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ABSTRACT

We present a neural rendering approach for binaural sound synthesis that can pro-
duce realistic and spatially accurate binaural sound in realtime. The network
takes, as input, a single-channel audio source and synthesizes, as output, two-
channel binaural sound, conditioned on the relative position and orientation of the
listener with respect to the source. We investigate deficiencies of the `2-loss on
raw wave-forms in a theoretical analysis and introduce an improved loss that over-
comes these limitations. In an empirical evaluation, we establish that our approach
is the first to generate spatially accurate waveform outputs (as measured by real
recordings) and outperforms existing approaches by a considerable margin, both
quantitatively and in a perceptual study. Dataset and code are available online.1

1 INTRODUCTION

The rise of artificial spaces, in augmented and virtual reality, necessitates efficient production of
accurate spatialized audio. Spatial hearing (the capacity to interpret spatial clues from binaural
signals), not only helps us to orient ourselves in 3D environments, it also establishes immersion
in the space by providing the brain with congruous acoustic and visual input (Hendrix & Barfield,
1996). Binaural audio (left and right ear) even guides us in multi-person conversations: consider
a scenario where multiple persons are speaking in a video call, making it difficult to follow the
conversation. In the same situation in a real environment we are able to effortlessly focus on the
speech from an individual (Hawley et al., 2004). Indeed, auditory sensation has primacy over even
visual sensation as an input modality for scene understanding: (1) reaction times are faster for
auditory stimulus compared to visual stimulus (Jose & Praveen, 2010) (2) auditory sensing provides
a surround understanding of space as opposed to the directionality of visual sensation. For these
reasons, the generation of accurate binarual signal is integral to full immersion in artificial spaces.

Most approaches to binaural audio generation rely on traditional digital signal processing (DSP)
techniques, where each component – head related transfer function, room acoustics, ambient noise
– is modeled as a linear time-invariant system (LTI) (Savioja et al., 1999; Zotkin et al., 2004; Sunder
et al., 2015; Zhang et al., 2017). These linear systems are well-understood, relatively easy to model
mathematically, and have been shown to produce perceptually plausible results – reasons why they
are still widely used. Real acoustic propagation, however, has nonlinear wave effects that are not ap-
propriately modeled by LTI systems. As a consequence, DSP approaches do not achieve perceptual
authenticity in dynamic scenarios (Brinkmann et al., 2017), and fail to produce metrically accurate
results, i.e., the generated waveform does not resemble recorded binaural audio well.

In this paper, we present an end-to-end neural synthesis approach that overcomes many of these
limitations by efficiently synthesizing accurate and precise binaural audio. The end-to-end learning
scheme naturally captures the linear and nonlinear effects of sound wave propagation and, being
fully convolutional, is efficient to execute on commodity hardware. Our major contributions are
(1) a novel binarualization model that outperforms existing state of the art, (2) an analysis of the
shortcomings of the `2-loss on raw waveforms and a novel loss mitigating these shortcomings, (3) a
real-world binaural dataset captured in a non-anechoic room.

1https://github.com/facebookresearch/BinauralSpeechSynthesis

1

https://github.com/facebookresearch/BinauralSpeechSynthesis


Published as a conference paper at ICLR 2021

x1:T

c1:T

Neural Time Warping

neural
warp

geometric
warp

⊕
warp activation

ρ1:T

warp

x
(l)
1:T

x
(r)
1:T

Temporal ConvNet

H
y
p
e
r
C
o
n
v

L
a
y
e
r

1

. . .

H
y
p
e
r
C
o
n
v

L
a
y
e
r

N

y
(l)
1:T

y
(r)
1:T

Figure 1: System Overview. Given the source and listener position and orientation c1:T at each
time step, a single-channel input signal x1:T is transformed into a binaural signal. The neural time
warping module learns an accurate warp from the source position to the listeners left and right ear
while respecting physical properties like monotonicity and causality. The Temporal ConvNet models
nuanced effects like room reverberations or head- and ear-shape related modifications to the signal.

Related Work. State of the art DSP techniques approach binaural sound spatialization as a stack of
acoustic components, each of which is an LTI system. As accurate wave-based simulation of room
impulse responses is computationally expensive and requires detailed geometry and material infor-
mation, most real-time systems rely on simplified geometrical models (Välimäki et al., 2012; Savioja
& Svensson, 2015). Head-related transfer functions are measured in an anechoic chamber (Li &
Peissig, 2020) and high-quality spatialization requires binaural recordings at almost 10k different
spatial positions (Armstrong et al., 2018). To generate binaural audio the DSP-based binaural ren-
derers typically perform a series of convolutions with these component impulse responses (Savioja
et al., 1999; Zotkin et al., 2004; Sunder et al., 2015; Zhang et al., 2017). For a more detailed discus-
sion, see Appendix A.4.
Given their success in speech synthesis (Wang et al., 2017), neural networks gained increased at-
tention for audio generation recently. While most approaches focus on models in frequency do-
main (Choi et al., 2018; Vasquez & Lewis, 2019), raw waveform models were long neglected due to
the difficulty to model long-range dependencies on a high-frequency audio signal. With the success
of WaveNet (Van Den Oord et al., 2016) however, direct wave-to-wave modeling is of increasing
interest (Fu et al., 2017; Luo & Mesgarani, 2018; Donahue et al., 2019) and shows major improve-
ments in speech enhancement (Defossez et al., 2020) and denoising (Rethage et al., 2018), speech
synthesis (Kalchbrenner et al., 2018), and music style translation (Mor et al., 2019).
More recently, first steps towards neural sound spatialization have been undertaken. Gebru et al.
(2021) showed that HRTFs can be implicitly learned by neural networks trained on raw waveforms.
Focusing on predicting spatial sound conditioned on visual information, a work by Morgado et al.
(2018) aims to spatialize sound conditioned on 360◦ video. Yet, their work is limited to first order
ambisonics and can not model detailed binaural effects. More closely related is a line of papers
originating from the 2.5D visual sound system by Gao & Grauman (2019b). In this work, binaural
audio is generated conditioned on a video frame embedding such that object locations can contribute
to where sound comes from. Yang et al. (2020); Lu et al. (2019); Zhou et al. (2020) build upon the
same idea. Unfortunately, all these works have in common that they pose the spatialization task as an
upmixing problem, i.e., their models are trained with a mixture of left and right ear binaural record-
ing as pseudo mono input. By design, these methods fail to model time delays and reverberation
effects caused by the difference between source and listener position.

2 A NEURAL NETWORK FOR BINAURAL SYNTHESIS

We consider the problem where a monaural (single-channel) signal x1:T = (x1, . . . , xT ) of length
T is to be transformed into a binaural (stereophonic) signal y(l)

1:T , y
(r)
1:T representing the listener’s left

ear and right ear, given a conditioning temporal signal c1:T . This conditioning signal is the position
and orientation of source and listener, respectively. Here xt, and correspondingly y(l)

t and y(r)
t , are

scalars representing an audio sample at time t. In other words, we aim to produce a function,
(
y

(l)
t , y

(r)
t

)
= f(xt−∆:t|ct−∆:t),

where ∆ is a temporal receptive field. Each ct ∈ R14 contains the 3D position of source and listener
(three values each) and their orientations as quaternions (four values each). Note that in practice, c
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often is of lower frequency than the input and output signals x1:T and y(l/r)
1:T – source and listener

positions would likely not be updated at 48kHz but rather at typical camera frame rates such as 30-
120Hz. To simplify notation, we assume that c has already been upsampled to the same temporal
resolution as the audio signals.

