
Squared families are useful conjugate priors

Russell Tsuchida
Data Science and AI Group

Monash University
russell.tsuchida@monash.edu

Jiawei Liu
School of Computing

Australian National University
jiawei.liu3@anu.edu.au

Cheng Soon Ong
Data61, CSIRO

and Australian National University
chengsoon.ong@anu.edu.au

Dino Sejdinovic
RAIR, AIML

The University of Adelaide
dino.sejdinovic@adelaide.edu.au

Abstract

Squared families of probability distributions have been studied and applied in
numerous machine learning contexts. Typically, they appear as likelihoods, where
their advantageous computational, geometric and statistical properties are exploited
for fast estimation algorithms, representational properties and statistical guarantees.
Here, we investigate the use of squared families as prior beliefs in Bayesian
inference. We find that they can form helpful conjugate families, often allowing for
closed-form and tractable Bayesian inference and marginal likelihoods. We apply
such conjugate families to Bayesian regression in feature space using end-to-end
learnable neural network features. Such a setting allows for a rich multi-modal
alternative to Gaussian processes with neural network features, often called deep
kernel learning. We demonstrate our method on few shot learning, outperforming
existing neural methods based on Gaussian processes and normalising flows.1

1 Introduction

Squared families are useful likelihoods Families {q(· | f)}f∈H of probability densities of the
form q(· | f) ∝ ∥f(·)∥22, where f ∈ H and H is some suitably nice space of vector-valued
functions, have recently emerged as promising likelihoods in several different communities in machine
learning. For example, functions of the form f(·) = Θψ(·) for some Θ ∈ Rm×n and ψ(·) =(
k(·,a1), . . . , k(·,aN)

)⊤
, where (ai)

N
i=1 are data points and k is the kernel of a reproducing kernel

Hilbert space (RKHS), are obtained as minimisers of regularised empirical risk problems [Marteau-
Ferey et al., 2020]. When appropriately normalised and applied to divergence minimisation, they can
be used to model probability densities [Rudi and Ciliberto, 2021]. When m = 1, such density models
can also be applied to modelling intensities (of Poisson point processes) [Flaxman et al., 2017], and
Bayesian variants which use Gaussian processes (GPs) instead of RKHS models are also readily
available [Walder and Bishop, 2017]. Separately to kernel methods, probabilistic circuits [Choi et al.,
2020] can be chosen for f , which can be squared [Sladek, 2023, Loconte et al., 2023a,b, Loconte
and Vergari, 2025], or squared and summed [Loconte et al., 2024], to obtain tractable and expressive
models for probability density functions. Finally, neural networks can be used for f , and when
they are two-layered and fully-connected, they often admin tractable and closed-form normalising
constants, marginal distributions and conditional distributions [Tsuchida et al., 2023].

1Code available at https://github.com/Carlisle-Liu/SNEFY-Process.git.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Carlisle-Liu/SNEFY-Process.git

xij λj Hyperparams

λ ∼ Gamma or GSF
x ∼ Pois(λ)

i = 1, . . . , 10

j = 1, 2, 3

0 2 4 6 8 10
λ

0.0

0.5

1.0

1.5

2.0

p(
λ
|X

)

Mode 1

Mode 2

Mode 3

Prior

Posterior N=2

Posterior N=4

Figure 1: (Left) Empirical Bayesian estimation of the rate parameter λ of a Poisson likelihood in
a hierarchical model. Here the mode index j = 1, 2, 3 is observed, but not the mode rate λj . A
classical empirical Bayesian approach might be to place a shared conjugate prior over λj (in this case,
the Gamma density, see Appendix A), and maximise the marginal likelihood with respect to the prior
hyperparameters. Classical conjugate family priors are only capable of expressing a unimodal prior
belief, unless they are mixture models. (Right) At inference time, we are presented N datapoints
from a single mode — Mode 1. GSF priors (solid curves) are multimodal, and are able to adapt their
trimodal prior to the observations quickly, whereas the unimodal Gamma prior (dashed curves) have
to slowly adapt their density to pick out the correct mode. GSFs significantly generalise mixture
models of simpler base conjugate priors.

Are squared families useful priors? In this work, we examine the use of such families as priors,
and more specifically, families of conjugate priors. To the best of our knowledge, we are the first
to consider such families as priors. Note that this question is distinct from a Bayesian treatment
of squared family likelihoods [Walder and Bishop, 2017, for example], where a squared family is
used for a likelihood and some prior belief over f (for example, f ∼ GP) is employed. Rather, this
question is about using some other (not necessarily squared family likelihood) and a squared family
prior. We first construct a hierarchy of families, called generalised squared families (GSF). We then
show when a prior belongs to the GSF, the marginal likelihoods, posterior parameter and posterior
predictive distributions all admit closed-form expressions. Furthermore, the posterior distributions
remain within the GSF. This allows for rich and multimodal expression of prior beliefs within a
conjugate family (see Figure 1, for example). We apply our conjugate families to the problem of
Bayesian regression in feature space, which offers a model called GSF processes (GSFP) with rich
multi-modal uncertainty and capabilities well-suited for few-task learning.

2 Background

Conjugate priors Let Π be a family of probability measures each supported on a subset of Ω.
We call Π a conjugate class for a likelihood p(u | ω) if for all π ∈ Π, the posterior probability
measure π′ defined by π′(dω | u) = p(u | ω)π(dω)/

∫
Ω p(u | ω′)π(dω′) is also an element of

Π. An immediate but unhelpful conjugate class is the class Q of all probability measures, since for
any likelihood a prior in Q results in a posterior in Q [Robert, 2007, page 98]. Often when authors
speak of conjugate families, they implicitly and loosely also require that such conjugate families have
closed-form or tractable normalising constants or parameters. In order to facilitate such closed-form
updates, conjugate families are therefore required to be small and analytically tractable. Exponential
families of priors matched to exponential family likelihoods are arguably the most well-known
examples of conjugate priors (see Robert [2007, §3.3.3] and Appendix A). We explicitly differentiate
between conjugate families and conjugate families with closed-form normalising constants. We will
consider two distinct types of conjugate families: one for classes of squared families, and one for
their corresponding base measures. Both conjugacies are with respect to the same likelihood function.

Gaussian processes Gaussian processes (GPs) are flexible nonparametric models for probabilistic
inference over functions. Typically one specifies that some function of interest a priori follows a
GP, takes some observations from the likelihood given the value of the GP, and then computes the
posterior conditioned on the observations under the likelihood. If the likelihood is Gaussian, then the
posterior process is also a GP because the Gaussian distribution is a conjugate prior for the Gaussian
likelihood. There are multiple ways to mathematically construct GPs, two of which are the function
space view and the weight space view [Rasmussen and Williams, 2006, § 2.2 and § 2.1].

2

Q(· |M, µ,ψ)

Q(· |M, ν,ψ)

Q(· |M, ν′′,ψ′)

M

p(U | ·)

QM,Λ,Ψ

QM,Λ,ψ
QM,µ,ψ

QM,ν,ψ

M

Figure 2: Given base measure µ and feature ψ, a parameterM ∈ M indexes a prior Q(· |M , µ,ψ)
from a generalised squared family (GSF) QM,µ,ψ (see Definition 1). Given some observed data U
and likelihood p(U | ·), the same parameter M ∈ M indexes the posterior Q(· |M , ν,ψ), where
ν = p(U | ·)µ(·) (see Proposition 3). The posterior and prior both belong to the conjugate class
QM ,Λ,ψ, a GSF (see Definition 1). In certain cases of linear regression in feature space, where
the prior is placed over coefficients and the likelihood is Gaussian with expectation described by
the regression function, the same parameter M ∈ M indexes the posterior predictive distribution
Q(· | M , ν′′,ψ′), for some appropriate ν′′ and ψ′ (see Corollary 6). The posterior predictive,
posterior parameter, and prior distributions all belong to the conjugate class QM ,Λ,Ψ, also a GSF.
Closed-form expressions for all densities in the GSF QM,Λ,Ψ as well as the marginal likelihood (see
Proposition 2) allow for joint learning ofM , µ and ψ of the prior distribution via type II maximum
likelihood, or empirical Bayes (see § 4), and for closed-form posterior updates.

Function-space view A (vector valued) Gaussian process {f(x)}x∈X, or simply f , is a collection
of (possibly infinitely many) random d2-dimensional vectors such that every finite subset {f(xi)}Ni=1
follows an Nd2-variate Gaussian distribution. A GP is characterised by its vector-valued mean
function m : X → Rd2 and positive semidefinite PSD matrix-valued covariance (or kernel) function
K : X×X → Sd2

+ , where Sd2
+ is the set of d2 × d2 PSD matrices. We write f ∼ GP(m,K) to mean

that f is a GP with mean and covariance functionsm andK respectively, meaning that for any finite
set of indicesX = {xi}Ni=1, vec

(
f(X)

)
∈ RNd2 has mean matrix vec

(
m(X)

)
∈ RNd2 and block

partitioned covariance matrix with ijth blockK(xi,xj) ∈ Sd2
+ .

Weight-space view Finite-feature GPs can be constructed by specifying a feature mapping γ,
defining a function f(x) = γ(x)Ω⊤ and choosing a Gaussian distribution over the parameters Ω.
Let Ω⊤ ∈ Rd1×d2 follow a matrix Gaussian distribution such that vec(Ω⊤) has mean zero and
covarianceB ⊗C withB ∈ Sd2

+ and C ∈ Sd1
+ , with the notation ⊗ denoting the Kronecker product.

Let γ : X → Rd1 be a finite feature mapping and define Γ = γ(X). Since Gaussian random vectors
are closed under addition, one may verify that vec

(
f(X)

)
= vec

(
ΓΩ⊤) follows a Nd2-variate

Gaussian distribution. The covariance matrix is given by

E
[
vec(ΓΩ⊤) vec(ΓΩ⊤)⊤

]
= B ⊗ (ΓCΓ⊤).

We note that this is a special-case way of handling vector-valued GPs, corresponding with the so-
called coregionalisation model [Alvarez et al., 2012]. Our later discussions likely extend to more
involved vector-valued setups, with more involved notations.

Conditionals and marginals of GPs One attractive property of GPs is that marginal, conditional
and evaluations of linear operators of GPs are also GPs. This in particular implies that if one uses
a GP function prior or Gaussian parameter prior and one makes observations from a Gaussian
likelihood, the posterior parameter distribution (if applicable) and the posterior predictive distribution
are also Gaussian and available in closed-form. Furthermore, the marginal likelihood is available
in closed-form and is Gaussian. Access to the marginal likelihood allows for empirical Bayes, or
type II maximum likelihood for estimation of hyperparameters of the kernel and mean functions.
When combined with deep learning, this approach is known as deep kernel learning [Wilson et al.,
2016]. This allows for deep neural network features to be used end-to-end in probabilistic regression
models. Unfortunately, while expressive deep learning features are used, which leads to improved
point estimates, the uncertainty itself is limited to a unimodal Gaussian distribution.

3

Generalised squared families Let ψ : Ω → Rn be some feature mapping, and let µ be a measure
supported on Ω. We construct densities q(ω | Θ, µ,ψ) (with respect to measure µ) which are
proportional to the squared Euclidean norm of Θψ(ω). That is,

q(ω | Θ, µ,ψ) =
∥∥Θψ(ω)

∥∥2
2

z(Θ)
, z(Θ) =

∫

Ω

∥∥Θψ(ω)
∥∥2
2
dµ(ω).

The normalising constant z(Θ) satisfies a convenient parameter-integral factorisation

z(Θ) = Tr

(
Θ⊤Θ

(
Kµ,ψ≜︷ ︸︸ ︷∫

Ω
ψ(ω)ψ(ω)⊤ µ(dω)

))
,

which follows from the cyclic property of the trace and linearity of the integral. The squared family
kernel Kµ,ψ is a PSD matrix, as is Θ⊤Θ, and the normalising constant may be viewed as an
inner product of PSD matrices. The squared family kernel is available in closed-form for many
combinations of Ω, µ and ψ, with examples from the neural network Gaussian process [Neal, 1995]
and neural tangent kernel literature [Han et al., 2022, table 1], random feature literature [Rahimi and
Recht, 2007], and classical exponential families [Nielsen and Garcia, 2024] (see Appendix B). The
parameter factor Θ⊤Θ involves no integration, and the integral factorKµ,ψ does not depend on any
parameters. This factorisation extends beyond the normalising constant to other integrals (such as
those involved in the marginal likelihood, posterior parameter, and posterior predictive distributions)
and is very helpful, allowing factorisation into Θ⊤Θ and a parameter-independent integral.

