
ICLR 2024 Workshop on LLM Agents

AUTOGEN : ENABLING NEXT-GEN LLM
APPLICATIONS VIA MULTI-AGENT CONVERSATION

Qingyun Wu∗

Pennsylvania State University
Gagan Bansal
Microsoft Research

Jieyu Zhang
University of Washington

Yiran Wu
Pennsylvania State University

Beibin Li
Microsoft Research

Erkang Zhu
Microsoft Research

Li Jiang
Microsoft

Xiaoyun Zhang
Microsoft

Shaokun Zhang
Pennsylvania State University

Jiale Liu
Pennsylvania State University

Ahmed Hassan Awadallah
Microsoft Research

Ryen W. White
Microsoft Research

Doug Burger
Microsoft Research

Chi Wang∗
Microsoft Research

Agent Customization

Flexible Conversation Patterns

Multi-Agent Conversations

Execute the
following code…

Got it! Here is the
revised code …

No, please plot %
change!

Plot a chart of META
and TESLA stock
price change YTD.

Output:

$

Month

Output:

%

Month

Error package
yfinance is not
installed

Sorry! Please first
pip install yfinance
and then execute

the code

Installing…

Example Agent Chat
Sequential Chat Nested Chat Group Chat Hierarchical Chat

…

…… …

… …

……

…

…

… …

…

…

Figure 1: AutoGen enables diverse LLM-based applications using multi-agent conversations.
(Top-left) AutoGen agents are conversable, customizable, and can be based on LLMs, tools, hu-
mans, or even a combination of them. (Top-middle) Agents can converse to solve tasks. (Right)
They can form a chat, potentially with humans in the loop. (Bottom-left) The framework supports
flexible conversation patterns.

ABSTRACT

We present AutoGen1, an open-source framework that allows developers to build
LLM applications by composing multiple agents to converse with each other to
accomplish tasks. AutoGen agents are customizable, conversable, and can oper-
ate in various modes that employ combinations of LLMs, human inputs, and tools.
It also enables developers to create flexible agent behaviors and conversation pat-
terns for different applications using both natural language and code. AutoGen
serves as a generic infrastructure and is widely used by AI practitioners and re-
searchers to build diverse applications of various complexities and LLM capac-
ities. We demonstrate the framework’s effectiveness with several pilot applica-
tions, with domains ranging from mathematics and coding to question-answering,
supply-chain optimization, online decision-making, and entertainment.

∗Corresponding to auto-gen@outlook.com
1https://github.com/microsoft/autogen

1

mailto:auto-gen@outlook.com
https://github.com/microsoft/autogen

ICLR 2024 Workshop on LLM Agents

1 INTRODUCTION

Large language models (LLMs) are becoming a crucial building block in developing powerful agents
that utilize LLMs for reasoning, tool usage, and adapting to new observations (Yao et al., 2022; Xi
et al., 2023; Wang et al., 2023). As the scope and complexity of tasks suitable for LLMs increase,
a natural strategy for enhancing agent capabilities is to employ multiple cooperating agents. Prior
work suggests that multiple agents can help encourage divergent thinking (Liang et al., 2023), im-
prove factuality and reasoning (Du et al., 2023; Naik et al., 2023), and provide guardrails (Wu et al.,
2023). Given the early promising evidence, an intriguing question is: How can we facilitate the
development of LLM applications that span a broad spectrum of domains and complexities using
a multi-agent approach? Our insight is to use multi-agent conversations. There are at least three
reasons confirming its general feasibility and utility, thanks to recent advances in LLMs: First, chat-
optimized LLMs, such as GPT-4, demonstrate the ability to incorporate feedback. LLM agents
can cooperate through conversations with each other or humans, for example, in a dialogue where
agents provide and seek reasoning, observations, critiques, and validation. Second, because a single
LLM can exhibit a broad range of capabilities, conversations between differently configured agents
can help combine these broad LLM capabilities in a modular and complementary manner. Third,
LLMs have demonstrated the ability to solve complex tasks when broken into simpler sub-tasks.
Multi-agent conversations can intuitively facilitate this partitioning and integration.

We desire a multi-agent conversation framework with generic abstraction and effective implementa-
tion that has the flexibility to satisfy different application needs. Achieving this requires addressing
two critical questions: (1) How to design individual agents that are capable, reusable, customizable,
and effective in multi-agent collaboration? (2) How can we develop a straightforward, unified in-
terface that accommodates a wide range of agent conversation patterns? In practice, applications
of varying complexities may need distinct sets of agents with specific capabilities and may require
different conversation patterns, such as single- or multi-turn dialogues, different human involve-
ment modes, and static vs. dynamic conversations. Moreover, developers may prefer the flexibility
to program agent interactions in natural language or code. We present AutoGen, a generalized
multi-agent conversation framework (Figure 1), based on the following new concepts:

1 Customizable and conversable agents. AutoGen uses a generic agent design that can leverage
LLMs, human inputs, tools, or a combination thereof. Developers can conveniently create agents
with different roles or responsibilities by selecting and configuring a subset of built-in capabilities
or defining new capabilities. To make these agents suitable for multi-agent conversation, every
agent is made conversable – they can receive, react, and respond to messages. When configured
properly, an agent can hold multiple turns of conversations with other agents autonomously or
with humans in the loop. The conversable agent design leverages the strong capability of the
most advanced LLMs in taking feedback and making progress via conversation, and also allows
combining capabilities of LLMs in a modular fashion. (Section 2.1)

2 Conversation programming. A fundamental insight of AutoGen is to simplify and unify com-
plex LLM applications as multi-agent conversations. Thus, AutoGen adopts a programming
paradigm centered around these inter-agent conversations. We refer to this paradigm as conver-
sation programming, which streamlines the development of intricate applications via two primary
steps: (1) defining a set of conversable agents with specific capabilities and roles; (2) program-
ming the interaction behavior between agents via conversation-centric computation and control.
Both steps can be achieved via a fusion of natural and programming languages. AutoGen pro-
vides ready-to-use implementations and also allows easy extension and experimentation for both
steps. (Section 2.2)

We offer a suite of multi-agent applications realized with AutoGen, showcasing the framework’s
ability to support applications of varied complexities. With these applications, we demonstrate
AutoGen’s potential to significantly enhance task completion performance and innovate LLM us-
age while minimizing development effort. Beyond the demonstrated applications, AutoGen has
also seen widespread adoption in the wild, fostering a vibrant and active community.

Related Work. Several contemporaneous explorations of multi-agent approaches exist, including
Generative Agents (Park et al., 2023), multi-agent debate (Liang et al., 2023; Du et al., 2023),
CAMEL (Li et al., 2023b), BabyAGI (BabyAGI, 2023), MetaGPT (Hong et al., 2023), Chat-
Dev (Qian et al., 2023), AgentVerse (Chen et al., 2023b), and AutoAgents (Chen et al., 2023a).
These systems are designed for specific types of scenarios or problem-solving paradigms, which

2

ICLR 2024 Workshop on LLM Agents

limits their flexibility and generalizability as comprehensive frameworks. For instance, MetaGPT
and ChatDev prioritize software engineering tasks and only support certain multi-agent structures,
such as chains or Standardized Operating Procedures. AgentVerse primarily simulates the problem-
solving processes of a human group following a sequence of pre-defined stages. CAMEL supports
multi-agent systems with two or three agents following a fixed workflow pattern. One notable dif-
ference compared these works is the fact that AutoGen supports diverse workflow thanks to its
composable conversation patterns and does not explicitly restrict the number of agents. We include
an expanded discussion of this related work and single-agent systems/frameworks in Appendix B.

2 THE AUTOGEN FRAMEWORK

To reduce the effort required for developers to create complex LLM applications across various
domains, a core design principle of AutoGen is to streamline them using multi-agent conversations.
This approach also aims to maximize the reusability of implemented agents. This section introduces
the two key concepts of AutoGen: conversable agents and conversation programming.

2.1 CONVERSABLE AGENTS

In AutoGen, a conversable agent is an entity with a specific role that can send message to and
receive message from the other conversable agents, e.g., to start or continue a conversation. It
maintains its internal context based on sent and received messages and can be configured to possess
a set of capabilities, e.g., enabled by LLMs, tools, human input, etc. The agents can act according
to the programmed behavior patterns described next.

Agent capabilities powered by LLMs, humans, and tools. AutoGen allows flexibility to equip
its agents with various capabilities, which directly affect how it processes and responds to mes-
sages. The built-in composable agent capabilities includes: 1) LLMs. LLM-backed agents utilize
advanced capabilities such as role-playing, implicit state inference, making progress based on con-
versation history, and coding. These capabilities can be combined and enhanced in different ways
via novel prompting techniques2. AutoGen also offers enhanced LLM inference features such as
result caching, error handling, message templating, etc., via an enhanced LLM inference layer. 2)
Humans. Human involvement is desired or even essential in many LLM applications. AutoGen
lets a human participate in agent conversation via human-backed agents, which could solicit human
inputs at certain rounds of a conversation depending on the agent configuration. The default user
proxy agent allows configurable human involvement levels and patterns, e.g., frequency and condi-
tions for requesting human input including the option for humans to skip providing input. 3) Tools.
Tool-backed agents have the capability to execute tools via code execution or function execution.
For example, the default user proxy agent in AutoGen is able to execute code suggested by LLMs,
or make LLM-suggested function calls.

Agent customization. Based on application-specific needs, each agent can be configured to have a
mix of basic back-end types to exhibit complex behavior in multi-agent conversations. AutoGen
allows easy creation of agents with specialized capabilities and roles by reusing or extending the
built-in agents. The yellow-shaded area of Figure 2 provides a sketch of the built-in agents in
AutoGen. The ConversableAgent class is the most basic agent abstraction and, by default,
can use LLMs, humans, and tools. The AssistantAgent and UserProxyAgent are two
pre-configured ConversableAgent subclasses, each representing a common usage mode, i.e.,
acting as an AI assistant (backed by LLMs) and acting as a human proxy to solicit human input
or execute code/function calls (backed by humans and/or tools). In the example on the right-hand
side of Figure 1, an LLM-backed assistant agent and a tool- and human-backed user proxy agent
are deployed together to tackle a task. Here, the assistant agent generates a solution with the help
of LLMs and passes the solution to the user proxy agent. Then, the user proxy agent solicits human
inputs or executes the assistant’s code and passes the results as feedback back to the assistant. One
can compose a complex agent using nested chat (introduced in the next subsection) among simpler
agents and increaes the complexity recursively.

2Appendix D presents an example of such novel prompting techniques which empowers the default LLM-
backed assistant agent in AutoGen to converse with other agents in multi-step problem-solving.

3

ICLR 2024 Workshop on LLM Agents

2 Initiate Conversations:
A.initiate_chat(“Plot a chart of META and

TESLA stock price change YTD.”, B)

Assistant BUser Proxy A

AutoGen
Agents

Developer
Code

This func will be invoked in
generate_reply

A.register_reply(B,
reply_func_A2B)
def reply_func_A2B(msg):

ouput = input_from_human()
…
if not ouput:

if msg includes code:
output = execute(msg)

return output

ConversableAgent

AssistantAgent UserProxyAgent

human_input_mode = “NEVER”
code_execution_config = False
DEFAULT_SYSTEM_MESSAGE = “You
are a helpful AI assistant…
In the following cases, suggest
python code…” human_input_mode = “ALWAYS”

GroupChatManager

human_input_mode = “NEVER”
group_chat = []

Note: when no reply
func is registered, a
list of default reply
functions will be used.

Agent Customization:

Program
Execution

Plot a chart of META and
TESLA stock price change YTD.

Execute the following
code…

send

receive

receive

Conversation-Centric
Computation

generate_reply Error: package yfinance is not
installed

send
generate_reply

Sorry! Please first pip install
yfinance and then execute

Conversation-Driven
Control Flow generate_reply

The Resulting Automated Agent Chat:

…

1.2 Register a Custom Reply Func: 1.1 Define Agents:

Unified Conversation Interfaces:
• send
• receive
• generate_reply

Figure 2: Illustration of how to use AutoGen to program a multi-agent conversation. The top
sub-figure illustrates the built-in conversable agents provided by AutoGen. The middle sub-figure
shows an example of using AutoGen to develop a two-agent system with a custom reply function.
The bottom sub-figure illustrates the resulting automated agent chat from the two-agent system
during program execution.

2.2 CONVERSATION PROGRAMMING

To develop applications where agents make meaningful progress on tasks, developers also need to
be able to specify and properly control these multi-agent conversations. To this end, AutoGen
utilizes conversation programming, a paradigm that concerns two concepts: the first is computation
– the actions agents take to compute their response in a multi-agent conversation. And the second
is control flow – the order and conditions under which individual computations in the conversation
are executed or evaluated. As we will show in the applications section, the ability to program these
helps implement many flexible multi-agent conversation patterns. In AutoGen, agent computa-
tions are conversation-centric. An agent takes actions based on conversations it is involved in, and
these actions further lead to message passing for subsequent conversations. Similarly, control flow
is conversation-driven – the participating agents’ decisions on which agents to send messages to and
the procedure of computation are functions of the inter-agent conversation. This paradigm facili-
tates intuitive reasoning about complex workflows through actions of agents and message-passing
between agents.

Figure 2 provides a simple illustration. The middle sub-figure shows how each individual agent
performs its role-specific, conversation-centric computations to generate responses (e.g., via LLM
inference calls and code execution).The bottom sub-figure demonstrates a conversation-based con-
trol flow. When the assistant receives a message, the user proxy agent generate a reply based on
code execution or solicits human inputs. The task progresses through conversations displayed in the
dialog box. AutoGen features the following design patterns to facilitate conversation programming.

4

ICLR 2024 Workshop on LLM Agents

Unified interfaces and auto-reply mechanisms for automated agent chat. Agents in AutoGen
have unified conversation interfaces for performing the corresponding conversation-centric compu-
tation. Those low-level interfaces include:
• send/receive for sending/receiving messages; and
• generate reply for taking actions and generating a response based on the received message;
• register reply for registering custom reply function.

AutoGen also introduces and by default adopts an agent auto-reply mechanism to realize
conversation-driven control: Once an agent receives a message from another agent, it automatically
invokes generate reply and sends the reply back to the sender unless a termination condition is
satisfied. AutoGen provides built-in reply functions based on LLM inference, code or function ex-
ecution, or human input. One can also register custom reply functions (via the register reply
interface) to customize the behavior pattern of an agent, e.g., to chat with another agent before reply-
ing to the sender agent realizing the nested chat conversation pattern. Under this mechanism, once
the reply functions are registered, and the conversation is initialized, the conversation flow is natu-
rally induced, and thus the agent conversation proceeds naturally without any extra control plane,
i.e., a special module that controls the conversation flow. For example, with the developer code in
the blue-shaded area (marked “Developer Code”) of Figure 2, one can readily trigger the conversa-
tion among the agents, and the conversation would proceed automatically, as shown in the dialog
box in the grey shaded area (marked “Program Execution”) of Figure 2. The auto-reply mechanism
provides a decentralized, modular, and unified way to define the workflow.

Control by fusion of programming and natural language. AutoGen allows the usage of pro-
gramming and natural language in various control flow management patterns:

• Natural-language control via LLMs: One can control the conversation flow by prompting LLM-
backed agents with natural language. For instance, the default system message of the built-
in AssistantAgent uses natural language to instruct agents to write code and debug when
needed. It also guides the agent to confine LLM outputs, making it easier for other agents to
consume. More examples of such controls can be found in Appendix D.

• Programming-language control: In AutoGen, Python code can be used to specify the termination
condition, human input mode, and tool execution logic, e.g., the max number of auto replies. One
can also register programmed auto-reply functions to control the conversation flow with Python
code, as shown in the code block identified as “Conversation-Driven Control Flow” in Figure 2.

• Control transition between natural and programming language: AutoGen also supports flexible
control transition between natural and programming language. One can achieve transition from
code to natural-language control by invoking an LLM inference containing certain control logic
in a customized reply function; or transition from natural language to code control via LLM-
proposed function calls (Eleti et al., 2023).

Composable conversation patterns. The conversation programming paradigm enables the com-
position of multi-agent conversations with diverse patterns, both statically and dynamically. For
enhanced usability, we provide interfaces for constructing several commonly used conversation pat-
terns, including two-agent chat, sequential chats, nested chat and group chat. We provide the de-
tailed interfaces for specifying these patterns in Appendix D. Beyond these built-in patterns, one
can employ these higher-level interfaces – and the low-level interfaces such as register reply if
necessary – recursively to compose more complex and creative patterns, e.g., a nested chat with a
group chat nested within, allowing one agent to create its inner monologue, realizing the Society
of Mind idea from Minsky (1988). The composed conversation workflow can be static or dynamic.
AutoGen provides two general ways to achieve dynamic conversation flows: 1) customized re-
ply function, with which one agent can hold the current conversation while invoking conversations
with other agents depending on the content of the current message and context; and 2) LLM-driven
function calls, in which LLM decides whether or not to call a particular function depending on the
conversation status.

5

ICLR 2024 Workshop on LLM Agents

3 APPLICATIONS OF AUTOGEN

We demonstrate six applications using AutoGen (see Figure 3). These applications are selected
based on their real-world relevance (A1, A2, A4, A5, A6), problem difficulty (A1, A2, A3, A4), and
innovative potential (A5, A6). Together, these criteria showcase AutoGen’s role in advancing the
LLM application landscape. All the applications and their evaluations presented in this section are
based on code version 0.1.1 of the library, with code and instructions provided in the Reproducibility
Statement section at the end of this paper.

A1. Math Problem Solving

A4. Supply-Chain Optimization

Commander

SafeguardWriter

A6. Conversational Chess

A2. Retrieval-augmented Q&A

Retrieval-augmented
Assistant

Retrieval-augmented
User Proxy

Chess Board

Human/AI Chess
Player A

Human/AI Chess
Player B

Student Assistant Assistant

Expert

Ask
expert

Broadcast

Manager

Speak

A5. Dynamic Task Solving with Group Chat

ALFWorld
Executor

Assistant Grounding
Agent

A3. Decision Making in Household Tasks

Figure 3: Six examples of applications built using AutoGen. These applications demonstrates
AutoGen’s flexibility in supporting diverse applications with flexible conversation patterns.

