙ T ∗)T(Im ⊗ 1n) =
[
(Im ⊗ 1n)

Tvec(M ⊙ T ∗)
]T

=
[
(Im ⊗ 1T

n)vec(M ⊙ T ∗)
]T

=
[
vec(1T

n (M ⊙ T ∗))
]T

:= µT
c .

Since we have set β∗
m = 0, (10) simplifies to

∂Sλ(M,a, b)

∂vec(M)T
= λ

[
µT
r

∂α∗

∂vec(M)T
+ µ̃T

c

∂β̃∗

∂vec(M)T
− vec(M ⊙ T ∗)T

]
+ vec(T ∗)T. (14)

Let w∗ = (α∗T, β̃∗T)T, and then the main challenge is to calculate ∂w∗/∂vec(M)T.

First, note that the optimality condition for (α∗, β∗) = argmaxα,β L(α, β) is

∇αL(α, β)|(α,β)=(α∗,β∗) = 0, ∇βL(α, β)|(α,β)=(α∗,β∗) = 0. (15)

Section C.2 has shown that∇αL(α, β) = a− T1m and ∇β̃L(α, β) = b̃− T̃T1n. Moreover,

∇2
αL(α, β) = −λdiag(T1m)

∇2
β̃
L(α, β) = −λdiag(T̃T1n)

∇β̃ (∇αL(α, β)) = −λT̃ .

Define the function

F (w,M) =

(
∇αL(α, β)
∇β̃L(α, β)

)
=

(
a− T1m

b̃− T̃T1n

)
, (16)

where w = (αT, β̃T)T, and then w̃∗ satisfies the equation F (w∗,M) = 0, indicating that w∗ is
implicitly a function of M , written as w∗ = w(M). By the implicit function theorem,

∂w(M)

∂vec(M)T
= −

[
∂F (w,M)

∂wT

∣∣∣∣
w=w∗

]−1
∂F (w,M)

∂vec(M)T

∣∣∣∣
w=w∗

:= −F−1
w FM .

Note that

Fw = FT
w =

(∇2
αL(α, β) ∇β̃ (∇αL(α, β))[

∇β̃ (∇αL(α, β))
]T

∇2
β̃
L(α, β)

)
:= −λ

(
A B̃

B̃T D̃

)
.

Then by the inversion formula for block matrices, we have

F−1
w = −λ−1

(
A B̃

B̃T D̃

)−1

= −λ−1

(
A−1 +A−1B̃∆̃

−1

B̃TA−1 −A−1B̃∆̃−1

−∆̃−1B̃TA−1 ∆̃−1

)
,

where ∆̃ = D̃ − B̃TA−1B̃. For g = (µT
r , µ̃

T
c)

T, the vector s̃ = (sTu , s̃
T
v)

T = −λF−1
w g̃ has the

following expression:

s̃v = −∆̃−1B̃TA−1µr + ∆̃−1µ̃c

su = A−1µr +A−1B̃∆̃
−1

B̃TA−1µr −A−1B̃∆̃−1µ̃c,

= A−1µr −A−1B̃s̃v.

After some simplification, we obtain

∆̃ = diag(T̃T1n)− T̃Tdiag((T1m)−)T̃

s̃v = ∆̃−1µ̃c − ∆̃−1T̃T((T1m)− ⊙ µr)

su = (T1m)− ⊙ µr − (T1m)− ⊙ (T̃ s̃v).

24

Next, partition FM as FM =

(
GM

H̃M

)
, where GM ∈ Rn×(nm) and H̃M ∈ R(m−1)×(nm). By

definition,

GM =

∂G1

∂vec(M)T

...
∂Gn

∂vec(M)T

 , Gi = −
m∑
j=1

Tij = −
m∑
j=1

eλ(αi+βj−Mij),

so
∂Gi

∂Mkl
=

{
0, i ̸= k

λTkl, i = k
.