The numerator
∥∥Θψ(ω)

∥∥2
2
= Tr

(
Θ⊤Θψ(ω)ψ(ω)⊤

)
may also be understood as an inner product of

a PSD parameter matrix and a rank 1 feature matrix. Hence we may also parameterise q(ω | Θ, µ,ψ)
and its corresponding probability measure Q(dω |M , µ,ψ) in terms ofM = Θ⊤Θ,

Q(dω |M , µ,ψ) =
Tr
(
Mψ(ω)ψ(ω)⊤

)

z(M)
µ(dω), z(M) = Tr

(
MKµ,ψ

)
. (1)

Distributions of the form (1) generalise mixture models, which are obtained whenM is diagonal.

3 Conjugacy of Generalised Squared Families

In order to better describe convenient properties of Bayesian updates, we introduce various families
of probability densities. We later describe precisely how in some sense these families are closed
under Bayesian updating, and how this closure is computationally attractive.

Definition 1. Let M be a set of n× n PSD matrices, Λ be a set of nonnegative measures, and Ψ be
a set of feature mappings of the form ψ : Ω → Rn. A generalised squared family (GSF) is a set of
probability measures of the form (1),

QM,Λ,Ψ = {Q(dω |M , µ,ψ)}M∈M,µ∈Λ,ψ∈Ψ ,

indexed byM ∈ M, µ ∈ Λ,ψ ∈ Ψ. We allow any of the indexing sets M,Λ,Ψ to be a singleton, and
with an abuse of notation, write the singleton’s element in place of the set. For example,

QM ,Λ,ψ = {Q(dω |M , µ,ψ)}µ∈Λ and QM ,Λ,Ψ = {Q(dω |M , µ,ψ)}µ∈Λ,ψ∈Ψ .

We note that by Von Neumann’s trace inequality, M may be taken to be the set of all non-zero PSD
matrices as long as the squared family kernelKµ,ψ is PD, since Tr

(
MKµ,ψ

)
= z(M) > 0. The

inclusions QM,µ,ψ ⊆ QM,Λ,ψ ⊆ QM,Λ,Ψ, together with a summary of some of our later results, are
visualised in Figure 2. Previous work [Tsuchida et al., 2025] called families of the form QM,µ,ψ,
where M is the set of rank 1 PSD matrices, squared families. Throughout this paper, we use Q for
probability measures belonging to GSFs, and P and p for arbitrary probability measures and densities
(which may also belong to GSFs, where stated).

4

ui ω

ω ∼ Q(dω |M , µ,ψ)

u ∼ p(u | ω)

M , µ,ψ

i = 1, . . . , N
yi

γ(xi)xi

ω

ω ∼ Q(dω |M , µ,ψ)

y ∼ p
(
y | Ωγ(x)

)

M , µ,ψ

i = 1, . . . , N

uij ωj M , µ,ψ

ω ∼ Q(dω |M , µ,ψ)
u ∼ p(u | ω)

i = 1, . . . , Nj

j = 1, . . . , J

Figure 3: (Left) In § 3.1, we consider an abstract model where random variables following GSFs ω
are latent under an observation model u ∼ p(u | ω). (Middle) In § 3.2 specialise on a setting where
we expand the observed node u so that observations take the form of (x,y) pairs, and assume an
observation model of the form y ∼ p

(
y | Ωγ(x)

)
. Here ω = vec(Ω⊤) is a parameter and γ is some

deterministic feature mapping (for example, from a deep neural network). Finally in § 3.3, we focus
on the setting where the likelihood p

(
y | Ωγ(x)

)
and base measure µ are both Gaussian, allowing

us to generalise finite-feature Gaussian process regression. (Right) Our results extend to the case of a
hierachical model with a shared prior over J datasets. We apply this to few-shot learning in § 4.

3.1 Marginal likelihood and posterior distributions

We first consider an abstract setting where there are two variables of interest — a variable which we
observe and a latent variable which we do not observe but would like to infer. The latent variable ω
a priori is distributed ω ∼ Q(dω |M , µ,ψ) according to an element of a GSF, and is mapped to
the observed variable U = {ui}Ni=1 implicitly through some arbitrary likelihood function p(u | ω).
This model is depicted in the left part of Figure 3.

The main trick in performing posterior updates in GSFs is that the base measure and the likelihood
combine to give a new base measure. We derive the marginal likelihood in the main text to expose
the simplicity of this idea. Here we make use of the parameter-integral factorisation. The proofs of
later results follow a similar manipulation (see Appendices C, D).

Proposition 2. Consider the left model of Figure 3. Define a measure ν(dω) = p(U | ω)µ(dω) as
the product of the likelihood and base measure. The marginal likelihood is the ratio of normalising
constants, p(U) = Tr

(
MKν,ψ

)
/Tr

(
MKµ,ψ

)
(whereKν,ψ depends on U through ν).

Proof. The marginal likelihood p(U) is given by

∫

Ω
p(U | ω)Q(dω |M , µ,ψ) =

Tr
(
M
∫

Ωψ(ω)ψ(ω)
⊤

ν(dω)︷ ︸︸ ︷
p(U | ω)µ(dω)

)

Tr
(
MKµ,ψ

) =
Tr
(
MKν,ψ

)

Tr
(
MKµ,ψ

) .

The marginal likelihood does not belong to a GSF. 2 The posterior distribution does belong to a GSF,
even for finite N . We may form a GSF which includes both the prior and the posterior, with an
updated base measure and an unchanged parameter.

Proposition 3. Consider the model in Figure 3 (Left). Define a measure ν(dω) = p(U | ω)µ(dω).
The posterior P (dω | U) = Q(dω | M , ν,ψ) belongs to a GSF with base measure ν, feature
mapping ψ and parameterM .

2 Informally, while the marginal likelihood itself does not belong to a GSF, it asymptotically belongs to a
GSF, since the measure ν is proportional to a posterior under prior µ. Therefore under mild conditions, by the
Bernstein-von Mises theorem, ν concentrates to a Dirac delta distribution centered at the MLE ω̂N . Hence
p(U)/

∫
ν(dω) ≈ Tr

(
Mψ(ω̂N)ψ(ω̂N)⊤

)
/Tr (MKµ,ψ). This would allow previous results on maximum

likelihood estimation with GSFs [Tsuchida et al., 2025] to extend to maximum marginal likelihood estimation.
We leave rigorous investigation of this observation for future work.

5

Proposition 3 implies that the GSF QM ,Λ,ψ is a conjugate class for likelihood p(u | ω), where
Λ is the set of all measures that can be expressed in the form

(∏h
i=1 p(ui | ω)

)
µ(dω) for some

integer h ≥ 0 and ui belonging to the support of the likelihood. We note that the posterior predictive
is p(U∗ | U) is also available, since it is essentially of the same form as the marginal likelihood,
replacing the GSF prior with a GSF posterior and the training likelihood with the test likelihood.
Proposition 4. Consider the model in Figure 3 (Left). Define a measure ν(dω) = p(U | ω)µ(dω)
and ν′(dω) = p(U∗ | ω)ν(dω), where, abusing notation, the train likelihood p(U | ω) and test
likelihood p(U∗ | ω) are not necessarily the same. The posterior predictive is the ratio of normalising
constants, p(U∗ | U) = Tr

(
MKν′,ψ

)
/Tr

(
MKν,ψ

)
.

The following observation illustrates that it is easy to obtain closed-form expressions for the marginal
likelihood, posterior parameter and posterior predictive distributions, whenever the base measure is
itself conjugate to the likelihood (for exponential family examples, see Appendix A).
Remark 5. If Λ is a conjugate class for p(u | ω), then ν ∈ Λ (up to a normalising constant), so if
the squared family kernelKµ,ψ is available in closed-form for all µ ∈ Λ, then so isKν,ψ .

Note that we here refer to two different conjugate updates: One as if the prior were base measure
µ belonging to Λ and another for the true prior belonging to a GSF QM ,Λ,ψ. As described in § 2
and Appendix B, closed-form expressions for the squared family kernel are available for many of
combinations of Ω, µ and ψ [Neal, 1995, Williams, 1996, Rahimi and Recht, 2007, Cho and Saul,
2009, Nielsen and Garcia, 2024, Han et al., 2022, Tsuchida et al., 2023, for example].

3.2 Regression models

We now consider a more specific instance of the previously described model, as shown in the middle
of Figure 3. We consider Bayesian learning of vector-valued functions of the form

f(x) = Ωγ(x), ω ∼ Q(dω |M , µ,ψ),ω = vec(Ω⊤) ∈ Rd, where d = d1d2, (2)

where Ω⊤ ∈ Rd1×d2 are readout parameters and γ : X → Rd1 is a feature mapping (from e.g. a deep
neural network). We assume our observations are independent samples (X,Y) = {(xi,yi)}Ni=1

from p
(
y | Ωγ(x)

)
and some distribution over x. Let Γ = γ(X). The marginal likelihood,

p(Y | Γ) =
∫

Ω
p(Y | ΓΩ⊤)Q(dω |M , µ,ψ),

serves two purposes. First, as a normalisation constant for the posterior, and second, as an objective
function for point estimation ofM , µ, and ψ. The posterior parameter distribution is given by

P (dΩ | Y ,Γ) = p(Y | ΓΩ⊤)Q(dω |M , µ,ψ)

p(Y | Γ) ,

which in turn induces a posterior over noisy evaluations Y∗ of f at new test points (features)X∗ (Γ∗).
This posterior is called the (noisy) posterior predictive distribution,

p
(
Y ∗ | Y ,Γ,Γ∗

)
=

∫

Ω
p(Y ∗ | Γ∗Ω

⊤)P (dΩ | Y ,Γ),

and is used to form predictions on test dataX∗. Note that the test likelihood p(Y ∗ | Γ∗Ω
⊤) may be

different to the train likelihood p(Y | ΓΩ⊤), e.g. with heteroskedastic noise. The noiseless posterior
predictive p(f(X∗) | Y ,Γ,Γ∗) is obtained whenever the test likelihood has zero variance.

Marginal likelihood, posterior parameter, and posterior predictive distributions The results of
Propositions 2, 3 and 4 apply directly to the marginal likelihood, posterior parameter and posterior
predictive distributions. That is, defining ν(dω) = p(Y | ΓΩ⊤)µ(dω) and ν′(dω) = p(Y ∗ |
Γ∗Ω

⊤)ν(dω), the marginal likelihood is p(Y | Γ,M) = Tr
(
MKν,ψ

)
/Tr

(
MKµ,ψ

)
, the poste-

rior parameter distribution P (dΩ | Y ,Γ) = Q(dω |M , ν,ψ) belongs to a GSF and the posterior
predictive distribution is p(Y ∗ | Γ∗,Y ,Γ) = Tr

(
MKν′,ψ

)
/Tr

(
MKν,ψ

)
. Note also that Re-

mark 5 still applies; if µ, ν and ν′ remain inside the same conjugate class and K·,ψ is available
within that family, then closed-form normalising constants are available. We utilise this observation
in the following subsection, focusing on conjugacy of the Gaussian family with Gaussian likelihood.

6

3.3 Generalised squared family processes

We now specialise our choice of base measure and likelihood. Take the Radon-Nikodym derivative of
the base measure µ with respect to Lebesgue measure to be a matrix Gaussian,

dµ

dλ
(Ω) ≜ p(Ω) = N (ω | vec(M),B ⊗C). (3)

Take the train likelihood to be multivariate Gaussian with homoskedastic noise with variance v2,
p(Y | ΓΩ⊤) = N

(
vec(Y) | (Id2

⊗ Γ)ω, v2INd2

)
(4)

Take the test likelihood to be multivariate Gaussian with homoskedastic noise with variance v′2,
p(Y ∗ | Γ∗Ω

⊤) = N
(
vec(Y ∗) | (Id2

⊗ Γ∗)ω, v
′2IN∗d2

)
. (5)

With a GSF prior, we refer to such a model as a GSF process (GSFP).

Completing the square and parameter-integral factorisation By Proposition 4 and Gaussian
conjugacy, in order to compute the posterior predictive distribution, we need only reverse the
factorisation ν′(dω) = p(Y ∗ | Γ∗Ω

⊤)p(Y | ΓΩ⊤)µ(dω) as ν′(dω) = µ(dω | Y ,Y ∗)p(Y ∗ |
Y)p(Y), which is Gaussian, and same for ν(dω) = p(Y | ΓΩ⊤)µ(dω). The mean and covariance
parameters of these Gaussian measures can be found using the same techniques as in vector-valued
Bayesian linear regression. We show only the noise free posterior predictive distribution here, with
more details in Appendix D.
Corollary 6. Consider the special model (3), (4) and (5) applied to Figure 3 (Right). Define
ν′(dω) = p(Y ∗ | Γ∗Ω

⊤)p(Y | ΓΩ⊤)µ(Ω) and

m′
Y = vec(M) + (B ⊗CΓ⊤)(B ⊗ ΓCΓ⊤ + v2INd2)

−1
(
vec(Y)− (Id2 ⊗ Γ) vec(M)

)

C ′ = B ⊗C − (B ⊗CΓ⊤)(B ⊗ ΓCΓ⊤ + v2INd2
)−1(B ⊗ ΓC).

