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ABSTRACT

Training deep neural networks for classification often includes minimizing the
training loss beyond the zero training error point. In this phase of training, a “neu-
ral collapse” behavior has been observed: the variability of features (outputs of
the penultimate layer) of within-class samples decreases and the mean features of
different classes approach a certain tight frame structure. Recent works analyze
this behavior via idealized unconstrained features models where all the minimiz-
ers exhibit exact collapse. However, with practical networks and datasets, the
features typically do not reach exact collapse, e.g., because deep layers cannot
arbitrarily modify intermediate features that are far from being collapsed. In this
paper, we propose a richer model that can capture this phenomenon by forcing the
features to stay in the vicinity of a predefined features matrix (e.g., intermediate
features). We explore the model in the small vicinity case via perturbation analy-
sis and establish results that cannot be obtained by the previously studied models.
For example, we prove reduction in the within-class variability of the optimized
features compared to the predefined input features (via analyzing gradient flow
on the “central-path” with minimal assumptions), analyze the minimizers in the
near-collapse regime, and provide insights on the effect of regularization hyperpa-
rameters on the closeness to collapse. We support our theory with experiments in
practical deep learning settings.

1 INTRODUCTION

Modern classification systems are typically based on deep neural networks (DNNs), whose param-
eters are optimized using a large amount of labeled training data. Their training scheme often in-
cludes minimizing the training loss beyond the zero training error point (Hoffer et al., 2017; Ma
et al., 2018; Belkin et al., 2019). In this terminal phase of training, a “neural collapse” (NC) behav-
ior has been empirically observed when using either cross-entropy (CE) loss (Papyan et al., 2020)
or mean squared error (MSE) loss (Han et al., 2022).

The NC behavior includes several simultaneous phenomena that evolve as the number of epochs
grows. The first phenomenon, dubbed NC1, is decrease in the variability of the features (outputs of
the penultimate layer) of training samples from the same class. The second phenomenon, dubbed
NC2, is increasing similarity of the structure of the inter-class features’ means (after subtracting the
global mean) to a simplex equiangular tight frame (ETF). The third phenomenon, dubbed NC3, is
alignment of the last layer’s weights with the inter-class features’ means. A consequence of these
phenomena is that the classifier’s decision rule becomes similar to nearest class center in feature
space.

Many recent works attempt to theoretically analyze the NC behavior (Mixon et al., 2020; Lu &
Steinerberger, 2022; Wojtowytsch et al., 2021; Fang et al., 2021; Zhu et al., 2021; Graf et al., 2021;
Ergen & Pilanci, 2021; Ji et al., 2021; Galanti et al., 2021; Tirer & Bruna, 2022; Zhou et al., 2022;
Thrampoulidis et al., 2022; Yang et al., 2022; Kothapalli et al., 2022). The mathematical frameworks
are almost always based on variants of the unconstrained features model (UFM), proposed by Mixon
et al. (2020), which treats the (deepest) features of the training samples as free optimization variables
(disconnected from data or intermediate/shallow features). Typically, in these “idealized” models all
the minimizers exhibit “exact collapse” (i.e., their within-class variability is exactly 0 and an exact
simplex ETF structure is demonstrated) provided that arbitrary (but nonzero) level of regularization
is used.
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However, the features of DNNs are not free optimization variables but outputs of predetermined
architectures that get training samples as input and have parameters (shared by all the samples) that
are hard to optimize. Thus, usually, the deepest features demonstrate reduced “NC distance metrics”
(such as within-class variability) compared to features of intermediate layers but do not exhibit
convergence to an exact collapse. Indeed, as can be seen in any NC paper that presents empirical
results, the decrease in the NC metrics is typically finite and stops above zero at some epoch (the
margin depends on the dataset complexity, architecture, hyperparameter tuning, etc.).

In this paper, this issue is taken into account by studying a model that can force the features to stay in
the vicinity of a predefined features matrix. By considering the predefined features as intermediate
features of a DNN, the proposed model allows us to analyze how deep features progress from, or re-
late to, shallower features. We explore the model in the small vicinity case via perturbation analysis
and establish results that cannot be obtained by the previously studied UFMs. Specifically, we prove
reduction in the within-class variability of the optimized features compared to the predefined input
features. To obtain this result (for arbitrary input features), we prove monotonic decrease of within-
class variability along gradient flow on the “central-path” of a UFM with minimal assumptions (i.e.,
we drop the assumptions and modifications of the flow that Han et al. (2022) did to facilitate their
analysis). Next, we provide a closed-form approximation for the model’s minimizer. Then, focusing
on the case where the input features matrix is already near collapse (e.g., the penultimate features of
a well-trained DNN), we present a fine-grained analysis of our closed-form approximation, which
provides insights on the effect of regularization hyperparameters on the closeness to collapse. We
support our theory with experiments in practical deep learning settings.

2 BACKGROUND AND PROBLEM SETUP

Consider a classification task with K classes and n training samples per class. Let us denote by
yk ∈ RK the one-hot vector with 1 in its k-th entry and by xk,i ∈ Rp the i-th training sample of the
k-th class. DNN-based classifiers can be typically expressed as

DNNΘ(x) = Whθ(x) + b,

where hθ(·) : Rp −→ Rd (with d ≥ K) is the feature mapping that is composed of multiple layers
(with learnable parameters θ), and W = [w1, . . . ,wK ]⊤ ∈ RK×d (w⊤

k denotes the kth row of
W) and b ∈ RK are the weights and bias of the last classification layer. The network’s parameters
Θ = {W,b,θ} are usually learned by empirical risk minimization

min
Θ

1

Kn

K∑
k=1

n∑
i=1

L (Whθ(xk,i) + b,yk) +R (Θ) ,

where L(·, ·) is a loss function (e.g., CE or MSE1) and R(·) is a regularization term.

Following the work of Mixon et al. (2020), in order to mathematically show the emergence of
minimizers with NC structure, most of the theoretical papers have followed the “unconstrained
features model” (UFM) approach, where the features {hθ(xk,i)} are treated as free optimization
variables {hk,i}. Namely, they study problems of the form

min
W,b,{hk,i}

1

Kn

K∑
k=1

n∑
i=1

L (Whk,i + b,yk) +R (W,b, {hk,i}) .

One such example is the work in (Tirer & Bruna, 2022), which considered a setting with regularized
MSE loss (which shares similarity with models in the matrix factorization literature (Koren et al.,
2009; Chi et al., 2019), except the assumptions that d ≥ K and on the specific structure of Y):

min
W,H

1

2Kn
∥WH−Y∥2F +

λW

2K
∥W∥2F +

λH

2Kn
∥H∥2F , (1)

where H = [h1,1, . . . ,h1,n,h2,1, . . . ,hK,n] ∈ Rd×Kn is the (organized) unconstrained features
matrix, Y = IK ⊗ 1⊤

n ∈ RK×Kn (where ⊗ denotes the Kronecker product) is its associated one-
hot vectors matrix, and λW and λH are positive regularization hyperparameters. It was shown that

1Hui & Belkin (2021) have shown that training DNN classifiers with MSE loss is a powerful strategy whose
performance is similar to training with CE loss.
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all the (global) minimizers of this bias-free UFM exhibit an orthogonal collapse, as stated in the
following theorem.2

Theorem 2.1 (Theorem 3.1 in (Tirer & Bruna, 2022)). Let d ≥ K and define c :=
√
λHλW . If

c ≤ 1, then any global minimizer (W∗,H∗) of Eq. 1 satisfies

h∗
k,1 = . . . = h∗

k,n =: h
∗
k, ∀k ∈ [K],

∥h∗
1∥22 = . . . = ∥h∗

K∥22 =: ρ = (1− c)

√
λW

λH
,[

h
∗
1, . . . ,h

∗
K

]⊤ [
h
∗
1, . . . ,h

∗
K

]
= ρIK ,

w∗
k =

√
λH/λW h

∗
k, ∀k ∈ [K].

If c > 1, then Eq. 1 is minimized by (W∗,H∗) = (0,0).

In short, the theorem states that any minimizer (W∗,H∗) of Eq. 1 obeys that H∗ = H ⊗ 1⊤
n for

some H ∈ Rd×K , and W∗H ∝ H
⊤
H ∝ W∗W∗⊤ ∝ IK . It is not hard to show that H

⊤
H = ρIK

implies that (
H− h

∗
G1

⊤
K

)⊤ (
H− h

∗
G1

⊤
K

)
= ρ

(
IK − 1

K
1K1⊤

K

)
,

where h
∗
G = 1

K

∑K
k=1 h

∗
k = 1

KH1K is the global mean. Namely, the “mean-subtracted features”
collapse to a simplex ETF. From the structure of the problem and the theorem, we see that there
are infinitely many minimizers of Eq. 1. Indeed, as can be deduced from the proof of Theorem 2.1
in (Tirer & Bruna, 2022): Taking any (partial) orthonormal matrix R ∈ Rd×K (i.e., R⊤R =

IK), one can construct a minimizer for Eq. 1 simply by H∗ =
√
ρ(λW , λH)R ⊗ 1⊤

n and W∗ =√
λH/λW

√
ρ(λW , λH)R⊤.

The existing literature includes other different UFM settings where all the minimizers exhibit NC
structures (e.g., see (Lu & Steinerberger, 2022; Wojtowytsch et al., 2021; Zhu et al., 2021; Fang
et al., 2021; Thrampoulidis et al., 2022)). However, as discussed in Section 1, all the previously
studied UFMs are idealized and their results deviate from the situation in practical DNN training,
where the features do not exhibit exact collapse (e.g., since deep layers cannot arbitrarily modify
intermediate features that are far from being collapsed) and the setting of the hyperparameters affects
the distance from NC structure.