A1: MATH PROBLEM SOLVING

Mathematics is a foundational discipline and the promise of leveraging LLMs to assist with math
problem solving opens up a new plethora of applications and avenues for exploration, including
personalized AI tutoring, AI research assistance, etc. This section demonstrates how AutoGen
can help develop LLM applications for math problem solving, showcasing strong performance and
flexibility in supporting various problem-solving paradigms.

(Scenario 1) We are able to build a system for autonomous math problem solving by directly reusing
two built-in agents from AutoGen. We evaluate our system and several alternative approaches,
including open-source methods such as Multi-Agent Debate (Liang et al., 2023), LangChain Re-
Act (LangChain, 2023), vanilla GPT-4, and commercial products ChatGPT + Code Interpreter, and
ChatGPT + Plugin (Wolfram Alpha), on the MATH (Hendrycks et al., 2021) dataset and summarize
the results in Figure 4a. We perform evaluations over 120 randomly selected level-5 problems and
on the entire3 test dataset from MATH. The results show that the built-in agents from AutoGen al-
ready yield better performance out of the box compared to the alternative approaches, even including
the commercial ones. (Scenario 2) We also showcase a human-in-the-loop problem-solving process
with the help of AutoGen. To incorporate human feedback with AutoGen, one only needs to
set human input mode=‘ALWAYS’ in the UserProxyAgent of the system in scenario 1. We
demonstrate that this system can effectively incorporate human inputs to solve challenging problems
that cannot be solved without humans. (Scenario 3) We further demonstrate a novel scenario where
multiple human users can participate in the conversations during the problem-solving process. Our
experiments and case studies for these scenarios show that AutoGen enables better performance or
new experience compared to other solutions we experimented with. Due to the page limit, details of
the evaluation, including case studies in three scenarios are in Appendix E.

3We did not evaluate ChatGPT on the whole dataset since it requires substantial manual effort and is re-
stricted by its hourly message-number limitation. Multi-agent debate and LangChain ReAct were also not
evaluated since they underperformed vanilla GPT-4 on the smaller test set.

6

ICLR 2024 Workshop on LLM Agents

2-agent chat
(via AutoGen)

ChatGPT
+Code

ChatGPT
+Plugin

GPT-4 Multi-Agent
Debate

LangChain
ReAct

Methods

0

10

20

30

40

50

60

70

80

Su
cc

es
s R

at
io

 (%
)

52.5%
48.33%

45.0%

30.0%
26.67%

23.33%

69.48%

55.18%

120 Level-5 problems
Whole Dataset

(a) A1: Performance on MATH (w/ GPT-4).

F1 Recall
Metrics

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 (%

)

25.88%

66.65%

15.12%

58.56%

22.79%

62.59%

RAGChat (via AutoGen)
RAGChat w/o interactive retrieval
DPR

(b) A2: Q&A tasks (w/ GPT-3.5).

3-agent chat
(via AutoGen)

2-agent chat
(via AutoGen)

ReAct

Methods

0

20

40

60

80

100

Su
cc

es
s R

at
io

 (%
) 69%

54% 54%

77%

63% 66%

Average
Best of 3

(c) A3: Performance on ALFWorld.

F1 Recall
Metrics

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

96.00% 98.00%
88.00%

78.00%
83.00%

72.00%

48.00%

32.00%

Multi-GPT4
Single-GPT4
Multi-GPT3.5
Single-GPT3.5

(d) A4: Performance on OptiGuide.

Figure 4: Performance on four applications A1-A4. (a) shows that a simple two-agent system with
built-in agents from AutoGen can be used out of the box to achieve the most competitive per-
formance on math problem solving tasks; (b) shows that AutoGen can be used to realize effective
retrieval augmentation and realize a novel interactive retrieval feature to boost performance on Q&A
tasks; (c) shows that AutoGen can be used to introduce a three-agent system with a grounding agent
to improve performance on ALFWorld; (d) shows that a multi-agent design is helpful in boosting
performance in coding tasks that need safeguards.

A2: RETRIEVAL-AUGMENTED Q&A

Retrieval augmentation generation (RAG) has emerged as a practical and effective approach for miti-
gating the intrinsic limitations of LLMs by incorporating external documents. We employ AutoGen
to build a RAG system (Lewis et al., 2020; Parvez et al., 2021) named Retrieval-augmented Chat.
The system consists of two agents: a Retrieval-augmented User Proxy agent and a Retrieval-
augmented Assistant agent, both of which are extended from built-in agents from AutoGen. The
Retrieval-augmented User Proxy includes a vector database (Chroma, 2023) as the context retriever.
A detailed workflow description of the Retrieval-augmented Chat (RAGChat) is provided in Ap-
pendix E. We evaluate Retrieval-augmented Chat in both question-answering and code-generation
scenarios. (Scenario 1) We first perform an evaluation regarding natural question answering on the
Natural Questions dataset (Kwiatkowski et al., 2019) and report results in Figure 4b. In this evalua-
tion, we compare our system with DPR (Dense Passage Retrieval) following an existing evaluation
practice (Adlakha et al., 2023). Leveraging the conversational design and natural-language control,
AutoGen introduces a novel interactive retrieval feature in this application: whenever the retrieved
context does not contain the information, instead of terminating, the LLM-based assistant would
reply “Sorry, I cannot find any information about... UPDATE CONTEXT.” which will invoke more
retrieval attempts. We conduct an ablation study in which we prompt the assistant agent to say “I
don’t know” instead of “UPDATE CONTEXT.” in cases where relevant information is not found,
and report results in Figure 4b. The results show that the interactive retrieval mechanism indeed
plays a non-trivial role in the process. We give a concrete example and results using this appealing
feature in Appendix E. (Scenario 2) We further demonstrate how Retrieval-augmented Chat aids in

7

ICLR 2024 Workshop on LLM Agents

generating code based on a given codebase that contains code not included in GPT-4’s training data.
Evaluation and demonstration details for both scenarios are included in Appendix E.

A3: DECISION MAKING IN HOUSEHOLD TASKS

In this subsection, we demonstrate how AutoGen can be used to develop effective applications that
involve interactive or online decision-making. We perform the study using the ALFWorld (Shridhar
et al., 2021), a diverse collection of synthetic language-based interactive decision-making tasks in
household environments. With AutoGen, we implemented a two-agent system for ALFWorld. It
consists of an LLM-backed assistant agent for suggesting plans to conduct a task and an executor
agent for executing actions. This system integrates the ReAct prompting (Yao et al., 2022) and could
achieve similar performance. A common challenge encountered in both ReAct and the AutoGen-
based two-agent system is their occasional inability to follow basic commonsense knowledge about
the physical world, therefore getting stuck with repetitive errors. Fortunately, the modular design
of AutoGen allows us to address this issue effectively: With AutoGen, we introduce a grounding
agent, which supplies crucial commonsense knowledge–such as “You must find and take the object
before you can examine it. You must go to where the target object is before you can use it.”–whenever
the system exhibits early signs of recurring errors. It significantly enhances the system’s ability to
avoid getting entangled in error loops. We compare the task-solving performance of the two variants
of our system with GPT-3.5-turbo and ReAct on the 134 unseen tasks from ALFWorld and report
results in Figure 4c. The results show that introducing a grounding agent leads to a 15% performance
gain on average. Upon examining the systems’ outputs, we observe that the grounding agent, by
delivering commonsense knowledge at the right junctures, significantly mitigated the tendency of
the system to persist with a flawed plan, thereby avoiding the creation of error loops. For an example
trajectory comparing the systems see Appendix E, Figure 10.

A4: SUPPLY-CHAIN OPTIMIZATION

In this subsection, we use AutoGen to build a multi-agent coding system based on OptiGuide (Li
et al., 2023a), a system that excels at writing code to interpret optimization solutions and answer
user questions, such as exploring the implications of changing a supply-chain decision or under-
standing why the optimizer made a particular choice. The second sub-figure of Figure 3 shows the
AutoGen-based implementation. The workflow is as follows: the end user sends questions, such
as “What if we prohibit shipping from supplier 1 to roastery 2?” to the Commander agent. The
Commander coordinates with two assistant agents, including the Writer and the Safeguard, to an-
swer the question. The Writer is responsible for crafting code and the Safeguard is responsible for
checking the code safety. With AutoGen the core workflow code for OptiGuide was reduced from
over 430 lines to 100 lines, leading to significant productivity improvement. We provide a detailed
comparison of user experience with ChatGPT+Code Interpreter and AutoGen-based OptiGuide
in Appendix E, where we show that AutoGen-based OptiGuide could save around 3x of user’s
time and reduce user interactions by 3 - 5 times on average. We also conduct an ablation showing
that multi-agent abstraction is necessary. Specifically, we construct a single-agent approach where
a single agent conducts both the code-writing and safeguard processes. We tested the single- and
multi-agent approaches on a dataset of 100 coding tasks, which is crafted to include equal numbers
of safe and unsafe tasks. Evaluation results as reported in Figure 4d show that the multi-agent design
boosts the F-1 score in identifying unsafe code by 8% (with GPT-4) and 35% (with GPT-3.5-turbo).

A5: DYNAMIC TASK SOLVING WITH GROUP CHAT

There are many real-world scenarios that require dynamic task solving, meaning that the exact work-
flow cannot be predetermined due to the complex nature of the tasks. For example, tasks involving
coding and web scraping. The group chat conversation pattern in AutoGen is a desirable pattern
in such scenarios. In a group chat, the participating agents share the same context and converse
with the others in a dynamic manner instead of following a pre-defined order. Dynamic group chat
relies on ongoing conversations to guide the flow of interaction among agents. These make dynamic
group chat ideal for situations where collaboration without strict communication order is benefi-
cial. In AutoGen, the GroupChatManager class serves as the conductor of conversation among
agents and repeats the following three steps: dynamically selecting a speaker, collecting responses

8

ICLR 2024 Workshop on LLM Agents

from the selected speaker, and broadcasting the message (Figure 3-A5). For the dynamic speaker-
selection component, we use a role-play style prompt. Through a pilot study on 12 manually crafted
complex tasks, we observed that compared to a prompt that is purely based on the task, utilizing a
role-play prompt often leads to more effective consideration of both conversation context and role
alignment during the problem-solving and speaker-selection process. Consequently, this leads to a
higher success rate and fewer LLM calls. We include detailed results in Appendix E.

A6: CONVERSATIONAL CHESS

Using AutoGen, we developed Conversational Chess, a natural language interface game shown in
the last sub-figure of Figure 3. It features built-in agents for players, which can be human or LLM,
and a third-party board agent to provide information and validate moves based on standard rules.
With AutoGen, we enabled two essential features: (1) Natural, flexible, and engaging game dy-
namics, enabled by the customizable agent design in AutoGen. Conversational Chess supports a
range of game-play patterns, including AI-AI, AI-human, and human-human, with seamless switch-
ing between these modes during a single game. An illustrative example of these entertaining game
dynamics can be found in Figure 15, Appendix E. (2) Grounding, which is a crucial aspect to main-
tain game integrity. During gameplay, the board agent checks each proposed move for legality;
if a move is invalid, the agent responds with an error, prompting the player agent to re-propose
a legal move before continuing. This process ensures that only valid moves are played and helps
maintain a consistent gaming experience. As an ablation study, we removed the board agent and
instead only relied on a relevant prompt “you should make sure both you and the opponent are
making legal moves” to ground their move. The results highlighted that without the board agent,
illegitimate moves caused game disruptions. The modular design offered flexibility, allowing swift
adjustments to the board agent in response to evolving game rules or varying chess rule variants. A
comprehensive demonstration of this ablation study is in Appendix E.

4 DISCUSSION

We introduced an open-source library, AutoGen, that incorporates the paradigms of conversable
agents and conversation programming. AutoGen also provides various additional supports, includ-
ing multimodality, asynchronous operations, and enhanced LLM inference as the project evolves.
Furthermore, AutoGen seamlessly interoperates with numerous single-agent systems, LLM tools,
and libraries, such as OpenAI Assistant and MemGPT (Packer et al., 2023). Although still in
an early stage, AutoGen is already benefiting a wide range of vertical industries and empow-
ering researchers to build multi-agent AI systems for various scientific studies. For example,
AutoGen is used to realize a multi-agent system for accessing task utility in LLM-powered ap-
plications (Arabzadeh et al., 2024).

AutoGen also paves the way for numerous future directions and research opportunities. For in-
stance, it is worth investigating which strategies, such as agent topology and conversation patterns,
lead to the most effective multi-agent conversations while optimizing the overall efficiency, among
other factors. While increasing the number of agents and other degrees of freedom presents opportu-
nities for tackling more complex problems, it may also introduce new safety challenges that require
additional studies and careful consideration. We consider this an important future work to explore
those safety implications. We provide an expanded discussion in Appendix C, including guidelines
for using AutoGen and future work. We welcome contributions from the broader community.

ACKNOWLEDGMENTS

We extend our heartfelt gratitude to all the contributors and users of AutoGen for their invaluable
support and dedication, which have been instrumental in enhancing the quality and functionality of
the library. The collective efforts have made a significant difference.

9

ICLR 2024 Workshop on LLM Agents

REFERENCES

Vaibhav Adlakha, Parishad BehnamGhader, Xing Han Lu, Nicholas Meade, and Siva Reddy. Eval-
uating correctness and faithfulness of instruction-following models for question answering. arXiv
preprint arXiv:2307.16877, 2023.

Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi, Penny Col-
lisson, Jina Suh, Shamsi Iqbal, Paul N Bennett, Kori Inkpen, et al. Guidelines for human-ai
interaction. In Proceedings of the 2019 chi conference on human factors in computing systems,
2019.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in ai safety, 2016.

Negar Arabzadeh, Julia Kiseleva, Qingyun Wu, Chi Wang, Ahmed Awadallah, Victor Dibia, Adam
Fourney, and Charles Clarke. Towards better human-agent alignment: Assessing task utility in
llm-powered applications. arXiv preprint arXiv:2402.09015, 2024.

AutoGPT. Documentation — auto-gpt. https://docs.agpt.co/, 2023.

BabyAGI. Github — babyagi. https://github.com/yoheinakajima/babyagi, 2023.

Carrie J. Cai, Samantha Winter, David F. Steiner, Lauren Wilcox, and Michael Terry. ”hello ai”:
Uncovering the onboarding needs of medical practitioners for human-ai collaborative decision-
making. Proceedings of the ACM on Human-Computer Interaction, 2019.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language models as
tool makers. arXiv preprint arXiv:2305.17126, 2023.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin
Shi. Autoagents: A framework for automatic agent generation. arXiv preprint arXiv:2309.17288,
2023a.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan,
Yujia Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and
exploring emergent behaviors in agents. arXiv preprint arXiv:2308.10848, 2023b.

Chroma. Chromadb. https://github.com/chroma-core/chroma, 2023.

Victor Dibia. LIDA: A tool for automatic generation of grammar-agnostic visualizations and info-
graphics using large language models. In Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 3: System Demonstrations), Toronto, Canada, July
2023. Association for Computational Linguistics.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt. arXiv
preprint arXiv:2304.07590, 2023.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

Atty Eleti, Jeff Harris, and Logan Kilpatrick. Function calling and other api updates. https:
//openai.com/blog/function-calling-and-other-api-updates, 2023.

Guidance. Guidance. https://github.com/guidance-ai/guidance, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, et al. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

10

https://docs.agpt.co/
https://github.com/yoheinakajima/babyagi
https://github.com/chroma-core/chroma
https://openai.com/blog/function-calling-and-other-api-updates
https://openai.com/blog/function-calling-and-other-api-updates
https://github.com/guidance-ai/guidance

ICLR 2024 Workshop on LLM Agents

Eric Horvitz. Principles of mixed-initiative user interfaces. In Proceedings of the SIGCHI conference
on Human Factors in Computing Systems, 1999.

HuggingFace. Transformers agent. https://huggingface.co/docs/transformers/
transformers_agents, 2023.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491, 2023.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 2019.

LangChain. Introduction — langchain. https://python.langchain.com/en/latest/
index.html, 2023.

Mike Lewis, Denis Yarats, Yann N Dauphin, Devi Parikh, and Dhruv Batra. Deal or no deal? end-
to-end learning for negotiation dialogues. arXiv preprint arXiv:1706.05125, 2017.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gen-
eration for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems,
2020.

Beibin Li, Konstantina Mellou, Bo Zhang, Jeevan Pathuri, and Ishai Menache. Large language
models for supply chain optimization. arXiv preprint arXiv:2307.03875, 2023a.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for ”mind” exploration of large scale language model society,
2023b.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng
Tu, and Shuming Shi. Encouraging divergent thinking in large language models through multi-
agent debate, 2023.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. arXiv preprint arXiv:1802.08802,
2018.

Jerry Liu. LlamaIndex, November 2022. URL https://github.com/jerryjliu/llama_
index.

Marvin L. Minsky. The Society of Mind. Simon & Schuster, New York, 1988. ISBN 978-0-671-
65713-0.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ranjita Naik, Varun Chandrasekaran, Mert Yuksekgonul, Hamid Palangi, and Besmira Nushi.
Diversity of thought improves reasoning abilities of large language models. arXiv preprint
arXiv:2310.07088, 2023.

Roberto Navigli, Simone Conia, and Björn Ross. Biases in large language models: Origins, inven-
tory and discussion. ACM Journal of Data and Information Quality, 2023.

OpenAI. ChatGPT plugins. https://openai.com/blog/chatgpt-plugins, 2023.

Charles Packer, Vivian Fang, Shishir G Patil, Kevin Lin, Sarah Wooders, and Joseph E Gonzalez.
Memgpt: Towards llms as operating systems. arXiv preprint arXiv:2310.08560, 2023.

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. arXiv preprint
arXiv:2304.03442, 2023.