Our overall framework is shown in Figure 1. A neural time warping module first warps the single-
channel input signal x1:T into a two-channel signal x(l/r)

1:T , where the channels represent left and
right ear. The time warping compensates for coarse temporal effects and differences in time of
sound arrival at left and right ear caused by the distance between source and listener. The second
block in Figure 1 is a stack of N layers, each of which is a conditioned hyper-convolution (see
Section 2.2) followed by a sine activation, which has been shown to be beneficial for modeling higher
frequencies (Sitzmann et al., 2020). Following the design of WaveNet, we use kernel size 2 and
double the dilation factor in each layer to increase the receptive field. This temporal ConvNet models
nuanced effects caused by room reverberations, head and ear shape, or changing head orientations.

2.1 NEURAL TIME WARPING

Time warping is the task of mapping a source temporal sequence onto a target sequence and has a
long tradition in temporal signal processing. Most prominently, dynamic time warping (DTW) finds
application in tasks like speech recognition (Juang, 1984) or audio retrieval (Deng & Leung, 2015).
DTW can be characterized as finding a warpfield ρ1:T that warps a source signal x1:T to a target
signal x̂1:T such that the distance between the signals is minimized,

ρ1:T = arg min
ρ̃1:T

∑

t

‖x̂t − xρ̃t‖, where ρt ∈ {1, . . . , T}, (1)

where the warpfield is typically constrained to respect physical properties such as monotonicity
(ρt ≥ ρt−1) and causality (ρt ≤ t).
For binaural audio, there is a clear monotonous and causal relationship between source and target
signal but the target signal is unknown at inference time. Additionally, the warping from mono to
binaural signals goes far beyond simple linear time-shifts. For example, consider the source moving
from the front to the left of the listener. This causes the delay between source and left ear to decrease
but the delay between source and right ear to increase. If source and/or listener are moving, other
wave effects such as the Doppler effect influence how the signal needs to be warped from the source
to the listener’s left and right ear. We are therefore interested in estimating a warpfield from the
conditioning input c1:T , i.e., from the spatial position and orientation of source and listener. A
simple, parameter-free approach is geometric warping based on the speed of sound νsound and the
distance between source and listener. Let p(src)

t and p(lstn)
t be the source and listener positions at time

t (which are part of ct). Then,

ρ(geom)
t = t− ‖p(src)

t − p(lstn)
t ‖ · audio sample rate

νsound
. (2)

This approach, however, fails to model important nuances such as the displacement between the left
and right ear or diffraction delays as sound travels around the listener’s head rather than straight
through. In order to correct for those effects that geometric warping can not model properly, we
estimate a neural warpfield ρ(neural)

1:T = WarpNet(c1:T ) and add it to the geometric warpfield (cf.
Figure 1),

ρt = σ(warp)(ρt−1, ρ̂t) with ρ̂t := ρ(neural)
t + ρ(geom)

t , (3)

where σ(warp)(ρt−1, ρ̂t) = max(ρt−1,min(t, ρ̂t)) is a recursive activation function that ensures
monotonicity and causality. The WarpNet is a shallow temporal convolutional network with four
layers and 64 channels each.
The warped signal can now be computed using the predicted warpfield. Since the warpfield elements
ρt are typically not integers, we define the warped signal x̂1:T to be the linear interpolation of the
original signal x1:T at positions bρtc and dρte,

x̂t = (dρte − ρt) · xbρtc + (ρt − bρtc) · xdρte. (4)

In practice two warpfields are generated, one for each ear. Note how we explicitly enforce physical
constraints in the warping by σ(warp): min(t, ρ̂t) ensures causality by enforcing that the t-th element
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of the warpfield can not be larger than t itself. Monotonicity is enforced by max(ρt−1, ·): if an
element has been warped from ρt−1 to position t− 1, the next element at position t must be warped
from ρt−1 or a succeeding position. In contrast to related approaches such as deformable convo-
lutions (Dai et al., 2017) and spatial transformer networks (Jaderberg et al., 2015), our neural time
warping therefore allows for constrained warping of input signals with arbitrary lengths and directly
models a physical phenomenon of sound.

2.2 CONDITIONED HYPER-CONVOLUTIONS

Raw waveform models where the output depends on an input signal and an additional conditioning
temporal signal have primarily been studied in speech synthesis (Van Den Oord et al., 2016). The
predominant approach towards such conditional temporal convolutions is an additive combination
of the input signal x1:T and the conditioning signal c1:T , i.e., z1:T = W ∗x1:T + V ∗ c1:T + b, such
that the result of the convolution at time t is

zt =

K∑

k=1

W:,:,kxt−k+1 +

K∑

k=1

V:,:,kct−k+1 + b. (5)

Here, W ∈ RCout×Cin×K and V ∈ RCout×Ccond×K are tensors containing the weights for temporal
convolutions of the Cin-dimensional input signal x1:T and the Ccond-dimensional conditional signal
c1:T with a kernel size of K. Note that the convolutional weights W and V in this formulation are
constant over time. Binaural filters in traditional digital signal processing, on the contrary, depend
on the position of the sound source.
Inspired by the DSP formulation, we predict the convolutional weights for the input x1:T of a layer
and the bias as functions of the conditioning input c1:T ,

zt =

K∑

k=1

[
H(W)(c1:t)

]
:,:,k
xt−k+1 +H(b)(c1:t). (6)

This formulation is similar to the use of hyper-networks in Ha et al. (2017) but rather than generating
them from intermediate feature maps, weights are generated from the conditioning input c1:T that
contains physical information about the relation between source and listener. H(W) and H(b) are
small convolutional hyper-networks that receive c1:t as input and predict the convolutional weights
and the bias as their output, respectively. Therefore, not only is the input to the convolutional layer a
temporal sequence but the weights and biases change over time as well. We show in Appendix A.3
that ifH(W) andH(b) are linear networks, hyper-convolutions equal equation 5 plus a biliear term.

2.3 DEFICIENCIES OF THE `2-LOSS ON RAW WAVEFORMS

Training a generative audio model with an `2-loss on the raw waveform is generally considered to
result in poor audio quality and distorted signals particularly for speech. Therefore, a number of
mostly spectrogram oriented alternative loss functions have been introduced over recent years (Kol-
bæk et al., 2020). Here, we provide an analytical explanation for a fundamental problem of phase
estimation with the `2-loss on the waveform and show that a simple additional loss term mitigates
the problem. While correct phase estimation is not critical for single-channel audio, it is crucial for
binaural audio as our ears are sensitive to interaural time differences as small as 10µs (Brown &
Duda, 1998). To start the analysis, let

L2(y1:T , ŷ1:T ) =
∑

t

(yt − ŷt)2 (7)

be the time-domain `2-loss between the predicted audio signal y1:T and the target ŷ1:T and let
Yk, Ŷk ∈ C denote the k-th frequency component of y1:t and ŷ1:T in the Fourier domain. We denote
the amplitude error and angular phase error of the k-th frequency component as

L(amp)(Yk, Ŷk) =
∣∣∣|Yk| − |Ŷk|

∣∣∣ and L(phase)(Yk, Ŷk) = ∠(Yk, Ŷk), (8)

where | · | is the modulus (or magnitude) of the complex number.
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Figure 2: Expected amplitude and phase error from Lemma 1 as a function of `2-value ε and target
signal energy |Ŷ |.