This indicates that GM = λ (diag(T1), . . . ,diag(Tm)), where T1, . . . , Tm are the column vectors
of T . Similarly, for Hj = −

∑n
i=1 Tij ,

H̃M =

∂H1

∂vec(M)T

...
∂Hm−1

∂vec(M)T

 ,
∂Hj

∂Mkl
=

{
0, j ̸= l

λTkl, j = l
,

implying that

H̃M = λ

 TT
1

. . .
TT
m−1 0T

n

 .

As a result,

µT
r

∂α∗

∂vec(M)T
+ µ̃T

c

∂β̃∗

∂vec(M)T

= (µT
r , µ̃

T
c)

∂w∗

∂vec(M)T
= −(µT

r , µ̃
T
c)F

−1
w FM

=

[
−λF−1

w

(
µr

µ̃c

)]T(
λ−1GM

λ−1H̃M

)
= (sTu , s̃

T
v)

(
λ−1GM

λ−1H̃M

)
=
(
(su ⊙ T1)T, . . . , (su ⊙ Tm)T

)
+
(
s̃v,1T

T
1 , . . . , s̃v,m−1T

T
m−1,0

T
n

)
= [vec (diag(su)T + Tdiag(sv))]

T
. (17)

Finally, substitute (17) into (14), and we have

∂Sλ(M,a, b)

∂vec(M)T
= λ [vec (diag(su)T

∗ + T ∗diag(sv))− vec(M ⊙ T)]T + vec(T)T

Transforming back to the matrix form, and we obtain

∂Sλ(M,a, b)

∂M
= λ(su ⊕ sv −M)⊙ T + T.

Replacing T with T ∗ and noting that a = T ∗1m, b̃ = T̃ ∗T1n, we get the stated result. The positive
definiteness of the ∆̃ matrix is a direct consequence of Lemma 8.

C.4 PROOF OF THEOREM 2

In the proof of Theorem 1 we have already shown that

∇2
α,β̃
L(α, β) = −λH := −λ

(
diag(T1m) T̃

T̃T diag(T̃T1n)

)
,

where T = eλ[α ⊕ β −M]. Plugging α∗(β) into L(α, β), and then ∇2
β̃
L(α∗(β), β) is the Schur

complement of the top left block of∇2
α,β̃
L(α, β), given by

∇2
β̃
L(α∗(β), β) = −λ

[
diag(T̃T1n)− T̃Tdiag(T1m)−1T̃

]
.

25

Since f(β) = −L(α∗(β), β), by Lemma 8 we find that ∇2
β̃
f(β) is positive definite, so f(β) is

strictly convex on β̃, and hence β∗ is unique.

The optimality conditions for (α∗, β∗) are T ∗1m = a and T ∗T1n = b, where T ∗ = eλ[α
∗ ⊕ β∗ −

M]. Since T ∗
ij = exp{λ(α∗

i + β∗
j −Mij)} ≥ 0 and ai =

∑m
j=1 T

∗
ij , bj =

∑n
i=1 T

∗
ij , we have

T ∗
ij ≤ min{ai, bj} for all i and j, implying that

α∗
i + β∗

j ≤ Uij :=Mij + λ−1 min{log(ai), log(bj)}.
Since β∗

m = 0 by design, we have α∗
i ≤ Uαi

< +∞, i = 1, . . . , n, where Uαi
= Uim = Mim +

λ−1 min{log(ai), log(bm)}. This indicates that α∗
i is upper bounded.

Next, let I = argmaxi T
∗
im. Since T ∗T1n = b implies that bm =

∑n
i=1 T

∗
im ≤ nT ∗

Im, we have

T ∗
Im = exp{λ(α∗

I −MIm)} ≥ bm/n,
and hence α∗

I ≥MIm + λ−1 log(bm/n). Again, since α∗
i + β∗

j ≤ Uij for all i and j, it holds that

β∗
j ≤ UIj − α∗

I ≤ UIj −MIm − λ−1 log(bm/n)

=MIj + λ−1 min{log(aI), log(bj)} −MIm − λ−1 log(bm/n)

=MIj −MIm + λ−1 min{log(naI/bm), log(nbj/bm)}
:= Uβj < +∞, j = 1, . . . ,m. (18)

On the other hand, T ∗T1n = b implies that bj =
∑n

i=1 T
∗
ij = eλβ

∗
j ·
∑n

i=1 e
λ(α∗

i −Mij) for any j, so

log bj = λβ∗
j + log

[
n∑

i=1

eλ(α
∗
i −Mij)

]
≤ λβ∗

j + log

[
n∑

i=1

eλ(Uαi
−Mij)

]
.

