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ABSTRACT

The aim of Few-Shot learning methods is to train models which can easily adapt to
previously unseen tasks, based on small amounts of data. One of the most popular
and elegant Few-Shot learning approaches is Model-Agnostic Meta-Learning
(MAML). The main idea behind this method is to learn the general weights of the
meta-model, which are further adapted to specific problems in a small number of
gradient steps. However, the model’s main limitation lies in the fact that the update
procedure is realized by gradient-based optimisation. In consequence, MAML
cannot always modify weights to the essential level in one or even a few gradient
iterations. On the other hand, using many gradient steps results in a complex
and time-consuming optimization procedure, which is hard to train in practice,
and may lead to overfitting. In this paper, we propose HyperMAML, a novel
generalization of MAML, where the training of the update procedure is also part of
the model. Namely, in HyperMAML, instead of updating the weights with gradient
descent, we use for this purpose a trainable Hypernetwork. Consequently, in this
framework, the model can generate significant updates whose range is not limited to
a fixed number of gradient steps. Experiments show that HyperMAML outperforms
MAML in most cases and performs comparably to other state-of-the-art techniques
in a number of standard Few-Shot learning benchmarks.

1 INTRODUCTION

In the typical Few-Shot learning setting, the aim is to adapt to new tasks under the assumption that
only a few examples are given. As we know, people typically learn new tasks easily by using only
a few training examples. On the contrary, a standard deep neural network must be trained on an
extensive amount of data to obtain a similar accuracy. Thus, the aim of Few-Shot learning models
is to bring neural networks closer to the human brain’s capabilities. The most famous and, in our
opinion, the most elegant approach to Few-Shot learning is Model-Agnostic Meta-Learning (MAML)
(Finn et al., 2017), where the model is trained to adapt universal weights to new Few-Shot learning
tasks quickly. It seems that the brain’s neural networks can adapt to new tasks too, by applying the
fact that during the process of evolution, some of its parts have developed universal weights which
are easily adaptable to typical tasks we encounter in real life. Thus, the idea behind MAML gives us
a possible insight into the working of the brain.

The fascinating factor of human intelligence is that the human learning process, although still
not understood, is clearly not based on the gradient descent algorithm, as we cannot in general
backpropagate the information (Lillicrap et al., 2020; Song et al., 2020; Whittington & Bogacz, 2019).
Thus, from the biological point of view, the main limitation of MAML is the fact that it uses the
gradient descent method for weight updates. The main research problem that we set for ourselves is
whether one can modify MAML to be more biologically feasible, i.e. keep its ability to find universal
weight but remove the necessity of using gradient-based update methods.

We solve this problem by constructing HyperMAML, a model which replaces the gradient opti-
mization in the update of weights by trainable update procedure with the use of the Hypernetwork
paradigm. Hypernetworks, introduced in (Ha et al., 2016) are defined as neural models that generate
weights for a separate target network solving a specific task. In our model, HyperMAML, the
Hypernetwork aggregates the information from the support set and produces an update to the main
model. Thanks to such an approach, we can create various types of updates that are not limited to a
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Figure 1: Let us consider a two-dimensional dataset consisting of four Gaussian data clusters
(the first column). In the Meta-Learning scenario, we produce a task that consists of samples from
two horizontal or vertical ellipses with permuted labels (columns 2-5). The MAML model with
one gradient step in the inner loop cannot update all four tasks (see the first row). In practice, in
the case of high-dimensional data, using many gradient updates in MAML introduces significant
computational overhead (see Section 4.4). Our HyperMAML (pictured in the second row) can solve
the task by using the Hypernetwork paradigm. We use only a single update in our method, which can
dramatically change weights. We include the details of this experiment in section A of the Appendix.

few gradient steps. Moreover, hypernetworks have previously been used as models for biological
information processing, which suggests that such models are more biologically plausible than the
gradient-based techniques such as MAML (Segovia-Juarez & Conrad, 1999). In practice, MAML
works when there exist universal weights that are close enough to the optimal solution for each task.
To visualize such a situation, we present a simple 2D example, where a single gradient update fails to
sufficiently adapt the model to a given task – see Fig. 3. We cannot effectively switch weight in one
gradient step. On the other hand, when we use many gradient steps, we obtain a complex optimization
procedure that uses an inner and outer loop. Such a procedure can be seen as second-order optimiza-
tion, which is complex to train (Finn et al., 2017). Contrary to MAML we do not need an inner loop
in the optimization procedure, and consequently, we do not have second-order optimization. We also
reduce the number of hyperparameters, which are used in the inner loop of MAML approach, which
would need to be tuned in a grid search. As a result, our algorithm obtains better results than the
classical MAML algorithm and produces results comparable to other state-of-the-art algorithms.

The contributions of our work can be summarized as follows:

• We introduce HyperMAML, a novel approach to the Few-Shot learning problem by aggre-
gating information from the support set and directly producing weights updates.

• In HyperMAML, we do not use loss calculation or gradient backpropagation for the update
to the new task, thus making the model more biologically feasible and computationally
efficient.

• We significantly increase the update ability compared to the classical MAML algorithm, as
evidenced by the increased accuracy in numerous benchmarks we perform.
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2 RELATED WORK

The problem of Meta-Learning and Few-Shot learning (Hospedales et al., 2020; Schmidhuber, 1992;
Bengio et al., 1992) has received a growing amount of attention from the scientific community over
the recent years, with the abundance of methods emerging as a result. The idea of HyperMAML is
influenced by two kinds of such methods:

Model-based methods aim to adapt to novel tasks quickly by utilizing mechanisms such as memory
(Ravi & Larochelle, 2017; Santoro et al., 2016; Mishra et al., 2018; Zhen et al., 2020), Gaussian
Processes (Rasmussen, 2003; Patacchiola et al., 2020; Wang et al., 2021; Sendera et al., 2021), or
generating fast weights based on the support set with set-to-set architectures (Qiao et al., 2017; Bauer
et al., 2017; Ye et al., 2021; Zhmoginov et al., 2022). Other approaches combine weight generators
with gradient-based optimizers by choosing target weights from a set of templates (Zhao et al., 2020)
or optimizing low-dimensional embeddings which condition the target weight generator (Rusu et al.,
2019). The fast weights approaches can be interpreted as using Hypernetworks (Ha et al., 2016) –
models which learn to generate the parameters of neural networks performing the designated tasks.

Similarly, HyperMAML utilizes a Hypernetwork to generate weights updates for performing specific
tasks. The key difference is that in HyperMAML, the Hypernetwork is not the sole source of model
weights. Instead, following (Finn et al., 2017), HyperMAML maintains a set of universal weights
and uses the hypernetwork to generate the updates to those weights for novel tasks.