Suppose that C ′ and Γ∗ are full-rank and N∗ ≥ d1. Then the noise free predictive distribution
P
(
df(X∗) | Y ,Γ,Γ∗

)
= Q

(
df(X∗) | M , ν′′,ψ′) belongs to a GSF with modified feature

mapping and modified base measure,

ψ′(f(X∗)
)
≜ ψ

(
(Id2

⊗ Γ∗)
†f(X∗)

)
= ψ

(
vec
(
Γ†
∗f(X∗)

))

ν′′
(
df(X∗)

)
≜ N

(
vec
(
f(X∗)

)
| (Id2

⊗ Γ∗)m
′
Y , (Id2

⊗ Γ∗)C
′(Id2

⊗ Γ⊤
∗)
)
df(X∗). (6)

Corollary 6 implies that under the Gaussian likelihood and base measure setting, the GSF QM ,Λ,Ψ is
a conjugate class, where Ψ is the class of transformations obtained by composition of ψ with linear
transformations and Λ involves deformation via Gaussian conjugate updates, as per (6).

3.4 Related work

To the best of our knowledge, we are the first to consider squared families as priors and posteriors. The
nature of the results concerning likelihoods is fundamentally different to that of priors and posteriors,
because for example, one does not attempt to estimate parameters in forming a posterior, one merely
attempts to form a posterior belief. Nevertheless, existing work on special cases of squared family
likelihoods is relevant in that expressive power, flexibility and tractability of densities is intuitively
relevant to both likelihoods and posteriors, and uncertainty quantification more generally.

Kernel methods Building off the general results of modelling non-negative functions using squared
elements of RKHS [Marteau-Ferey et al., 2020], Rudi and Ciliberto [2021] model probability
distributions, with tractable marginalisation and closure under multiplication. They fit likelihood
models within this class by minimising a regularised L2 distance between the target likelihood
and the model. While these models are nonparametric in construction, estimates resulting from
minimising the objective satisfy a representer theorem type instantiation in finite dimensions. The
authors show that the model admits both favourable representational capability (in being able to
represent a β-times differentiable target density with error less than with number of parameters
scaling like O(ϵ−r/β(log(1/ϵ))r/2), where r is the dimension of the domain of the distribution), as
well as statistical estimation properties (as likelihoods, the proposed estimate converges at a rate of
N− β

2β+r (logN)r/2, where N is the number of datapoints).

7

Probabilistic circuits Probabilistic circuits [Choi et al., 2020] provide a computational framework
for tractable probabilistic modelling. They are constructed as graphs of connected units, and by
constraining the graph, allow for tractable marginalisation. However, they need to impose some
structure on the units or the connections in order to ensure nonnegativity. Squared probabilistic
circuits [Sladek, 2023, Loconte et al., 2023a,b, Loconte and Vergari, 2025] bypass this constraint by
squaring the output of the circuit. Sums of squared circuits can also be instantiated [Loconte et al.,
2024]. The focus on such works is typically in showing tractable (polynomial or indeed quadratic
time/memory in the number of units) computation of normalising constants or marginalisation, as
well as the inclusions of the function spaces imposed by different classes of probabilistic circuits.

Neural networks and finite feature models Previous work [Tsuchida et al., 2025] has modelled
likelihoods as proportional to the squared Euclidean norm of a function of the form Θψ(x), where Θ
is a matrix and ψ is a vector-valued function. Provided the features ψ are rich enough, such models
admit a universal approximation property, typically approximating the squared L2 distance between a
square root of a target density and the model at a rate of O(1/n), where n is a parameter count. As
likelihoods, they learn target densities with a KL divergence to the target density decreasing at a rate
of O(1/

√
N), whereN is the number of samples. Such families of models have tractable normalising

constants, Fisher information and statistical divergences. Furthermore, in some special cases, such
families have not only tractable but indeed closed-form normalising constants, Fisher information
and statistical divergences. An example studied previously was squared neural families [Tsuchida
et al., 2023], where is a single hidden layer neural network.

Applications Poisson point processes (PPPs) are helpful variations of density modelling, where one
models an intensity instead of a density. Whereas in density modelling, realisations are i.i.d. draws
from a target density, in intensity modelling, realisations are conditionally i.i.d. draws from a target
density given the number of realisations. The number of realisations follows a Poisson distribution
with an expected number of points equal to the integral of the intensity over the domain. Flaxman et al.
[2017] used (frequentist) squared elements of RKHSs to model intensity functions, whereas Walder
and Bishop [2017] used a (Bayesian) squared Gaussian process prior to model intensity functions.
We note that placing a prior over a function which when squared gives a intensity/density (likelihood)
is completely disjoint to the problem we are solving here, which is to use a squared function as a
prior density. Probabilistic circuits have been applied in converting knowledge graph embeddings
into generative models [Loconte et al., 2023a]. Squared neural family likelihoods have been applied
to label distribution learning [Zhang et al., 2025], which is a kind of variation on classical regression
where instead of the target label being a single class, the target variable is a discrete distribution
(i.e. an element of the simplex). Hence, here squared neural family models model a distribution
over distributions with a closed-form normalising constant, expectation, variance, and covariance
conditioned on input samples. Probabilistic modelling is leveraged to provide confidence intervals,
conformal predictions, active learning, and model ensembling.

4 Experiments on few-shot learning

Few shot learning setting The hyperparameters of a nonparametric probabilistic model (such as a
GP or GSFP) can be adapted to a single training dataset (X,Y) with N examples, by maximising
the marginal likelihood p(Y |X) under the model with respect to the model hyperparameters, also
referred to as type II maximum marginal likelihood [Rasmussen and Williams, 2006, § 5.4]. It may
also happen that a meta dataset, consisting of J datasets {(Xj ,Y j)}Jj=1, is assumed to arise as J
samples from a model sharing the same hyperparameters, in which case the marginal likelihood
p
(
{Y j}Jj=1 | {Xj}Jj=1

)
still serves as a natural objective for tuning model hyperparameters [Ras-

mussen and Williams, 2006, p. 115]. In this case, each of the (Xj ,Y j) consists of Nj examples,
where Nj may be constant N across all J datasets, but not necessarily. At inference time, when a new
support dataset (X∗

1,Y
∗
1) and a new set of query inputsX∗

2 are given, one may form the posterior
predictive p(Y ∗

2 |X∗
2,X

∗
1,Y

∗
1) using the hyperparameters obtained by maximising the marginal

likelihood of the tasks. This classical setting arises from point estimation of the hyperparameters un-
der the assumption of shared point hyperparameters (see right side of Figure 3), and has traditionally
been referred to under the umbrella of multi-task learning [Caruana, 1997, Minka and Picard, 1997].

This setting has recently received renewed attention under the name of few-shot learning, and GP
models have been empirically shown to outperform other more recent models on modern benchmarks,

8

−3 −2 −1 0 1 2 3
−4

−2

0

2

4

−3 −2 −1 0 1 2 3
−4

−2

0

2

4

−3 −2 −1 0 1 2 3
−4

−2

0

2

4

−3 −2 −1 0 1 2 3
−4

−2

0

2

4

−3 −2 −1 0 1 2 3
−4

−2

0

2

4

−3 −2 −1 0 1 2 3
−4

−2

0

2

4

Figure 4: When can a multimodal prior be helpful? (Top) GP using deep learning features (deep
kernel learning [Wilson et al., 2016]). (Bottom) GSFP using deep learning features. (Left) Prior
predictive, trained using points (white) drawn from a multimodal distribution over functions (with
mean given by red and blue). The GFSP is bimodal, whereas the GP is always unimodal. (Middle)
Posteriors for both models given some ambiguous points, which may belong to either red or blue
modes. The GP incorrectly places all of its belief over one of the modes, whereas the GFSP reserves
belief for both modes. (Right) Given additional data from x ≤ 0, both identify the correct mode.

both in the regression and classification setting [Patacchiola et al., 2020] (Deep kernel transfer,
or DKT). In the regression setting, further enhancements to GP models, which use continuous
normalising flows to transform GP marginal predictive posterior distributions into more complicated
distributions, have further been used to improve upon GPs [Sendera et al., 2021] (Non-Gaussian
Gaussian processes, or NGGP). Such enhancements address GP prior limitations; namely lack of an
ability to probabilistically model skewed, non-Gaussian-tailed or multimodal beliefs. Our GSFP also
offer a means to address such limitations (see Figure 4), and are therefore an excellent candidate for
few-shot learning. We consider the same scalar-valued (d2 = 1) regression benchmarks as Sendera
et al. [2021], who in turn add to the regression benchmarks of Patacchiola et al. [2020].

Implementation details We learn a prior predictive distribution, which is further broken into a
prior parameter distribution belonging to a GSF QM,Λ,Ψ and a (deterministic) feature extractor γ, by
attempting to maximise the marginal likelihood (see Proposition 2) with respect to some tuneable
decision variables. The decision variables are an unconstrained Θ, with Θ⊤Θ ∈ M and a feature
mapping ψ (which together define the prior over Ω in (2)), as well as the tuneable parameters of
the neural network γ. We further parameterise the feature mapping ψ as the hidden layer of a
learnable neural network, ψ(ω) = σ

(
Wω + b

)
, with decision variablesW and b. Updates within

the set Λ happen automatically as part of the Bayesian inference pipeline and are not part of the
decision variables in the marginal likelihood (see Proposition 2). We reimplemented competitor
models DKT [Patacchiola et al., 2020] and NGGP [Sendera et al., 2021], as we were not able to
get the originally supplied code to run, and through extensive hyperparameter tuning were able to
obtain results better than what they originally reported in all but two datasets (NDX100 and EEG).
Full hyperparameter details and run times are given in Appendix F. Results are shown in Table 4.
We observe that GFSP obtains the lowest NLL on 11 out of 12 settings, although sometimes is well
within one standard deviation of the best competing method. While our method is designed for
situations in which a multimodal belief is helpful, e.g. few-shot learning, we can also apply it to
vanilla regression. See Appendix G.

5 Discussion, limitations and conclusion

Limitations The main computational hurdle in working with GSFs is computing the (exact)
normalising constant via the squared family kernel, which has a time complexity of O(n2d), where
n is the size of the hidden layer and d is the dimension of the random variable. In practice, the
training time of GSFP is slightly longer than that of DKT, but substantially less than that of NGGP
(see Table F.9). The inference time is much lower than NGGP, but slightly more than DKT. As with
competitors DKT and NGGP, which are also based on (potentially finite-feature) GP methods, our

9

Table 1: Benchmark results showing test NLLs for regression tasks across 6 meta datasets. For each
meta dataset, we train 5 meta models with different random seed via maximum marginal likelihood
over the J datasets {(Xj ,Y j)}Jj=1. At testing time, we condition (train) on a support (few shot)
dataset (X∗

1,Y
∗
1) and evaluate the test NLL on the query dataset (X∗

2,Y
∗
2). We evaluate the test NLL

on these few shot datasets for 500 random shuffles of the test meta dataset. In total, 5× 500 = 2, 500
models are trained. Each entry shows the mean ± standard deviation over 2, 500 model evaluations.
Each testing scenario includes in-range and out-of-range, where the support and query set is either
similar to or different to the J training datasets. Best results in bold, second best underlined.