It is well-known that

max{x1, . . . , xn} ≤ log

(
n∑

i=1

exi

)
≤ max{x1, . . . , xn}+ log n

for any x1, . . . , xn ∈ R, so

β∗
j ≥ λ−1 log bj − λ−1 log

[
n∑

i=1

eλ(Uαi
−Mij)

]
≥ λ−1 log bj −max

i
(Uαi −Mij)− λ−1 log n

≥ λ−1 log(bj/n)−max
i

(Uαi
−Mij) := Lβj

> −∞, j = 1, . . . ,m. (19)

Then (18) and (19) together show that |β∗
j | <∞.

Similarly, T ∗1m = a, so

log ai ≤ λα∗
i + log

 m∑
j=1

eλ(Uβj
−Mij)

 ,
α∗
i ≥ λ−1 log(ai/m)−max

j
(Uβj

−Mij) := Lαi
> −∞, i = 1, . . . , n.

The trivial bounds Lαi
and Uβj

are obtained by removing the unknown index I .

The results above verify that |α∗
i | < ∞ and |β∗

j | < ∞, and hence ∥α∗∥ < ∞ and ∥β∗∥ < ∞.
Finally, plugging in β∗ to the objective function, and we immediately get f∗ > −∞.

C.5 PROOF OF THEOREM 3

Claims (a) and (b) are direct consequences of the convergence property of the L-BFGS algorithm
(Theorem 7.1, Liu & Nocedal, 1989), and we only need to verify its three assumptions. The new
results here are explicit expressions for the constants C1, C2, and r.

26

First, f is twice continuously differentiable, so Assumption 7.1(1) of Liu & Nocedal (1989) is
verified. Second, f is a closed convex function, and we define the level set of f as Lc = {β̃ ∈
Rm−1 : f(β) ≤ c}. Theorem 2 has shown that f∗ > −∞, and when c = f∗, obviously Lc = {β̃∗}
is non-empty and bounded. Then Corollary 8.7.1 of Rockafellar (1970) shows that Lc is bounded
for every c. In particular, for a fixed initial value β̃(0), define L = {β̃ : f(β) ≤ f(β(0))}, and then
L is a bounded, closed, and convex set, which verifies Assumption 7.1(2) of Liu & Nocedal (1989).
Third, let H(β) := ∇2

β̃
f(β), and then in the proof of Theorem 2 we have already shown that

H(β) = λ
[
diag(T̃T1n)− T̃Tdiag(T1m)−1T̃

]
,

where T = eλ[α
∗(β)⊕ β −M]. Lemma 8 verifies that

σmin(H(β)) ≥ λ · n−m+ 2

2(n−m+ 1)
· min
1≤i≤n

Tim, σmax(H(β)) ≤ λ · max
1≤j≤m−1

νj ,

where ν = TT1n. On the L set, Lemma 7 shows that maxj βj ≤ Uc and minj βj ≥ Lc, with
c = f(β(0)). Therefore,

αi := η log ai − η log

 m∑
j=1

eλ(βj−Mij)

 ≥ η log ai − η log
e−λMim +

m−1∑
j=1

eλ(Uc−Mij)

= η log ai − Uc − η log

e−λ(Mim+Uc) +

m−1∑
j=1

e
−λMij

 := Ai,

Tim = eλ(αi−Mim) ≥ eλ(Ai−Mim).