Lemma 1. Let Ŷ ∈ C be a fixed complex number and Y ∈ Bε,Ŷ = {Y ∈ C : |Y − Ŷ | = ε} be any

complex number that has distance ε from Ŷ . Then, the expected amplitude error and the expected
angular phase error with respect to Ŷ are

EY
(
L(amp)(Y, Ŷ )

)
=

1

2π
|Ŷ |
∫ π

−π

∣∣∣
∣∣ ε
|Ŷ |

+ eiϕ
∣∣− 1

∣∣∣dϕ and (9)

EY
(
L(phase)(Y, Ŷ )

)
=

1

2π

∫ π

−π
arccos

Re
(

ε
|Ŷ |e

iϕ + 1
)

∣∣∣ ε|Ŷ | + eiϕ
∣∣∣

dϕ. (10)

Proof. See Appendix A.1.

Using Parseval’s theorem, we write the time-domain `2-loss as the `2-loss on the complex spectrum,

L2(y1:T , ŷ1:T ) =
∑

k

|Yk − Ŷk|2. (11)

Now, consider a single summand from equation 11 and denote the distance |Yk− Ŷk| as ε. Lemma 1
allows us to analyze the expected amplitude and phase errors along this k-th frequency component.
In Figure 2 we plot equation 9 and equation 10 as a function of the `2-value ε and the target energy
|Ŷ |. There are two key insights. First, the expected amplitude error is low even for large `2-values
– that is, in the early stage of training – as long as the target signal has high energy (top right part of
Figure 2a). The phase, on the contrary, is barely optimized at all early in training when the `2-loss is
large, even for high energy components, see Figure 2b. Second, over the course of training, i.e., when
the `2-loss decreases over time, the expected amplitude error among all target energies decreases.
The expected phase error, on the other hand, improves primarily for high energy components and
mid- and low energy components tend to have poor phase accuracy even for small `2-values.

The above analysis shows that optimizing raw waveforms with a time-domain `2-loss leads to a
strong focus on fitting the amplitudes but accurate phase reconstruction falls short. Since the models
have limited capacity, the training data usually can only be fit up to an `2-loss εmin. If this εmin
is not sufficiently small, the signal’s amplitude can be modeled well but phase errors will always
be significant. This can be critical since small amplitude errors lead to a slight change in speech
coloration but phase errors introduce perceivable distortions. To overcome the deficiencies of the
time-domain `2-loss in phase optimization, we add an explicit phase term to the loss function,

L(y1:T , ŷ1:T ) = L2(y1:T , ŷ1:T ) + λL(phase)
(
STFT(y1:T ),STFT(ŷ1:T )

)
, (12)

where STFT(y1:T ) is the short-term Fourier transform of the audio signal y1:T .2

2We discuss an alternative formulation of this loss that operates fully in frequency domain in Appendix A.2.
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Figure 3: Development of phase- and amplitude error as the `2-loss decreases during training.

Table 1: Comparison of commonly used losses for audio modeling to our proposed `2 + phase loss.

raw waveform power spectrum phase spectrum
(`2 error ×103) (`2 error) (angular error)

power spectrum + phase copy 1.276 0.048 1.563
multiscale STFT 2.279 0.043 1.996
Si-SDR 0.798 0.222 1.507
cross entropy on µ-law encoding 0.161 0.039 1.199
`2 0.141 0.037 0.886
`2 + phase loss (equation 12) 0.167 0.048 0.807

3 EVALUATION

Dataset. We recorded a total of 2 hours of paired mono and binaural data at 48kHz from eight
different speakers, four male and four female. The listener is a mannequin equipped with binaural
microphones in its ears. Participants were asked to walk around the mannequin an a circle with 1.5m
radius and have an unscripted conversation with it. We used an OptiTrack system to track position
and orientation of source and listener throughout the captures. To the best of our knowledge, this is
the only in-the-wild (i.e., not recorded in an anechoic chamber) binaural dataset of such size. We
use a validation sequence and the last two minutes from each participant as test data and train the
models on the remaining data. See Appendix A.5 for a more detailed description.
Network Architecture. The WarpNet architecture is as described in Section 2.1. The tempo-
ral convolutional network consists of three sequential blocks. Each block is a stack of ten hyper-
convolution layers with 64 channels, kernel size 2, and the dilation size is doubled after each layer.
We train our models for 100 epochs using an Adam optimizer. Learning rates are decreased if be-
tween two epochs the loss on the training set did not improve. At inference, our model can produce
binaural audio in real-time.

3.1 LOSS EVALUATION

In order to empirically validate our findings from Section 2.3, we train our proposed network with
time-domain `2-loss only and with the loss proposed in equation 12. Figure 3 shows how the phase
error and amplitude error develop during training as the time-domain `2-loss decreases. The model
trained with `2-loss only (Figure 3a) shows the behaviour that the analysis in Section 2.3 suggests:
the amplitude is optimized aggressively, particularly in the beginning in training when the `2-loss is
still high. The phase, on the contrary, does hardly improve at all in the beginning and shows only
moderate improvements as the `2-loss becomes smaller. When training with time-domain `2-loss
and phase loss (Figure 3b), this effect is being compensated for. The amplitude is optimized less
aggressively and phase improves from the beginning of training on.

Various audio losses have been proposed over time, ranging from optimizing the power spectrum
only and copying the input’s phase (Zhao et al., 2018; Gao & Grauman, 2019a) over a multiscale
STFT loss for high frequency and high time resolution (Yamamoto et al., 2020) to optimization of the
scale-invariant signal to distortion ratio (si-SDR, Le Roux et al. (2019); Heitkaemper et al. (2020);
Luo & Mesgarani (2019)). With the introduction of WaveNet for speech synthesis (Van Den Oord
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Table 2: Ablation study. The components of the proposed binauralization network improve phase
and amplitude and thereby the overall loss in time-domain.

raw waveform power spectrum phase spectrum
(`2 error ×103) (`2 error) (angular error)

(a) vanilla temporal CNN 0.254 0.061 0.934
(b) + warping 0.206 0.061 0.849
(c) + hyper-conv 0.183 0.051 0.847
(d) + sine activation 0.167 0.048 0.807

m
o
n
o

re
c
o
rd

e
d

g
e
o
m

n
e
u
ra

l

(a) Warping example. Top to bottom: source mono
input; left ear binaural recording; geometric warping
as in equation 2; neural time warping as in equation 4.

geometric
warping

neural
warping

neural
warping
+bilinear

full
system

0.053

0.067

0.080

0.093

L
(a

m
p
)
(a

m
p
li
tu

d
e
e
rr
o
r) amplitude error

phase error

0.8

1.0

1.2

1.4

L
(p

h
a
se

)
(a

n
g
u
la
r
p
h
a
se

e
rr
o
r)

(b) Amplitude and phase error for different warping
schemes, warping plus bilinear amplitude scale, and
the full system.