Optimization-based methods, such as MetaOptNet (Lee et al., 2019) are based on the idea of an
optimization process over the support set within the Meta-Learning framework. Arguably, the most
popular of this family of methods is Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017),
which inspired a multitude of research and numerous extensions to the original algorithm. This
includes various techniques for stabilizing its training and improving performance, such as Multi-Step
Loss Optimization, and scheduling the learning rate of the meta-optimizer (Antoniou et al., 2018) ,
using the Bayesian variant of MAML (Yoon et al., 2018), or making MAML permutation-invariant
Ye & Chao (2021).

Due to a need for calculating second-order derivatives when computing the gradient of the meta-
training loss, training the classical MAML introduces a significant computational overhead. The
authors show that in practice the second-order derivatives can be omitted at the cost of small gradient
estimation error and minimally reduced accuracy of the model (Finn et al., 2017; Nichol et al., 2018).
Methods such as iMAML and Sign-MAML propose to solve this issue with implicit gradients or
Sign-SGD optimization (Rajeswaran et al., 2019; Fan et al., 2021). The optimization process can also
be improved by training not only the base initialization of the model but also the optimizer itself –
namely, training a neural network that transforms gradients calculated w.r.t. loss of the support set
predictions into weight updates (Munkhdalai & Yu, 2017; Munkhdalai et al., 2018; Li et al., 2017;
Rajasegaran et al., 2020).

HyperMAML shares a key characteristic with the optimization-based methods – namely, it also
utilizes a base set of weights, which are updated to obtain a model fit for a given task. The key
difference between HyperMAML and MAML is that while MAML adapts to novel tasks through
multiple steps of gradient-based optimization, HyperMAML generates the updates in a single step
using a Hypernetwork. This makes HyperMAML more similar to methods like (Li et al., 2017;
Munkhdalai & Yu, 2017), which generate weight updates through trained meta-optimizers. However,
contrary to those approaches, in HyperMAML the Hypernetwork predicts the weight updates based
on (i) latent representation of the support set, (ii) predictions of the base model for the support set,
(iii) ground-truth labels of the support examples (see Fig. 2). Thus HyperMAML does not require
calculating either the loss function or its gradients during generating of the task-specific weight
updates, making it more computationally efficient.

3 HYPERMAML: HYPERNETWORK FOR FEW-SHOT LEARNING

In this section, we present our HyperMAML model for Few-Shot learning. First, we start by
presenting background and notations for Few-Shot learning. Then we describe how the MAML
algorithm works. Finally, we present HyperMAML, which can be understood as an extension of the
classical MAML.
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Algorithm 1 MAML - Model-Agnostic Meta-Learning (Finn et al., 2017)
Require: D = {Tn}Nn=1: set of training tasks
Require: α, β: step size hyper parameters

1: randomly initialize θ
2: while not done do
3: Sample batch of tasks B from D
4: for each task Ti = {Si,Qi} from batch B do
5: Evaluate ∇θLSi(fθ) with respect to examples from Si given loss by equation 2
6: Compute adapted parameters θ′i with gradient descent using formula given by eq. equa-

tion 1
7: end for
8: Update the global parameters of the model θ with formula given by eq. equation 4.

3.1 BACKGROUND

The terminology describing the Few-Shot learning setup is dispersive due to the colliding defini-
tions used in the literature. Here, we use the nomenclature derived from the Meta-Learning literature,
which is the most prevalent at the time of writing. Let S = {(xl,yl)}Ll=1 be a support-set containing
input-output pairs, with L examples with the equal class distribution. In the one-shot scenario, each
class is represented by a single example, and L = K, where K is the number of the considered classes
in the given task. Whereas, for Few-Shot scenarios, each class usually has from 2 to 5 representatives
in the support set S.

Let Q = {(xm,ym)}Mm=1 be a query-set (sometimes referred to in the literature as a target-set), with
M examples, where M is typically one order of magnitude greater than K. For clarity of notation,
the support and query sets are grouped in a task T = {S,Q}. During the training stage, the models
for Few-Shot applications are fed by randomly selected examples from training set D = {Tn}Nn=1,
defined as a collection of such tasks.

During the inference stage, we consider task T∗ = {S∗,X∗}, where S∗ is a support set with the
known class values for a given task, and X∗ is a set of query (unlabeled) inputs. The goal is to predict
the class labels for query inputs x ∈ X∗, assuming support set S∗ and using the model trained on D.

Model-Agnostic Meta-Learning (MAML) is one of the current standard algorithms for Few-Shot
learning, which learns the parameters of a model so that it can adapt to a new task in a few gradient
steps.

We consider a model represented by a function fθ with parameters θ. In the Few-Shot problems fθ
models discriminative probabilities for the classes, fθ(x) = p(y|x, θ). The standard MAML model
is trained with the procedure given by Algorithm 1. In each of the training iterations the batch of
tasks B is sampled from D. Further, for each task Ti = {Si,Qi} from B, MAML adapts the model’s
parameters θ′i that are specific for a given task. The actual values of θ′i are calculated using one or
more gradient descent updates. In the simplest case of one gradient iteration, the parameters are
updated as follows:

θ′i = θ − α∇θLSi
(fθ), (1)

where α is the step size that may be fixed as a hyperparameter or meta-learned, and the loss function
for a set of observations Z is defined as LZ for the few shot scenario is represented as a simple
cross-entropy:

LZ(fθ) =
∑

(xi,l,yi,l)∈Z

K∑
k=1

−yki,l log fθ,k(xi,j), (2)

where fθ,k(xi,j) denotes k-th output of the model fθ, for a given input xi,l, and yi,l is corresponding
class in one-hot coding. For simplicity of notation, we will consider one gradient update for the rest of
this section, but using multiple gradient updates is a straightforward extension. After calculating the
tasks-specific updates θ′i the general model parameters are trained by optimizing for the performance
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of fθ′
i

with respect to θ across tasks from batch B. More concretely, the meta-objective used to train
the general parameters of the models is as follows:

LMAML(fθ) =
∑
Ti∈B

LQi(fθ′) =
∑
Ti∈B

LQi(fθ−α∇θLSi
(fθ)), (3)

Note that the meta-optimization is performed over the model parameters θ, whereas the objective is
computed using the updated model parameters θ′. In effect, our proposed method aims to optimize
the model parameters such that one or a small number of gradient steps on a new task will produce
maximally effective behavior on that task.

The meta-optimization across tasks is performed via stochastic gradient descent (SGD) such that the
model parameters θ are updated as follows:

θ ← θ − β∇θLMAML(fθ), (4)

where β is the meta step size.

During the inference stage, in order to perform predictions for newly observed task T∗ = {S∗,X∗}
the loss function LS∗(fθ) is calculated first using eq. equation 2. Next, the parameters θ′∗ for task T∗
are calculated from eq. equation 1. The final predictions for query examples X∗ are performed by the
model fθ′

∗
, where for selected query example xq ∈ X∗ we have p(y|xq, θ

′
∗) = fθ′

∗
(xq, θ

′
∗).