On the other hand, Tij must satisfy Tij > 0 and
∑m

j=1 Tij = ai for any i and j, so for j =
1, . . . ,m− 1, we have Tij ≤ ai − Tim. Therefore,

vj =

n∑
i=1

Tij ≤
n∑

i=1

(ai − Tim) = 1−
n∑

i=1

Tim ≤ 1−
n∑

i=1

eλ(Ai−Mim), j = 1, . . . ,m− 1.

This implies that there exist constants M1,M2 > 0 such that

M1∥x∥2 ≤ xTH(β)x ≤M2∥x∥2

for all x ∈ Rm−1 and β̃ ∈ L, with

M1 = λ · n−m+ 2

2(n−m+ 1)
· min
1≤i≤n

eλ(Ai−Mim),

M2 = λ

[
1−

n∑
i=1

eλ(Ai−Mim)

]
.

This verifies Assumption 7.1(3) of Liu & Nocedal (1989).

Next, we derive the explicit constants in the theorem. Following the notations in equation (7.3) of
Liu & Nocedal (1989), the BFGS matrixBk for the L-BFGS algorithm has the following expression

Bk = B(m̃), B(l+1) = B(l) − B(l)sls
T
l B

(l)

sTl B
(l)sl

+
yly

T
l

yTl sl
,

where m̃ = min{k + 1,m0}, m0 is a user-defined constant explained in Section A, and {yl} and
{sl} are two sequences of vectors. We also choose B(0) = I to be the identity matrix.

Fix l = m̃, and let cos θk = sTl B
(l)sl/(∥sl∥ · ∥B(l)sl∥), ρk = yTl sl/∥sl∥2, τk = ∥yl∥2/yTl sl, and

qk = sTl B
(l)sl/∥sl∥2. Then it can be verified that

tr(B(l+1)) = tr(B(l))− ∥B
(l)sl∥2

sTl B
(l)sl

+
∥yl∥2

yTl sl
= tr(B(l))− qk

cos2 θk
+ τk, (20)

det(B(l+1)) = det(B(l))ρk/qk. (21)

27

Define ψ(B) = tr(B)− log det(B), and it is known that ψ(B) > 0 for any positive definite matrix
B. Equation (6.50) of Nocedal & Wright (2006) shows that

0 < ψ(B(l+1)) = tr(B(l))− qk
cos2 θk

+ τk − log det(B(l))− log ρk + log qk

= ψ(B(l)) + (τk − log ρk − 1) +

(
1− qk

cos2 θk
+ log

qk
cos2 θk

)
+ log cos2 θk.

Under the assumptions verified above, equations (7.8) and (7.9) of Liu & Nocedal (1989) show that
M1 ≤ yTl sl/∥sl∥2 ≤ M2 and ∥yl∥2/yTl sl ≤ M2 for every l, so M1 ≤ ρk ≤ M2 and τk ≤ M2.
Since h(x) = 1− x+ log(x) ≤ 0 for all x > 0, we have

0 < ψ(Bk) + (M2 − logM1 − 1) + log cos2 θk := ψ(Bk) +M3 + log cos2 θk. (22)

Now we show that ψ(Bk) can be upper bounded. First, Lemma 5 implies that for l = 0, . . . , m̃− 1,

σmax(B
(l+1)) ≤ σmax(B

(l)) + 0 + ∥yl∥2/yTl sl ≤ σmax(B
(l)) +M2,

so σmax(Bk) ≤ 1 + m0M2. This also implies that qk ≤ 1 + m0M2. Next, (20) shows that
tr(Bk) ≤ m− 1 +m0M2, and (21) gives

log det(B(l+1)) = log det(B(l)) + log ρk − log qk ≥ log det(B(l)) + logM1 − log(1 +m0M2),

implying that log det(Bk) ≥ m0 [logM1 − log(1 +m0M2)]. As a result, we get

ψ(Bk) ≤M4 := m− 1 +m0M2 −m0 [logM1 − log(1 +m0M2)] . (23)

Combining (22) and (23), we have cos2 θk > e−(M3+M4).