In this paper, we consider a different model with the goal of better analyzing the real-world “near
collapse” situation where “exact NC” cannot be reached. Motivated by Eq. 1, we consider the
following model

min
W,H

f(W,H;H0) =
1

2Kn
∥WH−Y∥2F +

λW

2K
∥W∥2F +

λH

2Kn
∥H∥2F +

β

2Kn
∥H−H0∥2F ,

(2)

where H0 ∈ Rd×Kn is an input features matrix, which is fixed, and β is a positive hyperparameter
that controls the distance of H from H0.

Let us discuss the motivation for studying this model. As before, we interpret W and H as the final
weights and deepest features of the DNN, respectively. Clearly, for H0 = 0 this model reduces
to Eq. 1 (with ∥H∥2F regularized by λH + β). Furthermore, when H0 is nonzero, but already a
minimizer of Eq. 1 (and thus has zero within-class variability and an orthogonal frame structure),
the following statement is straightforward.
Corollary 2.2. Let d ≥ K, λHλW < 1, and let (W∗,H∗) be a minimizer of Eq. 1. Then, the
minimizer of f(W,H;H0 = H∗) (in Eq. 2) is unique3 and it is given by (W∗,H∗).

2Note that the results in (Tirer & Bruna, 2022) are stated for λW ←− λW
K

and λH ←− λH
Kn

(i.e., their
hyperparameters absorb the factors 1/K and 1/Kn that are used here). Scaling the terms in the objective
according to the number of samples, as done in Eq. 1, agrees with what is done in practice (e.g., averaging
the squared errors over the minibatch samples rather than summing them). Our scaling also highlights the
independence of the minimizers’ properties on K and n.

3Note that in both Eq. 1 and Eq. 2 the minimizer w.r.t. W is a closed-form function of H: W∗(H) =
YH⊤(HH⊤ + nλW Id)

−1. As such, a minimizer H∗ of either objective uniquely implies the associated
W∗ = W∗(H∗).
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That is, Eq. 2 allows us to pick one of the minimizers of Eq. 1 by H0 and transfer its orthogonal
collapse properties, which are stated in Theorem 2.1, to the minimizer of Eq. 2.

However, the usefulness of Eq. 2 comes from exploring cases with nonzero/non-collapsed H0. In-
deed, while H can be interpreted as the deepest features of a DNN, here we interpret H0 as the
features that are obtained in a shallower layer. In this case, 1/β can be understood as the complexity
of the subnetwork from H0 to H. We are particularly interested in the the large β regime, β ≫ 1,
where H0 expresses penultimate features (only one layer before H) that significantly constrain H.
In Appendix F we review practical DNNs where the distance between the deepest and penultimate
features may be small or is even inherently small. In this paper we focus on this large β regime, and
provide mathematical reasoning for the empirical NC behavior that are not captured by previously
studied UFMs, such as proving that the optimized H has smaller within-class variability than H0,
and analyzing how perturbations from collapse of H0 can be mitigated by the minimizer of Eq. 2.

3 DECREASE IN WITHIN-CLASS VARIABILITY

As discussed above, while the features matrix H represents the output of a DNN’s penultimate layer,
the input matrix H0 can be interpreted as the features of a preceding layer. Several works have
presented empirical settings where the within-class variability of the features, measured by some
“NC1 metric”, decreases across depth (Papyan et al., 2020; Tirer & Bruna, 2022; Galanti, 2022).
The goal of this section is to prove such a phenomenon for the model stated in Eq. 2. The theory that
we provide shows also monotonic decrease of the within-class variability (till exact collapse) along
gradient flow on the “central-path” of the UFM stated in Eq. 1.

Let us begin with several definitions that will be used in this section. For a given set of n features
for each of K classes, {hk,i}, we define the per-class and global means as hk := 1

n

∑n
i=1 hk,i and

hG := 1
Kn

∑k
k=1

∑n
i=1 hk,i, respectively, as well as the mean features matrix H :=

[
h1, . . . ,hK

]
.

Next, we define the within-class and between-class d× d covariance matrices

ΣW (H) :=
1

Kn

K∑
k=1

n∑
i=1

(hk,i − hk)(hk,i − hk)
⊤,

ΣB(H) :=
1

K

K∑
k=1

(hk − hG)(hk − hG)
⊤.

The within-class variability collapse (NC1) can be expressed as ΣW (H) → 0 while ΣB(H) ↛ 0,
where the limit takes place with increasing the training epoch, and ΣB(H) > 0 filters de-
generate cases such as H = 0. Several papers considered in their experiments the metric
1
K Tr

(
ΣW (H)Σ†

B(H)
)

, where Σ†
B denotes the pseudoinverse of ΣB (Papyan et al., 2020; Han

et al., 2022; Zhu et al., 2021). Yet, we believe that considering the metric

ÑC1(H) := Tr (ΣW (H)) /Tr (ΣB(H)) (3)
is more amenable for theoretical analysis while capturing the desired nondegenerate collapse behav-
ior.4 Indeed, the trace of a covariance matrix equals zero if and only if the covariance matrix is a
zero matrix (this follows from Cov2(X,Y ) ≤ Var(X)Var(Y )).

Recall that the minimizer w.r.t. W in Eq. 2 (and Eq. 1) has a closed-form expression that is a function
of H, which is given by W∗(H) = YH⊤(HH⊤ + nλW Id)

−1. Thus, the optimization in Eq. 2 is
equivalent to

H1/β := argmin
H

L(H) +
β

2Kn
∥H−H0∥2F

4The metric 1
K

Tr
(
ΣWΣ†

B

)
was considered in (Han et al., 2022). Yet, to state a result on this metric the

authors claim (in the proof of Cor. 2) that a nonzero eigenvalue of Σ−1/2
W HH

⊤
Σ

−1/2
W equals the reciprocal of

the associated nonzero eigenvalue of Σ1/2
W (HH

⊤
)†Σ

1/2
W . However, this is not correct in general (due to the

inherent rank deficiency of HH
⊤

). For example, for Σ1/2
W =

[
2 1
1 2

]
and HH

⊤
=

[
1 0
0 0

]
, we have that the

single nonzero eigenvalue of the former is 5/9 while the single nonzero eigenvalue of the latter is 5.

4



Under review as a conference paper at ICLR 2023

where L(H) := 1
2Kn∥W

∗(H)H−Y∥2F + λW

2K ∥W∗(H)∥2F + λH

2Kn∥H∥2F .
For large β, the minimizer H1/β can be viewed as a backward/implicit gradient descent update from
H0 with respect to the loss L. This follows from rewriting the first order optimality condition as

H1/β −H0

1/β
= −Kn∇L(H1/β).

Observing that for β → ∞ we have H1/β → H0 (formally shown in Appendix B), the above
equation can be written as dHt

dt

∣∣
t=0

= −Kn∇L(H0), where we think of t as β−1. This naturally
gives rise to the gradient flow

dHt

dt
= −Kn∇L(Ht), (4)

associated with the UFM in Eq. 1. This means that results on this flow can be translated to results on
the minimizer of Eq. 2 in the large β regime. Indeed, in Theorem 3.1 below, we show that ÑC1(H)

monotonically decreases along this flow, which implies that ÑC1(H1/β) < ÑC1(H0) for large
enough β (see the statement in Corollary 3.2 below).

Note that a flow for an objective that is equivalent to L(H) with λW = 0 and λH = 0 has been
studied in (Han et al., 2022), who called it the “central path”. The motivation for studying such an
objective, where the optimization variable W is replaced by the optimal W∗(H), comes from the
empirical observation in (Han et al., 2022) that the gap ∥W∗(H)H−Y∥2F −∥WH−Y∥2F is rather
small (compared to each term) during the optimization process of practical DNNs.

We now state our result for gradient flow on the ”central path” (which is proved in Appendix A).
Theorem 3.1. Assume that λW > 0, λH ≥ 0, and that H0 is non-collapsed (i.e., ΣW (H0) ̸= 0).
Then, along the gradient flow, which is stated in Eq. 4, we have that

• ÑC1(Ht) strictly decreases along the flow untill it reaches zero.

• t 7→ e2λHt Tr(ΣW (Ht)) decreases along the flow. In particular, when λH > 0,
Tr(ΣW (Ht)) decays exponentially.

• t 7→ e2λHt Tr(ΣB(Ht)) strictly increases along the flow.

Remark. Note that our gradient flow analysis has minimal assumptions. Unlike (Han et al., 2022),
our flow does not assume zero global mean (hG = 0), λW = λH = 0 and invertibility of ΣW . And
most importantly, it does not include any engineered renormalization and projection of the gradient,
contrary to the previous work. Thus, it is more similar to practical gradient descent optimization
of DNNs. Our unmodified flow and minimal assumptions require a different, and more general,
analysis with quite involved computations.5

Not only does Theorem 3.1 state a monotonic decrease toward 0 in the NC1 metric, it also provides
a separation between the behavior of Tr(ΣW ) and Tr(ΣB) along the flow. A strict separation is
observed for λH = 0: Tr(ΣW ) decreases while Tr(ΣB) increases. As gradient flow is often used
as a proxy for analyzing gradient descent with a small step-size (Elkabetz & Cohen, 2021), if we
overlook the difference between optimizing the UFM in Eq. 1 jointly w.r.t. W and H and restricting
the optimization to the “central path” (W∗(H),H), then our theory also provides a mathematical
reasoning for the experiments on gradient descent in (Tirer & Bruna, 2022) that show monotonic
decrease in within-class variability.

Finally, with our interpretation of t as β−1, the following Corollary is a direct consequence of
Theorem 3.1 and the continuity of ∇L(H) (see Appendix B for a formal proof).
Corollary 3.2. Assume that H0 is non-collapsed. Then, there exists some constant C = C(H0) > 0

such that for β > C we have that ÑC1(H1/β) < ÑC1(H0).