Methods Sines[Patacchiola et al., 2020] Mixed-Noise Sines [Sendera et al., 2021] QMUL [Gong et al., 1996]

Name Kernel NLLIn ↓ NLLOut ↓ NLLIn ↓ NLLOut ↓ NLLIn ↓ NLLOut ↓

DKT
RBF −0.71± 0.06 −0.62± 0.08 0.76± 0.06 1.07± 0.13 −0.73± 0.19 −0.69± 0.21

Spectral −0.82± 0.05 −0.79± 0.06 0.38± 0.17 1.78± 0.49 −0.67± 0.24 −0.64± 0.20
NN Linear −0.76± 0.09 0.30± 1.07 0.47± 0.25 2.31± 0.72 −0.66± 0.49 0.87± 1.18

NGGP
RBF −0.74± 0.06 −0.56± 0.14 0.28± 0.13 2.45± 0.87 −0.40± 0.69 0.15± 0.70

Spectral −0.84± 0.05 −0.73± 0.07 0.38± 0.17 1.78± 0.49 −0.99± 0.31 −0.77± 0.31
NN Linear −0.80± 0.06 0.27± 1.26 0.24± 0.89 2.44± 1.32 0.04± 1.34 1.41± 1.27

GSFP NN Linear −0.85± 0.06 −0.83± 0.07 0.46± 0.10 0.98± 0.21 −1.09± 0.12 −1.15± 0.14

Methods NDX100 [Qin et al., 2017] EEG [Fernandez-Fraga et al., 2019] Power [Hebrail and Berard, 2006]

Name Kernel NLLIn ↓ NLLOut ↓ NLLIn ↓ NLLOut ↓ NLLIn ↓ NLLOut ↓

DKT
RBF −1.16± 0.03 −1.17± 0.03 −1.10± 0.54 −1.16± 1.09 −0.47± 0.62 −0.34± 0.70

Spectral −0.46± 0.43 −0.63± 0.30 −1.32± 0.31 0.84± 0.67 −0.47± 0.62 −0.35± 0.70
NN Linear −2.16± 1.61 −2.41± 0.96 −1.10± 0.52 −1.02± 1.06 −0.42± 0.68 −0.33± 0.73

NGGP
RBF 1.16± 0.01 1.15± 0.01 −0.96± 0.47 0.05± 0.32 1.15± 0.02 1.15± 0.02

Spectral −1.32± 0.31 0.84± 0.67 −1.07± 0.30 −0.19± 0.37 1.35± 0.01 1.35± 0.01
NN Linear −2.07± 1.26 −2.32± 0.62 −1.05± 0.59 −1.18± 0.89 −0.27± 0.40 −0.27± 0.40

GSFP NN Linear −2.49± 1.28 −2.75± 0.53 −1.49± 0.44 −1.38± 0.81 −0.71± 0.39 −0.65± 0.45

method has O(N2) and O(N3) memory and time complexity for inference (or O(nN) and O(n3)
for finite-feature models), where N is the number of training points.

Computational complexity of Bayesian inference In the general case, Bayesian inference is
computationally difficult, unless some heavy restriction is placed on the densities (e.g. log concave).
This is especially difficult when the dimension is large, due to the curse of dimensionality and the
exponential growth of volume. In practice, if one desires an exact computation, one needs to restrict
the class of probability distributions. When we restrict the class to GSFs, we are able to compute exact
posteriors. The complexity of this calculation is governed by the inner product of the parameter matrix
M and the kernel matrixKµ,ψ (as in (1)). Assuming the kernel matrix is known, this inner product
has complexity O(n2), where n is the number of parameters in the GSF. Crucially, dependence of
the complexity on d only appears through the calculation of the kernel matrix Kµ,ψ. In practice,
the kernel matrices Kµ,ψ can be computed exactly in linear time in d. This leads to a combined
complexity of O(dn2), i.e. exact inference linear in dimension d, which is a huge improvement over
inexact inference exponential in dimension d. This improvement comes with the restriction of the
class of densities to GSFs, however this restriction is not too severe because GSFs are rich density
approximators. More precisely navigating the trade-off between universal approximation (making n
large) and computational efficiency (making n small) is an important direction for future work.

Conclusion GSF likelihoods appear in disguise in a wide range of applications, including Poisson
point processes [Flaxman et al., 2017, Walder and Bishop, 2017, Tsuchida et al., 2024] generative
models [Loconte et al., 2023a], and most fundamentally, density estimation [Rudi and Ciliberto,
2021]. Here we considered the orthogonal setting of GSF priors. Using the parameter-integral
factorisation, we found that GSFs form conjugate priors and that for many likelihoods of interest,
admit closed-form Bayesian updates. Such a closed-form update allows one to generalise Gaussian
parameter prior and Gaussian likelihood regression in feature space models to GSF priors, allowing
for multimodal and rich expressions of uncertainty. We empirically demonstrated that GSFPs perform
better than or as well as other models on a range of benchmark few-shot regression problems. In
future, it should be possible to show asymptotic normality of maximum marginal likelihood estimates,
as well as provide generalisation bounds for the problem of density estimation under a hierarchical
model, by using the fact (see Footnote 2) that the marginal likelihood asymptotically belongs to a
GSF and using known results for GSF likelihoods.

10

Acknowledgements

DS was partially supported by the Responsible AI Research Centre (RAIR).

References
Mauricio A Alvarez, Lorenzo Rosasco, Neil D Lawrence, et al. Kernels for vector-valued functions:

A review. Foundations and Trends® in Machine Learning, 4(3):195–266, 2012.

Christopher M Bishop. Pattern recognition and machine learning, volume 4. Springer, 2006.

Lawrence D Brown. Fundamentals of statistical exponential families: with applications in statistical
decision theory. 1986.

Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.

Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. In Advances in Neural
Information Processing Systems, volume 22, 2009.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying
framework for tractable probabilistic models. 2020.

Andrea Coraddu, Luca Oneto, Alessandro Ghio, Stefano Savio, Davide Anguita, , and Massimo Figari.
Condition Based Maintenance of Naval Propulsion Plants. UCI Machine Learning Repository,
2014. DOI: https://doi.org/10.24432/C5K31K.

Peter I Corke. A robotics toolbox for matlab. IEEE Robotics & Automation Magazine, 3(1):24–32,
2002.

Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling wine
preferences by data mining from physicochemical properties. Decision support systems, 47(4):
547–553, 2009.

Persi Diaconis and Donald Ylvisaker. Conjugate priors for exponential families. The Annals of
statistics, pages 269–281, 1979.

S.M. Fernandez-Fraga, M.A. Aceves-Fernandez, and J.C. Pedraza-Ortega. Eeg data collection
using visual evoked, steady state visual evoked and motor image task, designed to brain
computer interfaces (bci) development. Data in Brief, 25:103871, 2019. ISSN 2352-3409.
doi: https://doi.org/10.1016/j.dib.2019.103871. URL https://www.sciencedirect.com/
science/article/pii/S2352340919302227.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 1126–1135. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/
finn17a.html.

Seth Flaxman, Yee Whye Teh, and Dino Sejdinovic. Poisson intensity estimation with reproducing
kernels. In Artificial Intelligence and Statistics, pages 270–279. PMLR, 2017.

J. Gerritsma, R. Onnink, and A. Versluis. Yacht Hydrodynamics. UCI Machine Learning Repository,
1981. DOI: https://doi.org/10.24432/C5XG7R.

S. Gong, S. McKenna, and J.J. Collins. An investigation into face pose distributions. In Proceedings of
the Second International Conference on Automatic Face and Gesture Recognition, pages 265–270,
1996. doi: 10.1109/AFGR.1996.557275.

Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rodney J Douglas, and H Sebastian
Seung. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit.
Nature, 405(6789):947–951, 2000.

Insu Han, Amir Zandieh, Jaehoon Lee, Roman Novak, Lechao Xiao, and Amin Karbasi. Fast neural
kernel embeddings for general activations. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages
35657–35671, 2022.

David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices and the demand for clean air.
Journal of environmental economics and management, 5(1):81–102, 1978.

11

https://www.sciencedirect.com/science/article/pii/S2352340919302227
https://www.sciencedirect.com/science/article/pii/S2352340919302227
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html

Georges Hebrail and Alice Berard. Individual Household Electric Power Consumption. UCI Machine
Learning Repository, 2006. DOI: https://doi.org/10.24432/C58K54.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learning
of bayesian neural networks. In International conference on machine learning, pages 1861–1869.
PMLR, 2015.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Lorenzo Loconte and Antonio Vergari. On faster marginalization with squared circuits via orthonor-
malization. In AAAI 2025 Workshop on Connecting Low-rank Representations in AI, 2025.

Lorenzo Loconte, Nicola Di Mauro, Robert Peharz, and Antonio Vergari. How to turn your knowledge
graph embeddings into generative models. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023a. URL https://openreview.net/forum?id=RSGNGiB1q4.

Lorenzo Loconte, Stefan Mengel, Nicolas Gillis, and Antonio Vergari. Negative mixture models via
squaring: Representation and learning. In The 6th Workshop on Tractable Probabilistic Modeling,
2023b.

Lorenzo Loconte, Stefan Mengel, and Antonio Vergari. Sum of squares circuits. arXiv preprint
arXiv:2408.11778, 2024.

Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Non-parametric models for non-negative
functions. Advances in neural information processing systems, 33:12816–12826, 2020.

Thomas P Minka and Rosalind W Picard. Learning how to learn is learning with point sets. Unpub-
lished manuscript. Available at https://tminka.github.io/papers/point-sets.html, 1997.

Radford M Neal. Bayesian learning for neural networks. PhD thesis, University of Toronto, 1995.

Frank Nielsen and Vincent Garcia. Statistical exponential families: A digest with flash cards. arXiv
preprint arXiv:0911.4863, 2024.

Massimiliano Patacchiola, Jack Turner, Elliot J Crowley, Michael O’Boyle, and Amos J Storkey.
Bayesian meta-learning for the few-shot setting via deep kernels. Advances in Neural Information
Processing Systems, 33:16108–16118, 2020.

Tim Pearce, Russell Tsuchida, Mohamed Zaki, Alexandra Brintrup, and Andy Neely. Expressive
priors in bayesian neural networks: Kernel combinations and periodic functions. In Uncertainty in
artificial intelligence, pages 134–144. PMLR, 2020.

Yao Qin, Dongjin Song, Haifeng Cheng, Wei Cheng, Guofei Jiang, and Garrison W Cottrell. A
dual-stage attention-based recurrent neural network for time series prediction. In Proceedings of
the 26th International Joint Conference on Artificial Intelligence, pages 2627–2633, 2017.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

Prashant Rana. Physicochemical Properties of Protein Tertiary Structure. UCI Machine Learning
Repository, 2013. DOI: https://doi.org/10.24432/C5QW3H.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

Christian P Robert. The Bayesian choice: from decision-theoretic foundations to computational
implementation, volume 2. Springer, 2007.

Alessandro Rudi and Carlo Ciliberto. PSD representations for effective probability models. In
Advances in Neural Information Processing Systems, volume 34, pages 19411–19422, 2021.

Marcin Sendera, Jacek Tabor, Aleksandra Nowak, Andrzej Bedychaj, Massimiliano Patacchiola,
Tomasz Trzcinski, Przemysław Spurek, and Maciej Zieba. Non-gaussian gaussian processes for
few-shot regression. Advances in Neural Information Processing Systems, 34:10285–10298, 2021.

Aleksanteri Sladek. Positive Semi-Definite Probabilistic Circuits. Master’s thesis, Aalto University.
School of Science, 2023.

Athanasios Tsanas and Angeliki Xifara. Accurate quantitative estimation of energy performance of
residential buildings using statistical machine learning tools. Energy and buildings, 49:560–567,
2012.

12

https://openreview.net/forum?id=RSGNGiB1q4

Russell Tsuchida, Tim Pearce, Chris van der Heide, Fred Roosta, and Marcus Gallagher. Avoiding
kernel fixed points: Computing with ELU and GELU infinite networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 9967–9977, 2021.

Russell Tsuchida, Cheng Soon Ong, and Dino Sejdinovic. Squared neural families: A new class of
tractable density models. In Neural Information Processing Systems, 2023.

Russell Tsuchida, Cheng Soon Ong, and Dino Sejdinovic. Exact, fast and expressive poisson
point processes via squared neural families. In The 38th Annual AAAI Conference on Artificial
Intelligence, 2024.

Russell Tsuchida, Jiawei Liu, Cheng Soon Ong, and Dino Sejdinovic. Squared families: Searching
beyond regular probability models, 2025. URL https://arxiv.org/abs/2503.21128.

Pınar Tüfekci. Prediction of full load electrical power output of a base load operated combined cycle
power plant using machine learning methods. International Journal of Electrical Power & Energy
Systems, 60:126–140, 2014.

Christian J Walder and Adrian N Bishop. Fast Bayesian intensity estimation for the permanental
process. In International Conference on Machine Learning, pages 3579–3588. PMLR, 2017.

Christopher Williams. Computing with infinite networks. In Advances in Neural Information
Processing Systems, volume 9, 1996.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep kernel learning.
In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics,
volume 51 of Proceedings of Machine Learning Research, pages 370–378. PMLR, 2016.

I-C Yeh. Modeling of strength of high-performance concrete using artificial neural networks. Cement
and Concrete research, 28(12):1797–1808, 1998.

Daokun Zhang, Russell Tsuchida, and Dino Sejdinovic. Label distribution learning using the squared
neural family on the probability simplex. In The 41st Conference on Uncertainty in Artificial
Intelligence, 2025.

Liu Ziyin, Tilman Hartwig, and Masahito Ueda. Neural networks fail to learn periodic functions and
how to fix it. In Advances in Neural Information Processing Systems, volume 33, pages 1583–1594,
2020.

13

https://arxiv.org/abs/2503.21128

A Conjugacy of exponential families

A.1 General formulation

Here we review the well-known conjugacy of exponential families. Let t : X → Ra2 with X ⊆ Ra1 ,
and let H be a nonnegative measure. Let A be such that

P (dx | η) = exp
(
η⊤t(x)−A(η)

)
H(dx)

integrates to 1. The set {P (dx | η)}η∈{η′|0<
∫
exp(η′⊤t(x))H(dx)<∞} is called an exponential family.