Figure 4: Analysis of the warping module.

et al., 2016), interpreting audio optimization as categorical optimization on a µ-law encoded signal
has become a prominent technique. As Table 1 shows, all these approaches fail to predict accurate
phase and mostly result in meager power spectral and waveform optimization. Overall, our proposed
loss retains accurate `2 and power spectral estimations while outperforming other criteria by a huge
margin in phase error.
Perceptually, we observe a strong correlation between the phase error and noise and distortions in
the generated binaural signal. In particular, our proposed loss was the only one that produced clean
speech without perceivable distortions. This is consistent with our perceptual study in Table 4, where
other approaches with different losses and architectures have been ranked less favorable.

3.2 MODEL EVALUATION

Ablation Study. In Table 2, we show the impact of our model’s individual components compared
to a vanilla temporal convolutional network baseline with a WaveNet-like architecture and ReLU
activations. Number of layers, channels, and kernel sizes are the same as in our final system. Keep-
ing amplitudes unchanged but compensating for interaural time differences, it is not surprising that
neural time warping leads to a huge improvement in phase. Replacing regular convolutions with
hyper-convolutions, on the contrary, is particularly beneficial to improve the power spectrum. Fi-
nally, replacing the ReLU activations by sine functions, which have been proven to retain high fre-
quency details more reliably (Sitzmann et al., 2020), leads to an additional moderate improvement
along waveform, phase, and amplitude error.

Neural Time Warping. The purpose of neural time warping is a strong initial alignment of the mono
source signal to the left and right ear listener signal, respectively. Note the significant temporal shift
between the mono signal and recorded left ear signal in Figure 4a. In the same figure, observe how
geometric warping provides an approximate alignment to the reference signal, while the learned
neural warping successfully corrects the inaccurate geometric warping and aligns the peaks and
valleys more accurately. Although those adjustments seem small, the impact of neural warping on
the phase error is significant, as shown in Figure 4b (red bars). Naturally, neural warping can not
improve the amplitude (blue bars).

Temporal HyperConv Network. Neural warping provides an accurate alignment between input
and target signal. This raises the question if a deep network is required on top of the warping
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Table 3: Comparison to state of the art approaches for binaural sound synthesis.

raw waveform power spectrum phase spectrum
(`2 error ×103) (`2 error) (angular error)

DSP 0.485 0.058 1.388
2.5D Sound 1.085 0.113 1.519
WaveNet 0.237 0.048 1.239
ours 0.167 0.048 0.807

Table 4: Mean opinion scores of different approaches. Participants were ask to rank cleanliness,
spatialization, and overall realism on a Likert scale from 1 to 5.

cleanliness spatialization realism

DSP 3.48 ± 0.88 3.75 ± 0.98 3.62 ± 0.90
2.5D Sound 2.70 ± 1.09 3.18 ± 0.94 2.70 ± 1.03
WaveNet 1.20 ± 0.51 2.92 ± 1.11 1.39 ± 0.71
ours 4.26 ± 0.89 3.76 ± 0.91 3.88 ± 0.99

binaural recordings 3.69 ± 0.94 3.88 ± 0.96 3.82 ± 0.88

module or if a linear amplitude adjustment can already yield convincing results. We therefore apply
a learned bilinear term to the warped result,

y
(l/r)
t = x(warped)

t aT ct + b, a ∈ RCcond , b ∈ R (13)

given the conditioning ct and the warped signal x(warped) for the left or right ear, respectively. Fig-
ure 4b shows that this leads to a slight improvement of the amplitude error but falls way behind
the performance of the full system with a deep temporal network of hyper-convolutions after the
warping module. Inspection of the mono and recorded signal in Figure 4a in fact reveals that the
binaural recording undergoes additional transformations beyond warping. Room reverberations,
source speech directivity, and modifications caused by the shape of the listener’s ear, for instance,
are physical effects that require complex transformations of the warped signal.

Many of these subtle effects depend on the position and orientation of source and listener in the
room. It is therefore plausible that conditioned hyper-convolutions, which can model more complex
dependencies between inputs and conditioning variables in a single layer, show better performance
than standard convolutions, cf. Table 2 (b) versus (c). As Figure 5 reveals, hyper-convolutions also
converge significantly faster than standard convolutions in the early stages of training.

3.3 STATE OF THE ART COMPARISON

In Table 3, we compare our approach to other neural binauralization approaches and to a DSP base-
line, which is the de-facto state of the art for binauralization. The recently proposed 2.5D visual
sound (Gao & Grauman, 2019b) network operates in frequency domain and predicts a complex
mask which the input is multiplied with to obtain left and right ear outputs. We compare to their
approach and replace the visual features with our conditioning features c1:T . For the STFT, we
use a window size of 1,600 samples and a hop length of 480 samples (10ms). Therefore, modeling
delays of less than 10ms requires non-trivial manipulation of the phase information in the complex
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Table 5: Real-time-factor for offline processing and latency for streaming generation of binaural
audio. The DSP baseline runs on CPU, all other models run on an NVidia Tesla V100.

trainable parameters offline inference streaming mode
real-time-factor latency

DSP (* on CPU) − 0.680 25.0ms (±2.1ms)
2.5D Sound 16.7M 0.013 −
WaveNet 1.9M 0.043 31.9ms (±0.3ms)
ours 8.6M 0.069 32.8ms (±0.4ms)

spectrogram, which is a more difficult operation than modeling delays in time-domain. We also
provide a comparison to a WaveNet that proved to be generally strong in various generative audio
problems (Rethage et al., 2018; Engel et al., 2017). For the conditioning on source and listener po-
sitions, we follow the approach of Van Den Oord et al. (2016), i.e., the source and listener positions
are appended to the input of each temporal convolutional layer. Note that we use the WaveNet in a
non-autoregressive setup since the input audio, i.e., the mono signal, is fully available at inference
time. Overall, our approach performs significantly better than other methods.
For a perceptual evaluation, we asked 100 participants to rank a total of 2,000 audio snippets from 1
to 5 on a Likert scale according to three criteria: cleanliness of the signal, spatialization quality, and
overall realism, see Table 4. All scores are below a 5 (indistinguishable from reality) because par-
ticipants listened to results for a generic head-related transfer function rather to one that takes their
explicit head and ear shape into account. Additionally, user’s headphones are of different quality
and not equalized. Note that the binaural (ground truth) recordings score lower on cleanliness be-
cause they contain ambient noise that is uncorrelated to the source input and therefore not modeled
by our approach. WaveNet leads to a particularly noisy audio signal, which is caused by two major
factors. First, audio is generated at 48kHz, which is more difficult to model than 16-24kHz audio.
Arik et al. (2017) show that the quality of WaveNet degrades with higher sampling rates. Second,
WaveNet has to spend a considerable amount of capacity on modeling large source-to-listener time
shifts between the mono and binaural signals and, in consequence, struggles more to generate clean
audio. Our approach ranks favorably against other neural binauralization systems and is also pre-
ferred in terms of cleanliness and realism over the DSP baseline. A t-test showed that all results in
Table 4 are statistically significant with the exception of spatialization between ours and DSP, which
is ranked at almost equal quality. Since DSP is the perceptually closest competitor to our approach,
we performed an additional perceptual side-by-side study between the two systems that comfirms
the results presented in Table 4, see Appendix A.6.