5In more detail, all the assumptions in (Han et al., 2022) (including continually renormalization the gradient)
lead to the fact that only the singular values (and not the singular vectors) of an “SNR matrix” Σ

−1/2
W (H)H

vary along their flow. However, since we do not make their assumptions, we do not have such a matrix whose
singular bases are fixed along the flow and we need to approach the problem in a more general way.
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Recall that in the large β regime we can interpret H as features of DNN that are deeper than H0 but
such that the architecture between H0 and H is extremely simple (e.g., they are features of adjacent
layers) and thus the distance between them is constrained. Under this interpretation, Corollary 3.2
implies that layer-wise optimization of DNN where each time a new layer is added (so that the
previous deepest features H1/β are considered as the new H0) will result in gradually depthwise
decreasing NC1. An extension of the model in Eq. 2 that will include multiple levels of optimizable
parameters may be able to provide similar reasoning to the gradual depthwise decrease in NC1 that
is observed in practical DNN training, where all the layers are optimized simultaneously.

4 ANALYSIS OF THE NEAR-COLLAPSE REGIME

In this section, we will explore the behavior of the minimizers of Eq. 2 in the near collapse regime.
As stated in Corollary 2.2, if H0 is already collapsed then the minimizer of Eq. 2 is also collapsed.
This is aligned with the rationale that if we have a DNN that already exhibits collapse at some
intermediate layer, we would expect the subsequent layers to maintain this collapse.6 Essentially,
we would like to analyze the minimizer of Eq. 2 for H0 that is not already collapsed. Unfortunately,
for general non-collapsed H0 it is not likely that the minimizer is amenable for explicit analytical
characterization. Yet, the fact that for orthogonally collapsed H0 = H∗ we get a unique minimizer
(W∗,H∗) of Eq. 2, which is still characterized by Theorem 2.1, gives us a desirable setting for
examining the minimizer of Eq. 2 obtained for H̃0 = H∗ + δH0 (with sufficiently small δH0) by
exploiting our knowledge on (W∗,H∗;H0 = H∗). Analyzing the near-collapse setting will shed
light on the way that the deviation from collapse in the input features is transferred to the optimized
features, e.g., the amount of interaction within/between classes and the effects of hyperparameters.
Such insights can be latter examined empirically beyond the near-collapse regime.

Let us denote by (W̃∗, H̃∗) the minimizer of f(W,H; H̃0). We are interested in studying the
dependence of δW := W̃∗−W∗ and δH := H̃∗−H∗ on δH0 = H̃0−H∗ without the requirement
of computing (W̃∗, H̃∗) (that lack analytical expressions). In particular, our focus is on the relation
between the features δH and δH0 (rather than δW and δH0), both because a minimizer H̃∗ uniquely
implies the associated W̃∗, and because important aspects of NC, such as within-class variability
decrease (NC1) and inter-class feature structure (NC2), consider the feature mapping rather than the
last layer weights.

We begin with establishing such a result in the following theorem (which is proved in Appendix C)
for H0 that is not necessarily a collapsed features matrix.

The notation in the theorem is as follows. We use vec(·) to denote the column-stack vectorization
of a matrix. The derivatives are w.r.t. the vectorized matrices vec(H) and vec(W). For example,
∇Hf ∈ RdnK×1 stands for the derivative of f w.r.t. vec(H), and a second derivative w.r.t. vec(W)⊤

yields ∇⊤
W∇Hf ∈ RdnK×Kd.

Theorem 4.1. Let d ≥ K, and set some H0 and δH0. Let (Ŵ∗, Ĥ∗) be the minimizer of
f(W,H;H0) (with f stated in Eq. 2). Let (W̃∗, H̃∗) be the minimizer of f(W,H; H̃0 =

H0 + δH0). Define δW := W̃∗ − Ŵ∗ and δH := H̃∗ − Ĥ∗. Then, with approximation ac-
curacy of O(∥δH∥2, ∥δW∥2, ∥δH0∥2), we have that

vec(δH) ≈ β

Kn

(
∇⊤

H∇Hf −∇⊤
W∇Hf(∇⊤

W∇W f)−1∇⊤
H∇W f

)−1
vec(δH0),

vec(δW) ≈ − β

Kn
(∇⊤

W∇W f)−1∇⊤
H∇W f

(
∇⊤

H∇Hf −∇⊤
W∇Hf(∇⊤

W∇W f)−1∇⊤
H∇W f

)−1
vec(δH0),

where all the derivatives7 are evaluated at the point (Ŵ∗, Ĥ∗;H0).

In particular, for β ≫ max{1, λH} we have (with additional approximation error of O(β−2))

vec(δH) ≈
(
IdnK − λH

β
IdnK − 1

β
InK ⊗ Ŵ∗⊤Ŵ∗ +

1

β
Z∗
)
vec(δH0), (5)

6This is also aligned with empirical observations of gradual depthwise collapse in practical DNNs and with
Corollary 3.2 at the limit where H0 is nearly collapsed.

7The derivatives are stated in the proof.
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where

Z∗ := (E∗⊤ + Ĥ∗ ⊗ Ŵ∗)⊤(Ĥ∗Ĥ∗⊤ ⊗ IK + nλW IdK)−1(E∗⊤ + Ĥ∗ ⊗ Ŵ∗),

E∗ :=
[
vec(ed,1e

⊤
K,1(Ŵ

∗Ĥ∗ −Y)), ..., vec(ed,1e
⊤
K,K(Ŵ∗Ĥ∗ −Y)), vec(ed,2e

⊤
K,1(Ŵ

∗Ĥ∗ −Y)), ...

..., vec(ed,de
⊤
K,K(Ŵ∗Ĥ∗ −Y))

]
,

and ed,i is the standard vector in Rd with 1 in its ith entry (similar definition stands for eK,k).

Observe that, assuming small approximation error, Theorem 4.1 states the linear operation that trans-
forms δH0 to δH. We will focus on the large β regime that is stated in Eq. 5, where the matrix
inversion can be well approximated. Furthermore, due to the vectorization operation, observe that
the linear expression vec(δH) ≈ Fvec(δH0) has the following block-based representation vec(δH(1))

...
vec(δH(K))

 ≈

F1,1 . . . F1,K

. . .
FK,1 . . . FK,K


 vec(δH

(1)
0 )

...
vec(δH

(K)
0 )

 , (6)

where δH(k) := δH[:, dn(k − 1) + 1 : dnK] ∈ Rd×n is the sub-matrix of δH that is composed
of the columns associated with the kth class (and similarly for δH0). Namely, we have that F ∈
RdnK×dnK is composed of blocks of size dn×dn. The diagonal blocks are the “intra-class blocks”.
Each of them shows the effect of perturbation in a certain class in H0 on the features of the same
class in H. The off-diagonal blocks are the “inter-class blocks”. Each of them shows the effect of
perturbation in a certain class in H0 on the features of another class in H.

Recall that for H0 = H∗ that is already exactly collapsed, the minimizer of f(·;H0) is also col-
lapsed, so Ĥ∗ = H∗ in the above theorem. Importantly, in this case the matrix in Eq. 6 transforms
deviation from exact collapse in the input features to deviation from exact collapse in the optimized
features. Thus, we have that stronger attenuation behavior of the blocks of F (e.g., small singular
values) implies that the minimizer H̃∗ is closer to exact collapse. Based on specializing Theorem 4.1
to the near-collapse case, we present in the following theorem (which is proved in Appendix D) an
exact analysis of singular values of the blocks of F. (The notations σmax(·) and σmin(·) stand for
the largest and smallest singular values of a matrix, respectively).

Theorem 4.2. Consider the setting of Theorem 4.1, λHλW < 1 (assumed in Theorem 2.1), d > K,
β ≫ max{1, λH}, and the representation of Eq. 5 that is given in Eq. 6. Let H0 be a collapse
features matrix (minimizer of Eq. 1 for the same λH , λW as in Eq. 2). Then, for k, k̃ ∈ [K] with
k ̸= k̃ we have that Fk,k is full rank, Fk,k̃ is rank-1, and

σmax(Fk,k) = 1,

σmin(Fk,k) = 1− β−1
√
λH/λW ,

σmax(Fk,k̃) = 2β−1λH(1−
√
λHλW ).

Figure 1: The effect of λH on
the spectrum of Fk,k.

Remark. In Appendix D we derive expressions for the complete sin-
gular value decomposition of Fk,k and Fk,k̃. Our expressions for the
entire spectrum of Fk,k reveal its step-wise decreasing shape, as vi-
sualized in Figure 1 for β = 100,K = 4, d = 10, n = 10, λW =

√
2

and various values of λH . To keep the paper concise, we state in the
above theorem only the results for the maximal and minimal singular
values of Fk,k, but note that, similarly to σmin(Fk,k), almost all sin-
gular values decrease as λH increases. Even though a small portion
( 1−K/d

n ) of the singular values equal 1 (as shown in our analysis in
Appendix D), we can still gain insights on the attenuation profile since generic perturbations are
unlikely to concentrate in such an extremely low-dimensional subspace (and, in fact, the singular
vectors associated with this subspace do not affect the within-class variability).

From Theorem 4.2 we gain the following insights on the minimizer of Eq. 2 in the near-collapse and
large β regime. First, observe that not only do exactly collapsed minimizers have orthogonal features

7



Under review as a conference paper at ICLR 2023

for different classes, but also in the near-collapse setting an intra-class block is much more dominant
than each inter-class block, as follows from Fk,k̃ being rank-1 and σmax(Fk,k̃) ≪ σmin(Fk,k). For
generic perturbations that do not concentrate in specific low-dimensional subspaces this implies that
also before/near pure collapse, we have that the deviation from collapse in the features of a certain
class is mainly due to deviation from collapse of input (preceding) features of the same class and
not those of the K − 1 other classes. (See Appendix D.1 for more details, and note that this also
implies preservation of per-class near-collapse). Second, we see that the feature mapping regulariza-
tion plays the major role in approaching (near-)collapse behavior. Indeed, increasing λH decreases
the spectral values of the (more dominant) intra-class blocks {Fk,k} (contrary to increasing λW ).
Recall that reducing the singular values of the blocks of F implies reducing the distance of the min-
imizer H̃∗ from exact collapse. Third, our result on the inter-class blocks {Fk,k̃ ̸=k} hints that the
regularization of the last layer’s weights (determined by λW > 0) may still have a supportive effect
on reaching (near-)collapse behavior by reducing the component of the deviation from collapse that
is due to “crosstalk”/interference of features of different classes (e.g., when some classes are harder
to be classified then others). In the sequel, we show that the above observations correlate with the
NC behavior in practical settings.