A conjugate family for an exponential family likelihood has densities of the form

p(η | χ, r) = exp
(
χ⊤η − rA(η)

)
∫
exp (χ⊤η − rA(η)) dη

∝ exp (−rA(η)) exp(χ⊤η)

That is, a conjugate family is {p(η | χ, r)}χ∈Ra2 ,r>0. Note that the right expression is in the
form of an exponential family with canonical parameters η̃ = (χ, r) and sufficient statistic t̃(η) =
(η,−A(η)). The conjugate prior has the exponential family form

p(η | η̃) = exp
(
η̃⊤t̃(η)− Ã(η̃)

)
, Ã(η̃) = log

∫
exp

(
η̃⊤t̃(η)

)
dη.

Given iid observations X ∈ RN×a1 from the likelihood, the posterior is obtained by updating the
parameters of the prior with the sufficient statistics,

p(η |X,χ, r) = p

(
η
∣∣χ+

N∑

i=1

t(xi), r +N

)
.

A.2 Examples

Poisson-Gamma Take X = {0, 1, . . .}, h(x) = 1
x and t(x) = x. This results in a Poisson

likelihood, with rate λ = exp η and A(η) = exp(η). The conjugate family is a set of distributions of
the form

p(η | χ, r) ∝ exp (A(−rη)) exp(χη) = exp (−r exp(η)) exp(χη).
Taking λ = exp η, and accounting for the Jacobian of the transformation, we identify the family of
densities of the form

p(λ | χ, r) ∝ λχ−1 exp(−rλ),
which are Gamma densities with rate λ and shape χ. These have a known (divisive) normalising
constant given by Γ(χ)/rχ, where here Γ denotes the Gamma function. The posterior density is then

p(λ |X, χ, r) ∝ λχ+
∑N

i=1 t(xi)−1 exp(−(r +N)λ),

with known normalising constant. The corresponding prior distribution over η = log λ, as an
exponential family, is the exponential-gamma distribution, with

p(η |X, χ, r) =
rχ

Γ(χ)
exp (χη) exp(−r exp(η)).

An example of Poisson-Gamma updates is shown in Figure 5.

Gaussian-Gaussian Take X = R, h(x) = exp
(
−x2/(2s2)

)
(2πs2)−1/2, and t(x) = x/s for

some known standard deviation s > 0. This results in a Gaussian likelihood, with known variance s2,
mean sη and A(η) = η2/2. The conjugate family is a set of distributions of the form

p(η | χ, r) ∝ exp(−rη2/2) exp(χη),
which are Gaussian densities with variance 1/r and mean χ/r. These have a known (divisive)
normalising constant, and

p(η | χ, r) = 1√
2πr−1

exp

(
− 1

2r−1
(η − χ/r)2

)
.

14

−4 −2 0 2
η

0

2

4

6

p(
η
|X

)

Truth

Prior

Posterior N=20

Posterior N=40

Posterior N=60

Posterior N=80

Posterior N=100

0 2 4 6 8 10
λ

0

1

2

p(
λ
|X

)

Truth

Prior

Posterior N=20

Posterior N=40

Posterior N=60

Posterior N=80

Posterior N=100

Figure 5: Bayesian inference in a well-specified Poisson model, using a Gamma conjugate family
for rate λ (or, in canonical parameterisation, an exponential-Gamma conjugate family for η = log λ).
Shown are the posterior distributions for the parameter given N = 0, 20 . . . , 100 samples from the
likelihood.

−2 −1 0 1 2 3
η

0

1

2

3

4

p(
η
|X

)

Truth

Prior

Posterior N=20

Posterior N=40

Posterior N=60

Posterior N=80

Posterior N=100

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
m

0

2

4

6

p(
m
|X

)

Truth

Prior

Posterior N=20

Posterior N=40

Posterior N=60

Posterior N=80

Posterior N=100

Figure 6: Bayesian inference in a well-specified Gaussian model (with known variance), using a
Gaussian conjugate family for mean m (in canonical parameterisation, the conjugate family is also
Gaussian). Shown are the posterior distributions for the parameter given N = 0, 20, . . . , 100 samples
from the likelihood.

Under the change of variables m = sη for mean m,

p(m | χ, r) = N (χs/r, s2/r) and

p(m |X, χ, r) = N
(
(χ+

N∑

i=1

xi)s/(r +N), s2/(r +N)

)
.

An example of Gaussian-Gaussian updates is shown in Figure 6.

15

B Examples of squared family kernels

B.1 Exponential family base measures and exponential features

Take the base measure µ to belong to any exponential family with sufficient statistic t̃. Take the
feature ψ to be ψ(ω) = exp

(
Wt̃(ω)/2

)
. Then the ijth entry of the squared family kernelKµ,ψ is

(Kµ,ψ)ij =

∫

Ω
exp

(
(wi +wj)

⊤t̃(ω)/2
)
µ(dω),

wherewi is the ith row ofW . This is simply the moment generating function of the sufficient statistic
t̃ under the exponential family, which is available in closed-form in terms of the log normalising
constant Ã(η̃) of the exponential family,

(Kµ,ψ)ij = exp
(
Ã (η̃ + (wi +wj)/2)− Ã(η̃)

)
,

where η is the canonical parameter of the exponential family. Recall Remark 5, that if µ itself belongs
to a conjugate prior family for the likelihood p(U | ·), then ν(·) = µ(·)p(U | ·) remains within the
conjugate family, up to a multiplication by the marginal likelihood, and therefore the squared family
kernel Kν,ψ is available in closed-form for all posterior updates. By Appendix A, µ does indeed
belong to a conjugate family. Log normalising constants are available for many exponential families
which are known to be conjugate priors for exponential family likelihoods [Diaconis and Ylvisaker,
1979] (see e.g. Appendix A and closed-form normalising constants in Nielsen and Garcia [2024]).

B.2 Normalised base measures and random Fourier features

Bochner’s theorem says that every stationary kernel is the Fourier transform of a nonnegative
probability measure, and vice versa [Rahimi and Recht, 2007, for example]. Hence for real-valued
stationary squared family kernels and probability base measures µ,

(Kµ,ψ)ij =

∫

Ω
exp

(
i(wi −wj)

⊤ω
)
µ(dω)

=

∫

Ω
ψi(ω)ψj(ω)µ(dω),

where ψi(ω) = cos(w⊤
i ω) + i sin(w⊤

i ω) and i is the imaginary unit. This allows the use of
base measures with cosine and sine features, provided the base measure has a closed-form Fourier
transform. For example, the Gaussian, Laplace and Cauchy base measures all have closed-form
kernels (corresponding with Gaussian, Cauchy and Laplacian kernels respectively). Real-valued
cosine and sine transforms are also available for many densities, including the Gaussian density.

B.3 Gaussian family base measures and neural network features

Integrals of the form of the squared family kernel arise as so-called neural network Gaussian process
kernels, when the features are hidden layers of neural networks and the base measure is Gaussian,
That is, the features take the form ψ(ω) = σ(Wω + b) for some weight and bias parameters W
and b, and some activation function σ, and

(Kµ,ψ)ij = Eω∼N
[
σ(w⊤

i ω + bi)σ(w
⊤
j ω + bj)

]
.

Example activation functions with known closed form include the error function [Williams, 1996],
the ReLU (and other rectified monomial) function [Cho and Saul, 2009] and sine and cosines [Pearce
et al., 2020]. Further examples are given in Table 1 of Tsuchida et al. [2023] and Table 1 of Han et al.
[2022], including monomials, GeLU, snake and approximations to well-behaved functions.

B.4 Table of some closed-form squared families

16

Domain Ω Base measure µ Feature ψ(ω) Reference/Notes
Rd N (0,Cov) erf(Wω) Williams [1996]
Rd N (0,Cov) ReLU(Wω) Cho and Saul [2009]
Rd N (0,Cov) GELU(Wω) Tsuchida et al. [2021]
Rd N (mean,Cov) Snake(Wω + b) Tsuchida et al. [2023]
Rd N (mean,Cov) exp(Wω + b) Nielsen and Garcia [2024]

{0, 1, 2, . . .} (ω!)−1ν exp(Wω + b) Nielsen and Garcia [2024]
Sd−1 Uniform exp(Wω + b) Brown [1986]

Table 2: All of these settings admit closed-form squared family kernels Kµ,ψ. In each case, the
closed-form kernel is computed in linear time in the dimension d. Here erf denotes the error function,
Sd−1 denotes the unit hypersphere, Snake denotes the snake activation function [Ziyin et al., 2020].
Even further examples are given in Han et al. [2022, table 1] and Tsuchida et al. [2023, table 1].

17

C Proofs

Proposition 3. Consider the model in Figure 3 (Left). Define a measure ν(dω) = p(U | ω)µ(dω).
The posterior P (dω | U) = Q(dω | M , ν,ψ) belongs to a GSF with base measure ν, feature
mapping ψ and parameterM .

Proof. The posterior is the product of the likelihood and prior divided by the marginal likelihood,

1

Tr
(
MKµ,ψ

)
p(U)

⟨Mψ(ω),ψ(ω)⟩p(U | ω)µ(dω)

∝ ⟨Mψ(ω),ψ(ω)⟩p(U | ω)µ(dω)
∝ Q(dω |M , ν,ψ).

Proposition 4. Consider the model in Figure 3 (Left). Define a measure ν(dω) = p(U | ω)µ(dω)
and ν′(dω) = p(U∗ | ω)ν(dω), where, abusing notation, the train likelihood p(U | ω) and test
likelihood p(U∗ | ω) are not necessarily the same. The posterior predictive is the ratio of normalising
constants, p(U∗ | U) = Tr

(
MKν′,ψ

)
/Tr

(
MKν,ψ

)
.

Proof. This follows by applying Proposition 2 twice, or directly. Directly, the posterior predictive
is obtained by marginalising out the predictive distribution given the parameters with respect to the
parameter posterior. That is,

p(U∗ | U) =

∫

Ω
p(U∗ | ω)P (dω | u)

=

∫

Ω
p(U∗ | ω)Q(dω |M , νψ)

=
1

Tr
(
MKν,ψ

)
∫

Ω
Tr
(
Mψ(ω)ψ(ω)⊤

)
p(U∗ | ω)ν(dω)

=
Tr
(
MKν′,ψ

)

Tr
(
MKν,ψ

) .

D Squared probability process calculations

The derivation of the following two corollaries may appear long and symbol-laden but is essentially
just mixing the parameter-integral factorisation (see § 2) with the standard “completing the square”
technique in Gaussian linear regression [Bishop, 2006, §2.3.1] [Rasmussen and Williams, 2006,
§2.1.1].

Corollary 7. Consider the special model (3), (4) and (5) applied to Figure 3 (Right). Define
ν′(dω) = p(Y ∗ | Γ∗Ω

⊤)p(Y | ΓΩ⊤)µ(Ω). The Radon-Nikodym derivatives of ν and ν′ are the
same as in the finite-feature Gaussian process regression setting. That is,

dν

dλ
(dω) = N

(
ω |m′

Y ,C
′)NY , where

m′
Y = vec(M) + (B ⊗CΓ⊤)(B ⊗ ΓCΓ⊤ + v2INd2

)−1
(
vec(Y)− (Id2

⊗ Γ) vec(M)
)

C ′ = B ⊗C − (B ⊗CΓ⊤)(B ⊗ ΓCΓ⊤ + v2INd2
)−1(B ⊗ ΓC),

and

dν′

dλ
(dω) = N

(
vec(Y ∗) | (Id2 ⊗ Γ∗)m

′
Y , v

′2IN∗d2 + (Id2 ⊗ Γ∗)C
′(Id2 ⊗ Γ⊤

∗)
)

N
(
ω |m′′

Y ,Y ∗
,C ′′)NY , where

18

m′′
Y ,Y ∗

= C ′(Id2 ⊗ Γ⊤
∗)
(
(Id2 ⊗ Γ∗)C

′(Id2 ⊗ Γ⊤
∗) + v′2IN∗d2

)−1(
vec(Y ∗)− (Id2 ⊗ Γ∗)m

′
Y

)

+m′
Y

C ′′ = C ′ −C ′(Id2
⊗ Γ⊤

∗)
(
(Id2

⊗ Γ∗)C
′(Id2

⊗ Γ⊤
∗) + v′2IN∗d2

)−1
(Id2

⊗ Γ∗)C
′.

Here NY hides an inconsequential closed-form factor which depends only on Y . Hence the noisy
posterior predictive distribution is available as p

(
Y ∗ | Y ,Γ,Γ∗

)
= Tr

(
MKν′,ψ

)
/Tr

(
MKν,ψ

)
,

wheneverK·,ψ can be computed in closed-form for Gaussian base measures.