The main limitation of the approach is that it produces the general weights for all possible tasks, and
the adjustment is performed via a gradient-based approach performed on the support set. For some
non-trivial challenging tasks, the dedicated parameters θ′∗ may be located far from the base weights, θ.
Consequently, the adaptation procedure would require significantly more gradient steps, the training
may be unstable, and the model will tend to overfit to support set. To overcome this limitation, we
propose to replace the gradient-based adaption with the Hypernetwork approach, where the update
step is returned by an additional deep model that extracts the information from the support set (see
toy example in Fig. 3).

3.2 HYPERMAML - OVERVIEW

We introduce our HyperMAML – a model that utilizes Hypernetworks for modeling weights updates
in the classical MAML algorithm. The main idea of the proposed updating scenario is to use
information extracted from support examples and predictions given by universal weights to find
optimal updates dedicated to a given task. Thanks to this approach, we can switch the classifier’s
parameters between completely different tasks based on the support set and existing prediction of the
universal weights.

The architecture of the HyperMAML is provided in Fig. 2. In this section we present the model
for one-shot scenario, and further discuss how to extend it to Few-Shot problems. We aim at
predicting the class distribution p(y|xq,S), assuming given single query example xq , and the set of
support examples S. Following the idea from MAML we consider the parameterized function fθ, that
models the discriminative distribution for the classes. In addition, in our architecture we distinguish
the trainable encoding network E(·), that transforms data to low-dimensional representation. We
postulate to calculate p(y|xq, θ′) = fθ′(eq), where eq is the query example xq transformed using
encoder E(·), and θ′ represents the updated parameters for a considered task, θ′ = θ+∆θ. Compared
to gradient-based adaptation step described by equation 1 used to calculate ∆θ we propose to predict
the values using hypernetwork, directly from support set.

Each of the inputs from support set XS is transformed by Encoder E(·) in order to obtain low-
dimensional matrix of embeddings ES = [eS,1, . . . , eS,K ]T. Next, the corresponding class labels
for support examples, YS = [yS,1, . . . ,yS,K ]T are concatenated to the corresponding embeddings
stored in the rows of matrix ES . In addition, we also calculate the predicted values for the examples
from the support set using the general model fθ(ES) = ŶS , and also concatenate them to ES . The
matrix transformed support inputs ES , together with true support labels YS , and corresponding
predictions ŶS returned by general model are delivered as an input to the hypernetwork H(·) that
returns the update ∆θ. The hypernetwork consists of fully-connected layers with ReLU activations –
see section E.1 in the Appendix for details. The parameters for final target model are calculated with
the following formula:

5



Under review as a conference paper at ICLR 2023

Figure 2: The overview of HyperMAML architecture. The input support examples are processed
by convolutional encoding network E(·) and delivered to the fully-connected hypernetwork H(·)
together with the true support labels and predictions from general model fθ(·). The hypernetwork
transforms them, and returns the update of weigths ∆θ for target classifier fθ′ . The query example
is transformed by Encoder E(·), and the final class distribution is returned by the target model fθ′

dedicated to the considered task.

θ′ = θ +∆θ = θ +H(ES , ŶS ,YS). (5)

Practically, the Hypernetwork observes the support examples with the corresponding true values and
decides how the global parameters θ should be adjusted to the considered task. In addition, the predic-
tions from global model fθ are also delivered to the model in order to identify the misclassifications
and try to correct them during the update state.

3.3 HYPERMAML - TRAINING

For training the model we assume that encoder E(·) is parametrized by γ, E := Eγ , and the
hypernetwork H(·) by η, H := Hη. The training procedure is described in Algorithm 2. First, we
sample the batch of tasks B from the given dataset D. Next, for each task Ti in batch B we calculate
the update ∆θi using the support set Si, and provide the updated parameters θ′ according to the rule
given by eq. equation 5. Finally, the objective to train the parameters of the system is calculated
using the query sets from the batch tasks Ti:

LHyperMAML(fθ) =
∑
Ti∈B

LQi
(fθ′) =

∑
Ti∈B

LQi
(fθ+∆θ

), (6)

where LQi
(fθ′) is given by eq. equation 2. The parameters of the encoder, hypernetwork, and global

parameters θ represent the meta parameters of the system, and they are updated with stochastic
gradient descent (SGD) by optimizing LHyperMAML(fθ).

Adaptation to the Few-Shot scenario. The proposed method can be easily extended for Few-Shot
scenarios following the aggregation technique from (Sendera et al., 2022). For our approach, we
aggregate the embedding values of the support examples from the same class using mean operation.
In addition, the corresponding predictions within the class are also averaged and concatenated to
the averaged per class embedding together with the true class label, and further processed via the
hypernetwork.

Warming-up universal weights In practice, it is not trivial to initialize the universal weights of
HyperMAML. Classical initialization does not allow to update the universal weights and only the
Hypernetwork’s parameters are changing. To solve this problem we use a smooth transition from
gradient to Hypernetwork update:
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Algorithm 2 HyperMAML
Require: D = {Tn}Nn=1: set of training tasks
Require: β: step size hyper parameter

1: randomly initialize θ, γ, η
2: while not done do
3: Sample batch of tasks B from D
4: for each task Ti = {Si,Qi} from batch B do
5: Compute adapted parameters θ′i from Si using formula given by eq. equation 5
6: end for
7: Calculate the loss LHyperMAML(fθ) given by eq. equation 6.
8: θ ← θ − β∇θLHyperMAML(fθ) ▷ Update the global target parameters θ
9: η ← η − β∇ηLHyperMAML(fθ) ▷ Update parameters of the hypernetwork Hη

10: γ ← γ − β∇γLHyperMAML(fθ) ▷ Update the parameters of the Encoder Eγ

θ′ = θ + λ ·H(ES , ŶS ,YS)− (1− λ) · α∇θLSi(fθ) (7)

where λ is changing from zero to one in a few initial training epochs.

4 EXPERIMENTS

In the typical Few-Shot learning setting, making a valuable and fair comparison between proposed
models is often complicated because of the existence of the significant differences in architectures and
implementations of known methods. In order to limit the influence of the deeper backbone (feature
extractor) architectures, we follow the unified procedure proposed by (Chen et al., 2019) 1.

In all of the reported experiments, the tasks consist of 5 classes (5-way) and 1 or 5 support examples
(1 or 5-shot). Unless indicated otherwise, all compared models use a known and widely utilized
backbone consisting of four convolutional layers (each consisting of a 2D convolution, a batch-norm
layer, and a ReLU non-linearity; each layer consists of 64 channels (Chen et al., 2019). The models
are trained from scratch, except for the models trained on mini-ImageNet where they are initialized
with a pretrained backbone, following (Qiao et al., 2017; Rusu et al., 2019; Ye et al., 2021). In all
experiments, the query set of each task consists of 16 samples for each class (80 in total). We split
the datasets into the standard train, validation, and test class subsets, used commonly in the literature
(Ravi & Larochelle, 2017; Chen et al., 2019; Patacchiola et al., 2020). We provide the additional
training details in Section E of the Appendix.

