POWSM: A Phonetic Open Whisper-Style Speech Foundation Model

Chin-Jou Li^{* 1} chinjoul@andrew.cmu.edu Farhan Samir ⁴ Jian Zhu ⁴ David R. Mortensen ¹

Kalvin Chang* ² Eunjung Yeo ³

Shinji Watanabe ¹

Kwanghee Choi³ Masao Someki¹

¹Carnegie Mellon University

²UC Berkeley

³UT Austin

⁴University of British Columbia

Motivation

Phone recognition has broad applications

- Documentation of endangered languages
- Assessment of atypical speech
- Sociolinguistic analysis and coding
- Pronunciation training and feedback

Goal: Accurate phonetic transcription

- More directly aligned with the acoustic signal
 - e.g., [p æ t] for "bat"
- Challenges for multilingual phoneme recognition
 - Phoneme inventories are language-specific
 - IPA is not entirely language-independent

Method

Dataset

- Training: IPAPack++ [1]
 - 17k hours of multilingual speech from ASR datasets
 - Paired with phonemic IPA transcriptions
- Evaluation: generalization to new settings
 - Unseen languages: DoReCo, VoxAnglex
 - Sociophonetic variation: Buckeye, L2-ARCTIC

Architecture

- Encoder-decoder model based on OWSM [2]
- Multitask learning setup:
 - Phone recognition (PR): speech \rightarrow IPA
 - ASR: speech \rightarrow orthography
 - Audio-guided P2G: PR + orthographic context
 - Audio-guided G2P: ASR + IPA context
- Encoder is CTC-aligned to phone sequences
- Decoder is conditioned on language and task tokens
 - P2G, G2P contexts are provided as previous texts

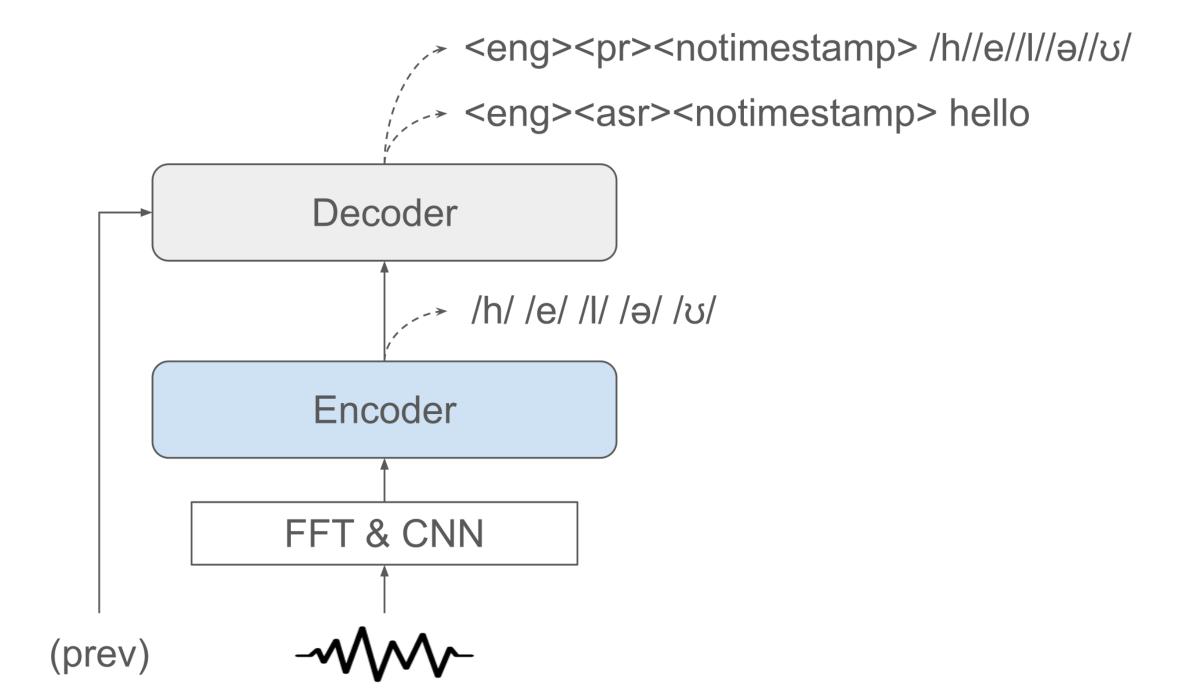


Figure 1. Overview of POWSM framework

Preliminary Results

Performance

- Training from scratch outperforms fine-tuning Whisper-small
- Multitasking improves both metrics
 - PER: phone error rate (%)
 - PFER: phonetic feature edit distance

Table 1. Comparison of PFER. (*: PR-only, 25 epochs, full IPAPack++)

Model	Param.	Struct.		nseen VoxAngeles	Sociopho L2-ARCTIC	
Allosaurus Whisper-PPT ZIPAs	11M 244M 300M		8.89 9.31 5.93	1.35 0.91 0.75	5.72 6.65 3.63	5.04 6.80 3.91
POWSM*	344M	enc-dec	7.24	0.89	4.85	4.78

Table 2. PER & PFER on DoReCo. (Trained on 1k hour of IPAPack++)

Included tasks	PER	PFER
PR PR + ASR PR + ASR + G2P + P2G	59.98 59.01 56.30	8.26

Observations

- High proportion of vowel substitutions
 - Multilingual setting; vowels are continuous
- Lacks phonetic precision for sociophonetic variation
 - Also related to difference between transcriptions
- Frames near CTC peaks do prefer similar phones

Next Steps

Inspect current architecture

- Modify encoder targets
 - Incorporate phone similarity
 - Use label priors to reduce CTC peakiness
- Analyze multitasking benefits and potential drawbacks

Scaling up & additional tasks

- Predict articulatory features
- Explore in-context learning for unseen languages
- Predict timestamps to enable emergent phone alignment

References

[1] J. Zhu, F. Samir, E. Chodroff, and D. R. Mortensen. "ZIPA: A family of efficient models for multilingual phone recognition." In ACL 2025.

[2] Y. Peng, J. Tian, W. Chen, S. Arora, B. Yan, Y. Sudo, M. Shakeel, K. Choi, J. Shi, X. Chang, J. weon Jung, and S. Watanabe. "Owsm v3.1: Better and faster open whisper-style speech models based on e-branchformer." In Interspeech 2024.