Noise-free posterior predictive In general, the noisy posterior predictive distribution p
(
Y ∗ |

Y ,Γ,Γ∗
)

is not a GSF. However, if the posterior predictive distribution is evaluated on a large
enough test set of size N∗ ≥ d1, and the resulting feature matrix Γ∗ is full-rank, then the noiseless
posterior predictive distribution is itself a GSF.
Corollary 8. Suppose additionally that C ′ and Γ∗ are full-rank and N∗ ≥ d1. Then

lim
v′2→0+

m′′
Y ,Y ∗

= (Id2 ⊗ Γ∗)
† vec(Y ∗) = (Id2 ⊗ (Γ⊤

∗ Γ∗)
−1Γ⊤

∗) vec(Y ∗)

lim
v′2→0+

C ′′ = 0,

and the noise free predictive distribution P
(
df(X∗) | Y ,Γ,Γ∗

)
= Q

(
df(X∗) | M , ν′′,ψ′)

belongs to a GSF with modified feature mapping and modified base measure,

ψ′(f(X∗)
)
≜ ψ

(
(Id2

⊗ Γ∗)
†f(X∗)

)
= ψ

(
vec
(
Γ†
∗f(X∗)

))

ν′′
(
df(X∗)

)
≜ N

(
vec
(
f(X∗)

)
| (Id2

⊗ Γ∗)m
′
Y , (Id2

⊗ Γ∗)C
′(Id2

⊗ Γ⊤
∗)
)
df(X∗). (7)

Proof. Take the train likelihood to be multivariate Gaussian with homoskedastic noise with variance
v2,

p(Y | ΓΩ⊤) =
1

(2πv2)d1d2/2
exp

(
− 1

2v2
Tr
((
Y − ΓΩ⊤)⊤(Y − ΓΩ⊤)))

=
1

(2πv2)d1d2/2
exp

(
− 1

2v2
(
vec(Y)− (Id2 ⊗ Γ)ω

)⊤(
vec(Y)− (Id2 ⊗ Γ)ω

))

= N
(
vec(Y) | (Id2 ⊗ Γ)ω, v2INd2

)

Take the Radon-Nikodym derivative of the base measure µ with respect to Lebesgue measure λ to be
the density of a matrix Gaussian distribution,

dµ

dλ
(Ω) ≜ p(Ω) =

exp
(
− 1

2 Tr
(
B†(Ω⊤ −M)⊤C†(Ω⊤ −M

)))

(2π)d1d2/2|B|d1/2|C|d2/2

= N (ω | vec(M),B ⊗C)

We convert the product p(Y | ΓΩ⊤)p(Ω) into a product of two Gaussian probability density
functions. In order to do so, we write p(Y | ΓΩ⊤)p(Ω) = p(Y)p(Ω | Y) = p(Y ,Ω) and note that
Y and Ω are jointly Gaussian. Since Y = ΓΩ⊤ + E, the parameters of the marginal distribution of Y
can be simply read off as

E
[
vec(Y)

]
= vec(ΓM),

E
[
vec(Y) vec(Y)⊤

]
= v2INd2

+ E
[
vec(ΓΩ⊤) vec(ΓΩ⊤)⊤

]

= v2INd2
+ E

[
(Id2

⊗ Γ) vec(Ω⊤) vec(Ω⊤)⊤(Id2
⊗ Γ)⊤

]

= v2INd2
+ (Id2

⊗ Γ)
(
B ⊗C

)
(Id2

⊗ Γ⊤)

= v2INd2
+B ⊗ (ΓCΓ⊤),

so that
p(Y) = N

(
vec(Y) | vec(ΓM)︸ ︷︷ ︸

(Id2⊗Γ) vec(M)

, v2INd2
+B ⊗ (ΓCΓ⊤)

)
.

19

For p(Ω | Y), we compute the unnormalised posterior Gaussian probability density function by
completing the square of the quadratic, following a typical calculation. This yields

p(Ω | Y) = N
(
ω |m′

Y ,C
′
Y

)
,

where

m′
Y = vec(M) + (B ⊗CΓ⊤)(B ⊗ ΓCΓ⊤ + v2INd2)

−1
(
vec(Y)− (Id2 ⊗ Γ) vec(M)

)

C ′
Y = B ⊗C − (B ⊗CΓ⊤)(B ⊗ ΓCΓ⊤ + v2INd2

)−1(B ⊗ ΓC).

Therefore,

p(Y | ΓΩ⊤)
dµ

dλ
(Ω) = N

(
vec(Y) | (Id2 ⊗ Γ) vec(M), v2INd2 +B ⊗ (ΓCΓ⊤)

)
N
(
ω |m′

Y ,C
′
Y

)
,

(8)

Applying the same result again for p(Y ∗ | Γ∗Ω
⊤) = N

(
vec(Y ∗) | (Id2

⊗ Γ∗)ω, v
′2IN∗d2

)
, we

may form the probability density function corresponding with the base measure ν′,

p(Y ∗ | Γ∗Ω
⊤)p(Y | ΓΩ⊤)

dµ

dλ
(Ω)

= N
(
vec(Y) | (Id2

⊗ Γ) vec(M), v2INd2
+B ⊗ (ΓCΓ⊤)

)

N
(
vec(Y ∗) | (Id2 ⊗ Γ∗)m

′
Y , v

′2IN∗d2 + (Id2 ⊗ Γ∗)C
′
Y (Id2 ⊗ Γ⊤

∗)
)
N
(
ω |m′′

Y ,Y ∗
,C ′′

Y ,Y ∗

)
.

(9)

where

m′′
Y ,Y ∗

=m′
Y +C ′

Y (Id2
⊗ Γ⊤

∗)
(
(Id2

⊗ Γ∗)C
′
Y (Id2

⊗ Γ⊤
∗) + v′2IN∗d2

)−1(
vec(Y ∗)− (Id2

⊗ Γ∗)m
′
Y

)

C ′′
Y ,Y ∗

= C ′
Y −C ′

Y (Id2 ⊗ Γ⊤
∗)
(
(Id2 ⊗ Γ∗)C

′
Y (Id2 ⊗ Γ⊤

∗) + v′2IN∗d2

)−1
(Id2 ⊗ Γ∗)C

′
Y .

Limiting base measure ν′ Let C ′
Y = LL⊤ be a decomposition in terms of L such that L ∈

Rd1d2×d1d2 and suppose C ′
Y is invertible. We may use the limit definition of the pseudo-inverse to

find

lim
v′2→0+

C ′
Y (Id2 ⊗ Γ⊤

∗)
(
(Id2 ⊗ Γ∗)C

′
Y (Id2 ⊗ Γ⊤

∗) + v′2IN∗d2

)−1

= lim
v′2→0+

LL⊤(Id2 ⊗ Γ⊤
∗)
(
(Id2 ⊗ Γ∗)LL

⊤(Id2 ⊗ Γ⊤
∗) + v′2IN∗d2

)−1

= L
(
(Id2

⊗ Γ∗)L
)†

The matrix (Id2 ⊗ Γ∗) ∈ RN∗d2×d1d2 has linearly independent columns, assuming N∗ is large
enough. L has linearly independent rows (since C ′

Y is invertible). Therefore

L
(
(Id2

⊗ Γ∗)L
)†

= LL†(Id2
⊗ Γ∗)

†

= (Id2
⊗ Γ∗)

†

We may then obtain the base measure limv′2→0+ ν
′(dω) which has parameters

lY ,Y ∗ ≜ lim
v′2→0+

m′′
Y ,Y ∗

= (Id2
⊗ Γ∗)

† vec(Y ∗)

lim
v′2→0+

C ′′
Y ,Y ∗

= 0.

We therefore have that

lim
v′2→0+

ν′(dω) = N
(
vec(Y) | (Id2

⊗ Γ) vec(M), v2INd2
+B ⊗ (ΓCΓ⊤)

)

N
(
vec(Y ∗) | (Id2

⊗ Γ∗)m
′
Y , (Id2

⊗ Γ∗)C
′
Y (Id2

⊗ Γ⊤
∗)
)
δ(ω − lY ,Y ∗).

20

Integration against this measure can be understood as an evaluation functional, and since lY ,Y ∗ is
linear in Y ∗, the evaluation is also GSF. More concretely,

z(Θ) ∝
∫

Ω
∥Θψ(ω)∥22δ(ω − lY ,Y ∗) dω

N
(
f(X∗) | (Id2 ⊗ Γ∗)m

′
Y , (Id2 ⊗ Γ∗)C

′
Y (Id2 ⊗ Γ⊤

∗)
)

= ∥Θψ(lY ,Y ∗)∥22N
(
vec(f(X∗)) | (Id2

⊗ Γ∗)m
′
Y , (Id2

⊗ Γ∗)C
′
Y (Id2

⊗ Γ⊤
∗)
)

=
∥∥∥Θψ

(
(Id2 ⊗ Γ∗)

† vec(f(X∗))
)∥∥∥

2

2

N
(
vec(f(X∗)) | (Id2

⊗ Γ∗)m
′
Y , (Id2

⊗ Γ∗)C
′
Y (Id2

⊗ Γ⊤
∗)
)
.

Hence the posterior predictive bleongs to a GSF with base measure ν′′
(
df(X∗)

)
=

N
(
vec
(
f(X∗)

)
| (Id2

⊗ Γ∗)m
′
Y , (Id2

⊗ Γ∗)C
′
Y (Id2

⊗ Γ⊤
∗)
)
df(X∗).

21

E Algorithms

In response to reviewer feedback, we include a description of the algorithms used in our experiments.
During the experiments, we run Algorithm 3 on the meta datset then run Algorithm 2 on the
support/query dataset.

Algorithm 1 Marginal likelihood (i.e., Proposition 2)
Input: Trainable final layer parameter Θ, trainable hidden network ψ : Rd → Rn, trainable base

measure µ, frozen likelihood p(U | ω)
Output: Marginal likelihood p(U) ∈ [0,∞)

1: SetM = Θ⊤Θ.
2: ComputeKµ,ψ ▷ see Appendix B
3: Set ν(dω) = p(U | ω)µ(dω), then computeKν,ψ ▷ see Appendix B
4: Set z(M) = Tr(MKµ,ψ) ▷ as per (1)
5: return p(U) = Tr(MKµ,ψ)/z(M) ▷ as per Proposition 2

Algorithm 2 GSFP posterior predictive update (i.e., Corollary 6)
Input: Frozen Gaussian likelihood p(Y | γ(X)ω) on support set. Query X∗. Prior element of a

GSF parameterised by: final layer parameter Θ ∈ Rm×n, hidden GSF network ψ : Rd → Rn,
Gaussian base measure µ, deep feature extractor γ : X → Rd.

Output: Posterior element of a GSF, parameterised by: final layer parameter, hidden network, and
base measure.

1: SetM = Θ⊤Θ.
2: Set p(z | x∗) to be the Gaussian posterior predictive. ▷ as per (6)
3: Set ψ′ ▷ as per Corollary 6
4: Set z(M) = Tr(MKν′′,ψ′) ▷ as per (1)
5: return Posterior element of a GSF parameterised by M , ν′′ and ψ′. That is, P (df |
M , ν′′,ψ′) = Tr(Mψ′(f)ψ′(f)⊤)/z(M) ν′′(df) ▷ as per (1) and Proposition 4

(Here f is shorthand for f(X∗))

Algorithm 3 GSFP Few-shot learning pretraining (i.e. paragraph 1 of Section 4)
Input: Meta-datasets (Xj ,Y j) for j = 1, . . . , J . Batch size B ∈ {1, . . . , J}. Trainable final layer

parameter Θ ∈ Rm×n. Trainable hidden network ψ : Rd → Rn. Trainable Gaussian base
measure µ. Deep feature extractor γ : X → Rd.

Output: Trained GSFP prior distribution

1: for each batch b = 1, . . . , ⌊J/b⌋+ 1 do
2: Set U i = (Y i,γ(Xi)), for each index i in the batch. Compute Gaussian likelihood p(Y i |
γXiωi) as per (4), for each index i in the batch

3: Compute gradients of the marginal likelihood (Algorithm 1) on input (Θ,ψ, p(Y i |
γ(Xi)ω)) for each i in the batch, with respect to parameters Θ and parameters of ψ, µ and γ,
using automatic differentation.

4: Update Θ, and parameters of ψ, µ and γ, using the computed gradients (e.g. using SGD
update rule).

5: Optionally store gradient statistics (e.g. for Adam or other optimisers).
6: end for
7: return Trained GSFP prior distribution described by Θ,ψ, µ and γ.

22

F Experiment details - few-shot regression

Here we describe the six datasets (two of which come with licenses, the rest without), the implemen-
tation details, and the run times for each method.