4.1 CLASSIFICATION

First, we consider the classical Few-Shot learning scenario. We benchmark the performance of the
HyperMAML and other methods on two challenging and widely considered datasets: Caltech-USCD
Birds (CUB) (Wah et al., 2011) and mini-ImageNet (Ravi & Larochelle, 2017). In case of the
mini-ImageNet dataset we initialize the backbone with pretrained weights, following (Qiao et al.,
2017; Ye et al., 2021). We compare HyperMAML to a number of MAML-related and Hypernetwork-
based methods, as well as the current state-of-the-art algorithms in the tasks of 1-shot and 5-shot
classification, and report the results in Table 1. We report a comparison to a wider pool of few-shot
learning methods, as well as the results of models utilizing a larger backbone in the Tables 6 and 7 in
the Appendix.

In the 1-shot scenario, HyperMAML yields top performing results (66.11%) on the CUB dataset,
inferior only to FEAT (Ye et al., 2021) (68.87%). On the mini-ImageNet dataset, HyperMAML is
among the five best methods, achieving the accuracy of 53.41%. In the 5-shot setting, HyperMAML
is among the top-3 best performing models achieving both on the CUB and mini-ImageNet datasets,

1An anonymized version of our code is available at https://anonymous.4open.science/r/
few-shot-hypernets-public-DB4F. We shall release the code with our experiments after the end of
the review period.
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achieving 78.89% and 68.76% accuracy, with FEAT (Ye et al., 2021) and HyperShot (Sendera et al.,
2022) outperforming it by a small margin.

The obtained results show that HyperMAML achieves performance better or comparable to a variety
of Few-Shot learning methods, in particular MAML (Finn et al., 2017), as well as techniques which
derive from it (Antoniou et al., 2018; Rajeswaran et al., 2019; Fan et al., 2021; Yoon et al., 2018; Ye
& Chao, 2021).

Table 1: The classification accuracy results for the inference tasks on CUB and mini-ImageNet
datasets in the 1-shot and 5-shot settings. The highest results are in bold and second-highest in italic
(the larger, the better).

CUB mini-ImageNet
Method 1-shot 5-shot 1-shot 5-shot

MAML (Finn et al., 2017) 56.11 ± 0.69 74.84 ± 0.62 45.39 ± 0.49 61.58 ± 0.53
MAML++ (Antoniou et al., 2018) – – 52.15 ± 0.26 68.32 ± 0.44
iMAML-HF (Rajeswaran et al., 2019) – – 49.30 ± 1.88 –
SignMAML (Fan et al., 2021) – – 42.90 ± 1.50 60.70 ± 0.70
Bayesian MAML (Yoon et al., 2018) – – 53.80 ± 1.46 64.23 ± 0.69
Unicorn-MAML (Ye & Chao, 2021) – – 54 .89 –
HyperShot (Sendera et al., 2022) 65.27 ± 0.24 79 .80 ± 0 .16 52.42 ± 0.46 68 .78 ± 0 .29
MLH (Zhao et al., 2020) – – 49.41 ± 0.96 67.16 ± 0.42
PPA (Qiao et al., 2017) – – 54.53 ± 0.40 –
FEAT (Ye et al., 2021) 68.87 ± 0.22 82.90 ± 0.15 55.15 ± 0.20 71.61 ± 0.16
HyperTransformer (Zhmoginov et al., 2022) – – 54.10 68.50

HyperMAML 66 .11 ± 0 .28 78.89 ± 0.19 53.41 ± 0.21 68 .76 ± 0 .17

4.2 CROSS-DOMAIN ADAPTATION

In the cross-domain adaptation setting, the model is evaluated on tasks coming from a different distri-
bution than the one it had been trained on. Therefore, such a task is more challenging than standard
classification and is a plausible indicator of a model’s ability to generalize. In order to benchmark
the performance of HyperMAML in cross-domain adaptation, we combine two datasets so that the
training fold is drawn from the first dataset and validation and the testing fold – from another one. We
report the results in Table 2. In the task of 1-shot Omniglot→EMNIST classification, HyperMAML
achieves the second-best result (79.84%), with HyperShot+finetuning (80.65%) being the top one.
Compared to the other methods, we observe relatively smaller performance growth as more data
becomes available. In the 5-shot Omniglot→EMNIST classification task HyperMAML yields
comparable results (89.22%) to HyperShot (Sendera et al., 2022) (90.81%) and DKT (Patacchiola
et al., 2020) (90.30%), which are the state-of-the-art in this setting. In the most challenging task of
mini-ImageNet→CUB classification, our method performs comparably to baseline methods such
as MAML, ProtoNet and Matching Net (Finn et al., 2017; Vinyals et al., 2016; Snell et al., 2017),
particularly in the 1-shot setting.

Table 2: The classification accuracy results for the inference tasks on cross-domain tasks
(Omniglot→EMNIST and mini-ImageNet→CUB) datasets in the 1-shot and 5-shot setting. The
highest results are bold and second-highest in italic (the larger, the better).

Omniglot→EMNIST mini-ImageNet→CUB
Method 1-shot 5-shot 1-shot 5-shot

Feature Transfer (Zhuang et al., 2020) 64.22 ± 1.24 86.10 ± 0.84 32.77 ± 0.35 50.34 ± 0.27
Baseline++ (Chen et al., 2019) 56.84 ± 0.91 80.01 ± 0.92 39.19 ± 0.12 57.31 ± 0.11
MatchingNet (Vinyals et al., 2016) 75.01 ± 2.09 87.41 ± 1.79 36.98 ± 0.06 50.72 ± 0.36
ProtoNet (Snell et al., 2017) 72.04 ± 0.82 87.22 ± 1.01 33.27 ± 1.09 52.16 ± 0.17
RelationNet (Sung et al., 2018) 75.62 ± 1.00 87.84 ± 0.27 37.13 ± 0.20 51.76 ± 1.48
DKT (Patacchiola et al., 2020) 75.40 ± 1.10 90 .30 ± 0 .49 40.14 ± 0.18 56.40 ± 1.34
OVE PG GP + Cosine (ML) (Snell & Zemel, 2020) 68.43 ± 0.67 86.22 ± 0.20 39.66 ± 0.18 55.71 ± 0.31
OVE PG GP + Cosine (PL) (Snell & Zemel, 2020) 77.00 ± 0.50 87.52 ± 0.19 37.49 ± 0.11 57.23 ± 0.31
HyperShot (Sendera et al., 2022) 78.06 ± 0.24 89.04 ± 0.18 39.09 ± 0.28 57 .77 ± 0 .33
HyperShot + finetuning 80.65 ± 0.30 90.81 ± 0.16 40 .03 ± 0 .41 58.86 ± 0.38
MAML (Finn et al., 2017) 74.81 ± 0.25 83.54 ± 1.79 34.01 ± 1.25 48.83 ± 0.62
Bayesian MAML (Yoon et al., 2018) 63.94 ± 0.47 65.26 ± 0.30 33.52 ± 0.36 51.35 ± 0.16

HyperMAML 79 .07 ± 1 .09 89.22 ± 0.78 36.32 ± 0.61 49.43 ± 0.14
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4.3 PARAMETER UPDATE MAGNITUDE

Next, we consider the ability of HyperMAML to produce the correct weight updates. One of the
drawbacks of MAML is that, in practice, gradient updates change weights very slowly, especially
when meta tasks require completely different weights (see Fig. 3). On the other hand, Hypernetworks
can produce significant updates. To verify such behaviour on a real, non-trivial dataset, we calculate
the norm of classifier weight updates in MAML and HyperMAML trained for Omniglot→EMNIST
classification and report the results in Table 3.