11

https://huggingface.co/docs/transformers/transformers_agents
https://huggingface.co/docs/transformers/transformers_agents
https://python.langchain.com/en/latest/index.html
https://python.langchain.com/en/latest/index.html
https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index
https://openai.com/blog/chatgpt-plugins

ICLR 2024 Workshop on LLM Agents

Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
Retrieval augmented code generation and summarization. arXiv preprint arXiv:2108.11601,
2021.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu,
and Maosong Sun. Communicative agents for software development. arXiv preprint
arXiv:2307.07924, 2023.

SemanticKernel. Introduction — semantic kernel. https://github.com/microsoft/
semantic-kernel, 2023.

Bokui Shen, Fei Xia, Chengshu Li, Roberto Martı́n-Martı́n, Linxi Fan, Guanzhi Wang, Claudia
Pérez-D’Arpino, Shyamal Buch, Sanjana Srivastava, Lyne Tchapmi, et al. igibson 1.0: A simu-
lation environment for interactive tasks in large realistic scenes. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2021.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning.
PMLR, 2017.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning.(2023). arXiv preprint
cs.AI/2303.11366, 2023.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. ALFWorld: Aligning Text and Embodied Environments for Interactive Learning. In
Proceedings of the International Conference on Learning Representations (ICLR), 2021. URL
https://arxiv.org/abs/2010.03768.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al.
Starcraft ii: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu. Flaml: A fast and lightweight automl
library. Proceedings of Machine Learning and Systems, 2021.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
arXiv preprint arXiv:2308.11432, 2023.

Daniel S. Weld and Oren Etzioni. The first law of robotics (a call to arms). In AAAI Conference on
Artificial Intelligence, 1994.

Max Woolf. Langchain problem. https://minimaxir.com/2023/07/
langchain-problem/, 2023.

Yiran Wu, Feiran Jia, Shaokun Zhang, Qingyun Wu, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat
Lee, Richard Peng, and Chi Wang. An empirical study on challenging math problem solving with
gpt-4. arXiv preprint arXiv:2306.01337, 2023.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

12

https://github.com/microsoft/semantic-kernel
https://github.com/microsoft/semantic-kernel
https://arxiv.org/abs/2010.03768
https://minimaxir.com/2023/07/langchain-problem/
https://minimaxir.com/2023/07/langchain-problem/

ICLR 2024 Workshop on LLM Agents

ETHICS STATEMENT

There are several potential ethical considerations that could arise from the development and use of
the AutoGen framework.

• Privacy and Data Protection: The framework allows for human participation in conversations
between agents. It is important to ensure that user data and conversations are protected, and that
developers use appropriate measures to safeguard privacy.

• Bias and Fairness: LLMs have been shown to exhibit biases present in their training data (Navigli
et al., 2023). When using LLMs in the AutoGen framework, it is crucial to address and mitigate
any biases that may arise in the conversations between agents. Developers should be aware of
potential biases and take steps to ensure fairness and inclusivity.

• Accountability and Transparency: As discussed in the future work section, as the framework in-
volves multiple agents conversing and cooperating, it is important to establish clear accountability
and transparency mechanisms. Users should be able to understand and trace the decision-making
process of the agents involved in order to ensure accountability and address any potential issues
or biases.

• Trust and Reliance: AutoGen leverages human understanding and intelligence while providing
automation through conversations between agents. It is important to consider the impact of this
interaction on user experience, trust, and reliance on AI systems. Clear communication and user
education about the capabilities and limitations of the system will be essential (Cai et al., 2019).

• Unintended Consequences: As discussed before, the use of multi-agent conversations and automa-
tion in complex tasks may have unintended consequences. Especially, allowing LLM agents to
make changes in external environments through code execution or function calls, such as install
packages, could be risky. Developers should carefully consider the potential risks and ensure that
appropriate safeguards are in place to prevent harm or negative outcomes.

REPRODUCIBILITY STATEMENT

Following the best practices in the community, we aim to ensure the reproducibility of the results
presented in this paper. The appendices and the accompanying repository are designed to provide
readers and reviewers with comprehensive resources to understand, replicate, and extend our work.

• Detailed descriptions of each application, including their construction and evaluations, are pro-
vided in Appendix E.

• Example outputs from AutoGen and alternative approaches across different applications are il-
lustrated in Appendix F.

• A repository containing the source code of AutoGen and application evaluation code is pro-
vided, along with instructions for reproducing the experiments reported in this paper: https:
//github.com/qingyun-wu/autogen-eval.

13

https://github.com/qingyun-wu/autogen-eval
https://github.com/qingyun-wu/autogen-eval

ICLR 2024 Workshop on LLM Agents

A INTERFACES AND EXAMPLE CODE

Agent Specification. AutoGen provides a set of built-in and pre-configured conversable agents,
which can be directly imported and used. One can further create an agent with customized capabili-
ties and proper configuration when instantiating the agent.

1 from autogen import ConversableAgent, AssistantAgent, UserProxyAgent
2 user_proxy = UserProxyAgent(name="user proxy")

Listing 1: Importing and using pre-configured agent classes from AutoGen

1 my_assistant = ConversableAgent(name="my assistant",
2 llm_config=my_config,
3 code_execution_config=True,
4 function_map=my_func
5)

Listing 2: Specifying an agent with customized capabilities

High-level agent interfaces for composing diverse conversation patterns. AutoGen provides
several commonly used conversation patterns via the following interfaces:
• initiate chat: two-agent chat, which is a chat involving two agents. An example is shown

in Listing 4.
• initiate chats: sequential chat, which involves a sequence of chats between two agents.

This approach is particularly beneficial for tasks requiring a sequence of interdependent multi-
agent conversations. The utility of this method is exemplified in Listing 5, showcasing the execu-
tion of complex tasks through coordinated chat sequences.

• register nested chat: nested chat, which is a chat created by a receiver agent after receiv-
ing a message from a sender agent and finished before the receiver agent replies to this message.
Nested chats allow one agent to use other agents as their inner monologue to accomplish tasks.
This abstraction is powerful as it allows one to compose agents in rich ways. Listing 3 gives an
example in which we use this interface to nest a reflection agent within the user proxy agent. This
could be used to realize the self-reflection idea (Shinn et al., 2023) to improve LLM’s reasoning
and problem-solving capability.

• GroupChat: group chat, which is a pattern in which participating agents have shared context. It
is desirable for dynamic task solving, as detailed in A5.

1 user_proxy.register_nested_chat([{"recipient": critique_agent}])

Listing 3: Nested chat registration (assuming all the agent involved have been created)

1 user_proxy.initiate_chat(my_assistant, message="Plot a chart of META and TESLA
stock price change YTD.")

Listing 4: Two-agent chat (with a nested chat if the corresponding registration is done)

1 initiate_chats(
2 [
3 {"sender": user_proxy,
4 "recipient": my_assistant_1,
5 "message": "Get META and TESLA stock price change YTD."},
6 {"sender": user_proxy,
7 "recipient": my_assistant_2,
8 "message": "Plot a chart of based on the stock price data."},
9]

10)

Listing 5: Sequential chat

B EXPANDED RELATED WORK

Here we examine existing LLM-based agent systems or frameworks that can be used to build LLM
applications in detail. We categorize the related work into single-agent and multi-agent systems and
specifically provide a summary of differentiators comparing AutoGen with existing multi-agent
systems below. Note that many of these systems are evolving open-source projects, so the remarks
and statements about them may only be accurate as of the time of writing. We refer interested readers
to detailed LLM-based agent surveys (Xi et al., 2023; Wang et al., 2023)

14

ICLR 2024 Workshop on LLM Agents

Single-Agent Systems:

• AutoGPT: AutoGPT is an open-source implementation of an AI agent that attempts to au-
tonomously achieve a given goal (AutoGPT, 2023). It follows a single-agent paradigm in which
it augments the AI model with many useful tools, and does not support multi-agent collaboration.

• ChatGPT+ (with code interpreter or plugin): ChatGPT, a conversational AI service or agent,
can now be used alongside a code interpreter or plugin (currently available only under the pre-
mium subscription plan ChatGPT Plus) (OpenAI, 2023). The code interpreter enables ChatGPT
to execute code, while the plugin enhances ChatGPT with a wide range of curated tools.

• LangChain Agents: LangChain is a general framework for developing LLM-based applica-
tions (LangChain, 2023). LangChain Agents is a subpackage for using an LLM to choose a
sequence of actions. There are various types of agents in LangChain Agents, with the ReAct agent
being a notable example that combines reasoning and acting when using LLMs (mainly designed
for LLMs prior to ChatGPT) (Yao et al., 2022). All agents provided in LangChain Agents fol-
low a single-agent paradigm and are not inherently designed for communicative and collaborative
modes. A significant summary of its limitations can be found in (Woolf, 2023). Due to these lim-
itations, even the multi-agent systems in LangChain (e.g., re-implementation of CAMEL) are not
based on LangChain Agents but are implemented from scratch. Their connection to LangChain
lies in the use of basic orchestration modules provided by LangChain, such as AI models wrapped
by LangChain and the corresponding interface.

• Transformers Agent: Transformers Agent (HuggingFace, 2023) is an experimental natural-
language API built on the transformers repository. It includes a set of curated tools and an agent
to interpret natural language and use these tools. Similar to AutoGPT, it follows a single-agent
paradigm and does not support agent collaboration.

AutoGen differs from the single-agent systems by supporting multi-agent conversations.

Multi-Agent Systems:

• Multi-Agent Debate: Two recent works investigate and show that multi-agent debate is an effec-
tive way to encourage divergent thinking in LLMs (Liang et al., 2023) and to improve the factuality
and reasoning of LLMs (Du et al., 2023). In both works, multiple LLM inference instances are
constructed as multiple agents to solve problems with agent debate. Each agent is simply an LLM
inference instance, while no tool or human is involved, and the inter-agent conversation needs
to follow a pre-defined order. These works attempt to build LLM applications with multi-agent
conversation, while AutoGen, designed as a generic infrastructure, can be used to facilitate this
development and enable more applications with dynamic conversation patterns.

• MetaGPT (Hong et al., 2023) and ChatDev (Qian et al., 2023): Both MetaGPT and ChatDev
are multi-agent frameworks for software development. Compared to MetaGPT and ChatDev,
AutoGen supports more flexible and complex workflows in addition to Standardized Operating
Procedures (SOP) or chains, e.g., nested chat and group chat, and covers a wider range of usage
scenarios beyond software engineering.

• Simulacra (Park et al., 2023): This system features twenty-five generative agents in an interactive
sandbox environment. It represents one of the initial attempts at multi-agent interaction, with a
special focus on investigating whether generative agents could enable believable simulations of
human behavior.

• BabyAGI: BabyAGI (BabyAGI, 2023) is an example implementation of an AI-powered task man-
agement system in a Python script. In this implemented system, multiple LLM-based agents are
used. For example, there is an agent for creating new tasks based on the objective and the result
of the previous task, an agent for prioritizing the task list, and an agent for completing tasks/sub-
tasks. As a multi-agent system, BabyAGI adopts a static agent conversation pattern, i.e., a prede-
fined order of agent communication, while AutoGen supports both static and dynamic conversa-
tion patterns and additionally supports tool usage and human involvement.

• CAMEL: CAMEL (Li et al., 2023b) is a role-playing-based agent framework supporting two
or three agents (depending on if a critic agent is included). It demonstrates how role-playing
can be used to let chat agents communicate with each other for task completion. It also records
agent conversations for behavior analysis and capability understanding. An Inception-prompting
technique is used to achieve autonomous cooperation between agents.

15

ICLR 2024 Workshop on LLM Agents

Several other LLM-based multi-agent systems/frameworks have emerged following the initial re-
lease of our work, including AgentVerse (Chen et al., 2023b) and AutoAgents (Chen et al., 2023a).
We omit a detailed discussion here due to the contemporaneous nature of these developments.

C EXPANDED DISCUSSION

The applications in Section 3 show how AutoGen not only enables new applications but also helps
renovate existing ones. For example, in A1 (scenario 3), A5, and A6, AutoGen enabled the creation
of multi-agent conversations that follow a dynamic pattern instead of a fixed back-and-forth. And in
both A5 and A6, humans can participate in the activities together with multiple other AI agents in a
conversational manner. Similarly, A1-A4 show how popular applications can be renovated quickly
with AutoGen. Despite the complexity of these applications (most of them involve more than
two agents or dynamic multi-turn agent cooperation), our AutoGen-based implementation remains
simple, demonstrating promising opportunities to build creative applications and a large space for
innovation. In reflecting on why these benefits can be achieved in these applications with AutoGen,
we believe there are a few reasons:

• Ease of use: The built-in agents can be used out-of-the-box, delivering strong performance even
without any customization. (A1, A3)

• Modularity: The division of tasks into separate agents promotes modularity in the system. Each
agent can be developed, tested, and maintained independently, simplifying the overall develop-
ment process and facilitating code management. (A3, A4, A5, and A6)

• Programmability: AutoGen allows users to extend/customize existing agents to develop sys-
tems satisfying their specific needs with ease. (A1-A6). For example, with AutoGen, the core
workflow code in A4 is reduced from over 430 lines to 100 lines, for a 4x saving.

• Allowing human involvement: AutoGen provides a native mechanism to achieve human par-
ticipation and/or human oversight. With AutoGen, humans can seamlessly and optionally coop-
erate with AIs to solve problems or generally participate in the activity. AutoGen also facilitates
interactive user instructions to ensure the process stays on the desired path. (A1, A2, A5, and A6)

• Collaborative/adversarial agent interactions: Like many collaborative agent systems (Dong
et al., 2023), agents in AutoGen can share information and knowledge, to complement each
other’s abilities and collectively arrive at better solutions. (A1, A2, A3, and A4). Analogously, in
certain scenarios, some agents are required to work in an adversarial way. Relevant information is
shared among different conversations in a controlled manner, preventing distraction or hallucina-
tion. (A4, A6). AutoGen supports both patterns, enabling effective utilization and augmentation
of LLMs.

C.1 GENERAL GUIDELINES FOR USING AUTOGEN

Below we give some recommendations for using agents in AutoGen to accomplish a task.

1. Consider using built-in agents first. For example, AssistantAgent is pre-configured to
be backed by GPT-4, with a carefully designed system message for generic problem-solving via
code. The UserProxyAgent is configured to solicit human inputs and perform tool execu-
tion. Many problems can be solved by simply combining these two agents. When customizing
agents for an application, consider the following options: (1) human input mode, termination
condition, code execution configuration, and LLM configuration can be specified when con-
structing an agent; (2) AutoGen supports adding instructions in an initial user message, which
is an effective way to boost performance without needing to modify the system message; (3)
UserProxyAgent can be extended to handle different execution environments and exceptions,
etc.; (4) when system message modification is needed, consider leveraging the LLM’s capability
to program its conversation flow with natural language.

2. Start with a simple conversation topology. Consider using the two-agent chat or the group chat
setup first, as they can often be extended with the least code. Note that the two-agent chat can
be easily extended to involve more than two agents by using LLM-consumable functions in a
dynamic way.

3. Try to reuse built-in reply methods based on LLM, tool, or human before implementing a
custom reply method because they can often be reused to achieve the goal in a simple way (e.g.,

16

ICLR 2024 Workshop on LLM Agents

the built-in agent GroupChatManager’s reply method reuses the built-in LLM-based reply
function when selecting the next speaker, ref. A5 in Section 3).

4. When developing a new application with UserProxyAgent, start with humans always in
the loop, i.e., human input mode=‘ALWAYS’, even if the target operation mode is more au-
tonomous. This helps evaluate the effectiveness of AssistantAgent, tuning the prompt,
discovering corner cases, and debugging. Once confident with small-scale success, consider set-
ting human input mode = ‘NEVER’. This enables LLM as a backend, and one can either use the
LLM or manually generate diverse system messages to simulate different use cases.

5. Despite the numerous advantages of AutoGen agents, there could be cases/scenarios where
other libraries/packages could help. For example: (1) For (sub)tasks that do not
have requirements for back-and-forth trouble-shooting, multi-agent interaction, etc., a uni-
directional (no back-and-forth message exchange) pipeline can also be orchestrated with
LangChain (LangChain, 2023), LlamaIndex (Liu, 2022), Guidance (Guidance, 2023), Semantic
Kernel (SemanticKernel, 2023), Gorilla (Patil et al., 2023) or low-level inference API (‘auto-
gen.oai’ provides an enhanced LLM inference layer at this level) (Dibia, 2023). (2) When exist-
ing tools from LangChain etc. are helpful, one can use them as tool backends for AutoGen
agents. For example, one can readily use tools, e.g., Wolfram Alpha, from LangChain in
AutoGen agent. (3) For specific applications, one may want to leverage agents implemented
in other libraries/packages. To achieve this, one could wrap those agents as conversable agents
in AutoGen and then use them to build LLM applications through multi-agent conversation. (4)
It can be hard to find an optimal operating point among many tunable choices, such as the LLM
inference configuration. Blackbox optimization packages like ‘flaml.tune’ (Wang et al., 2021)
can be used together with AutoGen to automate such tuning.

C.2 FUTURE WORK

This work raises many research questions and future directions.

Designing optimal multi-agent workflows: Creating a multi-agent workflow for a given task can
involve many decisions, e.g., how many agents to include, how to assign agent roles and agent
capabilities, how the agents should interact with each other, and whether to automate a particular
part of the workflow. There may not exist a one-fits-all answer, and the best solution might depend
on the specific application. This raises important questions: For what types of tasks and applications
are multi-agent workflows most useful? How do multiple agents help in different applications? For
a given task, what is the optimal (e.g., cost-effective) multi-agent workflow?

Creating highly capable agents: AutoGen can enable the development of highly capable agents
that leverage the strengths of LLMs, tools, and humans. Creating such agents is crucial to ensuring
that a multi-agent workflow can effectively troubleshoot and make progress on a task. For example,
we observed that CAMEL, another multi-agent LLM system, cannot effectively solve problems in
most cases primarily because it lacks the capability to execute tools or code. This failure shows that
LLMs and multi-agent conversations with simple role playing are insufficient, and highly capable
agents with diverse skill sets are essential. We believe that more systematic work will be required to
develop guidelines for application-specific agents, to create a large OSS knowledge base of agents,
and to create agents that can discover and upgrade their skills (Cai et al., 2023).