F.1 Sines

Sines dataset [Finn et al., 2017] is comprised of input x from the interval [−5, 5] with corresponding
label y = A · sin(x+ p) + ϵ, where amplitude A ∼ U [0.1, 5.0] and phase p ∼ U [0, π] are uniformly
distributed on their respective intervals, and ϵ ∼ N (0, 0.1) is a Gaussian noise with 0 mean and a
standard deviation of 0.1.

In training, 10 input-label pairs are sampled with five each for support and query sets. Evaluation
is performed on 500 inference iterations on 200 data points, with a 5/195 split ratio for support and
query sets. Testing inputs are sampled from [−5, 5] for in-distribution evaluation and [−5, 10] for
out-of-distribution evaluation.

F.2 Mixed-Noise Sines

Mixed-Noise Sines [Sendera et al., 2021] is a variant of sines experiment by utilising input-dependent
noise: y = A · sin(x+ p) + |x− p| · ϵ where | · | is an absolute value function.

F.3 NDX100

NASDAQ100 Small Dataset [Qin et al., 2017] contains stock prices of 81 major corporations and
index values of NASDAQ 100 from July 26 to December 22 in 2016. The data are recorded at a
frequency of one point per minute, resulting in 390 data points collected in a standard trade day, with
exceptions of 210 and 180 points on November 25 and December 22 separately.

Training sets and in-distribution evaluation sets are obtained by partitioning NASDAQ 100 index
with a 70/30 split. Out-of-distribution evaluation is performed on the entire data series of Yahoo stock
prices. During both training and evaluation, 10 input-label pairs are sampled with a fixed frequency
of 1 point per 10 minutes. Both in-distribution and out-of-distribution evaluations report average
performances over 500 sampled data sequences.

F.4 EEG

EEG Steady-State Visual Evoked Potential Signals Dataset [Fernandez-Fraga et al., 2019] contains the
electroencephalogram (EEG) data from 29 subjects performing different visual tests. The time-series
data signals of various lengths (owing to different test durations) are recorded at a frequency of 128
Hz. This dataset is available under a Creative Commons Attribution 4.0 International (CC-BY-4.0)
licence.

Electrode AF4 data obtained from the first Five Box Visual Test 1 on Subject 1 from Group A (file
name A001SB1_1.csv) is used for training and in-distribution evaluation following a partition ratio
of 70/30. Out-of-distribution evaluation is performed on the entire electrode AF4 data obtained from
the first Five Box Visual Test 1 on Subject 3 from Group A (file name A003SB1_1.csv). During
both training and evaluation, 10 input-label pairs are sampled with a frequency of 12.8 Hz. Both
in-distribution and out-of-distribution evaluations report average performances over 500 sampled
data sequences.

F.5 QMUL

Queen Mary University of London Multiview Face Dataset (QMUL) [Gong et al., 1996] contains
normalised facial images of 48 people. There are 133 facial images associated with each person, rep-
resenting a slice of a view sphere where yaw and pitch span α ∈ {10◦ × i : i ∈ {−9,−8, . . . , 8, 9}}
and β ∈ {10◦ × j : j ∈ {−3,−2, . . . , 2, 3}} respectively.

We use the subset comprising of only 37 people, whose facial images are grayscale, for training and
evaluation following a split ratio of 32/5. Randomly sampled head trajectory (a sequence of yaw-pitch
pairs) is obtained as: {(α, 10 · ⌊A · sin(α/10 + p) + 3⌉ − 30)}, where amplitude A ∼ U [0.1, 5.0]

23

and phase p ∼ U [0, π] are uniformly distributed. Images and tilts along the trajectory are used as
input-label pairs for training/evaluation. Note in out-of-distribution experiments, yaw is limited to a
subset {10◦ × i : i ∈ {−9,−8, . . . ,−1, 0}} during training, but has the entire set in the evaluation.
Both in-distribution and out-of-distribution evaluations report average performances over 500 sampled
data sequences.

F.6 Power

Power [Hebrail and Berard, 2006] dataset contains 2,075,259 electricity consumption readings in a
house in Sceaux (France), spanning 47 months between December 2006 and November 2010. The
time-series measurements of electricity consumption (watt per hour) are recorded at a frequency of
one reading per minute on individual metres. This dataset is licenced under a Creative Commons
Attribution 4.0 International (CC-BY-4.0) licence.

Readings from Sub_metering_3 are used for training and evaluation of the models. Following the
setting in Sendera et al. [2021], 70% of the data, starting from the beginning of the time series, is
used for both training and in-distribution evaluation, while the remaining 30% is used for out-of-
distribution evaluation. During both training and evaluation, 10 input-label pairs are sampled with a
frequency of 1 reading per 10 minutes. Both in-distribution and out-of-distribution evaluations report
average performances over 500 sampled data sequences.

F.7 Implementation details

GSFP is implemented using Pytorch and GPytorch frameworks. Features γ(x) of inputs x are
obtained using a Multilayer Perceptron (MLP) in Sines, Mixed-Noise-Sines, NDX100 and EEG
experiments, and a Convolutional Neural Network (CNN) for image data in QMUL experiment. The
MLP has two fully-connected layers, with the first layer mapping X → Rd followed by a ReLU
activation function [Hahnloser et al., 2000], and the second one mapping Rd → Rd. The CNN has
three convolutional layers with fixed kernel size of 3, stride of 2 and dilation of 2. Input channel
number of the first convolutional layer is 3, and upsized to 36 in the two subsequent convolutional
layers. Output channel number is 36 across all convolutional layers. ReLU activation function is
appended to each of the first two convolutional layers. Output of the last convolutional layer is
flattened into a d-dimensional vector. A scaled cosine function cos(·)/

√
d is appended as the final

activation.

The squared neural network consists of a hidden layer (ψ : Ω → Rn, where Ω = Rd) and readout
parameters (Θ ∈ Rm×n). The hidden layer is a fully connected layer ψ(ω) = σ (Wω + b) with
a weight matrix W ∈ Rn×d initialised from a standard normal distribution N (0, I), and a bias
vector b ∈ Rn initialised to be all ones. For the activation function σ, we use the Snake activation
function [Ziyin et al., 2020],

Snakea(z) = z +
1

a
sin2(az) = z − 1

2a
cos(2az) +

1

2az
.

The dimensions of data, latent feature and output used across the experiments are summarised in
Table 3.

Table 3: Summary of dimensions used across the experiments. Recall that d is the dimension of the
feature γ in the regression model f(x) = ω⊤γ(x) (see (2)), and n and m are the dimensions of the
readout parameter Θ ∈ Rm×n in the GSF model (see § 2).

Dimensions
Datasets

Sines Mixed-Noise Sines NDX100 EEG Power QMUL

d 40 40 5 5 5 2,916
n 10 10 2 2 2 500
m 10 10 1 1 1 500

Both DKT [Patacchiola et al., 2020] and NGGP [Sendera et al., 2021] are integrated into our
code to facilitate their evaluations under the same experimental settings as those of GSFP. Their
implementations follow the details specified in their original works, with only exceptions of increasing
the dimension of the range of the feature extractor or feature mapping function (γ) from 1 to 5 in the
NDX100, EEG, and Power datasets.

24

F.8 Training details

All models, including DKT [Patacchiola et al., 2020], NGGP [Sendera et al., 2021] and GFSP,
are trained with Adam optimiser [Kingma, 2014] using a fixed learning rate of 0.001 and default
beta coefficients of β1 = 0.9 and β2 = 0.999 across all experiments. All models are trained on
J = 10, 000 training datasets that are randomly sampled from the meta dataset as detailed in § F.1-
F.6. The evaluation results of each meta model is averaged over 500 test datasets, with each entry
representing the mean ± the standard deviation. Optimal performance of each meta model is obtained
with grid search at a frequency of 500 training datasets. Both training and evaluation are conducted
with a single RTX 2080TI GPU and an Intel(R) Xeon(R) Gold 6242 CPU @ 2.80GHz.

F.9 Run times

Table 4: Benchmark results showing training time (mins) and inference speed (tests / s) on 1 meta
dataset across regression tasks. The results are evaluated on 5 meta models, and each entry shows the
mean ± standard deviation over these 5 meta models.

Methods Training Time (mins) ↓

Name Kernel Sines Mixed-Noise Sines NDX100 EEG QMUL Power

DKT
RBF 1.04 ± 0.02 1.02 ± 0.05 1.05 ± 0.02 0.98 ± 0.01 3.06 ± 0.11 1.01 ± 0.05

Spectral 1.07 ± 0.03 1.11 ± 0.01 1.16 ± 0.01 1.15 ± 0.01 3.34 ± 0.01 1.08 ± 0.01
NN Linear 1.02 ± 0.01 0.98 ± 0.03 0.97 ± 0.01 0.95 ± 0.01 3.12 ± 0.03 0.98 ± 0.01

NGGP
RBF 41.59 ± 0.60 43.57 ± 0.58 53.41 ± 2.59 55.97 ± 5.54 57.68 ± 0.88 75.30 ± 2.89

Spectral 37.40 ± 1.41 35.19 ± 0.66 53.57 ± 0.87 64.33 ± 7.22 57.13 ± 1.41 70.52 ± 3.48
NN Linear 44.01 ± 0.39 42.53 ± 1.65 45.62 ± 2.82 63.75 ± 5.21 65.93 ± 0.73 61.92 ± 3.57

GSFP NN Linear 4.09 ± 0.32 4.14 ± 0.25 4.39 ± 0.04 3.46 ± 0.10 9.67 ± 0.02 3.45 ± 0.07

Methods Inference Speed (tests / s) ↑

Name Kernel Sines Mixed-Noise Sines NDX100 EEG QMUL Power

DKT
RBF 163.73 ± 1.17 167.84 ± 1.98 170.96 ± 1.28 174.98 ± 1.88 59.92 ± 4.26 169.38 ± 0.44

Spectral 166.22 ± 0.52 163.67 ± 0.64 172.98 ± 0.75 175.61 ± 1.44 60.06 ± 1.46 174.97 ± 3.25
NN Linear 184.35 ± 1.46 185.00 ± 1.31 195.49 ± 0.66 196.61 ± 0.59 62.25 ± 1.97 195.17 ± 1.12

NGGP
RBF 5.49 ± 0.07 5.30 ± 0.05 4.33 ± 0.87 4.11 ± 0.46 3.84 ± 0.24 3.85 ± 0.28

Spectral 7.09 ± 0.35 6.80 ± 0.85 4.40 ± 0.58 4.33 ± 0.13 3.87 ± 0.09 3.78 ± 0.16
NN Linear 4.96 ± 0.27 5.18 ± 0.17 5.86 ± 0.94 5.07 ± 0.29 3.06 ± 0.16 3.97 ± 0.32

GSFP NN Linear 99.56 ± 0.49 99.08 ± 0.97 150.09 ± 1.86 149.61 ± 1.31 7.14 ± 0.03 149.41 ± 1.80

25

G Experimental details - vanilla regression

Here we describe the nine datasets selected by [Hernández-Lobato and Adams, 2015] for regression
experiments, as well as the implementation details, experimental performances in terms of NLL, and
run times for each method.

G.1 Boston Housing

The Boston Housing dataset [Harrison Jr and Rubinfeld, 1978] consists of 506 instances with 14
variables describing the socioeconomic characteristics of neighbourhoods in Boston, Massachusetts.
We use 13 features as input variables and the remaining variable, MEDV (median value of owner-
occupied homes in $1000’s), serves as the regression target. This dataset is licensed under an Apache
2.0 open source license.

G.2 Concrete Compressive Strength

The Concrete Compressive Strength dataset [Yeh, 1998] consists of 1,030 instances with 8 variables
describing the compositional structure, the curation duration, and the compressive strength of concrete
samples. We use 7 features as input variables and the remaining variable, concrete compressive
strength (MPa), serves as the regression target. This dataset is licensed under a Creative Commons
Attribution 4.0 International (CC BY 4.0) license.

G.3 Energy Efficiency

The Energy Efficiency dataset [Tsanas and Xifara, 2012] consists of 768 samples with 8 features
describing the design details of the buildings. We use these 8 features as input variables and the
variable, cooling load, serves as the regression target. This dataset is licensed under a Creative
Commons Attribution 4.0 International (CC BY 4.0) license.

G.4 Kin8nm

The Kin8nm dataset is part of the Kin family of datasets [Corke, 2002] that consists of 8,192 instances
with 8 features simulating the forward kinetics of a robotic arm. We use these 8 features as input
variables and the remaining variable (y) serves as the regression target.

G.5 Condition Based Maintenance of Naval Propulsion Plants

The Condition Based Maintenance of Naval Propulsion Plant dataset [Coraddu et al., 2014] consists of
11,934 samples generated from a numerical simulation of a naval vessel with a gas turbine propulsion
plant. We use the 16 steady-state sensor and operational measurements as input variables, and the
compressor degradation serves as the regression target. This dataset is licensed under a Creative
Commons Attribution 4.0 International (CC BY 4.0) license.