Table 3: Magnitude of the update of weight and bias
by MAML (with one update) and HyperMAML.

MAML HyperMAML

weight 2.53 ± 0.29 113.28 ± 0.63
bias 1.47 ± 0.14 27.72 ± 0.68

As we can see, HyperMAML produces larger
updates, which, combined with higher accu-
racy than MAML (see Table 2), suggests faster
and more accurate convergence.

In the case of classical MAML, there exist few
modifications in updating procedures (inner
loop) like MAML++ (Antoniou et al., 2018) or Meta-SGD (Li et al., 2017). However, such modifica-
tions are required in classical MAML since few gradient updates do not always guarantee convergence.
On the contrary, HyperMAML provides a possible solution to the problem by a novel update that is
not generated directly by gradient descent, but rather by a forward pass of a Hypernetwork.

4.4 COMPUTATIONAL EFFICIENCY

Table 4: Time (in seconds) spent on processing the
entire Omniglot→ EMNIST test dataset (600 tasks)
by MAML with different numbers of gradient steps
and HyperMAML.

Model Steps Time Accuracy

MAML

0 2.17 ± 0.28 19.978 ± 0.348
1 5.16 ± 0.13 74.67 ± 0.25
2 7.30 ± 0.11 74.69 ± 0.24
3 8.87 ± 0.08 74.71 ± 0.25
4 10.79 ± 0.19 74.71 ± 0.24
5 12.66 ± 0.14 74.71 ± 0.23

10 22.60 ± 0.28 74.74 ± 0.25
25 51.75 ± 0.24 74.78 ± 0.25
50 103.88 ± 2.24 74.82 ± 0.25

100 212.62 ± 2.24 74.86 ± 0.27

HyperMAML – 8.21 ± 0.41 80.78 ± 0.59

Finally, we verify the hypothesis that Hyper-
MAML offers an increased computational ef-
ficiency compared to MAML. To this end, we
measure the times of processing the entire
Omniglot→ EMNIST test dataset (600 tasks
in total) by MAML with different numbers of
gradient steps and HyperMAML and report
the results in Table 4, and for other datasets in
Table 8 in the Appendix.

We find that processing the test data with Hy-
perMAML takes approximately the same time
as using MAML with just 2 gradient updates.
We also note that even given the budget of 100
gradient updates, MAML never matches the
accuracy achieved by a single update gener-
ated by HyperMAML.

5 CONCLUSIONS

In this work, we introduced HyperMAML – a novel Meta-Learning algorithm strongly motivated by
MAML (Finn et al., 2017). The crucial difference between the two methods lies in the fact that in
HyperMAML the update of the model is given not by the gradient optimization, but by the trainable
Hypernetwork. Consequently, HyperMAML is more computationally efficient than MAML, as during
adaptation it performs only a single parameter update. Moreover, HyperMAML is not only more
biologically feasible as it does not use backpropagation, but it can adapt easier to different settings
and has a smaller number of hyperparameters. Our experiments show that HyperMAML outperforms
the classical MAML in a number of standard Few-Shot learning benchmarks and achieves results
better or comparable to various other state-of-the-art methods in most cases.

Our results indicate that Few-Shot weight adaptation can be performed directly, without calculating
the actual loss or gradients – a more biologically plausible learning method (Lillicrap et al., 2020;
Song et al., 2020; Whittington & Bogacz, 2019). Moreover, HyperMAML adapts to new tasks quicker
than MAML, which needs to be tuned with many gradient updates. Thus, HyperMAML is a step
toward more efficient and environment-friendly Meta-Learning techniques.
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Richard E. Turner. Discriminative k-shot learning using probabilistic models, 2017.

Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the optimization of a synaptic
learning rule. 1992.

Luca Bertinetto, Joao F Henriques, Philip Torr, and Andrea Vedaldi. Meta-learning with differentiable
closed-form solvers. In International Conference on Learning Representations, 2018.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer look
at few-shot classification. arXiv preprint arXiv:1904.04232, 2019.

Chen Fan, Parikshit Ram, and Sijia Liu. Sign-maml: Efficient model-agnostic meta-learning by
signsgd. CoRR, abs/2109.07497, 2021. URL https://arxiv.org/abs/2109.07497.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Machine Learning, pp. 1126–1135. PMLR, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp.
9537–9548, 2018.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4367–4375,
2018.

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard Turner. Meta-
learning probabilistic inference for prediction. In International Conference on Learning Represen-
tations, 2018.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting gradient-
based meta-learning as hierarchical bayes. In International Conference on Learning Representa-
tions, 2018.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey, 2020.

Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. Cross attention network
for few-shot classification, 2019.

Ghassen Jerfel, Erin Grant, Thomas L Griffiths, and Katherine Heller. Reconciling meta-learning
and continual learning with online mixtures of tasks. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems, pp. 9122–9133, 2019.

Dahyun Kang, Heeseung Kwon, Juhong Min, and Minsu Cho. Relational embedding for few-shot
classification, 2021.

Minyoung Kim and Timothy Hospedales. Gaussian process meta few-shot classifier learning via
linear discriminant laplace approximation. arXiv preprint arXiv:2111.05392, 2021.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 12 2014.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10657–10665, 2019.

10

https://arxiv.org/abs/1810.09502
https://arxiv.org/abs/2109.07497


Under review as a conference paper at ICLR 2023

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few-shot
learning, 2017.

Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Backprop-
agation and the brain. Nature Reviews Neuroscience, 21(6):335–346, 2020.

Bin Liu, Yue Cao, Yutong Lin, Qi Li, Zheng Zhang, Mingsheng Long, and Han Hu. Negative margin
matters: Understanding margin in few-shot classification, 2020.

Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang, and Yi Yang.
Learning to propagate labels: Transductive propagation network for few-shot learning, 2019.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In International Conference on Learning Representations, 2018.

Tsendsuren Munkhdalai and Hong Yu. Meta networks. In International Conference on Machine
Learning, pp. 2554–2563. PMLR, 2017.