5 EXPERIMENTS
In this section, we translate the insights that are obtained for the model in Eq. 2 to what is observed
with practical DNNs and datasets. We evaluate the distance of DNN’s features from exact NC using
metrics that have been also used in previous works. Despite defining the metric ÑC1 in Eq. 3,
here we mainly measure within-class variability using NC1 := 1

K Tr
(
ΣWΣ†

B

)
, where we use the

definitions of Section 3. (We use this metric due to its popularity even though it is less amenable for
theoretical analysis). We measure the structure of the features using

NC2 :=

∥∥∥∥ (H− hG1
⊤
K)⊤(H− hG1

⊤
K)

∥(H− hG1⊤
K)⊤(H− hG1⊤

K)∥F
− 1√

K − 1
(IK − 1

K
1K1⊤

K)

∥∥∥∥
F

,

where the simplex ETF is normalized to unit Frobenius norm.

Figure 2: Layer-wise train-
ing of MLP on CIFAR-10.

The result of Section 3 provides reasoning to justify depthwise decrease
in within-class variability, which has already been empirically demon-
strated for end-to-end training in several papers (Papyan et al., 2020;
Tirer & Bruna, 2022; Galanti, 2022) (we present such experiments in
Appendix E.2). Here we show this behavior also for layer-wise training,
which is better represented by our model. We consider the CIFAR-10
dataset and train an MLP with 1 to 10 hidden layers and a final classi-
fication layer. Each time, we add and train a hidden layer on top of the
previous hidden layers, which are maintained fixed. Then we compute
the NC1 metrics for the deepest features. Due to space limitation, the
experimental details are deferred to Appendix E.1. Figure 2 demonstrates decrease in both NC1 and
ÑC1 as we add more hidden layers on top the previous, which are maintained fixed. Note that our
theory justifies such decrease for all the layers (the features are not required to be near collapse).

Next, we turn to demonstrate correlation of practical NC behavior with the insight gained in Sec-
tion 4 that λH plays a bigger role than λW does in approaching NC. Based on the equivalence of
L2-regularization with weight decay (WD) in gradient-based methods, we can make the analogy of
regularizing H in Eq. 2 to WD of the weights of practical DNNs in the feature mapping layers (i.e.,
excluding the last layer’s weights). Importantly, note that this analogy is empirically justified for
plain UFMs in (Zhu et al., 2021). Under this analogy, our analysis suggests that, as long as entering
the zero training error phase of training is maintained, increasing (resp. decreasing) the WD in the
feature mapping layers should decrease (resp. increase) the distance from exact collapse more than
increasing (resp. decreasing) the WD in the classification layer. Indeed, we empirically show this
behavior below. (More experiments are presented in Appendix E.2). We note that there exists a
work that empirically8 shows that WD facilitates collapse (Rangamani & Banburski-Fahey, 2022),
however, they do not examine the WD in feature mapping and classification layers separately.

8Note that the claim in (Rangamani & Banburski-Fahey, 2022) that NC solution cannot minimize unregu-
larized bias-free MSE loss comes from demanding that H∗ – without subtracting the global mean – will be a
simplex ETF rather than an orthogonal frame as shown in Theorem 2.1.
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Figure 3: The effect of modifying the weight decay (WD) on NC metrics for ResNet18 trained on CIFAR-
10. Top: MSE loss without bias; Bottom: CE loss with bias. Observe that modifying the WD in the feature
mapping increases the deviation from the baseline more than modifying the WD of the last layer.

We consider the CIFAR-10 dataset and examine how modifying the regularization hyperparameters
affects the NC behavior of the widely used ResNet18 (He et al., 2016a) compared to a baseline
setting. Specifically, as a baseline hyperparameter setting, we consider one that is used in previous
works (Papyan et al., 2020; Zhu et al., 2021): default PyTorch initialization of the weights, SGD
optimizer with learning rate 0.05 that is divided by 10 every 40 epochs, momentum of 0.9, and WD
of 5e-4 for all the network’s parameters. The modifications include: 1) doubling the WD only for
the last (FC) layer; 2) doubling the WD only for feature mapping (conv) layers; 3) zeroing the WD
for the last layer; and 4) zeroing the WD for feature mapping layers.

Figure 3 presents the NC1 and NC2 metrics of the (deepest) features for: (Top) MSE loss with
no bias in the FC layer (similar to the analyzed model); and (Bottom) CE loss with bias in the
FC layer. In all the settings, we reach zero training error at the 40 epoch approximately. The
empirical results show that modifying the WD in the feature mapping layers leads to curves with
larger deviations from the baseline compared to modifying the last layer’s WD, which is aligned with
the theory established in Section 4 (i.e., the important role of λH in attenuating the dominant intra-
class perturbations). Reducing (zeroing) the WD in the feature mapping increases the distance from
exact NC (i.e., from 0 value of the metrics), while increasing the WD decreases the gap from exact
NC, as the theory predicts. The fact that sometimes (e.g., with CE loss) increasing the WD of the last
layer can also decrease the gap from collapse hints that mitigating inter-class interference/correlation
of features in practical deep learning settings is more significant for reaching NC than in our analysis
that considers a near-collapse regime.9 Yet, both the experiments and the theoretical study show that
the regularization of the feature mapping has larger significance in approaching NC.

6 CONCLUSION

The features that are learned by training practical networks on real world datasets typically do not
reach exact NC. In this paper, we addressed this issue by studying a model that can force the features
to stay in the vicinity of a predefined features matrix. We analyzed it for the small vicinity case and
established results that cannot be obtained by the previously studied (idealized) UFMs. We proved
reduction in within-class variability of the optimized features compared to the input features (via an-
alyzing gradient flow along the “central-path” of a UFM with minimal assumptions, unlike existing
literature). We also presented an analysis of the model’s minimizer in the near-collapse regime that
provides insights on the effect of the regularization hyperparameters on the closeness to collapse,
which correlate with the behavior in practical deep learning settings. We believe that our perturba-
tion analysis approach, which is based on exploiting our knowledge on exactly collapsed minimizers
of UFMs for studying non-collapse cases, can be applied to models other than the one considered
in this paper, such as models with different loss functions and/or multiple levels of features and/or
imbalanced data.

9In Appendix E.2, we demonstrate the role of λW in mitigating inter-class interference of features, which
is identified by our analysis, also empirically with practical DNNs.
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A PROOF OF THEOREM 3.1

To prove Theorem 3.1, in addition to the within-class and between-class covariance matrices, let us
define the total covariance matrix (across all classes) of the non-centered features

Σ̃T (H) :=
1

Kn

K∑
k=1

n∑
i=1

hk,ih
⊤
k,i.

For convenience we also define the non-centered between-class covariance matrix

Σ̃B(H) :=
1

K

∑
k=1

hkh
⊤
k .

We have the decomposition Σ̃T (H) = ΣW (H) + Σ̃B(H).

Using YH⊤ = (IK ⊗ 1⊤
n )H

⊤ = nH
⊤

and Σ̃T = 1
KnHH⊤, we have that for each feature matrix

H, the optimal weight matrix W∗(H) is given by

W∗(H) =
1

K
H

⊤
(

1

Kn
HH⊤ +

λW

K
I)−1 =

1

K
H

⊤
(Σ̃T +

λW

K
I)−1.

Next, let us simplify the terms with W∗(H) in L(H):

L(H) :=
1

2Kn
∥W∗(H)H−Y∥2F +

λW

2K
∥W∗(H)∥2F +

λH

2Kn
∥H∥2F .

For the first term in L(H), observe that

1

2Kn
∥W∗(H)H−Y∥2F =

1

2Kn
Tr
(
W∗(H)HH⊤W∗(H)⊤

)
− 1

Kn
Tr
(
W∗(H)HY⊤)+ 1

2

=
1

2K
Tr
(
(Σ̃T +

λW

K
I)−1Σ̃T (Σ̃T +

λW

K
I)−1Σ̃B

)
− 1

K
Tr
(
(Σ̃T +

λW

K
I)−1Σ̃B

)
+

1

2

= − λW

2K2
Tr
(
(Σ̃T +

λW

K
I)−2Σ̃B

)
− 1

2K
Tr
(
(Σ̃T +

λW

K
I)−1Σ̃B

)
+

1

2
,

where in the second equality we used Σ̃B = 1
KHH

⊤
, and in the last equality we used (Σ̃T +

λW

K I)−1Σ̃T = I− λW

K (Σ̃T + λW

K I)−1.

For the second term in L(H), observe that

λW

2K
∥W∗(H)∥2F =

λW

2K
Tr
(
W∗(H)W∗(H)⊤

)
=

λW

2K2
Tr
(
(Σ̃T +

λW

K
I)−2Σ̃B

)
.

Adding the two terms together,

1

2Kn
∥W∗(H)H−Y∥2F +

λW

2K
∥W∗(H)∥2F = − 1

2K
Tr
(
(Σ̃T +

λW

K
I)−1Σ̃B

)
+

1

2

=
1

2K
Tr
(
(Σ̃T +

λW

K
I)−1(ΣW +

λW

K
I)

)
− d−K

2K
,

where we used (Σ̃T + λW

K I)−1Σ̃B = I− (Σ̃T + λW

K I)−1(ΣW + λW

K I).

Finally, for the third term in L(H) we have

λH

2Kn
∥H∥2F =

λH

2
Tr
(
Σ̃T

)
.
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To conclude

L(H) =
1

2K
Tr
(
(ΣW +

λW

K
I)(Σ̃T +

λW

K
I)−1

)
+

λH

2
Tr
(
Σ̃T

)
− d−K

2K
.