G.6 Combined Cycle Power Plant

The Combined Cycle Power Plant dataset [Tüfekci, 2014] consists of 9,568 data points collected from
a fully operational power plant over a period of 2006-2011. We use the hourly average readings from
the four sensors as input variables and the remaining variable, net hourly electrical energy output
(EP), serves as the regression target. This dataset is licensed under a Creative Commons Attribution
4.0 International (CC BY 4.0) license.

G.7 Physicochemical Properties of Protein Tertiary Structure

The Physicochemical Properties of Protein Tertiary Structure dataset [Rana, 2013] consists of 45,730
samples of decoy structures. Each sample has nine physicochemical descriptor features, which we
use as input variables. The remaining variable, root-mean-square deviation (RMSD), is the regression
target. This dataset is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0)
license. We use the first 15,000 samples for our regression experiment.

26

G.8 Wine Quality

The Wine Quality dataset [Cortez et al., 2009] has two sub-datasets regarding red wine and white
wine from the Portuguese "Vinho Verde" region. Following [Hernández-Lobato and Adams, 2015],
we choose the red wine sub-dataset for our regression experiment. The red wine sub-dataset has
1,599 samples, each of which is described with 11 physicochemical features. The quality variable,
taking ordinal integers ranging from 0 to 10, serves as the regression target. This dataset is licensed
under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.

G.9 Yacht Hydrodynamics

The Yacht Hydrodynamics dataset [Gerritsma et al., 1981] consists of 308 samples with 6 features
derived from hull geometry and hydrodynamic context. The output variable, resistance, serves as the
regression target. This dataset is licensed under a Creative Commons Attribution 4.0 International
(CC BY 4.0) license.

G.10 Implementation details

Most of the implementation details for GSFP, DKT, and NGGP in the regression experiments follow
those in Appendix F.7, with differences as follows. (a) The feature extractor is the two-layer MLP; (b)
We fix d = 5, n = 2, and m = 1. Both (a) and (b) are applied across the nine regression experiments.
We originally considered the same few-shot learning benchmark (all datasets) as in Sendera et al.
[2021]. During the rebuttal period we applied DKT, NGGP and GSFP to vanilla regression datasets
Boston, Concrete, Energy, Kin8nm, Naval, Power Plant, Protein, Wine and Yacht. In applying our
multimodal, non-Gaussian model to vanilla regression, we repeat the message of Sendera et al. [2021]:
“the main goal of [NNGP [Sendera et al., 2021]] was to show improvement of NGGP over standard
GPs in the case of a few-shot regression task...Intuition is that NGGP may be superior to standard
GPs in a simple regression setting for datasets with non-Gaussian characteristics, but do not expect
any improvement otherwise”. We stress that we did not perform hyperparameter tuning during the
rebuttal period, and the results which follow are merely to demonstrate the performance of the models
previously tuned for few-shot regression in vanilla regression settings. As such, we caution against
general takeaways.

G.11 Training details

All models, including DKT [Patacchiola et al., 2020], NGGP [Sendera et al., 2021] and GFSP, are
trained with Adam optimiser [Kingma, 2014] using a fixed learning rate of 0.001 and default beta
coefficients of β1 = 0.9 and β2 = 0.999 across all experiments. The train/test split ratio of 80/20
is applied across the datasets as described in § G.1- G.9. Five models are trained for each method
on each dataset using random seeds ranging from 1 to 5. All models are trained on the train set for
10,000 iterations. The evaluation result of each method is averaged over 5 models, with each entry
representing the mean ± standard deviation. Optimal performance of each meta model is obtained
with grid search at a frequency of 100 training iterations. Both training and evaluation are conducted
with a single RTX 2080TI GPU and an Intel(R) Xeon(R) Gold 6242 CPU @ 2.80GHz.

G.12 Results

As shown in Table 5, we observe that GSFP obtains the lower NLL on 7 out of 9 datasets, and the
second lowest NLL on the Protein dataset. For Kin8nm, Naval, Power Plant and Protein datasets, DKT
and NGGP with spectral kernels cannot be trained due to the large number of trainable parameters
associated with the spectral kernel, which cannot fit in our available GPU memory.

G.13 Run times

27

Table 5: Benchmark results showing test NLLs for regression tasks across 9 datasets described in
§ G.1-G.9. For each dataset, we train 5 models with different random seeds (1-5) via maximum
marginal likelihood over the train set. At testing time, we condition on the train set and evaluate the
NLL on the test set for each model. Each entry shows the mean ± standard deviation over 5 model
evaluations. Best results in bold, second best underlined.

Datasets

Methods

DKT [Patacchiola et al., 2020] NGGP [Sendera et al., 2021] GSFP

RBF Spectral NN Linear RBF Spectral NN Linear NN Linear

Boston 0.335± 0.198 0.491± 0.179 0.478± 0.129 0.271± 0.229 0.439± 0.228 0.288± 0.084 −0.345± 0.272
Concrete 0.300± 0.123 0.302± 0.135 0.442± 0.082 0.647± 0.255 0.447± 0.247 0.411± 0.407 −0.072± 0.175
Energy −0.302± 0.173 −0.277± 0.094 −0.474± 0.118 0.481± 0.135 0.597± 0.027 0.364± 0.107 −1.342± 0.393
Kin8nm 0.153± 0.011 - 0.388± 0.033 0.310± 0.150 - 0.655± 0.113 0.021± 0.080
Naval −1.070± 0.011 - 0.994± 0.156 0.405± 0.474 - 0.830± 0.135 −2.019± 0.219
Power Plant −0.220± 0.193 - −0.028± 0.022 −0.114± 0.137 - −0.156± 0.136 −0.552± 0.137
Protein 1.024± 0.045 - 1.144± 0.024 0.418± 0.048 - 0.844± 0.097 0.818± 0.152
Wine 1.162± 0.034 1.192± 0.050 1.170± 0.031 −1.381± 0.264 −1.444± 0.276 −1.666± 0.664 0.755± 0.138
Yacht −1.850± 0.251 −1.278± 1.219 −1.496± 0.256 −2.350± 0.534 0.542± 0.159 0.166± 0.591 −2.873± 0.238

Table 6: Benchmark results showing training time (hours) and inference speed (tests / s) for each
model across regression tasks. The results are evaluated on 5 models, and each entry shows the mean
± standard deviation over these 5 models.

Training Time (hours) ↓

Datasets

Methods

DKT [Patacchiola et al., 2020] NGGP [Sendera et al., 2021] GSFP

RBF Spectral NN Linear RBF Spectral NN Linear NN Linear

Boston 0.034± 0.001 0.037± 0.001 0.032± 0.002 5.042± 0.619 4.024± 0.198 4.828± 0.353 0.100± 0.003
Concrete 0.091± 0.007 0.112± 0.005 0.115± 0.011 10.660± 1.209 10.592± 1.400 9.229± 1.258 0.176± 0.003
Energy 0.048± 0.000 0.053± 0.001 0.045± 0.001 7.585± 0.705 7.741± 0.645 6.866± 0.450 0.121± 0.004
Kin8nm 1.923± 0.016 - 0.727± 0.035 62.107± 7.461 - 64.435± 5.747 1.238± 0.002
Naval 3.149± 0.075 - 1.367± 0.052 127.623± 11.349 - 108.597± 5.025 2.025± 0.008
Power Plant 1.664± 0.271 - 0.839± 0.061 76.962± 4.722 - 68.406± 5.127 1.519± 0.003
Protein 5.415± 0.559 - 2.303± 0.092 144.444± 10.479 - 111.314± 12.836 2.868± 0.020
Wine 0.099± 0.008 0.175± 0.017 0.101± 0.008 16.680± 2.621 18.150± 3.623 18.791± 4.215 0.206± 0.001
Yacht 0.033± 0.000 0.035± 0.000 0.032± 0.000 4.677± 0.108 4.432± 0.206 4.867± 0.211 0.109± 0.001

Inference Time (seconds) ↓

Datasets

Methods

DKT [Patacchiola et al., 2020] NGGP [Sendera et al., 2021] GSFP

RBF Spectral NN Linear RBF Spectral NN Linear NN Linear

Boston 0.30± 0.00 0.30± 0.00 0.27± 0.00 7.09± 0.53 7.36± 0.07 6.85± 1.22 0.52± 0.01
Concrete 1.10± 0.00 1.43± 0.05 1.55± 0.17 14.11± 2.33 12.95± 1.55 15.74± 1.49 1.04± 0.00
Energy 0.70± 0.00 0.79± 0.04 0.55± 0.00 8.20± 0.82 8.38± 0.93 8.64± 0.03 1.02± 0.02
Kin8nm 30.96± 0.19 - 20.54± 1.34 118.48± 11.49 - 113.30± 12.79 8.53± 0.01
Naval 67.41± 2.61 - 42.08± 3.60 178.25± 3.59 - 155.69± 2.97 15.03± 0.19
Power Plant 42.51± 0.56 - 27.32± 2.16 144.27± 4.71 - 134.66± 10.57 9.67± 0.02
Protein 118.11± 0.02 - 70.83± 2.72 297.26± 14.70 - 211.55± 4.89 15.10± 0.03
Wine 1.70± 0.00 2.98± 0.10 1.62± 0.00 17.08± 0.72 25.11± 1.95 21.76± 5.18 2.10± 0.01
Yacht 0.17± 0.00 0.17± 0.00 0.15± 0.00 5.59± 1.32 6.45± 0.74 5.24± 1.66 0.41± 0.01

28

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All of the claims in the abstract and introduction are proved theoretically or
demonstrated empirically.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A limitations section is provided in the last section of the paper, discussing
computational complexity and lack of a formal result for maximum marginal likelihoods.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

29

Answer: [Yes]
Justification: All the results in this paper are derived either in the main paper or in the
Appendix, as mentioned in the main paper. All are numbered and cross-referenced. The
proof of the first Proposition 2 serves as a short proof sketch for the remainder of the results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The broad experimental setup is described in 4. The details of the datasets and
all hyperparameters are provided in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

30

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is provided in the submission, and will be open access after acceptance.
Instructions as well as exact commands are provided to reproduce experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All of the training and test split details are described in Appendix F. Details on
how hyperparameters were chosen is provided in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Table 4 shows performance metrics with mean and standard deviation over
500 random shuffles of the test meta dataset and 5 model training from different random
seeds (i.e. in total, 2, 500 models are trained and tested in a few-shot setting, per entry in the
table).

Guidelines:

• The answer NA means that the paper does not include experiments.

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, as mentioned in Appendix F, both training and evaluation are conducted
with a single RTX 2080TI GPU and an Intel(R) Xeon(R) Gold 6242 CPU @ 2.80GHz.
The compute time is given in Table F.9. No additional compute was required than the
experiments reported in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Code of Ethics adhered to (including considerations for potential harms
caused by the research process, societal impact and potential harmful consequences, impact
mitigation measures) and there are no special circumstances which apply.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

32

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]

Justification: Our work is similar to the example pointed out in the guidelines below: “it
is not needed to point out that a generic algorithm for optimizing neural networks could
enable people to train models that generate Deepfakes faster.” Our model serves as a
generic probabilistic inference machine, and in principle could be used to enable harmful
applications more quickly. However, this applies generically to all research in technology.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Similar to above, our contributions are sufficiently well-separated from direct
applications with high risk for misuse (e.g. language models, image/video generators,
problematic datasets, . . .).

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

33

Justification: All datasets and competitor models are cited in § 4. Licenses are discussed in
Appendix F, and are respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, a well-documented README.md contains instructions to reproduce the
results and use the provided software. This will be provided in the full release. A license is
provided.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

34

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: As above.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components (in fact, any whatsoever).
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

35

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Conjugacy of Generalised Squared Families
	Marginal likelihood and posterior distributions
	Regression models
	Generalised squared family processes
	Related work

	Experiments on few-shot learning
	Discussion, limitations and conclusion
	Conjugacy of exponential families
	General formulation
	Examples

	Examples of squared family kernels
	Exponential family base measures and exponential features
	Normalised base measures and random Fourier features
	Gaussian family base measures and neural network features
	Table of some closed-form squared families

	Proofs
	Squared probability process calculations
	Algorithms
	Experiment details - few-shot regression
	Sines
	Mixed-Noise Sines
	NDX100
	EEG
	QMUL
	Power
	Implementation details
	Training details
	Run times

	Experimental details - vanilla regression
	Boston Housing
	Concrete Compressive Strength
	Energy Efficiency
	Kin8nm
	Condition Based Maintenance of Naval Propulsion Plants
	Combined Cycle Power Plant
	Physicochemical Properties of Protein Tertiary Structure
	Wine Quality
	Yacht Hydrodynamics
	Implementation details
	Training details
	Results
	Run times