Runtime. When analyzing the runtime of a system, two cases are important. The first is offline
processing, where a user provides the complete mono audio to be binauralized in advance. The
real-time-factor is the computation time divided by the duration of the input. Table 5 shows that
our system allows for a rapid binauralization. On a single NVidia Tesla V100, our approach can
binauralize 100 seconds of mono audio in just 6.9 seconds. Note that the DSP baseline does not run
on a GPU but is purely CPU-based. The second case is a streaming scenario where binaural audio
has to be computed on-the-fly, e.g., when a user navigates through a 3D environment in a game or
in virtual reality. In this case, systems are required to have low latency. On an NVidia Tesla V100,
our approach runs with roughly 33ms latency, which is low enough to have non-observable delays
for videos or games that render frames at 30Hz. Note that this is measured with a naive pytorch
implementation and allows for several improvements to further lower the latency. The 2.5D sound
network can not efficiently be applied in a streaming mode because (a) it is acausal, i.e., requires
access to future audio, and (b) it summarizes as much as 0.32 seconds of audio in a single temporal
step in its bottleneck layer due to the UNet structure.

4 CONCLUSION

Our neural sound binauralization approach is the first purely data-driven end-to-end model that
shows convincing performance compared to traditional state of the art binauralization methods. We
were able to show effectiveness of our model both quantitatively and in a perceptual user study.
Moreover, we unveiled and mitigated a fundamental issue with `2-optimization on the raw waveform
that affects not only this task but is relevant to other generative audio problems as well.
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A APPENDIX

A.1 PROOF OF LEMMA 1

Before we start with the formal proof, let us get a more intuitive idea what Lemma 1 means and
how phase and amplitude error relate to the `2-loss in time-domain and complex spectral domain,
respectively. Reconsider the `2-loss in time-domain and use Parseval’s theorem to relate it to the
complex frequency domain,

∑

t

(yt − ŷt)2 =
∑

k

|Yk − Ŷk|2, (14)

where k runs over all frequency components of the signal. The time-domain `2-loss is therefore a
sum of the `2-loss of each individual frequency component in spectral domain. For the analysis,
let us consider one fixed frequency component k. Our findings hold for all frequency components
equally. Figure 6 illustrates this case in the complex plane.3 Given a target Ŷ and a prediction Y
that has distance ε to Ŷ , optimizing the `2-loss is equal to optimization of the amplitude (the length
difference of Y and Ŷ ) if θY = θŶ . If the phases θY and θŶ are different, however, the relation is
not that obvious. Lemma 1 makes a statement about the expected amplitude and phase error for a
random prediction Y that has `2-distance ε to Ŷ , i.e., that lies on the circle defined by Bε,Ŷ .

Re

Im

Bε,Ŷ

ε

|Y −
Ŷ | =

ε

Ŷ

←
|Ŷ |
→

Y

←
|Y
| →

θŶ

θY

Figure 6: Graphical illustration of the premises for Lemma 1 on the complex plane. Ŷ is the target,
Y is a prediction with distance ε to Ŷ . The amplitude error is defined as

∣∣|Y | − |Ŷ |
∣∣ and the phase

error is the difference between θY and θŶ .

With this in mind, we prove

Lemma 1. Let Ŷ ∈ C be a fixed complex number and Y ∈ Bε,Ŷ = {Y ∈ C : |Y − Ŷ | = ε} be any

complex number that has distance ε from Ŷ . Then, the expected amplitude error and the expected

3We drop the index k and just write Y and Ŷ .
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angular phase error with respect to Ŷ are

EY
(
L(amp)(Y, Ŷ )

)
=

∫

Y ∈Bε,Ŷ

L(amp)(Y, Ŷ )p(Y )dY

=
1

2π
|Ŷ |
∫ π

−π

∣∣∣
∣∣ ε
|Ŷ |

+ eiϕ
∣∣− 1

∣∣∣dϕ and (15)

EY
(
L(phase)(Y, Ŷ )

)
=

∫

Y ∈Bε,Ŷ

L(phase)(Y, Ŷ )p(Y )dY

=
1

2π

∫ π

−π
arccos

Re
(

ε
|Ŷ |e

iϕ + 1
)

∣∣∣ ε|Ŷ | + eiϕ
∣∣∣

dϕ. (16)

Proof. Let Ŷ ∈ C and Y ∈ Bε,Ŷ . Then, amplitude loss and phase loss as defined in equation 8 are
given by

L(amp)(Y, Ŷ ) =
∣∣|Y | − |Ŷ |

∣∣, (17)

L(phase)(Y, Ŷ ) = ∠(Y, Ŷ ) = arccos
Re(Y )Re(Ŷ ) + Im(Y )Im(Ŷ )

|Y | · |Ŷ |
, (18)

where | · | denotes the modulus (or magnitude) of a complex number.

Without loss of generality, let Im(Ŷ ) = 0 and Re(Ŷ ) ≥ 0. This can always be achieved by a unitary
rotation of angle θŶ around the origin of the complex plane which preserves the lengths and angles
between Y and Ŷ . In that case, the phase loss simplifies to

L(phase)(Y, Ŷ ) = arccos
Re(Y ) · |Ŷ |
|Y | · |Ŷ |

= arccos
Re(Y )

|Y | . (19)

Since Y ∈ Bε,Ŷ is a point on the circle around Ŷ with radius ε (see Figure 6 for an illustration),
Bε,Ŷ can equivalently be written as

Bε,Ŷ = {Y ∈ C : Y = ε · eiϕ + Ŷ , ϕ ∈ [−π, π]}. (20)

Then, each Y ∈ Bε,Ŷ is uniquely defined by some ϕ ∈ [−π, π] and we can rewrite L(amp) as a
function of ϕ by substituting Y = εeiϕ + Ŷ ,

L(amp)

ε,Ŷ
(ϕ) =

∣∣|εeiϕ + Ŷ | − |Ŷ |
∣∣. (21)

Observe that due to Im(Ŷ ) = 0 and Re(Ŷ ) ≥ 0, it follows that Re(Ŷ ) = |Ŷ | and

∣∣εeiϕ + Ŷ
∣∣ =

√
(ε cosϕ+ |Ŷ |)2 + ε2 sin(ϕ)2

= |Ŷ |
√

ε2

|Ŷ |2
+ 2

ε

|Ŷ |
cosϕ+ 1

= |Ŷ |
√

ε2

|Ŷ |2
+ 2

ε

|Ŷ |
cosϕ+ cos(ϕ)2 + sin(ϕ)2

= |Ŷ | ·
∣∣ ε
|Ŷ |

+ eiϕ
∣∣. (22)