Tsendsuren Munkhdalai, Xingdi Yuan, Soroush Mehri, and Adam Trischler. Rapid adaptation with
conditionally shifted neurons. In International Conference on Machine Learning, pp. 3664–3673.
PMLR, 2018.

Cuong Nguyen, Thanh-Toan Do, and Gustavo Carneiro. Uncertainty in model-agnostic meta-learning
using variational inference. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pp. 3090–3100, 2020.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Boris N Oreshkin, Pau Rodriguez, and Alexandre Lacoste. Tadam: Task dependent adaptive metric
for improved few-shot learning. arXiv preprint arXiv:1805.10123, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. Curran Associates Inc., Red Hook, NY, USA, 2019.

Massimiliano Patacchiola, Jack Turner, Elliot J Crowley, Michael O’Boyle, and Amos J Storkey.
Bayesian meta-learning for the few-shot setting via deep kernels. Advances in Neural Information
Processing Systems, 33, 2020.

Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan Yuille. Few-shot image recognition by predicting
parameters from activations, 2017.

Jathushan Rajasegaran, Salman H. Khan, Munawar Hayat, Fahad Shahbaz Khan, and Mubarak
Shah. Meta-learning the learning trends shared across tasks. CoRR, abs/2010.09291, 2020. URL
https://arxiv.org/abs/2010.09291.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
gradients. Advances in Neural Information Processing Systems, 32:113–124, 2019.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on machine
learning, pp. 63–71. Springer, 2003.

Sachin Ravi and Alex Beatson. Amortized bayesian meta-learning. In International Conference on
Learning Representations, 2018.

Sachin Ravi and H. Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017.

Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto. Few-shot learning with embedded class
models and shot-free meta training, 2020.

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization, 2019.

11

https://arxiv.org/abs/2010.09291


Under review as a conference paper at ICLR 2023

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine
learning, pp. 1842–1850. PMLR, 2016.

Jürgen Schmidhuber. Learning to Control Fast-Weight Memories: An Alternative to Dynamic
Recurrent Networks. Neural Computation, 4(1):131–139, 01 1992. ISSN 0899-7667. doi:
10.1162/neco.1992.4.1.131. URL https://doi.org/10.1162/neco.1992.4.1.131.

J.L. Segovia-Juarez and M. Conrad. Hypernetwork model of biological information processing. In
Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406),
volume 1, pp. 511–515 Vol. 1, 1999. doi: 10.1109/CEC.1999.781976.

Marcin Sendera, Jacek Tabor, Aleksandra Nowak, Andrzej Bedychaj, Massimiliano Patacchiola,
Tomasz Trzcinski, Przemysław Spurek, and Maciej Zieba. Non-gaussian gaussian processes for
few-shot regression. Advances in Neural Information Processing Systems, 34:10285–10298, 2021.

Marcin Sendera, Marcin Przewięźlikowski, Konrad Karanowski, Maciej Zięba, Jacek Tabor, and
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A 2D EXAMPLE

Figure 3: Let us consider a data set consisting of four Gaussian data (the first column). In the
Meta-Learning scenario, we produce a task that consists of samples from two horizontal or vertical
ellipses with permuted labels (second to the fifth column). The MAML model with one gradient step
in the inner loop (see the first row) cannot update all four tasks. On the other hand, when we use five
gradient updates, the model gives a reasonable solution (see the second row). In practice, for MAML,
we cannot effectively use many steps in inner lop in the case of really high dimensional data. Our
HyperMAML can solve the task by using the hypernetwork paradigm. We use only one update in our
method, which can dramatically change weights. Details of the experiment we add to supplementary
material.

To visualize the fact that the MAML algorithm is significantly limited by the weight update procedure
based on the gradient method, we will analyze a simple 2D example. Let us consider a data set
consisting of 4 Gaussian data; see the first column in Fig. 3. In the meta-learning scenario, we
produce a task that consists of samples from two horizontal or vertical ellipses with permuted labels.
In practice, we would like to force a method to adapt to four tasks presented in the second to the fifth
column in Fig. 3. In the training procedure, we use a neural network with one layer – in practice,
a linear model. We can visualize weights and decision boundaries thanks to using such simple
architecture. We marked the universal weights with the blue color and the updated parameters – with
red.
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The MAML model with one gradient step in the inner loop (see the first row in Fig. 3) cannot update
all four tasks. On the other hand, when we use five gradient updates, the model gives a reasonable
solution (see the second row in Fig. 3). In practice, for MAML, we cannot effectively use many steps
in inner lop in the case of really high dimensional data.

Our HyperMAML can solve the task by using the hypernetwork paradigm. We use only one update in
our method, which can dramatically change weights. Notice that even for five steps, MAML cannot
significantly update weight. In practice, it uses only rotations.

B ABLATION STUDY OF MECHANISMS USED IN HYPERMAML

In this section, we present two mechanisms we utilize when training HyperMAML.

Switching mechanism is a smooth transition between training the convolutional encoder through
MAML and HyperMAML objective. We consider the MAML warm-up as a starting point of the
training loop and then smoothly move towards HyperMAML training. During training, we define
two "milestone" epochs (see Section E.3, between which the transition occurs. During the transition,
we continuously decrease the participation of the MAML objective in the training process. It is
done by multiplying MAML loss by p, ranging from 1.0 to 0.0 for a given number of epochs, and
multiplying the HyperMAML loss by 1− p. Our motivation for this mechanism is to train a better
universal optimizing the MAML objective during the warm-up part of the training and then Switch to
the HyperMAML objective gradually.

Enhancement of the embeddings is another mechanism in our framework. When preparing the
input to the Hypernetwork from the support set, we first obtain support embeddings from the encoder.
Then, we forward those embeddings through the universal classifier and obtain its predictions for
support examples. We concatenate those predictions to the support embeddings, as well as their
respective ground-truth labels. The whole process is visualized in Figure 4. Our motivation to
perform such an operation is to give the Hypernetwork the information about the current decision of
the classifier, to better estimate the updates to its weights. We note that even though the Hypernetwork
generates the weights of the classifier based on the enhanced support embeddings, the generated
downstream classifier does not use enhancements when processing the query set. Instead, it only
processes the raw embeddings obtained from the encoder (see Figure 2 from the main paper).

Figure 4: Illustration of the embedding enhancement mechanism. The support embeddings (which
serve as the input to the HyperMAML Hypernetwork) are enhanced with the predictions of the base
classifier and their respective ground-truth labels.
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We perform an ablation study of both mechanisms on the task 5-shot 1-way Omniglot→EMNIST
classification. The results, reported in Table 5, indicate that both mechanisms utilized individually
improve the performance of HyperMAML, and the combination of the two yields the best results.

Table 5: The classification accuracy of HyperMAML on Omniglot→EMNIST task in the 5-way
1-shot scenario. We consider different strategies by adding switch or embedding enhancement strategy
to our model.