Enabling scale, safety, and human agency: Section 3 shows how complex multi-agent workflows
can enable new applications, and future work will be needed to assess whether scaling further can
help solve extremely complex tasks. However, as these workflows scale and grow more complex,
it may become difficult to log and adjust them. Thus, it will become essential to develop clear
mechanisms and tools to track and debug their behavior. Otherwise, these techniques risk resulting
in incomprehensible, unintelligible chatter among agents (Lewis et al., 2017).

Our work also shows how complex, fully autonomous workflows with AutoGen can be useful, but
fully autonomous agent conversations will need to be used with care. While the autonomous mode
AutoGen supports could be desirable in many scenarios, a high level of autonomy can also pose
potential risks, especially in high-risk applications (Amodei et al., 2016; Weld & Etzioni, 1994). As
a result, building fail-safes against cascading failures and exploitation, mitigating reward hacking,
out of control and undesired behaviors, maintaining effective human oversight of applications built
with AutoGen agents will become important. While AutoGen provides convenient and seamless

17

ICLR 2024 Workshop on LLM Agents

involvement of humans through a user proxy agent, developers and stakeholders still need to under-
stand and determine the appropriate level and pattern of human involvement to ensure the safe and
ethical use of the technology (Horvitz, 1999; Amershi et al., 2019).

D DEFAULT SYSTEM MESSAGE FOR ASSISTANT AGENT

System Message

You are a helpful AI assistant. Solve tasks using your coding and language skills.

In the following cases, suggest python code (in a python coding block) or shell script (in a sh
coding block) for the user to execute.

1. When you need to collect info, use the code to output the info you need, for example, browse or
search the web, download/read a file, print the content of a webpage or a file, get the current
date/time. After sufficient info is printed and the task is ready to be solved based on your
language skill, you can solve the task by yourself.

2. When you need to perform some task with code, use the code to perform the task and output the
result. Finish the task smartly.

Solve the task step by step if you need to. If a plan is not provided, explain your plan first. Be
clear which step uses code, and which step uses your language skill.

When using code, you must indicate the script type in the code block. The user cannot provide any
other feedback or perform any other action beyond executing the code you suggest. The user can’t
modify your code. So do not suggest incomplete code which requires users to modify. Don’t use a
code block if it’s not intended to be executed by the user.

If you want the user to save the code in a file before executing it, put # filename: <filename>
inside the code block as the first line. Don’t include multiple code blocks in one response. Do not
ask users to copy and paste the result. Instead, use ’print’ function for the output when relevant.
Check the execution result returned by the user.

If the result indicates there is an error, fix the error and output the code again. Suggest the
full code instead of partial code or code changes. If the error can’t be fixed or if the task is
not solved even after the code is executed successfully, analyze the problem, revisit your
assumption, collect additional info you need, and think of a different approach to try.

When you find an answer, verify the answer carefully. Include verifiable evidence in your response
if possible.

Reply “TERMINATE” in the end when everything is done.

Prompting techniques color code: Role Play; Control Flow; Output Confine; Facilitate Automation; Grounding

Figure 5: Default system message for the built-in assistant agent in AutoGen (v0.1.1). This is
an example of conversation programming via natural language. It contains instructions of different
types, including role play, control flow, output confine, facilitate automation, and grounding.

Figure 5 shows the default system message for the built-in assistant agent in AutoGen (v0.1.1),
where we introduce several new prompting techniques and highlight them accordingly. When com-
bining these new prompting techniques together, we can program a fairly complex conversation even
with the simplest two-agent conversation topology. This approach tries to exploit the capability of
LLMs in implicit state inference to a large degree. LLMs do not follow all the instructions perfectly,
so the design of the system needs to have other mechanisms to handle the exceptions and faults.
Some instructions can have ambiguities, and the designer should either reduce them for preciseness
or intentionally keep them for flexibility and address the different situations in other agents. In
general, we observe that GPT-4 follows the instructions better than GPT-3.5-turbo.

E APPLICATION DETAILS

A1: MATH PROBLEM SOLVING

Scenario 1: Autonomous Problem Solving. We perform both qualitative and quantitative eval-
uations in this scenario. For all evaluations, we use GPT-4 as the base model, and pre-install the

18

ICLR 2024 Workshop on LLM Agents

Enable Multi-User Problem Solving Via
Student and Expert

Student
Proxy

Student
Assistant

Expert
Assistant

Expert
Proxy

Ask for
expert

Enable Autonomous and Human-in-the-loop
Problem Solving

Figure 6: Illustration of three problem-solving scenarios with AutoGen: (Gray) Enables a workflow
where a student collaborates with an assistant agent to solve problems, either autonomously or in a
human-in-the-loop mode. (Gray + Orange) Facilitates a more sophisticated workflow wherein the
assistant, on the fly, can engage another user termed “expert”, who is in the loop with their own
assistant agent, to aid in problem-solving if its own solutions are not satisfactory.

“sympy” package in the execution environment. We compare AutoGen with the following LLM-
based agent systems:

• AutoGPT: The out-of-box AutoGPT is used. We initialize AutoGPT by setting the purpose to
“solve math problems”, resulting in a “MathSolverGPT” with auto-generated goals.

• ChatGPT+Plugin: We enable the Wolfram Alpha plugin (a math computation engine) in the Ope-
nAI web client.

• ChatGPT+Code Interpreter: This is a recent feature in OpenAI web client. Note that the above
two premium features from ChatGPT require a paid subscription to be accessed and are the most
competitive commercial systems.

• LangChain ReAct+Python: We use Python agent from LangChain. To handle parsing errors, we
set “handle parsing errors=True”, and use the default zero-shot ReAct prompt.

• Multi-Agent Debate (Liang et al., 2023): We modified the code of the multi-agent debate to per-
form evaluation. By default, there are three agents: an affirmative agent, a negative agent, and a
moderator.

We also conducted preliminary evaluations on several other multi-agent systems, including
BabyAGI, CAMEL, and MetaGPT. The results indicate that they are not suitable choices for solving
math problems out of the box. For instance, when MetaGPT is tasked with solving a math problem,
it begins developing software to address the problem, but most of the time, it does not actually solve
the problem. We have included the test examples in Appendix F.

For the qualitative evaluation, we utilize two level-5 problems from the MATH dataset, testing each
problem three times. The first problem involves simplifying a square root fraction, and the second
problem involves solving a number theory issue. The correctness counts and reasons for failure
are detailed in Table 1. For the quantitative evaluation, we conduct two sets of experiments on
the MATH dataset to assess the correctness of these systems: (1) an experiment involving 120
level-5 (the most challenging level) problems, including 20 problems from six categories, excluding
geometry, and (2) an experiment on the entire test set, which includes 5000 problems. We exclude
AutoGPT from this evaluation as it cannot access results from code executions and does not solve
any problems in the qualitative evaluation. Our analysis of the entire dataset reveals that AutoGen
achieves an overall accuracy of 69.48%, while GPT-4’s accuracy stands at 55.18%. From these

19

ICLR 2024 Workshop on LLM Agents

Table 1: Qualitative evaluation of two math problems from the MATH dataset within the autonomous
problem-solving scenario. Each LLM-based system is tested three times on each of the problems.
This table reports the problem-solving correctness and summarizes the reasons for failure.

Correctness Failure Reason
AutoGen 3/3 N/A.
AutoGPT 0/3 The LLM gives code without the print function so the

result is not printed.
ChatGPT+Plugin 1/3 The return from Wolfram Alpha contains 2 simplified

results, including the correct answer, but GPT-4 always
chooses the wrong answer.

ChatGPT+Code Interpreter 2/3 Returns a wrong decimal result.
LangChain ReAct 0/3 LangChain gives 3 different wrong answers.
Multi-Agent Debate 0/3 It gives 3 different wrong answers due to calculation errors.

(a) Evaluation on the first problem that asks to simplify a square root fraction.

Correctness Failure Reason
AutoGen 2/3 The final answer from code execution is wrong.
AutoGPT 0/3 The LLM gives code without the print function so the

result is not printed.
ChatGPT+Plugin 1/3 For one trial, GPT-4 got stuck because it keeps giving

wrong queries and has to be stopped. Another trial simply
gives a wrong answer.

ChatGPT+Code Interpreter 0/3 It gives 3 different wrong answers.
LangChain ReAct 0/3 LangChain gives 3 different wrong answers.
Multi-Agent Debate 0/3 It gives 3 different wrong answers.

(b) Evaluation on the second number theory problem.

evaluations, we have the following observations regarding the problem-solving success rate and
user experience of these systems:

• Problem-solving success rate: Results from the quantitative evaluations show that AutoGen can
help achieve the highest problem-solving success rate among all the compared methods. The qual-
itative evaluations elucidate common failure reasons across several alternative approaches. Chat-
GPT+Code Interpreter fails to solve the second problem, and ChatGPT+Plugin struggles to solve
both problems. AutoGPT fails on both problems due to code execution issues. The LangChain
agent also fails on both problems, producing code that results in incorrect answers in all trials.

• Based on the qualitative evaluation, we analyze the user experience concerning the verbosity of
the response and the ability of the LLM-based system to run without unexpected behaviors. Chat-
GPT+Plugin is the least verbose, mainly because Wolfram queries are much shorter than Python
code. AutoGen, ChatGPT+Code Interpreter, and LangChain exhibit similar verbosity, although
LangChain is slightly more verbose due to more code execution errors. AutoGPT is the most ver-
bose system owing to predefined steps like THOUGHTS, REASONING, and PLAN, which it in-
cludes in replies every time. Overall, AutoGen and ChatGPT+Code Interpreter operate smoothly
without exceptions. We note the occurrences of undesired behaviors from other LLM-based sys-
tems that could affect user experience: AutoGPT consistently outputs code without the print’
statement and cannot correct this, requiring the user to run them manually; ChatGPT with Wol-
fram Alpha plugin has the potential to become stuck in a loop that must be manually stopped; and
Langchain ReAct could exit with a parse error, necessitating the passing of a ‘handle parse error’
parameter.

Scenario 2: Human-in-the-loop Problem Solving. For challenging problems that these
LLM systems cannot solve autonomously, human feedback during the problem-solving pro-
cess can be helpful. To incorporate human feedback with AutoGen, one can set
human input mode=‘ALWAYS’ in the user proxy agent. We select one challenging problem
that none of these systems can solve autonomously across three trials. We adhere to the process
outlined below to provide human inputs for all the compared methods:

20

ICLR 2024 Workshop on LLM Agents

1. Input the problem: Find the equation of the plane which bisects
the angle between the planes 3x − 6y + 2z + 5 = 0 and 4x − 12y +
3z − 3 = 0, and which contains the point (−5,−1,−5). Enter your
answer in the form

Ax+By + Cz +D = 0,

where A, B, C, D are integers such that A > 0 and
gcd(|A|, |B|, |C|, |D|) = 1.

2. The response from the system does not solve the problem correctly. We then give
a hint to the model: Your idea is not correct. Let’s solve this
together. Suppose P = (x, y, z) is a point that lies on a
plane that bisects the angle, the distance from P to the
two planes is the same. Please set up this equation first.

3. We expect the system to give the correct distance equation. Since the equation involves an
absolute sign that is hard to solve, we would give the next hint: Consider the two
cases to remove the abs sign and get two possible solutions.

4. If the system returns the two possible solutions and doesn’t continue to the next
step, we give the last hint: Use point (-5,-1,-5) to determine which is
correct and give the final answer.

5. Final answer is 11x+6y+5z+86=0 .

We observed that AutoGen consistently solved the problem across all three trials. ChatGPT+Code
Interpreter and ChatGPT+Plugin managed to solve the problem in two out of three trials, while Au-
toGPT failed to solve it in all three attempts. In its unsuccessful attempt, ChatGPT+Code Interpreter
failed to adhere to human hints. In its failed trial, ChatGPT+Plugin produced an almost correct solu-
tion but had a sign discrepancy in the final answer. AutoGPT was unable to yield a correct solution
in any of the trials. In one trial, it derived an incorrect distance equation. In the other two trials, the
final answer was incorrect due to code execution errors.

Scenario 3: Multi-User Problem Solving. Next-generation LLM applications may necessitate
the involvement of multiple real users for collectively solving a problem with the assistance of
LLMs. We showcase how AutoGen can be leveraged to effortlessly construct such a system.
Specifically, building upon scenario 2 mentioned above, we aim to devise a simple system involving
two human users: a student and an expert. In this setup, the student interacts with an LLM assistant
to address some problems, and the LLM automatically resorts to the expert when necessary.

The overall workflow is as follows: The student chats with the LLM-based assistant agent through
a student proxy agent to solve problems. When the assistant cannot solve the problem satisfacto-
rily, or the solution does not match the expectation of the student, it would automatically hold the
conversation and call the pre-defined ask for expert function via the function call feature of
GPT in order to resort to the expert. Specifically, it would automatically produce the initial message
for the ask for expert function, which could be the statement of the problem or the request to
verify the solution to a problem, and the expert is supposed to respond to this message with the help
of the expert assistant. After the conversation between the expert and the expert’s assistant, the final
message would be sent back to the student assistant as the response to the initial message. Then, the
student assistant would resume the conversation with the student using the response from the expert
for a better solution. A detailed visualization is shown in Figure 6.

With AutoGen, constructing the student/expert proxy agent and the assistant agents is straight-
forward by reusing the built-in UserProxyAgent and AssistantAgent through appropri-
ate configurations. The only development required involves writing several lines of code for the
ask for expert function, which then becomes part of the configuration for the assistant. Ad-
ditionally, it’s easy to extend such a system to include more than one expert, with a specific
ask for expert function for each, or to include multiple student users with a shared expert
for consultation.

21

ICLR 2024 Workshop on LLM Agents

A2: RETRIEVAL-AUGMENTED Q&A

Retrieval-augmented
Assistant

Retrieval-augmented
User Proxy

1. Question and Contexts

3. Terminate, feedbacks or `Update Context`

4. Satisfied Answers or Terminate

2. Satisfied Answers or `Update Context`

Figure 7: Overview of RAG Chat which involves two agents, including a RAG User Proxy and a
Retrieval-augmented Assistant. Given a set of documents, the Retrieval-augmented User Proxy first
automatically processes documents—splits, chunks, and stores them in a vector database. Then for
a given user input, it retrieves relevant chunks as context and sends it to the Retrieval-augmented
Assistant, which uses LLM to generate code or text to answer questions. Agents converse until they
find a satisfactory answer.

Detailed Workflow. The workflow of RAG Chat is illustrated in Figure 7. To use Retrieval-
augmented Chat, one needs to initialize two agents including Retrieval-augmented User Proxy and
Retrieval-augmented Assistant. Initializing the Retrieval-Augmented User Proxy necessitates spec-
ifying a path to the document collection. Subsequently, the Retrieval-Augmented User Proxy can
download the documents, segment them into chunks of a specific size, compute embeddings, and
store them in a vector database. Once a chat is initiated, the agents collaboratively engage in code
generation or question-answering adhering to the procedures outlined below:

1. The Retrieval-Augmented User Proxy retrieves document chunks based on the embedding simi-
larity, and sends them along with the question to the Retrieval-Augmented Assistant.

2. The Retrieval-Augmented Assistant employs an LLM to generate code or text as answers based
on the question and context provided. If the LLM is unable to produce a satisfactory response, it
is instructed to reply with “Update Context” to the Retrieval-Augmented User Proxy.

3. If a response includes code blocks, the Retrieval-Augmented User Proxy executes the code and
sends the output as feedback. If there are no code blocks or instructions to update the context, it
terminates the conversation. Otherwise, it updates the context and forwards the question along
with the new context to the Retrieval-Augmented Assistant. Note that if human input solicitation
is enabled, individuals can proactively send any feedback, including “Update Context”, to the
Retrieval-Augmented Assistant.

4. If the Retrieval-Augmented Assistant receives “Update Context”, it requests the next most similar
chunks of documents as new context from the Retrieval-Augmented User Proxy. Otherwise, it
generates new code or text based on the feedback and chat history. If the LLM fails to generate
an answer, it replies with “Update Context” again. This process can be repeated several times.
The conversation terminates if no more documents are available for the context.

We utilize Retrieval-Augmented Chat in two scenarios. The first scenario aids in generating code
based on a given codebase. While LLMs possess strong coding abilities, they are unable to utilize
packages or APIs that are not included in their training data, e.g., private codebases, or have trouble
using trained ones that are frequently updated post-training. Hence, Retrieval-Augmented Code
Generation is considered to be highly valuable. The second scenario involves question-answering
on the Natural Questions dataset (Kwiatkowski et al., 2019), enabling us to obtain comparative
evaluation metrics for the performance of our system.

Scenario 1: Evaluation on Natural Questions QA dataset. In this case, we evaluate the
Retrieval-Augmented Chat’s end-to-end question-answering performance using the Natural Ques-
tions dataset (Kwiatkowski et al., 2019). We collected 5,332 non-redundant context documents and
6,775 queries from HuggingFace. First, we create a document collection based on the entire context
corpus and store it in the vector database. Then, we utilize Retrieval-Augmented Chat to answer the
questions. An example (Figure 8) from the NQ dataset showcases the advantages of the interactive
retrieval feature: “who carried the usa flag in opening ceremony”. When attempting to answer

22

ICLR 2024 Workshop on LLM Agents

Task description

who carried the usa flag in opening ceremony?

UserProxy: You’re a retrieve augmented chatbot. You answer user’s
questions based on your own knowledge and the context provided by
the user. If you can’t answer the question with or without the
current context, you should reply exactly ‘UPDATE CONTEXT’. You
must give as short an answer as possible.
User’s question is: who carried the usa flag in opening ceremony
Context is: < P > On January 17 , 1899 , under ... The Astros
beat the Yankees that night , 2 - 1 . < /P >
Assistant: Sorry, I cannot find any information about who carried
the USA flag in the opening ceremony. UPDATE CONTEXT.
UserProxy: You’re a retrieve augmented chatbot. You answer user’s
questions based on your own knowledge and the context provided by
the user. If you can’t answer the question with or without the
current context, you should reply exactly ‘UPDATE CONTEXT’. You
must give as short an answer as possible.
User’s question is: who carried the usa flag in opening ceremony
Context is: < T able > ... Erin Hamlin ... < /T d >
Assistant: Erin Hamlin carried the USA flag in the opening
ceremony.