Finally, using the argument in Byrd et al. (1987), we have f (k+1) − f∗ ≤ r(f (k) − f∗), where

r = 1− c1(1− c2)M1/M2 cos
2 θk < 1− c1(1− c2)M1/M2e

−(M3+M4),

and c1, c2 are two constants for the Wolfe condition as explained in Section A. The constant C1 is
simply 2/M1.

For (c), we follow the analysis in Nocedal et al. (2002). Let g(β) = ∇β̃f(β), and then g(β∗) = 0.
By Taylor’s theorem we have

f(β)− f∗ =
1

2
(β̃ − β̃∗)TH1(β̃ − β̃∗), (24)

where H1 = H(ξ) for some ξ in the line segment connecting β̃ and β̃∗. Also,

g(β)− g(β∗) = g(β) = H2(β̃ − β̃∗), H2 =

∫ 1

0

H(β̃ + t(β̃∗ − β̃))dt. (25)

Combining (24) and (25), we get

∥g(β)∥2 = (β̃ − β̃∗)TH2
2 (β̃ − β̃∗) =

2(β̃ − β̃∗)TH2
2 (β̃ − β̃∗)

(β̃ − β̃∗)TH1(β̃ − β̃∗)
· (f(β)− f∗)

for any β̃ ∈ L. Let x = H
1/2
1 (β̃ − β̃∗), and then

∥g(β)∥2 =
2xTH

−1/2
1 H2

2H
−1/2
1 x

∥x∥2
· (f(β)− f∗).

It is easy to find that

σmax(H
−1
1) = [σmin(H1)]

−1 ≤M−1
1 , σmax(H

2
2) = [σmax(H2)]

2 ≤M2
2 .

By Lemma 4, we have xTH−1/2
1 H2

2H
−1/2
1 x ≤ M−1

1 M2
2 ∥x∥2 for any x ∈ Rm−1, and hence

∥g(β)∥2 ≤ C2(f(β) − f∗) for all β̃ ∈ L, where C2 = 2M−1
1 M2

2 . Since f (k) ≤ f (0) due to claim
(a), we find that β̃(k) ∈ L for all k > 0. Therefore,

∥g(γ(k))∥2 ≤ C2(f
(k) − f∗) ≤ C2r

k(f (0) − f∗),

28

and claim (c) is proved.

Claims (d) and (e) can be verified as follows. For any β̃ ∈ L, recall that T = eλ[α
∗(β) ⊕ β −M],

and then T1m − a = 0 and

∥T̃T1n − b̃∥∞ ≤ ∥T̃T1n − b̃∥ = ∥∇β̃f(β)∥,

indicating that ∣∣∣∣∣
n∑

i=1

Tij − bj

∣∣∣∣∣ ≤ ∥∇β̃f(β)∥, j = 1, . . . ,m− 1. (26)

Then 0 < Tij ≤
∑m

j=1 Tij = ai and 0 < Tij ≤
∑n

i=1 Tij ≤ bj + ∥∇β̃f(β)∥. The gradient
∥∇β̃f(β)∥ can be bounded using claim (c), so (d) is also proved. On the other hand, (26) shows that

ai =

m∑
j=1

Tij ≤ m ·max
j
Tij ,

and similarly we have

bj − ∥∇β̃f(β)∥ ≤
n∑

i=1

Tij ≤ n ·max
i
Tij .

Replacing ∥∇β̃f(β)∥ by its upper bound, and claim (e) is verified.

C.6 PROOF OF THEOREM 4

For matrix An×m = (aij), define ∥A∥∞ = maxi,j |aij |, and the notation A ≥ 0 means aij ≥ 0 for
all i and j. First, it is easy to show that ∥A⊙B∥F ≤ ∥A∥∞∥B∥F , since

∥A⊙B∥F =

√∑
i,j

(aijbij)2 ≤
√∑

i,j

∥A∥2∞b2ij = ∥A∥∞∥B∥F .