Model Switch Enhancement Accuracy Learning rate Milestones

HyperMAML

no no 74.39 ± 0.88 0.0001 -
no yes 75.28 ± 1.29 0.0001 -
yes no 76.89 ± 0.71 0.01 51, 550
yes yes 79.10 ± 1.43 0.01 51, 550

C FULL CLASSIFICATION RESULTS

We provide an expanded version of Table 1 from the main paper, with numerous additional baseline
methods – see Table 6. We also report the performance of HyperMAML, as well as several baseline
methods trained with ResNet-12 He et al. (2015) as backbone on the mini-ImageNet dataset in Table
7.

Table 6: The classification accuracy results for the inference tasks on CUB and mini-ImageNet
datasets in the 5-shot setting. The highest results are bold and second-highest in italic (the larger, the
better).

CUB mini-ImageNet
Method 1-shot 5-shot 1-shot 5-shot

ML-LSTM (Ravi & Larochelle, 2017) – – 43.44 ± 0.77 60.60 ± 0.71
SNAIL (Mishra et al., 2018) – – 45.10 55.20
LLAMA (Grant et al., 2018) – – 49.40 ± 1.83
VERSA (Gordon et al., 2018) – – 48.53 ± 1.84 67.37 ± 0.86
Amortized VI (Gordon et al., 2018) – – 44.13 ± 1.78 55.68 ± 0.91
Meta-Mixture (Jerfel et al., 2019) – – 49.60 ± 1.50 64.60 ± 0.92
SimpleShot (Wang et al., 2019) – – 49.69 ± 0.19 66.92 ± 0.17
Feature Transfer (Zhuang et al., 2020) 46.19 ± 0.64 68.40 ± 0.79 39.51 ± 0.23 60.51 ± 0.55
Baseline++ (Chen et al., 2019) 61.75 ± 0.95 78.51 ± 0.59 47.15 ± 0.49 66.18 ± 0.18
MatchingNet (Vinyals et al., 2016) 60.19 ± 1.02 75.11 ± 0.35 48.25 ± 0.65 62.71 ± 0.44
ProtoNet (Snell et al., 2017) 52.52 ± 1.90 75.93 ± 0.46 44.19 ± 1.30 64.07 ± 0.65
RelationNet (Sung et al., 2018) 62.52 ± 0.34 78.22 ± 0.07 48.76 ± 0.17 64.20 ± 0.28
DKT + CosSim (Patacchiola et al., 2020) 63.37 ± 0.19 77.73 ± 0.26 48.64 ± 0.45 62.85 ± 0.37
DKT + BNCosSim (Patacchiola et al., 2020) 62.96 ± 0.62 77.76 ± 0.62 49.73 ± 0.07 64.00 ± 0.09
GPLDLA (Kim & Hospedales, 2021) 63.40 ± 0.14 78.86 ± 0.35 52.58 ± 0.19 –
VAMPIRE (Nguyen et al., 2020) – – 51.54 ± 0.74 64.31 ± 0.74
PLATIPUS (Finn et al., 2018) – – 50.13 ± 1.86 –
ABML (Ravi & Beatson, 2018) 49.57 ± 0.42 68.94 ± 0.16 45.00 ± 0.60 –
OVE PG GP + Cosine (ML) (Snell & Zemel, 2020) 63.98 ± 0.43 77.44 ± 0.18 50.02 ± 0.35 64.58 ± 0.31
OVE PG GP + Cosine (PL) (Snell & Zemel, 2020) 60.11 ± 0.26 79.07 ± 0.05 48.00 ± 0.24 67.14 ± 0.23
Reptile (Nichol et al., 2018) – – 49.97 ± 0.32 65.99 ± 0.58
R2-D2 (Bertinetto et al., 2018) – – 48.70 ± 0.60 65.50 ± 0.60
VSM (Zhen et al., 2020) – – 54.73 ± 1.60 68.01 ± 0.90
PPA (Qiao et al., 2017) – – 54.53 ± 0.40 –
DFSVLwF (Gidaris & Komodakis, 2018) – – 56.20 ± 0.86 –
FEAT (Ye et al., 2021) 68.87 ± 0.22 82.90 ± 0.15 55 .15 ± 0 .20 71.61 ± 0.16
HyperShot (Sendera et al., 2022) 65.27 ± 0.24 79.80 ± 0.16 52.42 ± 0.46 68.78 ± 0.29
HyperShot+ finetuning (Sendera et al., 2022) 66 .13 ± 0 .26 80.07 ± 0.22 53.18 ± 0.45 69.62 ± 0.28
MAML (Finn et al., 2017) 56.11 ± 0.69 74.84 ± 0.62 45.39 ± 0.49 61.58 ± 0.53
MAML++ (Antoniou et al., 2018) – – 52.15 ± 0.26 68.32 ± 0.44
iMAML-HF (Rajeswaran et al., 2019) – – 49.30 ± 1.88 –
SignMAML (Fan et al., 2021) – – 42.90 ± 1.50 60.70 ± 0.70
Bayesian MAML (Yoon et al., 2018) – – 53.80 ± 1.46 64.23 ± 0.69
Unicorn-MAML (Ye & Chao, 2021) – – 54.89 –
Meta-SGD (Li et al., 2017) – – 50.47 ± 1.87 64.03 ± 0.94
MetaNet (Munkhdalai & Yu, 2017) – – 49.21 ± 0.96 –
PAMELA (Rajasegaran et al., 2020) – – 53.50 ± 0.89 70 .51 ± 0 .67

HyperMAML 66 .11 ± 0 .28 78.89 ± 0.19 53.41 ± 0.21 68.76 ± 0.17
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Table 7: The classification accuracy results for the inference tasks in the mini-ImageNet dataset in
the 5-way (1-shot and 5-shot) scenarios. We consider models using the ResNet-12 backbone. The
highest results are bold and second-highest in italic (the larger, the better).