(a) W/O Interactive Retrieval (b) W/ Interactive Retrieval

UserProxy: You’re a retrieve augmented chatbot. You answer user’s
questions based on your own knowledge and the context provided by
the user. If you can’t answer the question with or without the
current context, you should reply ‘sorry, I don’t know’. You must
give as short an answer as possible.
User’s question is: who carried the usa flag in opening ceremony
Context is: < P > On January 17 , 1899 , under ... The Astros
beat the Yankees that night , 2 - 1 . < /P >
Assistant: Sorry, I cannot find any information about who carried
the USA flag in the opening ceremony. Sorry, I don’t know.

Figure 8: Retrieval-augmented Chat without (W/O) and with (W/) interactive retrieval.

this question, the context with the highest similarity to the question embedding does not contain the
required information for a response. As a result, the LLM assistant (GPT-3.5-turbo) replies “Sorry,
I cannot find any information about who carried the USA flag in the opening ceremony. UPDATE
CONTEXT.” With the unique and innovative ability to update context in Retrieval-Augmented Chat,
the user proxy agent automatically updates the context and forwards it to the assistant agent again.
Following this process, the agent is able to generate the correct answer to the question.

In addition, we conduct an experiment using the same prompt as illustrated in (Adlakha et al., 2023)
to investigate the advantages of AutoGenW/O interactive retrieval. The F1 score and Recall for the
first 500 questions are 23.40% and 62.60%, respectively, aligning closely with the results reported
in Figure 4b. Consequently, we assert that AutoGen W/O interactive retrieval outperforms DPR
due to differences in the retrievers employed. Specifically, we utilize a straightforward vector search
retriever with the all-MiniLM-L6-v2 model for embeddings.

Furthermore, we analyze the number of LLM calls in experiments involving both AutoGen and
AutoGen W/O interactive retrieval, revealing that approximately 19.4% of questions in the Natural
Questions dataset trigger an “Update Context” operation, resulting in additional LLM calls.

Scenario 2: Code Generation Leveraging Latest APIs from the Codebase. In this case, the ques-
tion is “How can I use FLAML to perform a classification task and use Spark for parallel training?
Train for 30 seconds and force cancel jobs if the time limit is reached.”. FLAML (v1) (Wang et al.,
2021) is an open-source Python library designed for efficient AutoML and tuning. It was open-
sourced in December 2020, and is included in the training data of GPT-4. However, the question
necessitates the use of Spark-related APIs, which were added in December 2022 and are not encom-
passed in the GPT-4 training data. Consequently, the original GPT-4 model is unable to generate the
correct code, due to its lack of knowledge regarding Spark-related APIs. Instead, it erroneously cre-
ates a non-existent parameter, spark, and sets it to True’. Nevertheless, with Retrieval-Augmented
Chat, we provide the latest reference documents as context. Then, GPT-4 generates the correct code
blocks by setting use spark and force cancel to True’.

23

ICLR 2024 Workshop on LLM Agents

A3: DECISION MAKING IN HOUSEHOLD TASKS

ALFWorld

Executor

Reward & State

Action Decision

Assistant

Observation: On the desk 2, you see an alarmclock 3,
a bowl 3, a creditcard 2, a mug 1, and a pencil 2.

Action decision: Pick up pencil 2 from desk 2

GroundingAgent

ALFChat (two agents) ALFChat (three agents)

ALFWorld Executor

Assistant

Figure 9: We use AutoGen to solve tasks in the ALFWorld benchmark, which contains household
tasks described in natural language. We propose two designs: a two-agent design where the assistant
agent suggests the next step, and the Executor executes actions and provides feedback. The three-
agent design adds a grounding agent that supplies commonsense facts to the executor when needed.

ALFWorld (Shridhar et al., 2021) is a synthetic language-based interactive decision-making task.
It comprises textual environments that aim to simulate real-world household scenes. Given a high-
level goal (e.g., putting a hot apple in the fridge) and the description of the household environment,
the agent needs to explore and interact with the simulated household environment through a textual
interface. A typical task environment contains various types of locations and could require more
than 40 steps to finish, which highlights the need for agents to decompose the goal into subtasks and
tackle them one by one, while effectively exploring the environments.

Detailed Workflow. We first propose a straightforward two-agent system with AutoGen, illus-
trated on the left-hand side of Figure 9, to tackle tasks from this benchmark. The system consists
of an assistant agent and an executor agent. The assistant agent generates plans and makes action
decisions to solve the tasks. The executor agent is tailored specifically for ALFWorld. It performs
actions proposed by the assistant and reports action execution results in the household environment
as feedback to the assistant. Due to the strict format requirements for the output format, we use the
BLEU metric to evaluate the similarity of the output to all valid action options. The option with the
highest similarity will be chosen as the action for this round.

One major challenge encompassed in ALFWorld is commonsense reasoning. The agent needs to
extract patterns from the few-shot examples provided and combine them with the agent’s general
knowledge of household environments to fully understand task rules. More often than not, the as-
sistant tends to neglect some basic knowledge of the household environment. Thanks to the easy-to-
implement multi-agent conversational feature of AutoGen, enhancing the assistant agent’s reason-
ing ability by adding a new grounding agent to provide commonsense facts for the decision-making
agent’s reference becomes straightforward. By scrutinizing the failed attempts and summarizing the
reasons for failure, we obtained a holistic understanding of the commonsense knowledge that the
assistant agent lacks. Then, we set a grounding agent to provide this general knowledge when the
task begins and whenever the assistant outputs the same action three times in a row. This ensures the
assistant takes this commonsense knowledge into consideration and prevents it from getting stuck in
outputting the same content or constantly apologizing.

We compare our system’s performance with ReAct, which treats ALFWorld as a text-completion
task. ReAct (Yao et al., 2022) is a few-shot prompting technique that interleaves reasoning and
acting, allowing for greater synergy between the two and significantly improving performance on
both language and decision-making tasks. We integrate ReAct into AutoGen by modifying the
prompts in a conversational manner. Following ReAct, we employ a two-shot setting. The few-
shot prompts are obtained from the corresponding repository. As shown in Table 2, the two-agent

24

ICLR 2024 Workshop on LLM Agents

Task description

You are in the middle of a room. Looking quickly around you, you see a bed 1, a desk 2, a desk 1, a safe 1, a drawer 2, a drawer 1, a

shelf 3, a shelf 2, and a shelf 1.

Your task is to: look at bowl under the desklamp.

Assistant(to Executor): THOUGHT [First, I need to find a bowl. A

bowl is more likely to appear in desk (1-2), drawer (1-2), shelf

(1-3), bed (1). Then I need to find and use a desklamp.] ACTION

[go to desk 1]

(Assistant finds the desklamp at desk 1, then goes to desk 2.)

Executor(to Assistant): On the desk 2, you see a bowl 1, and a

cd 3...

Assistant(to Executor): THOUGHT [Now I find a bowl (1). I need

to use the desklamp to look at the bowl. I'll go to the desklamp

now.] ACTION [go to desk 1]

Executor(to Assistant): On the desk 1, you see a desklamp 1, a

pencil 2...

Assistant: ACTION [use desklamp 1]

Executor(to Assistant): You turn on the desklamp 1.

Assistant(to Executor): THOUGHT [Now that the desklamp is turned

on, I can use it to look at the bowl (1) that I found earlier.]

ACTION [look at bowl 1 under the desklamp 1]

Executor(to Assistant): You turn on the desklamp 1.

(Assistant falls into an infinite loop turning on desklamp.)

Executor(to Assistant): Task failed. Reply TERMINATE.

Assistant(to Executor): TERMINATE

Assistant(to Executor): THOUGHT [First, I need to find a bowl. A

bowl is more likely to appear in desk (1-2), drawer (1-2), shelf

(1-3), bed (1). Then I need to find and use a desklamp.] ACTION

[go to desk 1]

(Assistant finds the desklamp at desk 1, then goes to desk 2.)

(Assistant falls into the same loop as (a))

GroundingAgent(to Executor): You must find and take the object

before you can examine it. You must go to where the target

object is before you can use it.

Executor(to Assistant): You turn on the desklamp 1. Hint: You must

find and take the object before you can examine it.

Assistant(to Executor): THOUGHT [I need to find and take the

bowl (1) before I can examine it. Let me find the bowl first.]

ACTION [go to desk 2]

Executor(to Assistant): On the desk 2, you see a bowl 1, a cd

3...

Assistant(to Executor): ACTION [take bowl 1 from desk 2]

Executor(to Assistant): You pick up bowl 1 from desk 2.

Assistant(to Executor): ACTION [go to desk 1]

Assistant(to Executor): ACTION [use desklamp 1]

Executor(to Assistant): Task success. Reply TERMINATE.

Assistant(to Executor): TERMINATE

(a) Two agents (b) Three agents

Figure 10: Comparison of results from two designs: (a) two-agent design, which consists of an
assistant and an executor, and (b) three-agent design, which adds a grounding agent that serves as
a knowledge source. For simplicity, we omit the in-context examples and part of the exploration
trajectory, and only show parts contributing to the failure/success of the attempt.

design matches the performance of ReAct, while the three-agent design significantly outperforms
ReAct. We surmise that the performance discrepancy is caused by the inherent difference between
dialogue-completion and text-completion tasks. On the other hand, introducing a grounding agent
as a knowledge source remarkably advances performance on all types of tasks.

Case study. Figure 10 exemplifies how a three-agent design eliminates one root cause for failure
cases. Most of the tasks involve taking an object and then performing a specific action with it (e.g.,
finding a vase and placing it on a cupboard). Without a grounding agent, the assistant frequently
conflates finding an object with taking it, as illustrated in Figure 10a). This leads to most of the
failure cases in ’pick’ and ’look’ type tasks. With the introduction of a grounding agent, the assistant
can break this loop and successfully complete the task

Takeaways. We introduced a grounding agent to serve as an external commonsense knowledge
source, which significantly enhanced the assistant’s ability to make informed decisions. This proves
that providing necessary commonsense facts to the decision-making agent can assist it in making
more informed decisions, thus effectively boosting the task success rate. AutoGen brings both
simplicity and modularity when adding the grounding agent.

25

ICLR 2024 Workshop on LLM Agents

Method Pick Clean Heat Cool Look Pick 2 All
ReAct (avg) 63 52 48 71 61 24 54

ALFChat (2 agents)(avg) 61 58 57 67 50 19 54
ALFChat (3 agents)(avg) 79 64 70 76 78 41 69

ReAct (best of 3) 75 62 61 81 78 35 66
ALFChat (2 agents)(best of 3) 71 61 65 76 67 35 63
ALFChat (3 agents)(best of 3) 92 74 78 86 83 41 77

Table 2: Comparisons between ReAct and the two variants of ALFChat on the ALFWorld bench-
mark. For each task, we report the success rate out of 3 attempts. Success rate denotes the number
of tasks successfully completed by the agent divided by the total number of tasks. The results show
that adding a grounding agent significantly improves the task success rate in ALFChat.

26

ICLR 2024 Workshop on LLM Agents

A4: SUPPLY-CHAIN OPTIMIZATION

Commander

SafeguardWriter

②
Questio

n, ❻
Log

❸
Code, ⑦

Ans ❹
Code

❺
Clearance

User
① User Question ⑧ Final Answer

Repeat until
answering the

user’s question or
timeout

Figure 11: Our re-implementation of OptiGuide with AutoGen streamlining agents’ interactions.
The Commander receives user questions (e.g., What if we prohibit shipping from supplier 1 to roast-
ery 2?) and coordinates with the Writer and Safeguard. The Writer crafts the code and interpretation,
the Safeguard ensures safety (e.g., not leaking information, no malicious code), and the Commander
executes the code. If issues arise, the process can repeat until resolved. Shaded circles represent
steps that may be repeated multiple times.

Detailed Workflow. The workflow can be described as follows. The end user initiates the in-
teraction by posing a question, such as “What if we prohibit shipping from supplier 1 to roastery
2?”, marked by 1 to the Commander agent. The Commander manages and coordinates with two
LLM-based assistant agents: the Writer and the Safeguard. Apart from directing the flow of commu-
nication, the Commander has the responsibility of handling memory tied to user interactions. This
capability enables the Commander to capture and retain valuable context regarding the user’s ques-
tions and their corresponding responses. Such memory is subsequently shared across the system,
empowering the other agents with context from prior user interactions and ensuring more informed
and relevant responses.

In this orchestrated process, the Writer, who combines the functions of a “Coder” and an “Inter-
preter” as defined in (Li et al., 2023a), will craft code and also interpret execution output logs. For in-
stance, during code writing (2 and 3), the Writer may craft code “model.addConstr(x[‘supplier1’,
‘roastery2’] == 0, ‘prohibit’)” to add an additional constraint to answer the user’s question.

After receiving the code, the Commander will communicate with the Safeguard to screen the code
and ascertain its safety (4); once the code obtains the Safeguard’s clearance, marked by 5 , the
Commander will use external tools (e.g., Python) to execute the code and request the Writer to
interpret the execution results for the user’s question (6 and 7). For instance, the writer may
say “if we prohibit shipping from supplier 1 to roastery 2, the total cost would increase by 10.5%.”
Bringing this intricate process full circle, the Commander furnishes the user with the concluding
answer (8).

If at a point there is an exception - either a security red flag raised by Safeguard (in 5) or code
execution failures within Commander, the Commander redirects the issue back to the Writer with
essential information in logs (6). So, the process from 3 to 6 might be repeated multiple times,
until each user query receives a thorough and satisfactory resolution or until the timeout. This entire
complex workflow of multi-agent interaction is elegantly managed via AutoGen.

The core workflow code for OptiGuide was reduced from over 430 lines to 100 lines using
AutoGen, leading to significant productivity improvement. The new agents are customizable, con-
versable, and can autonomously manage their chat memories. This consolidation allows the coder
and interpreter roles to merge into a single “Writer” agent, resulting in a clean, concise, and intuitive
implementation that is easier to maintain.

27

ICLR 2024 Workshop on LLM Agents

Manual Evaluation Comparing ChatGPT + Code Interpreter and AutoGen-based OptiGu-
ide. ChatGPT + Code Interpreter is unable to execute code with private or customized depen-
dencies (e.g., Gurobi), which means users must have the engineering expertise to manually handle
multiple steps. This disrupts the workflow and increases the chance for mistakes. If users lack access
or expertise, the burden falls on supporting engineers, increasing their on-call time.

We carried out a user study that juxtaposed OpenAI’s ChatGPT coupled with a Code Interpreter
against AutoGen-based OptiGuide. The study focused on a coffee supply chain scenario, and an
expert Python programmer with proficiency in Gurobi participated in the test. We evaluated both
systems based on 10 randomly selected questions, measuring time and accuracy. While both sys-
tems answered 8 questions correctly, the Code Interpreter was significantly slower than OptiGuide
because the former requires more manual intervention. On average, users needed to spend 4 minutes
and 35 seconds to solve problems with the Code Interpreter, with a standard deviation of approxi-
mately 2.5 minutes. In contrast, OptiGuide’s average problem-solving time was around 1.5 minutes,
most of which was spent waiting for responses from the GPT-4 model. This indicates a 3x saving
on the user’s time with AutoGen-based OptiGuide.

While using ChatGPT + Code Interpreter, users had to read through the code and instructions to
know where to paste the code snippets. Additionally, running the code involves downloading it and
executing it in a terminal, a process that was both time-consuming and prone to errors. The response
time from the Code Interpreter is also slower, as it generates lots of tokens to read the code, read
the variables line-by-line, perform chains of thought analysis, and then produce the final answer
code. In contrast, AutoGen integrates multiple agents to reduce user interactions by 3 - 5 times
on average as reported in Table 3, where we evaluated our system with 2000 questions across five
OptiGuide applications and measured how many prompts the user needs to type.

Table 3: Manual effort saved with OptiGuide (W/ GPT-4) while preserving the same coding perfor-
mance is shown in the data below. The data include both the mean and standard deviations (indicated
in parentheses).

Dataset netflow facility tsp coffee diet

Saving Ratio 3.14x (0.65) 3.14x (0.64) 4.88x (1.71) 3.38x (0.86) 3.03x (0.31)

Table 12 and 14 provide a detailed comparison of user experience with ChatGPT+Code Interpreter
and AutoGen-based OptiGuide. ChatGPT+Code Interpreter is unable to run code with private
packages or customized dependencies; as a consequence, ChatGPT+Code Interpreter requires users
to have engineering expertise and to manually handle multiple steps, disrupting the workflow and
increasing the chance for mistakes. If customers lack access or expertise, the burden falls on sup-
porting engineers, increasing their on-call time. In contrast, the automated chat by AutoGen is
more streamlined and autonomous, integrating multiple agents to solve problems and address con-
cerns. This results in a 5x reduction in interaction and fundamentally changes the overall usability
of the system. A stable workflow can be potentially reused for other applications or to compose a
larger one.