Therefore,

L(amp)

ε,Ŷ
(ϕ) = |Ŷ | ·

∣∣∣
∣∣ ε
|Ŷ |

+ eiϕ
∣∣− 1

∣∣∣. (23)
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For the phase error, we apply the same substitution and obtain

L(phase)

ε,Ŷ
(ϕ) = arccos

Re(εeiϕ + Ŷ )

|εeiϕ + Ŷ |

= arccos
|Ŷ |
(
ε
|Ŷ | cosϕ+ 1

)

|Ŷ | ·
∣∣ ε
|Ŷ | + eiϕ

∣∣

= arccos

ε
|Ŷ | cosϕ+ 1
∣∣ ε
|Ŷ | + eiϕ

∣∣

= arccos
Re
(
ε
|Ŷ |e

iϕ + 1
)

∣∣ ε
|Ŷ | + eiϕ

∣∣ . (24)

The expected amplitude and phase error can now be written as

Eϕ(L(amp)

ε,Ŷ
(ϕ)) =

∫ π

−π
L(amp)

ε,Ŷ
(ϕ)p(ϕ)dϕ and (25)

Eϕ(L(phase)

ε,Ŷ
(ϕ)) =

∫ π

−π
L(phase)

ε,Ŷ
(ϕ)p(ϕ)dϕ. (26)

Assuming that Y ∈ Bε,Ŷ is uniformly distributed on the circle around Ŷ , i.e., p(ϕ) follows a circular
uniform distribution, we have p(ϕ) = 1

2π and plug in equation 23 and equation 24 to obtain the claim
from Lemma 1.

A.2 FREQUENCY-DOMAIN LOSS FORMULATION

In our original formulation of the phase-enhanced loss in equation 12, phase is technically penalized
twice: once implicitly in the `2-loss on the raw waveform and once explicitly in the phase loss term.
It is possible to formulate the phase-enhanced loss in frequency domain such that there is a clear
separation of magnitude and phase loss in two different additive terms.

Due to Parseval’s theorem, optimizing the `2-loss in time domain is equivalent to optimizing the
`2-loss in frequency domain. We transform the time domain audio signal into frequency domain
using a short-term Fourier transform and denote the result of the transformation as

Y1:K,1:S = STFT(y1:T ), (27)

where K is the number of frequency bins of the discrete Fourier transform and S is the number
of STFT steps, i.e., S = T/hop length. Since the frequency spectrum can be expressed by it’s
magnitude and phase spectrum, we can reformulate equation 12 as

L(y1:T , ŷ1:T ) =
∑

k,s

[
L(amp)(Yk,s, Ŷk,s) + λL(phase)(Yk,s, Ŷk,s)

]
. (28)

Note that this form is not equivalent to the original loss since separating the frequency spectrum
into magnitude and phase is a non-unitary operation. However, we do not find the differences to be
significant, as Table 6 shows. In fact, the clear separation allows for a better adjustment of the phase
weight λ and can even lead to slightly improved results.

A.3 INTERPRETATION OF HYPER-CONVOLUTIONS

Hyper-convolutions are a generalization of stardard convolutions as long asH(W) andH(b) are able
to learn a linear transformation. Specifically, if H(W) and H(b) are linear convolutional networks,
hyper-convolutions extend equation 5 by a bilinear term. We show this property in the following
and provide an example for a simple fully connected layer.

Recall the definition of hyper-convolutions from equation 6,

zt =

K∑

k=1

[
H(W)(c1:t)

]
:,:,k
xt−k+1 +H(b)(c1:t). (29)
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Table 6: Comparison of the loss formulation from equation 12 and equation 28. While the first
penalizes phase twice, once implicitly in the time-domain `2-loss and once in the explicit phase loss
term, the latter provides a clear separation between magnitude and phase loss terms.

raw waveform power spectrum phase spectrum
(`2 error ×103) (`2 error) (angular error)

loss from equation 12 0.167 0.048 0.807
loss from equation 28 0.157 0.036 0.809

Lemma 2. Let H(W) and H(b) be linear convolutional networks with kernel size K. Let further
x1:T and c1:T be a sequence of input and conditional vectors in RCin and RCcond , and the output
z1:T be a sequence of vectors in RCout . Then, the hyper-convolution from equation 29 reduces to

zt =

K∑

k=1

K∑

k′=1

Cin∑

j=1

xt−k+1,j · U:,j,k,:,k′ct−k′+1

+

K∑

k=1

W:,:,kxt−k+1:t +

K∑

k=1

V:,:,kct−k+1 + b (30)

with U ∈ R(Cout×Cin×K)×(Ccond×K), W ∈ RCout×Cin×K , V ∈ RCout×Ccond×K and b ∈ RCout .

Proof. We start from equation 29 and use that bothH(W) andH(b) are linear (and therefore, w.l.o.g.
single-layer) convolutional networks with kernel size K, such that

zt =

K∑

k=1

[
H(W)(ct−K+1:t)

]
:,:,k
xt−k+1 +H(b)(ct−K+1:t). (31)

First, considerH(b) : RCcond×K 7→ RCout . SinceH(b) is linear, it can be written as

H(b)(ct−K+1:t) =

K∑

k=1

V:,:,kct−k+1 + b (32)

with V ∈ RCout×Ccond×K and b ∈ RCout . Note that this already yields the last two terms in equation 30.
While H(b) only generates a bias, H(W) needs to generate a RCout×Cin×K sized tensor to realize the
convolution with x1:T . Thus, H(W) : RCcond×K 7→ RCout×Cin×K and due to H(W) being a linear
function, the component at (i, j, k) of the output tensor is given as

[
H(W)(ct−K+1:t)

]
i,j,k

=

K∑

k′=1

Ui,j,k,:,k′ct−k′+1 + Wi,j,k, (33)

where U ∈ R(Cout×Cin×K)×(Ccond×K) is the weight tensor of the hypernetwork H(W) and W ∈
RCout×Cin×K is its bias. For simplicity of notation, let ẑt be zt from equation 31 without
H(b)(ct−K+1:t). Using equation 33, ẑt is then given by

ẑt =

K∑

k=1

Cin∑

j=1

[
H(W)(ct−K+1:t)

]
:,j,k
· xt−k+1,j

=

K∑

k=1

Cin∑

j=1

[ K∑

k′=1

U:,j,k,:,k′ct−k′+1 + W:,j,k

]
· xt−k+1,j

=

K∑

k=1

K∑

k′=1

Cin∑

j=1

xt−k+1,j · U:,j,k,:,k′ct−k′+1 +

K∑

k=1

W:,:,kxt−k+1:t. (34)
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Together with equation 32, this yields the claim from Lemma 2,

zt =ẑt +H(b)(ct−K+1:t)

=

K∑

k=1

K∑

k′=1

Cin∑

j=1

xt−k+1,j · U:,j,k,:,k′ct−k′+1

+

K∑

k=1

W:,:,kxt−k+1:t +

K∑

k=1

V:,:,kct−k+1 + b. (35)

The last row of equation 35 is exactly the definition of a standard conditioned temporal convolution
from equation 5. The row before is a bilinear combination of c1:T and x1:T . As a consequence of
Lemma 2, conditioned (linear) hyper-convolutions are therefore a strict generalization of the stan-
dard conditioned temporal convolutions from equation 5. Note that any non-linear H(W) and H(b)

that is capable of learning a linear transformation is therefore also a strict generalization of equa-
tion 5.