Next, we show that if Bn×m ≥ 0, Cp×n ≥ 0, and v ≥ 0, where v is a vector, then ∥C(A⊙B)v∥ ≤
∥A∥∞∥CBv∥.

Proof. Let ui be the i-th element of (A⊙B)v, and then

ui =

m∑
j=1

aijbijvj , |ui| ≤ ∥A∥∞
m∑
j=1

bijvj .

Consequently,

∥C(A⊙B)v∥ =

√√√√ p∑
k=1

∣∣∣∣∣
n∑

i=1

ckiui

∣∣∣∣∣
2

≤

√√√√ p∑
k=1

(
n∑

i=1

cki|ui|

)2

≤ ∥A∥∞

√√√√√ p∑
k=1

 n∑
i=1

cki

 m∑
j=1

bijvj

2

= ∥A∥∞∥CBv∥.

Similarly, if A ≥ 0 and v ≥ 0, then

∥A(u⊙ v)∥ =

√√√√√ n∑
i=1

∣∣∣∣∣∣
m∑
j=1

aijujvj

∣∣∣∣∣∣
2

≤ ∥u∥∞

√√√√√ n∑
i=1

 m∑
j=1

aijvj

2

= ∥u∥∞∥Av∥.

Moreover, for matrices Bn×m ≥ 0, and Cm×p ≥ 0, let Cj be the j-th column of C, and then

∥(A⊙B)C∥F =

√√√√ p∑
j=1

∥(A⊙B)Ci∥2 ≤ ∥A∥∞

√√√√ p∑
j=1

∥BCi∥2 = ∥A∥∞∥BC∥F .

29

Let α = α∗+f and β = β∗+g for some perturbation vectors f and g, and define T = eλ[α⊕β−M].
Then it is easy to find that

T − T ∗ = eλ[α
∗ ⊕ β∗ −M + (f ⊕ g)]− T ∗ = eλ[f ⊕ g]⊙ T ∗ − T ∗.

Let ET = eλ[f ⊕ g]− 1n1
′
m, so T − T ∗ = ET ⊙ T ∗. Since |ex − 1| < 2|x| for |x| < 1, we have

|(ET)ij | = |eλ(fi+gj) − 1| < 2λ|fi + gj |

as long as λ|fi + gj | < 1. This can be achieved by assuming ε := 2λ(∥f∥∞ + ∥g∥∞) < 1, since in
this case λ|fi + gj | ≤ λ(∥f∥∞ + ∥g∥∞) < 1/2. Then clearly ∥ET ∥∞ < ε.

Consider ŝu = su + δu and ŝv = sv + δv for some perturbation vectors δu and δv , and let

∇̂MS = T + λ(ŝu ⊕ ŝv −M)⊙ T
= T + λ(su ⊕ sv −M)⊙ T + λ(δu ⊕ δv)⊙ T
= ∇MS + ET ⊙∇MS + λ(δu ⊕ δv)⊙ (T ∗ + ET ⊙ T ∗).

Then we have

∥∇̂MS −∇MS∥F ≤ ∥ET ⊙∇MS∥F + ∥λ(δu ⊕ δv)⊙ (T ∗ + ET ⊙ T ∗)∥F
≤ ∥ET ∥∞∥∇MS∥F + λ∥δu ⊕ δv∥∞∥T ∗ + ET ⊙ T ∗∥F
< ε∥∇MS∥F + λ∥δu ⊕ δv∥∞∥1n1

′
m + ET ∥∞∥T ∗∥F

≤ ε∥∇MS∥F + λ∥δu ⊕ δv∥∞(1 + ∥ET ∥∞)∥T ∗∥F
< ε∥∇MS∥F + λ(1 + ε)∥δu ⊕ δv∥∞∥T ∗∥F
< ε∥∇MS∥F + 2λ∥T ∗∥F (∥δu∥∞ + ∥δv∥∞).

Therefore, we just need to show proper bounds for ∥δu∥∞ and ∥δv∥∞.