Takeaways: The implementation of the multi-agent design with AutoGen in the OptiGuide ap-
plication offers several advantages. It simplifies the Python implementation and fosters a mixture of
collaborative and adversarial problem-solving environments, with the Commander and Writer work-
ing together while the Safeguard acts as a virtual adversarial checker. This setup allows for proper
memory management, as the Commander maintains memory related to user interactions, provid-
ing context-aware decision-making. Additionally, role-playing ensures that each agent’s memory
remains isolated, preventing shortcuts and hallucinations

28

ICLR 2024 Workshop on LLM Agents

A5: DYNAMIC GROUP CHAT

3. Broadcast

Alice BobUser Proxy

1. Select a Speaker

Alice BobUser Proxy

Bob

2. Ask the Speaker to Respond

Manager

Manager

Response

Figure 12: A5: Dynamic Group Chat: Overview of how AutoGen enables dynamic group chats to
solve tasks. The Manager agent, which is an instance of the GroupChatManager class, performs
the following three steps–select a single speaker (in this case Bob), ask the speaker to respond, and
broadcast the selected speaker’s message to all other agents

To validate the necessity of multi-agent dynamic group chat and the effectiveness of the role-play
speaker selection policy, we conducted a pilot study comparing a four-agent dynamic group chat
system with two possible alternatives across 12 manually crafted complex tasks. An example task is
“How much money would I earn if I bought 200 $AAPL stocks at the lowest price in the last 30 days
and sold them at the highest price? Save the results into a file.” The four-agent group chat system
comprised the following group members: a user proxy to take human inputs, an engineer to write
code and fix bugs, a critic to review code and provide feedback, and a code executor for executing
code. One of the possible alternatives is a two-agent system involving an LLM-based assistant and
a user proxy agent, and another alternative is a group chat system with the same group members
but a task-based speaker selection policy. In the task-based speaker selection policy, we simply ap-
pend role information, chat history, and the next speaker’s task into a single prompt. Through the
pilot study, we observed that compared with a task-style prompt, utilizing a role-play prompt in dy-
namic speaker selection often leads to more effective consideration of both conversation context and
role alignment during the process of generating the subsequent speaker, and consequently a higher
success rate as reported in Table 4, fewer LLM calls and fewer termination failures, as reported in
Table 5.

Table 4: Number of successes on the 12 tasks (higher the better).

Model Two-agent Group chat Group Chat w/ task-based speaker selection

GPT-3.5-turbo 8 9 7

GPT-4 9 11 8

Table 5: Average # LLM calls and number of termination failures on the 12 tasks (lower the better).

Model Two-agent Group chat Group chat w/ task-based speaker selection

GPT-3.5-turbo 9.9, 9 5.3, 0 4, 0

GPT-4 6.8, 3 4.5, 0 4, 0

29

ICLR 2024 Workshop on LLM Agents

Figure 13: Comparison of two-agent chat (a) and group chat (b) on a given task. The group chat
resolves the task successfully with a smoother conversation, while the two-agent chat fails on the
same task and ends with a repeated conversation.

30

ICLR 2024 Workshop on LLM Agents

A6: CONVERSATIONAL CHESS

Chess Board

Human/AI Chess Player A Human/AI Chess Player B

Validate move Validate move

Challenging your pawn in
the center. Your move.

Developing my knight to a
good square. Your move.

Figure 14: A6: Conversational Chess: Our conversational chess application can support various
scenarios, as each player can be an LLM-empowered AI, a human, or a hybrid of the two. Here,
the board agent maintains the rules of the game and supports the players with information about the
board. Players and the board agent all use natural language for communication.

In Conversational Chess, each player is a AutoGen agent and can be powered either by a human
or an AI. A third party, known as the board agent, is designed to provide players with information
about the board and ensure that players’ moves adhere to legal chess moves. Figure 14 illustrates the
scenarios supported by Conversational Chess: AI/human vs. AI/human, and demonstrates how play-
ers and the board agent interact. This setup fosters social interaction and allows players to express
their moves creatively, employing jokes, meme references, and character-playing, thereby making
chess games more entertaining for both players and observers (Figure 15 provides an example of
conversational chess).

To realize these scenarios, we constructed a player agent with LLM and human as back-end options.
When human input is enabled, before sending the input to the board agent, it first prompts the human
player to input the message that contains the move along with anything else the player wants to say
(such as a witty comment). If human input is skipped or disabled, LLM is used to generate the
message. The board agent is implemented with a custom reply function, which employs an LLM
to parse the natural language input into a legal move in a structured format (e.g., UCI), and then
pushes the move to the board. If the move is not legitimate, the board agent will reply with an error.
Subsequently, the player agent needs to resend a message to the board agent until a legal move is
made. Once the move is successfully pushed, the player agent sends the message to the opponent.
As shown in Figure 15, the conversation between AI players can be natural and entertaining. When
the player agent uses LLM to generate a message, it utilizes the board state and the error message
from the board agent. This helps reduce the chance of hallucinating an invalid move. The chat
between one player agent and the board agent is invisible to the other player agent, which helps
keep the messages used in chat completion well-managed.

There are two notable benefits of using AutoGen to implement Conversational Chess. Firstly, the
agent design in AutoGen facilitates the natural creation of objects and their interactions needed
in our chess game. This makes development easy and intuitive. For example, the isolation of chat
messages simplifies the process of making a proper LLM chat completion inference call. Secondly,
AutoGen greatly simplifies the implementation of agent behaviors using composition. Specif-
ically, we utilized the register reply method supported by AutoGen agents to instantiate
player agents and a board agent with custom reply functions. Concentrating the extension work
needed at a single point (the reply function) simplifies the reasoning processes, and development
and maintenance effort.

31

ICLR 2024 Workshop on LLM Agents

Alright, let's kick things off. I'll
move my pawn from e2 to e4. The
center of the board is the heart of
the battle, isn't it?

Ah, the King's Pawn Opening, a
classic. Let's see how this plays

out. I'll move my pawn from e7 to
e5.You know, I've always admired

how chess reflects life. It's all
about making strategic decisions,

isn't it? Your move.

…

Indeed, chess is a mirror of life in
many ways. Every move matters,
just like every decision in life. I'll
move my knight from g1 to f3,
aiming to control the center.

(a) Conversation between two AI players

Error: illegal uci: 'e4e5' in ...

I'll move my pawn from d2 to d4, opening up
lines for my queen and bishop.

Indeed, the king's safety is paramount in the early
game. Now, let's stir things up a bit. I'll move my
pawn from e4 to e5, attacking your knight.

(b) Conversation between the AI players
(player white shown in blue) and the board
agent for making a new move.

Figure 15: Example conversations during a game involving two AI player agents and a board agent.

To illustrate the effect facilitated by this board agent, we provide a demonstration of conversational
chess without a board agent in Figure 16. In this demonstration, instead of employing an additional
board agent for grounding, the system utilizes prompting for grounding by including the sentence
“You should make sure both you and the opponent are making legal moves.” in the system messages
directed to both players.

System message to the player agents: Your name is {name} and you are a chess player. You are playing against{opponent_name}. You are playing as {color}. You
communicate your move using universal chess interface language. You also chit-chat with your opponent when you communicate a move to light up the mood. You should
make sure both you and the opponent are making legal moves...

Player White: Your move
Player black: Alright, let's start. I'll move my pawn from e7 to e5.
Here's how the board looks now:
r n b q k b n r
p p p p . p p p
.
. . . . p . . .
.
.
P P P P P P P P
R N B Q K B N R
Your turn!

Player White: Yes, it certainly is! Let's keep this up. I'll move my
knight from b8 to c6. Here's the updated board:
. n b q k b . r
p p p p . p p p
. . n . . n . .
. . . . p . . .
. . . . P . . .
. . . . N . . .
P P P P . P P P
R N B Q K B . R
Your move! You're giving me a tough time here.

Conversational Chess

(b) W/ Board Agent(a) W/O Board Agent
Player White: Your move

Player black: Alright, let's start. I'll move my pawn from e7 to e5.
Here's how the board looks now:
r n b q k b n r
p p p p . p p p
.
. . . . p . . .
.
.
P P P P P P P P
R N B Q K B N R
Your turn!

Player White: let's get my knight into the game. I'll move my knight to f3. So, g8f3. Your move.
r . b q k b n r
p p p p . p p p
. . n . . n . .
. . . . p . . .
. . . . P . . .
.
P P P P . P P P
R N B Q K B N R

Board Agent:You've made a mistake, Player white. As you are playing white, your knight is on g1,
not g8. Therefore, your move should be g1f3, not g8f3. Let's correct that.

Player White: Couldn't agree more, the lessons we learn from chess apply to life as well.
Here's the updated board:
r . b q k b n r
p p p p . p p p
. . n
. . . . p . . .
. . . . P . . .
. N . .
P P P P . P P P
R N B Q K B . R

Figure 16: Comparison of two designs–(a) without a board agent, and (b) with a board agent–in
Conversational Chess.

32

ICLR 2024 Workshop on LLM Agents

A7: ONLINE DECISION MAKING IN WEB INTERACTION TASKS

Executor

Reward & State

Action Decision

Assistant

Environment State: HTML code for current web pages
Reward: Success/Fail/Ongoing

Action decision: Next action to perform on a web page Action decision = “Click the button
with xpath ’//button[id =
‘subbtn’]’“

Environment State =

“<div id="wrap" data-wob_ref="2" data-wob_eps="e0">
<div id="query">Click button ONE, then click button

TWO.</div>
<div id="area" data-wob_ref="3" data-wob_eps="e0">

<button id="subbtn" style="position:absolute;
left:50px; top:74px" data-wob_ref="4" data-
wob_eps="e0">ONE</button>

<button id="subbtn2" style="position:absolute;
left:98px; top:167px" data-wob_ref="5" data-
wob_eps="e0">TWO</button>

</div>
</div>“

Reward = ”0” (Ongoing)

Figure 17: We use AutoGen to build MiniWobChat, which solves tasks in the MiniWob++ bench-
mark. MiniWobChat consists of two agents: an assistant agent and an executor agent. The assistant
agent suggests actions to manipulate the browser while the executor executes the suggested actions
and returns rewards/feedback. The assistant agent records the feedback and continues until the feed-
back indicates task success or failure.

In practice, many applications require the presence of agents capable of interacting with environ-
ments and making decisions in an online context, such as in game playing (Mnih et al., 2013; Vinyals
et al., 2017), web interactions (Liu et al., 2018; Shi et al., 2017), and robot manipulations (Shen et al.,
2021). With the multi-agent conversational framework in AutoGen, it becomes easy to decom-
pose the automatic agent-environment interactions and the development of a decision-making agent
by constructing an executor agent responsible for handling the interaction with the environment,
thereby delegating the decision-making part to other agents. Such a decomposition allows devel-
opers to reuse the decision-making agent for new tasks with minimal effort rather than building a
specialized decision-making agent for every new environment.

Workflow. We demonstrate how to use AutoGen to build a working system for handling such
scenarios with the MiniWoB++ benchmark (Shi et al., 2017). MiniWoB++ comprises browser in-
teraction tasks that involve utilizing mouse and keyboard actions to interact with browsers. The
ultimate objective of each task is to complete the tasks described concisely in natural language, such
as “expand the web section below and click the submit button.” Solving these tasks typically requires
a sequence of web manipulation actions rather than a single action, and making action decisions at
each time step requires access to the web status (in the form of HTML code) online. For the ex-
ample above, clicking the submit button requires checking the web status after expanding the web
section. We designed a straightforward two-agent system named MiniWobChat using AutoGen,
as shown in Figure 17. The assistant agent is an instance of the built-in AssistantAgent and
is responsible for making action decisions for the given task. The second agent, the executor agent,
is a customized UserProxyAgent, which is responsible for interacting with the benchmark by
executing the actions suggested by the AssistantAgent and returning feedback.

To assess the performance of the developed working system, we compare it with RCI (Kim et al.,
2023), a recent solution for the MiniWoB++ benchmark that employs a set of self-critiquing prompts
and has achieved state-of-the-art performance. In our evaluation, we use all available tasks in the
official RCI code, with varying degrees of difficulty, to conduct a comprehensive analysis against
MiniWobChat. Figure 18 illustrates that MiniWobChat achieves competitive performance in this
evaluation4. Specifically, among the 49 available tasks, MiniWobChat achieves a success rate of
52.8%, which is only 3.6% lower than RCI, a method specifically designed for the MiniWob++
benchmark. It is worth noting that in most tasks, the difference between the two methods is mirrored
as shown in Figure 18. If we consider 0.1 as a success rate tolerance for each task, i.e., two methods
that differ within 0.1 are considered to have the same performance, both methods outperform the

4We report the results of RCI by running its official code with default settings.

33

ICLR 2024 Workshop on LLM Agents

other on the same number of tasks. For illustration purposes, we provide a case analysis in Table 6
on four typical tasks.

Additionally, we also explored the feasibility of using Auto-GPT for handling the same tasks. Auto-
GPT faces challenges in handling tasks that involve complex rules due to its limited extensibility.
It provides an interface for setting task goals using natural language. However, when dealing with
the MiniWob++ benchmark, accurately instructing Auto-GPT to follow the instructions for using
MiniWob++ proves challenging. There is no clear path to extend it in the manner of the two-agent
chat facilitated by AutoGen.

Takeaways: For this application, AutoGen stood out as a more user-friendly option, offering
modularity and programmability: It streamlined the process with autonomous conversations be-
tween the assistant and executor, and provided readily available solutions for agent-environment
interactions. The built-in AssistantAgent was directly reusable and exhibited strong perfor-
mance without customization. Moreover, the decoupling of the execution and assistant agent ensures
that modifications to one component do not adversely impact the other. This convenience simplifies
maintenance and future updates.

cho
ose

-lis
t

clic
k-b

utt
on

-se
qu

en
ce

clic
k-b

utt
on

clic
k-c

he
ckb

oxe
s-la

rge

clic
k-c

he
ckb

oxe
s-s

oft

clic
k-c

he
ckb

oxe
s-t

ran
sfe

r

clic
k-c

he
ckb

oxe
s

clic
k-c

olla
psi

ble
-2

clic
k-c

olla
psi

ble

clic
k-c

olo
r

clic
k-d

ialo
g-2

clic
k-d

ialo
g

clic
k-l

ink

clic
k-m

en
u

clic
k-o

pti
on

clic
k-s

cro
ll-li

st

clic
k-s

ha
de

s

clic
k-s

ha
pe

clic
k-t

ab
-2-

ha
rd

clic
k-t

ab
-2

clic
k-t

ab

clic
k-t

est
-2

clic
k-t

est

clic
k-w

idg
et

cou
nt-

sha
pe

em
ail-

inb
ox-

for
ward

-nl
-tu

rk

em
ail-

inb
ox-

for
ward

-nl

em
ail-

inb
ox-

nl-
tur

k

em
ail-

inb
ox

en
ter

-da
te

en
ter

-pa
ssw

ord

en
ter

-te
xt-

dy
na

mic

en
ter

-te
xt

en
ter

-tim
e

foc
us-

tex
t-2

foc
us-

tex
t

gri
d-c

oo
rdi

na
te

log
in-

use
r-p

op
up

log
in-

use
r

na
vig

ate
-tre

e

sea
rch

-en
gin

e

sim
ple

-al
ge

bra

soc
ial-

med
ia-

all

soc
ial-

med
ia-

som
e

soc
ial-

med
ia

ter
mina

l

use
-sp

inn
er

0.0

0.5

1.0

su
cc

es
s r

at
e

RCI MiniWobChat

Figure 18: Comparisons between RCI (state-of-the-art prior work) and MiniWobChat on the Mini-
Wob++ benchmark are elucidated herein. We utilize all available tasks in the official RCI code,
each with varying degrees of difficulty, to conduct comprehensive comparisons. For each task, the
success rate across ten different instances is reported. The results reveal that MiniWobChat attains a
performance comparable to that of RCI. When a success rate tolerance of 0.1 is considered for each
task, both methods outperform each other on an equal number of tasks.

Table 6: Cases analysis on four typical tasks from MiniWob++.

Correctness Main failure reason

click-dialog AutoGen: 10/10 N/A.
RCI: 10/10 N/A.

click-checkboxes-large AutoGen: 5/10 AssistantAgent provides actions with infeasible
characters.

RCI: 0/10 RCI performs actions that are out of its plan.

count-shape AutoGen: 2/10 AssistantAgent provide actions with redundant
content that can not convert to actions in the benchmark.

RCI: 0/10 RCI provides a wrong plan in most cases.

use-spinner AutoGen: 0/10 AssistantAgent return actions out of its plan.
RCI: 1/10 RCI provides a wrong plan in most cases.

34

ICLR 2024 Workshop on LLM Agents

F EXAMPLE OUTPUTS FROM APPLICATIONS

In this section, we include example outputs from the following applications and systems:

• Application A1: autonomous solving process of one problem with: ChatGPT + Plugin (Table 7),
AutoGen (Table 8), LangChain ReAct (Table 9), AutoGPT (Table 10), Multi-Agent Debate (Ta-
ble 11), and ChatGPT + Code Interpreter (Table 13).

• Application A4: an OptiGuide problem with AutoGen (Table 14) and ChatGPT + Code Inter-
preter (Table 12).

• Application A1: preliminary evaluation on several alternative multi-agent systems: BabyAGI
(Table 15), CAMEL (Table 16), and MetaGPT (Table 17).

Table 7: Application A1, Scenario 1: Autonomous math problem-solving. ChatGPT+ Plugin (Wol-
fram Alpha) on the first qualitative example. The response from Wolfram contains the correct an-
swer, but ChatGPT selected the wrong one.

Action ChatGPT + Plugin

g Input Completely simplify and rationalize the denominator:
√
160√
252

×
√
245√
108

ð REQUEST TO WOLFRAM:
1 {
2 ” i n p u t ” : ” s i m p l i f y (s q r t (1 6 0) / s q r t (2 5 2)) *
3 (s q r t (2 4 5) / s q r t (1 0 8)) ”
4 }

RESPONSE FROM WOLFRAM
1 Query :
2 ” s i m p l i f y (s q r t (1 6 0) / s q r t (2 5 2)) * (s q r t (2 4 5) / s q r t (1 0 8)) ”
3 I n p u t i n t e r p r e t a t i o n :
4 s i m p l i f y | s q r t (1 6 0) / s q r t (2 5 2) x s q r t (2 4 5) / s q r t (1 0 8)
5 R e s u l t s :
6 (5 s q r t (4 2)) / 2 7
7 (5 s q r t (1 4 / 3)) / 9
8 Decimal a p p r o x i m a t i o n :
9 1 .2001371663718259686974013770533327143898526494552 . . .