Example: K = 1, Cout = 1.

We illustrate the case forK = 1, i.e., the convolutions break down to a simple fully connected layer.
To simplify notation, we also restrict this example to a single output channel Cout = 1.

With linear hyper-convoltions and Cout = 1, we have

H(W)(ct) = Uct +w, H(b)(ct) = vT ct + b (36)

for a weight matrix U ∈ RCin×Ccond and a bias vector w ∈ RCin as parameters of H(W) as well as
weights v ∈ RCcond and bias b ∈ R as parameters forH(b). Inserting this into equation 29 leads to

zt = H(W)(ct)xt +H(b)(ct)

= (Uct +w)Txt + vT ct + b

= xTt Uct +wTxt + vT ct + b. (37)

Compared to the standard formulation from equation 5,

zt = wTxt + vT ct + b, (38)

equation 37 adds the bilinear term xTt Uct while all other terms are still remaining.

A.4 SIGNAL PROCESSING BASELINE

Sound produced in a scene arrives at the left and right ear at offset times due to the marginal
difference in their distance from the source of sound (Wightman & Kistler, 1992). The coronal
(back/front) asymmetry of the outer ear (pinnae) further transforms the incoming sound wave differ-
ently depending on the direction of the source (Asano et al., 1990; Cheng & Wakefield, 2001). Room
effects such reverberation influence auditory localization as well (Shinn-Cunningham et al., 2005).
These binaural disparities allow listeners to localize sources of sound in three dimensions (Begault
et al., 2000) and gain a more complete sense of the state of the space around them.

Traditionally different effects that influence propagation between the source and the listener, i.e.,
different components of the mapping function between the input mono signal and output binaural
signals, are addressed separately. The components are assumed to be linear time-invariant (LTI)
systems and therefore completely characterized by their impulse responses. They are then combined
to produce the output signals with a series of convolution operations (Savioja et al., 1999; Zotkin
et al., 2004; Sunder et al., 2015; Zhang et al., 2017). A short overview follows.

Source. People are not omnidirectional sound sources and, unlike a loudspeaker whose spatial di-
rectivity depends only on the frequency, the human directivity pattern may depend on speech content
and pose as well. Though some studies of speech directivity in controlled settings exist (Kocon &
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Monson, 2018; Bellows & Leishman, 2019), in practical applications it is either ignored or approx-
imated with a simple pattern such as a cardioid.

Environment: room acoustics. The reverberation is caused by the interaction of the sound field
with the surrounding environment. Different approaches to room acoustic modeling exist but they
are mainly divided in two groups (Välimäki et al., 2012): (1) physically accurate but computationally
expensive wave-based methods that, given detailed geometry and material information, numerically
solve the wave equation; and (2) methods based on geometrical acoustics (Savioja & Svensson,
2015) that ignore the wave nature of sound and assume a ray-like behaviour, and are therefore
more suitable for real-time operation (wave phenomena such as diffraction is usually modeled sep-
arately (Rungta et al., 2018)). For the real-world rooms the room impulse responses (RIRs) are
either measured or computed using simplified geometric models informed by some estimated room
parameters. It is important to note that measurement procedure is infeasible for fully dynamic sce-
narios since RIRs depend on both source and listener spatial positions. The length of the RIR filters
depends on the reverberation time of the environment, i.e., the time it takes for sound to decay by
60dB, which can go from less than half a second for typical office spaces to a couple of seconds for
auditoriums and concert halls, and around ten seconds for large cathedrals.

Environment: background noise. Even in absence of other interfering sound sources, there is
always some degree of ambient noise present in the environment. Usually this noise is assumed to
be diffuse and independent from the listener position. It is also often assumed to be stationary and it
can be estimated from short silence intervals.

Listener. The human body, most notably pinna, head and torso, modify the incoming acoustic
waves in a way that is crucial for the spatial perception of sound. Traditionally the head-related
transfer function (HRTF) is used to model these effects (Cheng & Wakefield, 2001). In theory,
the HRTF is personalized to the individual (listener) and depends on the source position relative
to the listener. However, most practical implementations use a generic (not-personalized) HRTF
though HRTF penalization is an active research area (Bilinski et al., 2014; Yamamoto & Igarashi,
2017; Guezenoc & Seguier, 2018). Moreover, measuring HRTF in a volume is impractical and it is
usually measured on a fixed radius (Li & Peissig, 2020), making the HRTF a function of the source
direction only. In alternative, the boundary element method (BEM) (Katz, 2001) or finite-difference
time-domain (FDTD) method (Prepelit, ă et al., 2016) can be used for numerical HRTF simulation
using head and torso scans. Depending on the dataset, the HRTF filters are usually 2.5− 20ms long
after removing the initial onset delays.

Equipment. While above components are enough to model the physics involved in the mapping
between the input and the output signals, in a practical setting the capture/reproduction equipment
plays a role as well. To compensate for the frequency response of the equipment and the signal-
processing chain, the equalization filter should be applied. It is often assumed that this filter does
not change in time and it can be estimated from a test capture.

Note that each of above steps introduces some degree of estimation, measurement or modeling
errors that accumulate down the pipeline and, not being formulated in an end-to-end fashion, the
solution is sub-optimal from the perspective of the particular application. Furthermore, a study
showed that even using binaural room impulse responses measured for the test subject inside the
test environment, the perceptual authenticity between virtual and real sound sources was not fully
achieved for a dynamic scenario that allowed natural head movements of the listeners (Brinkmann
et al., 2017).

Our implementation, used as the DSP baseline, computes the output binaural signals y(l/r)(t), for
left and right ear respectively, from the input mono signal x(t), t being the sample index, as follows:

y(l/r)(t) = h(l/r)
eq (t) ∗ h(l/r)

hrtf (t,θ(src,lstn)
t ) ∗ hrir(t,θ

(src)
t ,p(src)

t ,p(lstn)
t ) ∗ x(t) + w(l/r)(t), (39)

where

• x(t) is assumed to be a clean input signal; ∗ indicates the convolution operation;

• hrir(t,θ
(src)
t ,p(src)

t ,p(lstn)
t ) is the RIR computed using the image source method (Allen &

Berkley, 1979) assuming a simple rectangular room and reverberation time 0.2s; p(src)
t and
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p(lstn)
t are the source and listener positions, and θ(src)

t indicates the source orientation used
to simulate cardioid directivity;

• h(l/r)
hrtf (t,θ(src,lstn)

t ) is the head related impulse response (HRTF in the time-domain) for the
left / right ear; the HRTF of a KEMAR mannequin, measured in an anechoic chamber
at 9600 unique discrete positions on a sphere of radius 2m is used; θ(src,lstn)

t indicates the
direction on which the source is found with respect to the listener’s front;

• h(l/r)
eq (t) is the equalization filter for the given channel, estimated from a test capture in

presence of the source signal; and

• w(l/r)(t) is the random noise added to the given channel, generated with a power spectral
density estimated from a test capture during a silence period.