Consider µ̂r = (M ⊙ T)1m and µ̂c = (M ⊙ T)T1n, and then

µ̂r = (M ⊙ (T ∗ + ET ⊙ T ∗))1m = µr + (ET ⊙M ⊙ T ∗)1m := µr + δr,

µ̂c = (M ⊙ (T ∗ + ET ⊙ T ∗))T1n = µc + (ET ⊙M ⊙ T ∗)T1m := µc + δc.

It can be easily verified that

∥a− ⊙ δr∥ = ∥diag(a−)(ET ⊙M ⊙ T ∗)1m∥ ≤ ∥ET ∥∞∥diag(a−)(M ⊙ T ∗)1m∥ < ε∥µr∥,
∥T ∗T(a− ⊙ δr)∥ = ∥T ∗Tdiag(a−)(ET ⊙M ⊙ T ∗)1m∥ ≤ ∥ET ∥∞∥T ∗Tdiag(a−)(M ⊙ T ∗)1m∥

< ε∥T ∗T(a− ⊙ µr)∥,
∥δc∥ = ∥(ET ⊙M ⊙ T ∗)T1m∥ ≤ ∥ET ∥∞∥(M ⊙ T ∗)T1m∥ < ε∥µc∥.

Define bv = µc − T ∗T(a− ⊙ µr) and b̂v = µ̂c − TT(a− ⊙ µ̂r), and we have

b̂v = µc + δc − (T ∗ + ET ⊙ T ∗)T(a− ⊙ (µr + δr))

= µc + δc − T ∗T(a− ⊙ (µr + δr))− (ET ⊙ T ∗)T(a− ⊙ (µr + δr))

= µc − T ∗T(a− ⊙ µr) + δc − T ∗T(a− ⊙ δr)− (ET ⊙ T ∗)T(a− ⊙ (µr + δr))

As a result,

∥b̂v − bv∥ = ∥δc − T ∗T(a− ⊙ δr)− (ET ⊙ T ∗)T(a− ⊙ (µr + δr))∥
≤ ∥δc∥+ ∥T ∗T(a− ⊙ δr)∥+ ∥ET ∥∞∥T ∗T(a− ⊙ (µr + δr))∥
< ε∥µc∥+ ε∥T ∗T(a− ⊙ µr)∥+ ε∥T ∗T(a− ⊙ µr)∥+ ε∥T ∗T(a− ⊙ δr)∥
< ε∥µc∥+ ε∥T ∗T(a− ⊙ µr)∥+ ε∥T ∗T(a− ⊙ µr)∥+ ε2∥T ∗T(a− ⊙ µr)∥
< ε∥µc∥+ 3ε∥T ∗T(a− ⊙ µr)∥.

30

On the other hand, let t̂ij be the (i, j) element of the matrix T̃Tdiag(a−)T̃ , and tij be the (i, j)

element of T̃ ∗Tdiag(a−)T̃ ∗. Then

t̂ij =

n∑
k=1

TkiTkj/ak =

n∑
k=1

[1 + (ET)ki][1 + (ET)kj]T
∗
kiT

∗
kj/ak,

|t̂ij − tij | =

∣∣∣∣∣
n∑

k=1

[(ET)ki + (ET)kj + (ET)ki(ET)kj]T
∗
kiT

∗
kj/ak

∣∣∣∣∣
≤ (2ε+ ε2)

n∑
k=1

∣∣T ∗
kiT

∗
kj/ak

∣∣ < 3εtij .

This implies that

∥D̂ −D∥F = ∥T̃ ∗Tdiag(a−)T̃ ∗ − T̃Tdiag(a−)T̃∥F =

√∑
i,j

|t̂ij − tij |2 ≤ 3ε∥D∥F .