10 Wolfram | Alpha w e b s i t e r e s u l t f o r ” s i m p l i f y
11 (s q r t (1 6 0) / s q r t (2 5 2)) * (s q r t (2 4 5) / s q r t (1 0 8)) ” :
12 [l i n k]

ð The completely simplified and rationalized form of the given expression is:

5
√

14/3

9
In decimal form, this is approximately 1.200137166371825968697401377053332714...

35

ICLR 2024 Workshop on LLM Agents

Table 8: Application A1, Scenario 1: Autonomous math problem-solving. AutoGen on the first
qualitative example. AutoGen solves the problem correctly.

Action AutoGen

g Init chat Completely simplify and rationalize the denominator:
√
160√
252

×
√
245√
108

ð We can simplify and rationalize this denominator using Python’s symbolic mathematics
library ‘sympy‘. Here is the Python code to resolve this:

1 from sympy i m p o r t s q r t , R a t i o n a l
2
3 # De f in e t h e e n t i r e f r a c t i o n as a r a t i o n a l number
4 f r a c t i o n = (s q r t (1 6 0) / s q r t (2 5 2)) * (s q r t (2 4 5) / s q r t (1 0 8))
5
6 # S i m p l i f y t h e f r a c t i o n
7 s i m p l i f i e d = f r a c t i o n . s i m p l i f y ()
8
9 # P r i n t t h e s i m p l i f i e d f r a c t i o n

10 p r i n t (s i m p l i f i e d)

This code performs the requested simplification by constructing the fraction using the
‘Rational()‘ function from the ‘sympy‘ module, which automatically simplifies frac-
tions when possible. The ‘sqrt()‘ function from the ‘sympy‘ module enables square root
calculations. Finally, the ‘simplify()‘ function simplifies expressions when possible.

g Auto Reply exitcode: 0 (execution succeeded) Code output: 5*sqrt(42)/27

ð TERMINATE

Table 9: Application A1, Scenario 1: Autonomous math problem-solving. LangChain ReAct on the
first qualitative example. The generated code does not match the devised plan. The code returns a
decimal number.

Action LangChain ReAct

g Input Completely simplify and rationalize the denominator:
√
160√
252

×
√
245√
108

ð Entering new AgentExecutor chain...
To simplify this expression, I will first simplify each square root individually, then multiply
the fractions as normal. The result should be a rational number. Action: Python REPL Action
Input:

1 i m p o r t math
2
3 # C a l c u l a t e s q u a r e r o o t s
4 s q r t 1 6 0 = math . s q r t (1 6 0)
5 s q r t 2 5 2 = math . s q r t (2 5 2)
6 s q r t 2 4 5 = math . s q r t (2 4 5)
7 s q r t 1 0 8 = math . s q r t (1 0 8)
8
9 # M u l t i p l y f r a c t i o n s

10 n u m e r a t o r = s q r t 1 6 0 * s q r t 2 4 5
11 d e n o m i n a t o r = s q r t 2 5 2 * s q r t 1 0 8
12 r e s u l t = n u m e r a t o r / d e n o m i n a t o r
13
14 p r i n t (r e s u l t)

Observation: 1.200137166371826
Thought: I now know the final answer Final Answer: The simplified and rationalized form of
the expression is approximately 1.200137166371826.
Finished chain.

36

ICLR 2024 Workshop on LLM Agents

Table 10: Application A1, Scenario 1: Autonomous math problem-solving. AutoGPT on the first
qualitative example. We abort as the code never prints the result, and the system does not rectify it
after 2 turns. AutoGPT is much more verbose compared to other frameworks. We have shortened
some unnecessary content.

Action AutoGPT

System Welcome back! Would you like me to return to being MathSolverGPT? Asking user via keyboard... Continue with the last settings?
Name: MathSolverGPT
Role: an intelligent math-solving AI that assists students, professionals,...
Goals: [’Provide step-by-step solutions to math problems, ensuring clarity and understanding for the user...
Continue (y/n):

g Human y

System MathSolverGPT has been created with the following details: Name: MathSolverGPT
Role: an intelligent math-solving AI that assists students, professionals, and enthusiasts in solving a wide range of math problems, from basic
arithmetic to advanced calculus and beyond.
Goals: - Provide step-by-step solutions to math problems, ensuring clarity and understanding for the user. - Offer explanations and insights
into the underlying concepts and principles behind the solutions, fostering a deeper understanding of mathematics. - Handle a variety of math
problem types, including algebra, geometry, trigonometry, calculus, and more. ...

ð MATHSOLVERGPT THOUGHTS: Without a specific task or question, it’s difficult to determine exactly one command to use. The user hasn’t
provided any context or problem to solve.
REASONING: The user’s request is too vague. They haven’t specified what they want me to do or what problem they want me to solve.
PLAN: - Ask the user for more information or a specific task.
CRITICISM: I should have asked the user for more information or a specific task in the first place.
SPEAK: Could you please provide more information or specify a task?
NEXT ACTION: COMMAND = ARGUMENTS = {}

System Enter ‘y’ to authorise command, ‘y -N’ to run N continuous commands, ‘n’ to exit program, or enter feedback for MathSolverGPT... Asking
user via keyboard...

g Human Completely simplify and rationalize the denominator: √
160

√
252

×
√
245

√
108

ð MATHSOLVERGPT THOUGHTS: To solve this problem, I need to simplify and rationalize the denominator of the given expression. This
involves simplifying the square roots and then multiplying the fractions. I can use Python’s math library to calculate the square roots and
perform the multiplication.
REASONING: The problem involves simplifying square roots and multiplying fractions. Python’s math library provides functions for these
operations.
PLAN: - Write a Python script to calculate the square roots and multiply the fractions. - Execute the script to get the simplified expression.
CRITICISM: I need to ensure that I correctly calculate the square roots and perform the multiplication. I should also make sure to rationalize
the denominator, as the problem specifies.
SPEAK: Let’s simplify and rationalize the denominator of the given expression.
NEXT ACTION: COMMAND = execute python code ARGUMENTS =

1 { ’ code ’ : ’ i m p o r t math\n\n# C a l c u l a t e t h e s q u a r e r o o t s\n s q r t 1 6 0 = math . s q r t (1 6 0)\
n s q r t 2 5 2 =math . s q r t (2 5 2)\n s q r t 2 4 5 = math . s q r t (2 4 5)\n s q r t 1 0 8 = math . s q r t
(1 0 8)\n\n# M u l t i p l y t h e f r a c t i o n s\ n r e s u l t = (s q r t 1 6 0 / s q r t 2 5 2) * (s q r t 2 4 5
/ s q r t 1 0 8)\n\n# S i m p l i f y t h e r e s u l t\ n s i m p l i f i e d r e s u l t = math . s i m p l i f y (r e s u l t
)\n\ n s i m p l i f i e d r e s u l t ’ , ’ name ’ : ’ s i m p l i f y e x p r e s s i o n ’}

g Human y

System -=-=-=-=-=-=-= COMMAND AUTHORISED BY USER -=-=-=-=-=-=-=
Executing python file ’/app/autogpt/workspa...
SYSTEM: Command execute python code returned: Error: Traceback (most recent call last): File “...”, line 13, in ¡module¿ simplified result
= math.simplify(result) AttributeError: module ’math’ has no attribute ’simplify’

ð MATHSOLVERGPT THOUGHTS: The error message indicates that the ‘math’ module in Python does not have a ‘simplify’ function. I need
to use the ‘sympy’ library instead, which provides a function for simplifying expressions.
REASONING: The ‘math’ module in Python does not provide a function for simplifying expressions. The ‘sympy’ library, on the other hand,
does provide such a function.
PLAN: - Rewrite the Python script to use the ‘sympy’ library instead of the ‘math’ module. - Execute the script to get the simplified expression.
CRITICISM: I should have known that the ‘math’ module does not provide a function for simplifying expressions. I should have used the
‘sympy’ library from the start. SPEAK: Let’s try again using the ‘sympy’ library to simplify the expression.
NEXT ACTION: COMMAND = execute python code ARGUMENTS =

1 { ’ code ’ : ’ i m p o r t sympy as sp\n\n# C a l c u l a t e t h e s q u a r e r o o t s\n s q r t 1 6 0 = sp . s q r t
(1 6 0)\n s q r t 2 5 2 = sp . s q r t (2 5 2)\n s q r t 2 4 5 = sp . s q r t (2 4 5)\n s q r t 1 0 8 = sp . s q r t
(1 0 8)\n\n# M u l t i p l y t h e f r a c t i o n s\ n r e s u l t = (s q r t 1 6 0 / s q r t 2 5 2) * (s q r t 2 4 5
/ s q r t 1 0 8)\n\n# S i m p l i f y t h e r e s u l t\ n s i m p l i f i e d r e s u l t = sp . s i m p l i f y (r e s u l t)\
n\ n s i m p l i f i e d r e s u l t ’ , ’ name ’ : ’ s i m p l i f y e x p r e s s i o n ’}

g Human y

System SYSTEM: Command execute python code returned:

ð MATHSOLVERGPT THOUGHTS: The command execution didn’t return any output, which is unusual. It seems there might be an issue with
the execution of the Python code. I need to debug this.
REASONING: The Python code execution should have returned a result. The absence of a result suggests that there might be an issue with the
code or its execution.
PLAN: - Review the Python code to identify any potential issues. - If necessary, modify the code and execute it again. CRITICISM: I should
have ensured that the Python code was correct and would produce a result before executing it. SPEAK: It seems there was an issue with the
execution of the Python code. Let’s try again.
NEXT ACTION: COMMAND = execute python code ARGUMENTS = ... (Exact same code as last)

System SYSTEM: Command execute python code returned:

ð MATHSOLVERGPT THOUGHTS: The Python code execution still isn’t returning any output. It’s possible that the issue lies with the calcu-
lation of the square roots ...

g Human control + C (Aborted)
37

ICLR 2024 Workshop on LLM Agents

Table 11: Application A1, Scenario 1: Autonomous math problem-solving. Multi-Agent Debate on
the first qualitative problem. It gives a wrong final answer.

Action AutoGen

g Topic Completely simplify and rationalize the denominator:

√
160

√
252

×
√
245

√
108

ð ===== Debate Round-1 =====
—– Affirmative side —–
Ok, let’s simplify each square root separately. We want to find the simplest square root that can divide 160, 252, 245, and 108.
1.

√
160: 160 can be decomposed as 16*10, where 16 is a perfect square, so

√
160 =

√
16 ∗ 10 =

√
16 ∗

√
10 = 4

√
10

2.
√
252 : 252 can be decomposed as 36*7, where 36 is a perfect square, so

√
252 =

√
36 ∗ 7 = 6

√
7

3.
√
245 =

√
49 ∗ 5, where 49 is a perfect square, so

√
245 = 7 ∗

√
5

4.
√
108 : 108 can be decomposed as 36*3, where 36 is a perfect square, so

√
108 =

√
36 ∗ 3 = 6

√
3

Then we substitute the simplified square roots back into the expression, we have:

√
160

√
252

×
√
245

√
108

=
4
√
10

6
√
7

×
7
√
5

6
√
3

=
4 ∗ 7

6 ∗ 6
·

√
10 ∗ 5

7 ∗ 3
=

7

9
·

√
50

21

We are almost done, but we still need to rationalize the square root part of expression. Let’s multiply the square root part by
√
21

at both the top and bottom to get rid of the square root at the denominator:

7

9
·

√
50 ∗ 21

21 ∗ 21
=

7
√

1050

189
.

Then this is the final answer! The expression √
160

√
252

×
√
245

√
108

can be simplified to 7
√

1050
189

.
—– Negative side —–
I do disagree with your final answer, but I think we mostly agree on the steps. Your simplifications of the square roots are correct,
but you made a mistake in the final simplification part. Let me explain how I would complete the problem:
As stated, √

160
√
252

×
√
245

√
108

=
4
√
10

6
√
7

×
7
√
5

6
√
3
.

This should then simplify to:

=
28

√
50

36
√
21

=
7
√
50

9
√
21

.

You made a mistake in your calculation because you considered square root of 50/21, and you should have considered the
simplified square root of 50 over the simplified square root of 21. The rationalization would become:

=
7
√
50

9
√
21

·
√
21

√
21

=
7
√
1050

189
.

This seems to coincide with your final answer, but it’s in fact a very different number, So, the original expression simplifies to
7
√

1050
189

.
Let’s now see if we disagree on this final answer.
—– Moderator —–
“Whether there is a preference”: “Yes”, “Supported Side”: “Negative”, “Reason”: “Both sides of the debate came to the same
final answer. However, the negative side correctly identified a mistake in the affirmative side’s calculation, pointing out that the
simplification should have been the square root of 50 over the square root of 21, not 50 over 21. The negative side shows a better

understanding of the simplification process.”, “debate answer”: “ 7
√

1050
189

”
===== Debate Done! =====
—– Base Answer —–
Ok, let’s simplify each square root separately. We want to find the simplest square root that can divide 160, 252, 245, and 108.
1.

√
160: 160 can be decomposed as 16*10, where 16 is a perfect square, so

√
160 =

√
16 ∗ 10 =

√
16 ∗

√
10 = 4

√
10

2.
√
252 : 252 can be decomposed as 36*7, where 36 is a perfect square, so

√
252 =

√
36 ∗ 7 = 6

√
7

3.
√
245 =

√
49 ∗ 5, where 49 is a perfect square, so

√
245 = 7 ∗

√
5

4.
√
108 : 108 can be decomposed as 36*3, where 36 is a perfect square, so

√
108 =

√
36 ∗ 3 = 6

√
3

Then we substitute the simplified square roots back into the expression, we have:

√
160

√
252

×
√
245

√
108

=
4
√
10

6
√
7

×
7
√
5

6
√
3

=
4 ∗ 7

6 ∗ 6
·

√
10 ∗ 5

7 ∗ 3
=

7

9
·

√
50

21

We are almost done, but we still need to rationalize the square root part of expression. Let’s multiply the square root part by
√
21

at both the top and bottom to get rid of the square root at the denominator:

7

9
·

√
50 ∗ 21

21 ∗ 21
=

7
√

1050

189
.

Then this is the final answer! The expression √
160

√
252

×
√
245

√
108

can be simplified to 7
√

1050
189

.
—– Debate Answer —–

7
√
1050

189

—– Debate Reason —–
Both sides of the debate came to the same final answer. However, the negative side correctly identified a mistake in the affirmative
side’s calculation, pointing out that the simplification should have been the square root of 50 over the square root of 21, not 50 over
21. The negative side shows a better understanding of the simplification process.38

ICLR 2024 Workshop on LLM Agents

Table 12: Application A3. ChatGPT+ Code Interpreter for OptiGuide. A sample question “What if
the roasting cost is increased by 5% because of the potential salary increase?” is asked.

Action ChatGPT+ Code Interpreter

g Prompt Writer Customer open Web browser.
For the source code “coffee.py”,
Can you tell me:
What if the roasting cost is increased by 5% because of the potential salary increase?

ð Sure! Let’s first take a look at the contents of the “coffee.py” file to understand the code and how the roasting cost is calculated.
This will allow us to determine the effect of a 5% increase in the roasting cost.
...several lines omitted
Would you like me to modify the code to reflect the 5% increase in roasting costs and run the modified code to observe the impact?
If the code requires any specific input or parameters, please let me know!

g Prompt Writer Yes

ð Great! Before proceeding, I’ll need to ensure that the Gurobi solver is not being used in this code, as my current environment
does not have access to Gurobi. If the code does indeed use Gurobi, we can still analyze the effect of the change in roasting
costs by understanding the structure of the code.
...several lines omitted
Alternatively, if you have access to a Gurobi license, you can make the necessary changes in the code and run it
on your local machine.
I can guide you through the process of making the necessary modifications to the code.
Would you like me to proceed with the code analysis and explanation, or would you like guidance on making the changes yourself?

g Prompt Writer You can give me the full code, and I can run the code locally myself.

ð Certainly! I’ll modify the code to reflect a 5% increase in both the light and dark roasting costs, and then provide the full
code for you to run locally.
...
Download Modified Coffee.py
If you have any questions or need further assistance, please feel free to ask!

g Prompt Safeguard Hi GPT, can you safecheck the generated code for me?
Upload the generated code.

ð DANGER

g Prompt Writer I have tried to run your code. However, the code triggered our safeguard, and it is not safe to run. Try again. Hint: don’t change
roasting cost light or roasting cost light variables.

ð I apologize for the oversight. It appears I made direct changes to the variables that could have led to issues with the code. Let’s
take a different approach by analyzing the code to identify the appropriate place to apply the 5% increase in roasting costs.
...
Download Modified Safe Coffee.py
...

g Prompt Safeguard Hi GPT, can you safecheck the generated code for me one more time?
Upload the generated code.

ð DANGER

g Prompt Writer I have tried to run your code again. However, the code triggered our safeguard, and it is not safe to run. Try again. Hint: don’t
change roasting cost light or roasting cost light variables.

ð I apologize for the continued confusion.
...
Download Final Modified Safe Coffee.py
...

g Prompt Safeguard Hi GPT, can you safecheck the generated code for me one more time?
Upload the generated code.

ð SAFE

g Run Code Obtain the terminal results:
Optimizer version 9.5.1 build v9.5.1rc2 (linux64)
Thread count: 64 physical cores, 128 logical processors, using up to 32
threads
[63 lines of output ignored]
Optimal cost: 2526.5

g Prompt Writer Here is the execution result. [Copy + Paste the terminal output here.] Can you extract the final answer to me? Remember to
compare with the original cost of 2470.

ð Certainly! The execution result you’ve provided indicates the optimal cost for
the modified scenario, where the roasting costs were increased by 5%. Here’s
the comparison:
Original Cost: 2470
Modified Cost (with 5% increase in roasting costs): 2526.5
The increase in roasting costs has led to an increase in the overall cost by 56.5,
reflecting the impact of the potential salary increase on the roasting cost.
If you need any further insights or assistance, please let me know!

39

ICLR 2024 Workshop on LLM Agents

Table 13: Application A1. Scenario 1: autonomous math solving. ChatGPT+ Code Interpreter on
the first qualitative example. The code generated does not match the devised plan. The code returns
a decimal number.