Next, we are going to analyze the traces of dΣB

dt , dΣW

dt , and dΣ̃T

dt , along the flow that is stated in
Eq. 4, which is repeated here for the convenience of the reader:

dHt

dt
= −Kn∇L(Ht).

In the following lemma, we state the required derivatives.

Lemma A.1. Denote CB := ΣB(Σ̃T + λW

K I)−1, C̃B := Σ̃B(Σ̃T + λW

K I)−1 and CW :=

ΣW (Σ̃T + λW

K I)−1. Along the gradient flow we have

dΣB

dt
=

1

K

(
CB(I− C̃B) + (I− C̃⊤

B)C
⊤
B

)
−2λHΣB

dΣW

dt
= − 1

K

(
CW C̃B + C̃⊤

BC
⊤
W

)
−2λHΣW

dΣ̃T

dt
=

1

K

(
(I− C̃B −CW )C̃B + C̃⊤

B(I− C̃⊤
B −C⊤

W )
)
−2λHΣ̃T

Proof. We use the notation ∂kjl to denote the derivative w.r.t. the lth entry of hk,j . Then

∂kjlΣB =
1

Kn
(el(hk − hG)

⊤ + (hk − hG)e
⊤
l ),

∂kjlΣW =
1

Kn

(
el(hk,j − hk)

⊤ + (hk,j − hk)e
⊤
l

)
,

∂kjlΣ̃T =
1

Kn
(elh

⊤
k,j + hk,je

⊤
l ),

where el ∈ Rd is the one-hot vector whose lth entry is one (i.e., a standard basis vector). By the
product rule,

∂kjlL(H) =
1

2K
Tr
(
(∂kjlΣW )(Σ̃T +

λW

K
I)−1

)
+

1

2K
Tr

(
(ΣW +

λW

K
I)∂kjl

(
Σ̃T +

λW

K
I

)−1
)

+
λH

Kn
e⊤l hk,j

=
1

2K
Tr
(
(∂kjlΣW )(Σ̃T +

λW

K
I)−1

)
− 1

2K
Tr

(
(ΣW +

λW

K
I)

(
Σ̃T +

λW

K
I

)−1

∂kjlΣ̃T

(
Σ̃T +

λW

K
I

)−1
)

+
λH

Kn
e⊤l hk,j

=
1

K2n

(
(Σ̃T +

λW

K
I)−1(hk,j − hk)−

(
Σ̃T +

λW

K
I

)−1

(ΣW +
λW

K
I)

(
Σ̃T +

λW

K
I

)−1

hk,j + λHKhk,j

)⊤

el.

Therefore, the gradient of L is given by

∇L(H) = (7)

1

K2n

(
(Σ̃T +

λW

K
I)−1(H−H⊗ 1⊤

n )−
(
Σ̃T +

λW

K
I

)−1(
ΣW +

λW

K
I

)(
Σ̃T +

λW

K
I

)−1

H+ λHKH

)
.

Next, we compute how each covariance matrix updates along the flow. Let ΣB(a, b) = e⊤a ΣBeb
denote the a, b-th entry of ΣB . We further denote C := (Σ̃T + λW

K I)−1, CB := ΣB(Σ̃T +
λW

K I)−1,C̃B := Σ̃B(Σ̃T + λW

K I)−1 CW := ΣW (Σ̃T + λW

K I)−1 and write ∂kjlL(H) = ⟨Lkj , el⟩,
where

Lkj =
1

K2n

(
C(hk,j − hk)− (I− C̃⊤

B)Chk,j + λHKhk,j

)
.
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Using the chain rule, we have that

dΣB(a, b)

dt
=
∑
k,j,l

∂kjlΣB(a, b)
dhk,j [ℓ]

dt
=
∑
k,j,l

∂kjlΣB(a, b)(−Kn∂kjlL(H))

=
∑
k,j

∑
l

−
(
⟨ea, el⟩⟨eb,hk − hG⟩+ ⟨ea,hk − hG⟩⟨el, eb⟩

)
⟨el,Lkjl⟩

=
∑
k,j

−
(
⟨ea,Lkj⟩⟨eb,hk − hG⟩+ ⟨ea,hk − hG⟩⟨Lkj , eb⟩

)

= eTa

∑
k,j

−Lk,j(hk − hG)
⊤ − (hk − hG)L

⊤
k,j

 eb

=
1

K
eTa

(
CB(I− C̃B) + (I− C̃⊤

B)C
⊤
B

)
eb−2λHe⊤a ΣBeb

Similar computation yields

dΣW (a, b)

dt
= − 1

K
e⊤a

(
CW C̃B + C̃⊤

BC
⊤
W

)
eb−2λHe⊤a ΣWeb

dΣ̃T (a, b)

dt
=

1

K
eTa

(
(I− C̃B −CW )C̃B + C̃⊤

B(I− C̃⊤
B −C⊤

W )
)
eb−2λHe⊤a Σ̃Teb

Let TB : t 7→ e2λHtTr(ΣB) and TW : t 7→ e2λHtTr(ΣW ). The above lemma suggests that TB

strictly increases along the flow, while TW decreases. Indeed,

d TW

dt
= e2λHt(

dTr(ΣW )

dt
+ 2λHTr(ΣW ))

= − 2

K
e2λHtTr(CW C̃B)

= −e2λHt 2

K
Tr(ΣW (Σ̃T +

λW

K
I)−1Σ̃B(Σ̃T +

λW

K
I)−1) ≤ 0,

The last inequality holds because the trace of the product of two positive semidefinite matrices is
always non-negative (e.g. by Von-Neumann’s trace inequality). Similarly

dTB

dt
=

2

K
e2λHtTr(CB(I− C̃B))

=
2

K
e2λHtTr(ΣB(Σ̃T +

λW

K
I)−1(I− Σ̃B(Σ̃T +

λW

K
I)−1))

=
2

K
e2λHtTr(ΣB(Σ̃T +

λW

K
I)−1(ΣW +

λW

K
I)(Σ̃T +

λW

K
I)−1)

=
2

K
e2λHt

(
Tr(ΣB(Σ̃T +

λW

K
I)−1ΣW (Σ̃T +

λW

K
I)−1) +

λW

K
Tr(ΣB(Σ̃T +

λW

K
I)−2)

)
≥ 2λW

K2
e2λHtTr(ΣB(Σ̃T +

λW

K
I)−2) > 0,

where the strict inequality again comes from Von-Neumann trace inequality, which ensures that the
trace of product of a positive definite matrix and a non-zero positive semidefinite matrix is positive.

Since ÑC1 = TW /TB , the above computation also shows that ÑC1 has to strictly decrease along
the flow.
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B PROOF OF COROLLARY 3.2

Recall that the minimizer H1/β satisfies the first order equation

H1/β −H0 = −Kn

β
∇L(H1/β). (8)

We first show that H1/β → H0 as β → ∞. The following lemma would be helpful.

Lemma B.1. There exists a constant M > 0 independent of H, such that

∥∇L(H)∥F ≤ M∥H∥F ,

for any H ∈ Rd×Kn.

Proof. We bound each term in the expression of ∇L equation Eq. 7 individually. For the first term
we have

∥(Σ̃T +
λW

K
I)−1(H−H⊗ 1⊤

n )∥F ≤ ∥(Σ̃T +
λW

K
I)−1∥op∥(H−H⊗ 1⊤

n )∥F

≤ K

λW
∥(H−H⊗ 1⊤

n )∥F ≤ 2K

λW
∥H∥F ,

where ∥ · ∥op denotes the operator norm and the second inequality is due to the fact that each eigen-
value of (Σ̃T + λW

K I)−1 is no bigger than K
λW

. Similarly,∥∥∥∥∥
(
Σ̃T +

λW

K
I

)−1(
ΣW +

λW

K
I

)(
Σ̃T +

λW

K
I

)−1

H

∥∥∥∥∥
F

≤ K

λW

∥∥∥∥∥
(
Σ̃T +

λW

K
I

)− 1
2
(
ΣW +

λW

K
I

)(
Σ̃T +

λW

K
I

)− 1
2

∥∥∥∥∥
op

∥H∥F ,

where in the last inequality we used ∥(Σ̃T + λW

K I)−1/2∥op ≤
√
K/λW since every eigenvalue of

(Σ̃T + λW

K I)−1/2 is bounded by
√
K/λW . Denote A =

(
ΣW + λW

K I
)
, B =

(
Σ̃T + λW

K I
)

and

use A+ Σ̃B = B, we have

∥B−1/2AB−1/2∥op = ∥(B−1/2A1/2)(B−1/2A1/2)⊤∥op
= ∥(B−1/2A1/2)⊤(B−1/2A1/2)∥op
= ∥A1/2B−1A1/2∥op
= ∥(A−1/2(A+ Σ̃B)A

−1/2)−1∥op
= ∥(I+A−1/2Σ̃BA

−1/2)−1∥op ≤ 1.

Combining the above bounds together, we have obtained for any H ∈ Rd×Kn,

∥∇L(H)∥F ≤ 1

Kn

(
3

λW
+ λH

)
∥H∥F .

Next, we combine the lemma and the stationary equation Eq. 8 to get

∥H1/β −H0∥F ≤ nKM

β
∥H1/β∥F ≤ nKM

β
∥H1/β −H0∥F +

nKM

β
∥H0∥F .

Rearranging, we have the bound

∥H1/β −H0∥F ≤
(

β

nKM
− 1

)−1

∥H0∥F .
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This implies that H1/β → H0 as β → ∞. Combined with the continuity of ∇L(·) and the first
order equation Eq. 8, this further implies

lim
β→∞

H1/β −H0

1/β
= −Kn∇L(H0).