Method 1-shot 5-shot
cosine classifier (Chen et al., 2019) 55.43 ± 0.81 77.18 ± 0.61
TADAM (Oreshkin et al., 2018) 58.50 ± 0.30 76.70 ± 0.30
Shot-Free (Ravichandran et al., 2020) 59.04 77.64
TPN (Liu et al., 2019) 59.46 75.65
HyperShot (Sendera et al., 2022) 59.12± 0.26 76.53± 0.22
HyperShot + adaptation (Sendera et al., 2022) 60.30± 0.31 76.21± 0.20
MTL (Sun et al., 2019) 61.20 ± 1.80 75.50 ± 0.80
RFS-simple (Tian et al., 2020) 62.02 ± 0.63 79.64 ± 0.44
ProtoNet (Snell et al., 2017) 62.39 ± 0.21 80.53 ± 0.14
MetaOptNet (Lee et al., 2019) 62.64 ± 0.82 78.63 ± 0.46
MatchingNet (Vinyals et al., 2016) 63.08 ± 0.80 75.99 ± 0.60
MAML (Finn et al., 2017) 63.11± 0.92 80.81 ± 0.14
PPA (Qiao et al., 2017) 59.60 73.34
CAN (Hou et al., 2019) 63.85 ± 0.48 79.44 ± 0.34
NegMargin (Liu et al., 2020) 63.85 ± 0.81 81.57 ± 0.56
DeepEMD (Zhang et al., 2020) 65.91 ± 0.82 82.41 ± 0.56
Unicorn-MAML (Ye et al., 2021) 65.17 ± 0.20 84.30 ± 0.14
FEAT (Ye et al., 2021) 66.78 ± 0.20 82.05 ± 0.14
RENet (Kang et al., 2021) 67.60 ± 0.44 82.58 ± 0.30
LEO (Rusu et al., 2019) 61.76 ± 0.08 81.44 ± 0.09

HyperMAML 60.93 ± 0.22 75.74 ± 0.17

D COMPUTATIONAL EFFICIENCY – RESULTS ON NATURAL IMAGE DATASETS

In this section, we perform similar experiments to those described in Section 4.3 of the main paper
and measure the inference time of HyperMAML and MAML with different numbers of gradient
steps on CUB and mini-ImageNet datasets. We summarize the results in Table 4. Similarly to the
benchmark performed on smaller images from the Omniglot→ EMNIST dataset, the inference time
of HyperMAML is comparable to MAML with two gradient steps. Likewise, MAML never achieves
accuracy higher than HyperMAML.

As opposed to Section 4.3 of the main paper, we report the accuracies of MAML only up to seven
gradient steps. This is due to an insufficient amount of GPU memory available for making more
steps in the MAML implementation we used (Chen et al., 2019). We also note that the accuracies of
MAML reported here are significantly higher than the ones reported in Table 1 of the main paper. The
MAML accuracies from that table were previously reported in the literature (Patacchiola et al., 2020),
whereas the results in Table 4 have been obtained by the MAML implementation in our codebase
(Chen et al., 2019).

E TRAINING DETAILS

In this section, we present details of the training and architecture overview.

E.1 ARCHITECTURE OVERVIEW

The architecture of HyperMAML consists of the following parts (as outlined in the Figure 2 in the
main body of the work):

Encoder For each experiment described in the main body of this work, we utilize a shallow
convolutional encoder (feature extractor), commonly used in the literature (Finn et al., 2017; Chen
et al., 2019; Patacchiola et al., 2020). This encoder consists of four convolutional layers, each
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Table 8: Time (in seconds) spent on processing the entire CUB and mini-ImageNet test datasets
(600 tasks each) by MAML with different numbers of gradient steps and HyperMAML.

CUB mini-ImageNet
Model Steps Time Accuracy Time Accuracy

MAML

0 4.15± 0.03 20.01± 0.02 4.24± 0.14 20.10± 0.31
1 6.89± 0.10 47.99± 0.22 8.48± 0.14 43.46± 0.42
2 9.44± 0.15 58.53± 0.55 10.50± 0.80 48.71± 0.19
3 11.60± 0.02 61.54± 0.41 13.17± 0.26 48.32± 0.38
4 12.97± 0.09 62.18± 0.38 15.17± 0.18 48.82± 0.25
5 15.00± 0.17 62.66± 0.40 17.29± 0.32 48.89± 0.31
6 16.90± 0.12 62.77± 0.36 19.01± 0.26 48.80± 0.24
7 19.07± 0.17 62.83± 0.34 20.55± 0.30 48.87± 0.29

HyperMAML – 8.46± 0.37 66.11± 0.28 11.11± 0.25 53.41± 0.21

consisting of a convolution, batch normalization, and ReLU nonlinearity. Each of the convolutional
layers has an input and output size of 64, except for the first layer, where the input size is equal to
the number of image channels. We also apply max-pooling between each convolution, by which the
resolution of the processed feature maps is decreased by half. The output of the encoder is flattened
to process it in the next layers.

For the mini-ImageNet dataset we additionally test the performance of HyperMAML with a larger
backbone – namely ResNet-12 He et al. (2015).

Hypernetwork The Hypernetwork transforms the enhanced embeddings of the support examples of
each class in a task into the updates for the portion of classifier weights predicting that class. It consists
of two or three fully-connected layers with ReLU activation function between each consecutive pair
of layers. In the hypernetwork, we use a hidden size of 256 or 512.

Classifier The universal classifier is a single fully-connected layer with the input size equal to
the encoder embedding size and the output size equal to the number of classes. When using the
strategy with embeddings enhancement, we freeze the classifier to get only the information about the
behavior of the classifier, this means we do not calculate the gradient for the classifier in this step of
the forward pass. Instead, gradient calculation for the classifier takes place during the classification
of the query data.

E.2 TRAINING DETAILS

In all of the experiments described in the main body of this work, we utilize the switch and the
embedding enhancement mechanisms. During training, we use the Adam optimizer (Kingma & Ba,
2014) and the MultiStepLR learning rate scheduler with the decay of 0.3 and learning rate starting
from 0.01 or 0.001. We train HyperMAML for 4000 epochs on all the datasets, save for the simpler
Omniglot→ EMNIST classification task, where we train for 2048 epochs instead.

For the mini-ImageNet experiments we follow a strategy of using a pre-trained backbone, suggested
by (Qiao et al., 2017; Rusu et al., 2019; Ye et al., 2021; Ye & Chao, 2021). More specifically, at
the beginning of the training we initialize the Encoder of HyperMAML with weights of backbone
pretrained for classification of all 64 classes from the mini-ImageNet training set. In practice, for
consistency, we use the identical set of pretrained weights as Ye et al. (2021).

E.3 HYPERPARAMETERS

Below, we outline the hyperparameters of architecture and training procedures used in each experi-
ment.
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Table 9: Hyperparameters for each of conducted 1-shot experiments.
hyperparameter CUB mini-ImageNet mini-ImageNet → CUB Omniglot → EMNIST

learning rate 0.01 0.001 0.001 0.01
Hyper Network depth 3 3 3 3
Hyper Network width 512 256 256 512
epochs no. 4000 4000 4000 2048
warmup milestones 51, 550 101, 1100 101, 1100 51, 550

Table 10: Hyperparameters for each of the conducted 5-shot experiments.
hyperparameter CUB mini-ImageNet mini-ImageNet → CUB Omniglot → EMNIST

learning rate 0.001 0.001 0.001 0.01
Hyper Network depth 3 3 3 3
Hyper Network width 256 256 256 512
epochs no. 4000 4000 4000 2048
milestones 101, 1100 101, 1000 101, 1000 51, 550

F IMPLEMENTATION DETAILS

We implement HyperMAML using the PyTorch framework (Paszke et al., 2019). We shall release the
code publicly after the end of the review period. Each experiment described in this work was run on
a single NVIDIA RTX 2080 GPU.
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