Action ChatGPT+ Code Interpreter

g Input Completely simplify and rationalize the denominator:
√
160√
252

×
√
245√
108

ð To simplify and rationalize the expression, we first simplify the radicals in the numerator and
denominator by factoring out the largest perfect squares from the numbers under the square
root.
The perfect square factors of 160, 252, 245, and 108 are 16, 4, 1, and 36, respectively. Let’s
factorize and simplify:

√
160√
252

×
√
245√
108

=

√
16× 10√
4× 63

×
√
245√

36× 3

We can simplify this further by applying the property
√
ab =

√
a
√
b and a

b
× c

d
= a×c

b×d
.

ð Python
1 import math
2
3 # factoring the square roots
4 sqrt_160 = math.sqrt(16) * math.sqrt(10)
5 sqrt_252 = math.sqrt(4) * math.sqrt(63)
6 sqrt_245 = math.sqrt(245)
7 sqrt_108 = math.sqrt(36) * math.sqrt(3)
8
9 # simplify the fraction

10 numerator = sqrt_160 * sqrt_245
11 denominator = sqrt_252 * sqrt_108
12 simplified_fraction = numerator / denominator
13
14 simplified_fraction

Result:
1 1.200137166371826

ð The completely simplified and rationalized form of the given expression is approximately 1.200.

Table 14: Application A3. AutoGen with OptiGuide. The same question “What if the roasting cost
is increased by 5% because of the potential salary increase?” is asked.

Action AutoGen

g Prompt What if the roasting cost is increased by 5% because of the potential salary increase?

ð After increasing the roasting costs by 5%, I’ve re-calculated the optimal coffee distri-
bution solution for the supply chain. As a result, the new optimal total cost has become
2526.5, compared to the initial cost of 2470.0. This indicates that the increased roasting
costs have caused the overall distribution cost to rise by 56.5 units.

40

ICLR 2024 Workshop on LLM Agents

Table 15: Application A1. Scenario 1: autonomous math solving. Preliminary test with BabyAGI.

Action BabyAGI

g Set .env OBJECTIVE=Solve math problems
INITIAL TASK=Completely simplify and rationalize the denominator:

√
160

√
252

×
√
245

√
108

ð Solve math problems

Initial task: Completely simplify and rationalize the denominator:
√

160√
252

×
√

245√
108

*****TASK LIST*****
• Completely simplify and rationalize the denominator:

√
160√
252

×
√

245√
108

*****NEXT TASK*****
Completely simplify and rationalize the denominator:

√
160√
252

×
√

245√
108

*****TASK RESULT*****
First, let’s simplify each square root separately:
- √

160 =
√
16 ∗ 10 =

√
16 ∗

√
10 = 4 ∗

√
10

- √
252 =

√
4 ∗ 63 =

√
4 ×

√
63 = 2

√
63

- √
245 =

√
49 ∗ 5 =

√
49 ×

√
5 = 7

√
5

- √
108 =

√
36 ∗ 3 =

√
36 ×

√
3 = 6

√
3

Now, substitute these values into the original expression which gives:

4 ∗
√
10

2
√
63

×
7
√
5

6
√
3

=
2 ∗

√
10

√
63

×
7
√

5

2
√
3

We get rid of the square root in the denominator by multiplying the fractions which gives:

=
2 ∗ 7

√
10 ∗ 5

2 ∗
√
63 ∗ 3

=
14

√
50

√
189

=
14 ∗ 5

√
2

7
√
27

= 2
√
2 ∗

10
√
27

=
20

√
2

√
27

.

To simplify further and rationalize the denominator, we multiply by
√

27√
27

which gives:

= 20
√

2√
27

∗
√

27√
27

= 20
√

54
27

= 20∗3
√

6
27

= 60
√

6
27

.

Simplifying further gives:

= 20
√

6
9

.
*****TASK CREATION AGENT PROMPT****
You are to use the result from an execution agent to create new tasks with the following objective: Solve math problems. The last
completed task has the result: First, let’s simplify each square root separately:
- √

160 =
√
16 ∗ 10 =

√
16 ∗

√
10 = 4 ∗

√
10

...Repeat after “First, let’s simplify each square..”

Now, substitute these values into the original expression which gives:

4 ∗
√
10

2
√
63

×
7
√
5

6
√
3

=
2 ∗

√
10

√
63

×
7
√

5

2
√
3

We get rid of the square root in the denominator by multiplying the fractions which gives:

=
2 ∗ 7

√
10 ∗ 5

2 ∗
√
63 ∗ 3

=
14

√
50

√
189

=
14 ∗ 5

√
2

7
√
27

= 2
√
2 ∗

10
√
27

=
20

√
2

√
27

.

To simplify further and rationalize the denominator, we multiply by
√

27√
27

which gives:

=
20

√
2

√
27

∗
√
27

√
27

=
20

√
54

27
=

20 ∗ 3
√
6

27
=

60
√
6

27
.

Simplifying further gives:

= 20
√

6
9

. This result was based on this task description: Completely simplify and rationalize the denominator:
√

160√
252

×
√

245√
108

.

Based on the result, return a list of tasks to be completed in order to meet the objective. Return one task per line in your response.
The result must be a numbered list in the format:
First task # Second task
The number of each entry must be followed by a period. If your list is empty, write “There are no tasks to add at this time.” Unless
your list is empty, do not include any headers before your numbered list or follow your numbered list with any other output.
****TASK CREATION AGENT RESPONSE****
1. Simplify and rationalize the denominator for the expression

√
225√
45

×
√

200√
125

2. Simplify and rationalize the denominator for

the expression
√

289√
361

×
√

100√
72

...Until 10
Adding new tasks to task storage ‘task name’: ‘Simplify and rationalize the denominator for the expression frac-
sqrt225sqrt45timesfracsqrt200sqrt125’, ‘task id’: 2
‘task name’: ‘Simplify and rationalize the denominator for the expression fracsqrt289sqrt361timesfracsqrt100sqrt72’, ‘task id’: 3
...Until task id 11
****TASK PRIORITIZATION AGENT PROMPT****
You are tasked with prioritizing the following tasks: Simplify and rationalize the denominator for the ex-
pression fracsqrt225sqrt45timesfracsqrt200sqrt125 Simplify and rationalize the denominator for the expression frac-
sqrt289sqrt361timesfracsqrt100sqrt72
...Aborted

41

ICLR 2024 Workshop on LLM Agents

Table 16: Application A1, Scenario 1: Autonomous math problem-solving. Preliminary test with
CAMEL. We constructed two roles: “Math Solver” and “Python Programmer”. The resulting code
cannot be executed. The conversation continues, and the roles are not keen on solving the problem
and giving an answer.

Action CAMEL

g Set task prompt Completely simplify and rationalize the denominator:

√
160

√
252

×
√
245

√
108

ð System **************Assistant sys message************* AI SystemMessage(role name=‘Python Programmer’,
role type=<RoleType.ASSISTANT: ‘assistant’>, meta dict=‘task’: ‘Using Python programming language, write a pro-
gram that accepts four integers as input, applies square root function to each, simplifies and rationalizes the denominator of the

fraction resulting from the multiplication of two fractions:
√

160√
252

×
√

245√
108

, and returns the simplified expression.’, ‘assis-

tant role’: ‘Python Programmer’, ‘user role’: ‘Math Solver’, role=‘system’, content=‘Never forget you are a Python Programmer
and I am a Math Solver. Never flip roles! ...)
**************AI User sys message*************
SystemMessage(role name=‘Math Solver’, role type=<RoleType.USER: ‘user’>, meta dict=‘task’: ‘Using Python programming
language, write a program that accepts four integers as input, applies square root function to each, simplifies and rationalizes the

denominator of the fraction resulting from the multiplication of two fractions:
√

160√
252

×
√

245√
108

, and returns the simplified

expression.’, ‘assistant role’: ‘Python Programmer’, ‘user role’: ‘Math Solver’, role=‘system’, content=‘Never forget you are a
Math Solver and I am a Python Programmer. Never flip roles! You will always instruct me.We share a common interest in
collaborating to successfully complete a task.I must help you to complete the task.Here is the task: Using Python programming
language, write a program that accepts four integers as input, applies square root function to each, simplifies and rationalizes

the denominator of the fraction resulting from the multiplication of two fractions:
√

160√
252

×
√

245√
108

, and returns the simplified

expression.. ...)
**************Original task prompt*************

Completely simplify and rationalize the denominator:
√

160√
252

×
√

245√
108

**************Specified task prompt*************
Using Python programming language, write a program that accepts four integers as input, applies square root function to each,

simplifies and rationalizes the denominator of the fraction resulting from the multiplication of two fractions:
√

160√
252

×
√

245√
108

,

and returns the simplified expression.
**************Final task prompt*************
Using Python programming language, write a program that accepts ...

g AI User Instruction: Import the necessary libraries for the task. Input: None

ð AI Assistant Solution: To solve this task, we will need the ‘math‘ library for the square root function and the ‘fractions‘ library to simplify the
resulting fraction. Here is how to import these libraries:

1 import math
2 from fractions import Fraction

The ‘math‘ library provides functions that deal with mathematical operations. The ‘sqrt‘ function, which we will use in this task, is
part of this library.
The ‘fractions‘ library provides functions for creating and manipulating rational numbers. The ‘Fraction‘ function, which we will
use to simplify the resulting fraction, is part of this library.
Next request.

g AI User Instruction: Define a function that accepts four integers as input. Input: None

ð AI Assistant Solution: Let’s define a function named ‘simplify fraction‘ that accepts four integers as input. These integers will represent the
numbers under the square root in the fractions.

1 def simplify_fraction(a, b, c, d):
2 pass

In this function, ‘a’, ‘b’, ‘c’, and ‘d’ are the parameters that will accept the four integers as input. The ‘pass’ statement is a
placeholder and will be replaced with actual code in the next steps.
Next request.

g AI User Instruction: Inside the function, apply the square root function to each of the input integers. Input: None

ð AI Assistant Solution: We will use the ‘math.sqrt’ function from the ‘math’ library to apply the square root to each of the input integers. Here is
how to do it:

1 def simplify_fraction(a, b, c, d):
2 sqrt_a = math.sqrt(a)
3 sqrt_b = math.sqrt(b)
4 sqrt_c = math.sqrt(c)
5 sqrt_d = math.sqrt(d)

In this code, ‘sqrt a’, ‘sqrt b’, ‘sqrt c’, and ‘sqrt d’ are variables that store the square root of the input integers ‘a’, ‘b’, ‘c’, and ‘d’
respectively.
Next request.

g Human Abort

42

ICLR 2024 Workshop on LLM Agents

Table 17: Application A1, Scenario 1: Autonomous math problem-solving. Preliminary evaluation
on MetaGPT. It does not solve the math problem but gives a product solution.

Action MetaGPT

g Prompt Completely simplify and rationalize the denominator:
√
160√
252

×
√
245√
108

ð The boss has tasked me with creating a successful product that is efficient.
Product Goals

1 [
2 ‘‘Create a product that meets the needs of the target market",
3 ‘‘Ensure the product is efficient and easy to use",
4 ‘‘Achieve a high level of customer satisfaction"
5]

User Stories
1 [
2 ‘‘As a user, I want a product that is easy to navigate so that I can find what

I need quickly",
3 ‘‘As a user, I want a product that is reliable and efficient so that I can

depend on it",
4 ‘‘As a user, I want a product that meets my needs so that I can get value for

my money",
5 ‘‘As a user, I want a product that is constantly updated and improved so that I

can enjoy the best features",
6 ‘‘As a user, I want a product that offers good customer support so that I can

get help when I need it"
7]

Competitive Analysis
1 [
2 ‘‘Product A: Offers similar features but lacks efficiency",
3 ‘‘Product B: Highly efficient but does not meet all the needs of the target

market",
4 ‘‘Product C: Has a high level of customer satisfaction but is not easy to

navigate",
5 ‘‘Product D: Is constantly updated and improved but lacks reliability",
6 ‘‘Product E: Offers good customer support but is not efficient",
7 ‘‘Product F: Is reliable and efficient but does not offer good customer support

",
8 ‘‘Our Target Product: Aims to combine all the best features of the competitors

while improving on their weaknesses"
9]

Competitive Quadrant Chart

g Human Abort

43

ICLR 2024 Workshop on LLM Agents

Table 18: Application A7. Example output of MiniWobChat on one web manipulation task “click-
button-sequence.”

Action AutoGen

g Init chat Executor agent to AssistantAgent:
We have an autonomous computer control agent that can perform atomic instructions specified by natural language to control
computers. There are two types of instructions it can execute.
First, given the instruction that matches the regular expression ‘‘ˆtype\s.{1,}$", it can type a list of characters via the
keyboard. This instruction should specify the target keyboard input for the agent to type. Before this typing instruction, you should
first locate the cursor by clicking the input box with click instruction.
Second, given the instruction that matches the regular expression, ‘‘ˆclickxpath\s.{1,}$", it can click an HTML element
with an xpath that is visible on the webpage. The target of this instruction should be a valid xpath. Below is the HTML code of the
webpage where the agent should solve a task.

1 <d i v i d =” wrap ” da ta − w o b r e f =” 2 ” da ta −wob eps=” e0 ”>
2 <d i v i d =” que ry ”>C l i c k b u t t o n ONE, t h e n c l i c k b u t t o n TWO.</ d iv>
3 <d i v i d =” a r e a ” da t a − w o b r e f =” 3 ” da ta −wob eps=” e0 ”>
4 <b u t t o n i d =” s u b b t n ” s t y l e =” p o s i t i o n : a b s o l u t e ; l e f t : 103 px ; t o p : 8 7 px ” da t a −

w o b r e f =” 4 ” da ta −wob eps=” e0 ”>ONE</ b u t t o n>
5 <b u t t o n i d =” s u b b t n 2 ” s t y l e =” p o s i t i o n : a b s o l u t e ; l e f t : 4 4 px ; t o p : 9 7 px ” da t a −

w o b r e f =” 5 ” da ta −wob eps=” e0 ”>TWO</ b u t t o n>
6 </d iv>
7 </d iv>

task: Click button ONE, then click button TWO.
plan:
1. Click the button with xpath “//button[@id=‘subbtn’]”.
2. Click the button with xpath “//button[@id=‘subbtn2’]”.
Current task: Click button ONE, then click button TWO.
plan:

ð ***
AssistantAgent to Executor agent:
1. Click the button with xpath “//button[@id=‘subbtn’]”.
2. Click the button with xpath “//button[@id=‘subbtn2’]”.

Executor agent to AssistantAgent:
Below is the HTML code of the webpage where the agent should solve a task.

1 <d i v i d =” wrap ” da ta − w o b r e f =” 2 ” da ta −wob eps=” e0 ”>
2 <d i v i d =” que ry ”>C l i c k b u t t o n ONE, t h e n c l i c k b u t t o n TWO.</ d iv>
3 <d i v i d =” a r e a ” da t a − w o b r e f =” 3 ” da ta −wob eps=” e0 ”>
4 <b u t t o n i d =” s u b b t n ” s t y l e =” p o s i t i o n : a b s o l u t e ; l e f t : 103 px ; t o p : 8 7 px ” da t a −

w o b r e f =” 4 ” da ta −wob eps=” e0 ”>ONE</ b u t t o n>
5 <b u t t o n i d =” s u b b t n 2 ” s t y l e =” p o s i t i o n : a b s o l u t e ; l e f t : 4 4 px ; t o p : 9 7 px ” da t a −

w o b r e f =” 5 ” da ta −wob eps=” e0 ”>TWO</ b u t t o n>
6 </d iv>
7 </d iv>

Current task: Click button ONE, then click button TWO.
Here is a plan you are following now.
1. Click the button with xpath “//button[@id=‘subbtn’]”.
2. Click the button with xpath “//button[@id=‘subbtn2’]”.
We have a history of instructions that have been already executed by the autonomous agent so far.
No instruction has been executed yet.
Based on the plan and the history of instructions executed so far, the first instruction should be ‘

AssistantAgent to Executor agent:
clickxpath //button[@id=‘subbtn’]

Executor agent to AssistantAgent:
Hold on, please wait for my next instruction.

AssistantAgent to Executor agent:
Sure, I’ll be here when you’re ready with your next instruction.

Executor agent to AssistantAgent:
Below is the HTML code of the webpage where the agent should solve a task.

1 <d i v i d =” wrap ” da ta − w o b r e f =” 2 ” da ta −wob eps=” e0 ”>
2 <d i v i d =” que ry ”>C l i c k b u t t o n ONE, t h e n c l i c k b u t t o n TWO.</ d iv>
3 <d i v i d =” a r e a ” da t a − w o b r e f =” 3 ” da ta −wob eps=” e0 ”>
4 <b u t t o n i d =” s u b b t n ” s t y l e =” p o s i t i o n : a b s o l u t e ; l e f t : 103 px ; t o p : 8 7 px ” da t a −

w o b r e f =” 4 ” da ta −wob eps=” e0 ” da t a − tampered =” e0 ”>ONE</ b u t t o n>
5 <b u t t o n i d =” s u b b t n 2 ” s t y l e =” p o s i t i o n : a b s o l u t e ; l e f t : 4 4 px ; t o p : 9 7 px ” da t a −

w o b r e f =” 5 ” da ta −wob eps=” e0 ”>TWO</ b u t t o n>
6 </d iv>
7 </d iv>

Current task: Click button ONE, then click button TWO.
Here is a plan you are following now.
1. Click the button with xpath “//button[@id=‘subbtn’]”.
2. Click the button with xpath “//button[@id=‘subbtn2’]”.
We have a history of instructions that have been already executed by the autonomous agent so far.
1: clickxpath //button[@id=‘subbtn’]
Based on the plan and the history of instructions executed so far, the next proper instruction should be ‘

AssistantAgent to Executor agent:
clickxpath //button[@id=‘subbtn2’]

Executor agent to AssistantAgent:
SUCCESS!!!!

ð TERMINATE

44

	Introduction
	The AutoGen Framework
	Conversable Agents
	Conversation Programming

	Applications of AutoGen
	Discussion
	Interfaces and Example Code
	Expanded Related Work
	Expanded Discussion
	General Guidelines for Using AutoGen
	Future Work

	Default System Message for Assistant Agent
	Application Details
	Example outputs from applications