Now, by chain rule,

lim
β→∞

ÑC1(H1/β)− ÑC1(H0)

1/β
= ⟨∇HÑC1(H0), lim

β→∞

H1/β −H0

1/β
⟩

= ⟨∇HÑC1(H0),−Kn∇L(H0)⟩

=
d

dt

∣∣∣∣
t=0

ÑC1(Ht).

In the last line, Ht denotes the gradient flow iterate defined in Eq. 4. By (the proof of) Theorem 3.1,
when H0 is non-collapsed,

d

dt

∣∣∣∣
t=0

ÑC1(Ht) < 0

must hold. This further implies that there exists some constant C = C(H0) > 0 such that for β > C

we have that ÑC1(H1/β)−ÑC1(H0)

1/β < 0.

16
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C PROOF OF THEOREM 4.1

Our proof is essentially a perturbation analysis approach that exploits the fact that each of
the minimizers is a stationary point of its associated objective function. Namely, the mini-
mizer of the perturbed problem f(W,H; H̃0), i.e., (W̃∗, H̃∗), obeys that ∇f(W̃∗, H̃∗; H̃0) =[
∇Hf(W̃∗, H̃∗; H̃0)

∇W f(W̃∗, H̃∗; H̃0)

]
= 0, and the minimizer of the unperturbed problem, i.e., (W∗,H∗) where

for brevity we omit the ’ˆ’ symbol, obeys that ∇f(W∗,H∗;H0) =

[
∇Hf(W∗,H∗;H0)
∇W f(W∗,H∗;H0)

]
= 0.

We use these properties in the following first order Taylor approximation of ∇f(W̃∗, H̃∗; H̃0)
around (W∗,H∗;H0) (with accuracy of O(∥δH∥2, ∥δW∥2, ∥δH0∥2)) that is given by[
∇Hf(W̃∗, H̃∗; H̃0)

∇W f(W̃∗, H̃∗; H̃0)

]
≈
[
∇Hf(W∗,H∗;H0)
∇W f(W∗,H∗;H0)

]
(9)

+

[
∇⊤

H∇Hf(W∗,H∗;H0) ∇⊤
W∇Hf(W∗,H∗;H0)

∇⊤
H∇W f(W∗,H∗;H0) ∇⊤

W∇W f(W∗,H∗;H0)

] [
vec(δH)
vec(δW)

]
+

[
∇⊤

H0
∇Hf(W∗,H∗;H0)

∇⊤
H0

∇W f(W∗,H∗;H0)

]
vec(δH0).

Recall that δH := H̃∗ −H∗, δW := W̃∗ −W∗, and δH0 = H̃0 −H0. Since the two terms in the
first line of Eq. 9 vanish, we get that[

vec(δH)
vec(δW)

]
≈ −

[
∇⊤

H∇Hf ∇⊤
W∇Hf

∇⊤
H∇W f ∇⊤

W∇W f

]−1 [∇⊤
H0

∇Hf
∇⊤

H0
∇W f

]
vec(δH0), (10)

where all the derivatives are evaluated at (W∗,H∗;H0), which is omitted in order to simplify the
presentation. As shown below, in our setting the matrix that is inverted is indeed nonsingular.

We turn now to compute the derivatives. Let us denote h := vec(H), w := vec(W), and y :=
vec(Y). Observe that from well known identities on the Kronecker product and the vectorization
operation we have

1

2Kn
∥WH−Y∥2F =

1

2Kn
∥(Ikn ⊗W)h− y∥22 =

1

2Kn
∥(H⊤ ⊗ IK)w − y∥22.

Therefore, the first order derivatives are given by

∇Hf(W,H;H0) =
1

Kn
(Ikn ⊗W⊤)((Ikn ⊗W)h− y) +

λH

Kn
h+

β

Kn
(h− vec(H0)), (11)

∇W f(W,H;H0) =
1

Kn
(H⊗ IK)((H⊤ ⊗ IK)w − y) +

λW

K
w.

Hence,

∇⊤
H0

∇Hf = − β

Kn
IdnK ,

∇⊤
H0

∇W f = 0Kd×dnK .

Plugging these expressions in Eq. 10 and using blockwise matrix inversion gives

vec(δH) ≈ β

Kn

(
∇⊤

H∇Hf −∇⊤
W∇Hf(∇⊤

W∇W f)−1∇⊤
H∇W f

)−1
vec(δH0),

vec(δW) ≈ − β

Kn
(∇⊤

W∇W f)−1∇⊤
H∇W f

(
∇⊤

H∇Hf −∇⊤
W∇Hf(∇⊤

W∇W f)−1∇⊤
H∇W f

)−1
vec(δH0),

which are stated in the theorem, where all the derivatives are evaluated at the point (W∗,H∗;H0).

Let us state the second order derivatives that appear above. First, one can observe that

∇⊤
H∇Hf(W∗,H∗;H0) =

1

Kn
InK ⊗W∗⊤W∗ +

λH

Kn
IdnK +

β

Kn
IdnK ,

∇⊤
W∇W f(W∗,H∗;H0) =

1

Kn
HH∗⊤ ⊗ IK +

λW

K
IKd.
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As for the mixed partial derivative, applying ∇⊤
W on Eq. 11, we get

∇⊤
W∇Hf =

∂

∂w
∇Hf =

1

Kn

∂

∂w

(
(Ikn ⊗W⊤)r

)
+

1

Kn
(Ikn ⊗W⊤)

∂

∂w
((Ikn ⊗W)h− y)

=
1

Kn

∂

∂w

(
(Ikn ⊗W⊤)r

)
+

1

Kn
(Ikn ⊗W⊤)

∂

∂w
((H⊤ ⊗ IK)w − y)

=
1

Kn
E(W,H) +

1

Kn
(Ikn ⊗W⊤)(H⊤ ⊗ IK)

=
1

Kn
E(W,H) +

1

Kn
(H⊤ ⊗W⊤)

where r := vec(WH−Y) but treated as independent of w due to the product rule, and E(W,H) :=
∂
∂w

(
(Ikn ⊗W⊤)r

)
. Denoting wk,i := W [k, i], we have that

∂

∂wk,i

(
(Ikn ⊗W⊤)r

)
=

(
(Ikn ⊗ ∂

∂wk,i
W⊤)r

)
=
(
(Ikn ⊗ ed,ie

⊤
K,k)r

)
= vec(ed,ie

⊤
K,k(WH−Y)),

where ed,i is the standard vector in Rd with 1 in its ith entry (similar definition stands for eK,k).

Therefore,

∇⊤
H∇W f(W∗,H∗;H0) =

1

Kn
E∗⊤ +

1

Kn
(H∗ ⊗W∗),

∇⊤
W∇Hf(W∗,H∗;H0) =

1

Kn
E∗ +

1

Kn
(H∗⊤ ⊗W∗⊤),

where E∗ = E(W∗,H∗) and E(W,H) ∈ RdnK×Kd is given by

E(W,H) :=[
vec(ed,1e

⊤
K,1(WH−Y)), ..., vec(ed,1e

⊤
K,K(WH−Y)), vec(ed,2e

⊤
K,1(WH−Y)), ...

..., vec(ed,de
⊤
K,K(WH−Y))

]
.

We focus now on the effect the deviation δH0 = H̃0 −H0 on the feature learning δH = H̃∗ −H∗.
This requires inverting the dnK × dnK matrix that links δH and δH0, which is quite challenging.
Yet, from the derivatives that are stated above we observe the following

vec(δH) ≈ β

Kn

(
∇⊤

H∇Hf −∇⊤
W∇Hf(∇⊤

W∇W f)−1∇⊤
H∇W f

)−1
vec(δH0)

=

(
IdnK +

λH

β
IdnK +

1

β
InK ⊗W∗⊤W∗ − Kn

β
∇⊤

W∇Hf(∇⊤
W∇W f)−1∇⊤

H∇W f

)−1

vec(δH0)

=

(
IdnK +

λH

β
IdnK +

1

β
InK ⊗W∗⊤W∗ − 1

β
Z∗
)−1

vec(δH0)

where

Z∗ := (E∗⊤ +H∗ ⊗W∗)⊤(H∗H∗⊤ ⊗ IK + nλW IdK)−1(E∗⊤ +H∗ ⊗W∗).

Therefore, under the assumption of β ≫ max{1, λH}, which is associated with a restrictive link
between H0 and H, we can use the first-order truncated Neumann series to approximate the matrix
inversion (with accuracy of O(β−2)) that is stated in Eq. 5 and repeated here for the convenience of
the reader:

vec(δH) ≈
(
IdnK − λH

β
IdnK − 1

β
InK ⊗W∗⊤W∗ +

1

β
Z∗
)
vec(δH0).
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D PROOF OF THEOREM 4.2

In this section we compute the entire spectrum (singular values) for the diagonal blocks (“intra-class
blocks”) and the off-diagonal blocks (“inter-class blocks”) of the block matrix in Eq. 6. To keep
the main body of the paper concise, we present in the statement of Theorem 4.2 only the results
for σmax(Fk,k) and σmin(Fk,k) of the full rank matrix Fk,k, as well as σmax(Fk,k̃) of the rank-1
matrix Fk,k̃ (k̃ ̸= k).

Recall that we consider the (non-degenerate) setting c :=
√
λHλW < 1. Therefore, when H0 = H∗

is a minimizer of Eq. 1 (associated with W∗), from Corollary 2.2 we have that (W∗,H∗) the
minimizer of f(W,H;H0) is also orthogonally collapsed and characterized by Theorem 2.1 with
λW and λH (independent of K,n, d). That is, H∗ = H ⊗ 1⊤

n and W∗H ∝ H
⊤
H ∝ W∗W∗⊤ ∝

IK . We also have the following results for the spectral norm of H and W∗, that we denote by σH
and σW respectively:

σ2
H

= (1− c)

√
λW

λH
=

√
λW

λH
− λW ,

σ2
W = (1− c)

√
λH

λW
=

√
λH

λW
− λH .