Since the filters depend on source and listener positions, which in a dynamic scenario are continu-
ously changing, the computation is done on a frame-by-frame basis using the overlap-add method,
with frame length of 1024 samples and 75% overlap (at sampling rate of 48kHz).

A.5 DATASET DESCRIPTION

Dataset Overview. We recorded eight different subjects, four male and four female, in an acousti-
cally treated room. The capture contains unidirectional conversational speech, i.e., we asked partici-
pants to talk to a mannequin for 15 minutes each while walking around. We collected approximately
2 hours of mono-to-binaural audio data in total. Source and listener head positions are tracked and
synchronized with the recorded audio. We use the last two minutes from each subject and a sep-
arately recorded validation sequence as test data and kept the remaining data as training data. To
the best of our knowledge, this is the first binaural data capture of its kind, i.e., modeling moving
trajectories between receiver and transmitter position and recorded in a regular room rather than an
anechoic chamber.

Data Capture Details. The acoustic head and torso simulator is the GRAS KEMAR mannequin
with the size large anthropometric pinnae inserts. Participants were free to walk around a 1.5m
radius circle around the KEMAR mannequin, and prompted to cover as much area as a normal social
conversation would. The KEMAR mannequin was wearing a B&K 4101B binaural microphone
headset. The subjects wore a DPA 4060-OC microphone taped next to their mouth to capture their
speech. The participants wore a modified bicycle helmet with reflective markers for head-pose
tracking using an OptiTrack system. Although the KEMAR mannequin did not move, KEMAR
wore a headband with reflective markers for head-pose tracking for complete source/listener head-
pose tracking. All tracking information was captured with a field array of 24 OptiTrack Prime
17W cameras. The audio data is recorded at 48kHz sampling rate and rigid body tracking data is
collected at 120fps via motion capture software, Motive. LTC signal is used to synchronize the audio
recordings with OptiTrack data. The capture layout is schematically illustrated in Figure 7.

A.6 EXTENDED EVALUATION

Additional Perceptual Evaluation. In order to back the results of the perceptual study in Table 4,
we performed a side-by-side evaluation of our system and the DSP baseline, which was ranked to be
the strongest competitor to our approach. In this study, participants were presented an audio snipped
rendered with DSP and the same snippet rendered with our approach. The snippets are presented
side-by-side in random order to ensure an unbiased evaluation. Participants were then asked to
decide which of the two methods is preferable in terms of cleanliness, spatialization, and realism. We
additionally gave participants the option to select can not tell the difference as an answer. Overall, 30
participants evaluated 360 binaural snippets generated with DSP and our method, respectively. The
results in Table 7 support our findings from Table 4: our approach is preferred in terms of cleanliness
and realism. For spatialization, most participants could not find a clear favorite, which is consistent
with the mean opinion score of 3.75 vs. 3.76 that is reported in Table 4.

Unseen Subjects. While previous evaluations were based on unseen audio data from speakers that
are part of the training set, we evaluate the performance on unseen speakers here. We train our
model in a leave-one-speaker-out setup, i.e., we train eight models, each with another speaker being
held out. Table 8 shows that our approach still outperforms the DSP baseline by a large margin
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(a) Side view (b) Top view

Figure 7: (a) Side view of capture layout. (b) Top view of capture layout. A participant moves around
a KEMAR mannequin within the boundaries of a marked circle. The participant speech is recorded
with a head mounted microphone and the binaural audio is captured with binaural microphones on
the ears of the mannequin. Mannequin and participant positions are tracked with OptiTrack cameras
mounted on the walls of the room.

Table 7: Side-by-side study of DSP vs. our system. Participants were presented two clips, one
generated with DSP, one with our approach, and were then asked to tell which one they prefer.

DSP preferred ours preferred can not tell the difference

cleanliness 1.8% 88.9% 9.3%
spatialization 25.9% 27.7% 46.4%
realism 31.5% 53.7% 14.8%

on unseen subjects. This is remarkable, considering that only seven different subjects are seen
during training. With a more diverse dataset, we expect the generalization quality of our approach
to increase significantly.

Activation Functions. In recent works (Sitzmann et al., 2020; Tancik et al., 2020), sine activations
have been found to preserve high frequency information better than other commonly used activation
functions if weights are initialized appropriately. As reconstructing high frequencies is particularly
important for audio modeling, we adopt this strategy in our network. Table 9 shows a comparison
of our network with ReLUs, gated convolutions as used in Van Den Oord et al. (2016), and sine
activations as used in Sitzmann et al. (2020). ReLUs do not perform well on audio data: their sparse
outputs are not well suited to model the smooth and sinusoid nature of waveforms. For this reason,
WaveNet originally used gated convolutions, which we also find to work better than ReLUs in our
task. Overall, however, we still find sine activations to produce the best results.

Qualitative Results. We show qualitative results on the raw waveform in Figure 8. Note the consid-

Table 8: Generalization to unseen subjects. In a leave-on-subject-out setup, our approach still out-
performs the DSP baseline by a significant margin.

raw waveform power spectrum phase spectrum
(`2 error ×103) (`2 error) (angular error)

DSP 0.485 0.058 1.388
ours (unseen subjects) 0.265 0.058 1.099
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Table 9: Effect of the activation function used in the temporal hyper-convolutions.

raw waveform power spectrum phase spectrum
(`2 error ×103) (`2 error) (angular error)

ours with ReLU 0.183 0.051 0.847
ours with gated convolutions 0.179 0.053 0.819
ours with sine activation 0.167 0.048 0.807
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Figure 8: Qualitative results on the raw waveform. Note that 2.5D visual sound – besides having
an overall inaccurate waveform reconstruction – fails to get an accurate alignment to the binaural
recording. Compared to all state of the art, our approach matches the real binaural recordings best.

erable temporal shift between the mono signal captured at the source’s microphone and the binaural
recording. A strong binauralization system is required to accurately model not only this temporal
shift but also produce a metrically correct waveform, i.e., match the shape of the binaural record-
ing’s waveform. When comparing the results for WaveNet and the 2.5D Sound architecture, it is
apparent that both approaches lack in their ability to accurately match the recording’s waveform.
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Additionally, the 2.5D sound approach fails to align its output to the recordings. This comes of no
surprise as the model is inherently designed to solve an upmixing problem, i.e., a problem where
temporal shifts do not exist. Also note that due to µ-law quantization that is typically applied in
WaveNet, its results are non-smooth and introduce high-frequency noise due to quantization bins
being misclassified. The DSP approach, which is to day the de-facto state of the art, performs more
favorably in terms of temporal alignment and overall matching of the recording’s waveform. Com-
pared to our approach, however, there are significant inaccuracies – an observation that is consistent
with our evaluation in Section 3.3.
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