Then by Theorem 7.2 of Higham (2002), if 3εσ∥D∥F < 1, we have

∥δv∥
∥sv∥

≤ εσ

1− 3εσ∥D∥F

(
∥µc∥+ 3∥T ∗T(a− ⊙ µr)∥

∥sv∥
+ 3∥D∥F

)
.

where σ = ∥D−1∥op = 1/σmin(D). Assume that ε < min{1, 1/(6σ∥D∥F)}, then with slight
simplification, we have ∥δv∥∞ ≤ ∥δv∥ ≤ Cvε, where

Cv = 2σ(∥µc∥+ 3∥T ∗T(a− ⊙ µr)∥+ 3∥D∥F ∥sv∥).

On the other hand,

∥δu∥∞ ≤ ∥δu∥ ≤ ∥a− ⊙ δr∥+ ∥a− ⊙ (T ŝv − T ∗sv)∥
≤ ε∥µr∥+ ∥a− ⊙ (T ∗ŝv + (ET ⊙ T ∗)ŝv − T ∗sv)∥
≤ ε∥µr∥+ ∥a− ⊙ (T ∗δv)∥+ ∥a− ⊙ ((ET ⊙ T ∗)ŝv)∥
≤ ε∥µr∥+ ∥a− ⊙ (T ∗δv)∥+ ∥diag(a−)(ET ⊙ T ∗)ŝv∥
≤ ε∥µr∥+ ∥a− ⊙ (T ∗δv)∥+ ε∥diag(a−)T ∗ŝv∥
= ε∥µr∥+ ∥a− ⊙ (T ∗δv)∥+ ε∥diag(a−)T ∗(sv + δv)∥
≤ ε∥µr∥+ (1 + ε)∥a− ⊙ (T ∗δv)∥+ ε∥diag(a−)T ∗sv∥
≤ ε∥µr∥+ (1 + ε)∥diag(a−)T ∗∥F ∥δv∥+ ε∥a− ⊙ (T ∗sv)∥
≤ ε(∥µr∥+ 2Cv∥diag(a−)T ∗∥F + ∥a− ⊙ (T ∗sv)∥).

Combining the results together, we get

∥∇̂MS −∇MS∥F ≤ ε [∥∇MS∥F + 2λ∥T ∗∥F (Cv + Cu)] ,

where Cu = ∥µr∥+ 2Cv∥diag(a−)T ∗∥F + ∥a− ⊙ (T ∗sv)∥.

Finally, Theorem 3(b) shows that ∥g∥∞ ≤ ∥g∥ = ∥β(k) − β∗∥ ≤
√
C1ε(k). In addition, by (6) we

have

α
(k)
i := α∗(β(k))i = η log ai − η log

 m∑
j=1

eλ(β
(k)
j −Mij)

 .
Then using Lemma (6), we obtain

|α(k)
i −α

∗| = η

∣∣∣∣∣∣log
 m∑
j=1

eλ(β
(k)
j −Mij)

− log

 m∑
j=1

eλ(β
∗
j −Mij)

∣∣∣∣∣∣ ≤ η∥λ(β(k)
j −β

∗
j)∥∞ = ∥g∥∞,

implying that ∥f∥∞ = ∥α∗(β(k)) − α∗∥∞ ≤ ∥g∥∞ ≤
√
C1ε(k). As a result, ε = 2λ(∥f∥∞ +

∥g∥∞) ≤ 4λ
√
C1ε(k).

31

	Introduction
	The (sharp) Sinkhorn loss as approximate OT
	Differentiation of the Sinkhorn loss
	Issues of Sinkhorn's algorithm
	The advocated alternative for forward pass
	The analytic backward pass

	Convergence and stability analysis
	Application: Sinkhorn generative modeling
	Related work
	Numerical experiments
	Running time of forward and backward passes
	Generative models on toy data sets
	Deep generative models

	Conclusion
	Explicit expressions for constants
	Additional experiment details
	Settings of the motivating example
	Forward pass stability and accuracy
	Running time of forward and backward passes
	More experiments on simulated data
	Architectures for deep generative models
	Applying the Sinkhorn loss to Wasserstein auto-encoder
	Computing environment

	Proofs of theorems
	Technical Lemmas
	Proof of (6)
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