Observe that these expressions do not depend on the number of samples K,n, d. Note also that
σ2
H
σ2
W = (1−

√
λHλW )2 = (1− c)2 < 1.

We remind the reader that vec(δH) ≈ Fvec(δH0), for

F = IdnK − λH

β
IdnK − 1

β
InK ⊗W∗⊤W∗ +

1

β
Z∗,

where

Z∗ := (E∗⊤ +H∗ ⊗W∗)⊤(HH∗⊤ ⊗ IK + nλW IdK)−1(E∗⊤ +H∗ ⊗W∗),

and E∗ = E(W∗,H∗) and E(W,H) ∈ RdnK×Kd is defined as

E(W,H) :=[
vec(ed,1e

⊤
K,1(WH−Y)), ..., vec(ed,1e

⊤
K,K(WH−Y)), vec(ed,2e

⊤
K,1(WH−Y)), ...

..., vec(ed,de
⊤
K,K(WH−Y))

]
,

where ed,i is the standard vector in Rd with 1 in its ith entry (similar definition stands for eK,k).

For the collapsed minimizer (W∗,H∗), we know that H∗ = σHR ⊗ 1⊤
n and W∗ = σWR⊤ for

some (partial) orthonormal matrix R ∈ Rd×K (i.e., R⊤R = IK).

Therefore, we have that W∗H∗−Y = −cIK⊗1⊤
n ⊗Id, and that H∗⊗W∗ = (1−c)R⊗1⊤

n ⊗R⊤.
Observe that the alignment of the former expression with the latter (where the locations of the
dimensions d and K are swapped) is done using the matrices {ed,ie⊤K,k}. Indeed, we can write
E∗⊤ = Kd,K(−cIK ⊗ 1⊤

n ⊗ Id), where Kd,K ∈ RKd×dK is the permutation matrix that satisfies

K⊤
d,K(X1 ⊗X2)Kd,K = X2 ⊗X1

for any X1 ∈ Rd×d and X2 ∈ RK×K . Such a matrix Kd,k is also known as commutation matrix
in the matrix theory literature. Another useful property of the commutation matrix that we will
frequently use is that

Kd,K(x⊗Y) = Y ⊗ x (12)

for any x ∈ RK×1 and Y ∈ Rd×m.

Let us extract the k, k̃-th block Z∗
k,k̃

∈ Rdn×dn of Z∗. First, observe that

Z∗ = (E∗⊤ +H∗ ⊗W∗)⊤(H∗H∗⊤ ⊗ IK + nλW IdK)−1(E∗⊤ +H∗ ⊗W∗)

=
1

n
B⊤(A⊗ IK)B,
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where
A = (σ2

H
RR⊤ + λW Id)

−1

B = −cKd,K(IK ⊗ 1⊤
n ⊗ Id) + (1− c)(R⊗ 1⊤

n ⊗R⊤).

Denote by {ek} the standard basis vectors in RK . To extract the k, k̃-th block of Z∗, we compute

Z∗
k,k̃

= (ek ⊗ Idn)
⊤Z∗(ek̃ ⊗ Idn)

=
1

n
(B(ek ⊗ Idn))

⊤
(A⊗ IK) (B(ek ⊗ Idn)) ,

with
B(ek ⊗ Idn) = −cKd,K(ek ⊗ 1⊤

n ⊗ Id) + (1− c)(rk ⊗ 1⊤
n ⊗R⊤)

= −c(1⊤
n ⊗ Id ⊗ ek) + (1− c)(rk1

⊤
n ⊗R⊤),

where in the last line, we have used property Eq. 12 to swap the Kronecker product. Then,

Z∗
k,k̃

=
1

n
(−c(1⊤

n ⊗ Id ⊗ ek) + (1− c)(rk1
⊤
n ⊗R⊤))⊤(A⊗ IK)(−c(1⊤

n ⊗ Id ⊗ ek̃) + (1− c)(rk̃1
⊤
n ⊗R⊤))

= c2(e⊤k ek̃)

(
1

n
(1n1

⊤
n )⊗A

)
+ (1− c)2(r⊤k Ark̃)

(
1

n
(1n1

⊤
n )⊗RR⊤

)
− c(1− c)

(
1

n
(1n1

⊤
n )⊗ (Ark̃r

⊤
k + rk̃r

⊤
k A)

)
.

Let us write R = [r1 r2 ...rK ] ∈ Rd×K and let rK+1, ..., rd be the orthonormal vectors such that
{ri}di=1 forms an orthonormal basis. We know that

A = (σ2
H
RR⊤ + λW Id)

−1 =

K∑
i=1

1

σ2
H
+ λW

rir
⊤
i +

d∑
j=K+1

1

λW
rjr

⊤
j .

Therefore,

r⊤k Ark̃ =
δkk̃

σ2
H
+ λW

Ark̃r
⊤
k = rk̃r

⊤
k A =

1

σ2
H
+ λW

rk̃r
⊤
k .

We can thus conclude that

Z∗
k,k̃

=
1

n
(1n1

⊤
n )⊗

(
δkk̃c

2A+
δkk̃(1− c)2

σ2
H
+ λW

RR⊤ − 2c(1− c)

σ2
H
+ λW

rk̃r
⊤
k

)
. (13)

When k ̸= k̃, the off-diagonal block of Z∗ is given by

Z∗
k,k̃

=
1

n
(1n1

⊤
n )⊗

(
− 2c(1− c)

σ2
H
+ λW

rk̃r
⊤
k

)
,

which is a rank-1 matrix. Since other matrices in F do not contribute to the inter-class block,
we know that Fk,k̃ = 1

βZ
∗
k,k̃

. It is well-known that the eigenvalues of Kronecker product of two

matrices are given by the products of their eigenvalues. We know that 1
n (1n1

⊤
n ) has exactly one

non-zero eigenvalue, which equals to 1. This implies that

σmax(Fk,k̃) =
2c(1− c)

β(σ2
H
+ λW )

=
2λH(1−

√
λHλW )

β
.

Next, let us compute the intra-class block. Setting k = k̃ in equation Eq. 13, we get

Z∗
k,k =

1

n
(1n1

⊤
n )⊗

(
d∑

i=1

µirir
⊤
i

)

=

d∑
i=1

µi(
1

n
1n1

⊤
n )⊗ (rir

⊤
i )
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where

µk =
c2

σ2
H
+ λW

+
(1− c)2

σ2
H
+ λW

− 2c(1− c)

σ2
H
+ λW

= (2c− 1)2
√

λH

λW
,

µi =
c2

σ2
H
+ λW

+
(1− c)2

σ2
H
+ λW

= (c2 + (1− c)2)

√
λH

λW
, for 1 ≤ i ≤ K and i ̸= k,

µj =
c2

λW
= λH , for K < j ≤ d

The intra-class block is therefore given by

Fk,k = (1− λH

β
)Ind −

σ2
W

β
In ⊗ (RR⊤) +

1

β

d∑
i=1

µi(
1

n
1n1

⊤
n )⊗ (rir

⊤
i )

= (1− λH

β
)

d∑
i=1

In ⊗ (rir
⊤
i )−

σ2
W

β

K∑
i=1

In ⊗ (rir
⊤
i ) +

1

β

d∑
i=1

µi(
1

n
1n1

⊤
n )⊗ (rir

⊤
i )

=
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where

λi = 1− λH

β
− σ2

W

β
= 1− 1

β

√
λH

λW
, for 1 ≤ i ≤ K (14)

λi = 1− λH

β
, for K < i ≤ d (15)

Let s1 = 1√
n
1n and {si}ni=1 be a set of orthonormal basis of Rn. Then, we can further write

Fk,k =

d∑
i=1

(

n∑
j=1

λisjs
⊤
j )⊗ (rir

⊤
i ) +

1

β

d∑
i=1

µi(s1s
⊤
1 )⊗ (rir

⊤
i )

=

d∑
i=1

n∑
j=1

λi(sj ⊗ ri)(sj ⊗ ri)
⊤ +

1

β

d∑
i=1

µi(s1 ⊗ ri)(s1 ⊗ ri)
⊤ (16)

One can easily verify that {sj ⊗ ri}1≤j≤n,1≤i≤d is an orthonormal basis of Rnd. So, Eq. 16 gives
us the eigendecomposition of Fk,k. The spectral norm of Fk,k is therefore given by

σmax(Fk,k) = max
1≤i≤d

max{|λi|, |λi +
1

β
µi|}.

As we consider the large β regime, the expressions in both Eq. 14 and Eq. 15 are positive. Observe
that for K < i ≤ d (associated with the over-parameterization of the model) we have that the
eigenvalue associated with the eigenvector (s1 ⊗ ri) is given by

λi +
1

β
µi = 1− λH

β
+

λH

β
= 1.

Note, though, that due to the Kronecker product with s1 = 1√
n
1n, perturbation in the direction of

this eigenvector does not affect the variability in the kth class at all. Furthermore, generic/practical
perturbations are likely to correlate with, or have their power spectrum spread over, many compo-
nents of the dn dimensional eigenbasis of Fk,k and not concentrate in an extremely low dimensional
d −K subspace (composed only of s1 ⊗ ri with K < i < d). Thus, we expect these eigenvectors
to have small correlation with generic perturbations.

Showing that σmax(Fk,k) = 1 reduces now to eliminating the option of eigenvalues larger than 1
for 1 ≤ i ≤ K. This is equivalent to having that

1

β

√
λH

λW

(
−1 + (2c− 1)2

)
< 0,

1

β

√
λH

λW

(
−1 + (c2 + (1− c)2)

)
< 0,
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and both are ensured under our assumption c :=
√
λHλW < 1 (the non-degenerate case of the

model).

Finally, observing that Eq. 14 is smaller than Eq. 15, and that the second term in Eq. 16 does not
include eigenvectors (sj ⊗ ri) for j > 1, we conclude that

σmin(Fk,k) = 1− 1

β

√
λH

λW
.

D.1 ADDITIONAL DISCUSSION ON THE RESULTS OF THE THEOREM

Theorem 4.2 has no restricting assumptions on the number of classes K. The only assumption,
which is common in theoretical NC papers and is also what is done in practice is that d > K, i.e.,
that the dimension of the features is larger than the number of classes. This means that, regardless
of the number of classes, the inter-class (off-diagonal) blocks have rank 1, while the intra-class
(diagonal) blocks have full rank (recall that each block is of size dn× dn).

Considering the conclusions from Theorem 4.2, which are stated in Section 4, if we sum up the max-
imal contribution of each of the K−1 inter-class blocks of a certain class, i.e., (K−1)σmax(Fk,k̃),
then for guaranteeing that this sum is smaller than the minimal contribution of the intra-class block,
i.e., σmin(Fk,k), we may need to assume that β ≫ K. Note that this is a reasonable assumption
under our large β setting. Yet, we believe that the rank difference between the two types of blocks
is a more important indicator for the dominance of the intra-class blocks, and this property is inde-
pendent of the number of classes K. Specifically, since dn > K (all the more so, in practice we
even have n ≫ K), then for generic perturbations (that uniformly span the entire dnK dimensional
space) the rank-1 inter-class blocks nullify much of the perturbation contrary to the intra-class block
(which has full rank). This strengthen our conclusion that the deviation from collapse of each class
of the minimizer H is dominated by the deviation from collapse of the same class in H0 rather than
by the deviations of other classes. One thing that should be reminded here is that we analyse the
“near-NC” regime, so we assume that the system is already not far from exact NC. Reaching this
point in general might become harder when the number of classes grows.

Another point that can be raised regarding the results of Theorem 4.2, is that we do not analyze the
full matrix F but rather its blocks. In fact, we believe that our analysis, which includes complete
spectral analysis for each block separately, is more informative, as it clearly distinguishes between
properties of intra- and inter-class blocks and provides insights on the roles of the regularization
hyperparameters that are aligned with practical DNN training. In contrast, in the large β regime we
have that F is full rank, which masks the rank-1 property of the inter-class (off-diagonal) blocks.
Nevertheless, analyzing the relationship of the full F and its blocks is an interesting a direction for
future research.
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E ADDITIONAL EXPERIMENTS AND EXPERIMENTAL DETAILS

E.1 EXPERIMENTAL DETAILS FOR THE LAYER-WISE EXPERIMENT

In this section, we provide the experimental details for the layer-wise training experiment that is
presented in Figure 2 in the main body of the paper.

We train an MLP with 10 hidden layers on CIFAR-10 dataset, where each sample is flattened to
a 3072x1 vector. Each hidden layer includes 3072 fully connected neurons with default PyTorch
initialization of the weights, batchnorm, and ReLU nonlinearity. We start with one hidden layer and
train the MLP with 3 epochs of Adam with mini-batch size of 256, learning rate of 1e-4, and CE
loss. Then, we compute NC1 metrics for the deepest features. At this point, the first “outer iteration”
of the procedure is finished. We fix the parameters in the existing hidden layers, insert a new hidden
layer before the final classification layer, and repeat the procedure. Namely, at each outer iteration of
the procedure we optimize only the deepest hidden layer, which has just been inserted with default
PyTorch initialization of the weights, and the final classification layer, which is “initialized” with its
weights from the previous outer iteration.

Let us provide more details that has led to the implementation decisions that are stated above. We
have found that layer-wise training of DNNs (on a practical dataset, e.g., CIFAR-10 that we use
here) is significantly harder than end-to-end training in terms of reaching a small training loss value.
(Presumably, this is the reason that DNNs are typically trained in an end-to-end fashion). Careful
configuration of the training procedure was required for reaching considerable low loss (though,
still not zero training error) and low NC1 metrics as presented in Figure 2. From our efforts in
layer-wise training the 10-layer MLP we observed the following: Adam optimizer worked better
than SGD (which is harder to tune); Layer-wise minimization with CE loss (rather than MSE loss)
has led to lower NC1 metrics; Using no more than 3 epochs per “outer iteration” allowed reaching
lower values for the loss and the NC1 metrics at the deeper layers. Regarding the latter (i.e., more
epochs per outer iteration lead to worse optimization results), when there are only one or two hidden
layers then the decrease in the loss and the decrease in the NC1 metrics are larger when more epochs
are being used. However, when we add in that case more hidden layers, the optimization appears
to get stuck at some local minima with higher loss and NC1 metrics compared to what we get with
only 3 epochs per outer iteration. As far as we understand, this behavior follows from the (extreme)
nonconvexity of the problem.

E.2 MORE EXPERIMENTS ON THE EFFECT OF THE REGULARIZATION HYPERPARAMETERS

In this section, we present more experiments that examine how modifying the regularization hyper-
parameters affects the NC behavior of a practical DNN – ResNet18 (He et al., 2016a) – compared
to a baseline setting. Specifically, as a baseline hyperparameter setting, we consider one that is
used in previous works (Papyan et al., 2020; Zhu et al., 2021): default PyTorch initialization of the
weights, SGD optimizer with mini-batch size of 256, learning rate of 0.05 that is divided by 10 ev-
ery 40 epochs, momentum of 0.9, and weight decay (L2 regularization) of 5e-4 for all the network’s
parameters.

The first set of experiments is similar to the experiments in Section 5. These experiments support
the insight gained in Section 4 that λH (the regularization of the feature mapping) plays a bigger
role than λW (the regularization of the classification layer) does in approaching NC. We compare
the NC1 and NC2 metrics (defined in Section 5) of the baseline setting and the following modified
settings: 1) doubling the weight decay only for the last (FC) layer; 2) doubling the weight decay
only for feature mapping (conv) layers; 3) zeroing the weight decay for the last layer; and 4) zeroing
the weight decay for feature mapping layers.

In Figure 4 we consider the MNIST dataset with 3K training samples per class. Figure 4a presents
the NC1 and NC2 metrics of the deepest features for MSE loss and no bias in the FC layer. Fig-
ures 4b and 4c present the NC1 and NC2 metrics of the deepest and intermediate (output of 3 out of
the 4 ResBlock) features, respectively, when for CE loss with bias in the FC layer. In all the settings,
we reach zero training error at the 40 epoch approximately. In Figure 5 we repeat the experiments
with 5K training samples per class. Furthermore, repeating the experiments with 3 different random
seeds for initializing the DNN’s parameters yields similar curves that demonstrate the same trends.
In Table 1 we report the mean and the standard deviation (SD) for the NC metrics computed for the
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Table 1: The effect of modifying the weight decay (WD) on NC metrics for ResNet18 trained
on CIFAR-10 and MNIST datasets – mean and SD are computed for 3 random seeds. Observe
that modifying the WD in the feature mapping increases the deviation from the baseline more than
modifying the WD of the last layer.

CIFAR-10, MSE loss CIFAR-10, CE loss MNIST, MSE loss MNIST, CE loss
NC1 NC2 NC1 NC2 NC1 NC2 NC1 NC2

Baseline 0.0061 ± 4e-4 0.111 ± 1e-2 0.062 ± 5e-3 0.173 ± 1e-2 8e-4 ± 5e-5 0.072 ± 1e-2 0.004 ± 3e-4 0.115 ± 5e-3
WDx2 for W 0.0055 ± 3e-4 0.101 ± 8e-3 0.040 ± 2e-3 0.161 ± 7e-3 5e-4 ± 5e-5 0.055 ± 1e-2 0.003 ± 1e-4 0.102 ± 3e-3
WDx2 for H 0.0022 ± 8e-5 0.070 ± 6e-3 0.024 ± 4e-3 0.131 ± 9e-3 4e-4 ± 2e-5 0.048 ± 5e-3 0.002 ± 7e-5 0.101 ± 3e-3
WD=0 for W 0.0048 ± 2e-4 0.101 ± 6e-3 0.104 ± 8e-3 0.195 ± 9e-3 1.7e-3 ± 1e-4 0.108 ± 2e-2 0.009 ± 4e-4 0.147 ± 5e-3
WD=0 for H 0.0280 ± 3e-3 0.226 ± 6e-3 0.174 ± 7e-3 0.331 ± 1e-2 41e-3 ± 2e-3 0.303 ± 2e-2 0.031 ± 4e-4 0.198 ± 8e-3

deepest features at the 100 epoch (which is already after the NC metrics reach plateaus) for both the
CIFAR-10 and the MNIST datasets.

Similar to previous works, from comparing Figures 4b and 4c (as well as Figures 5b and 5c) we
see that the NC distance metrics are larger in the intermediate features, which correlates with the
results for our model in Section 3. Examining all the settings of Figures 4 and 5, as well as Table 1,
the experiments show the important role of the regularization of the feature mapping layers in ap-
proaching NC. Namely, modifying the regularization of the feature mapping layers leads to curves
with larger deviations from the baseline compared to modifying the last layer’s regularization. This
is aligned with the theory established in Section 4 that links increasing λH to reducing the dominant
component of the distance from collapse of a class, which is the deviation from collapse of its own
features in preceding layers.

The second set of experiments shows the role of λW in mitigating the interferences between the fea-
tures of different classes (such interferences can hinder approaching NC). To visualize such behavior
we use a “per-class NC1” metric, defined as

NC
(k)
1 :=

1

K
Tr

(
1

n

n∑
i=1

(hk,i − hk)(hk,i − hk)
⊤Σ†

B

)
.

Note that the NC1 metric, which is defined in Section 5, can be written as

NC1 =
1

K

1

K

K∑
k=1

Tr

(
1

n

n∑
i=1

(hk,i − hk)(hk,i − hk)
⊤Σ†

B

)
=

1

K

K∑
k=1

NC
(k)
1 .

We also use the following metric to measure the alignment of the mean features and the last layer’s
weights

NC3 :=

∥∥∥∥ W(H− hG1
⊤
K)

∥W(H− hG1⊤
K)∥F

− 1√
K − 1

(IK − 1

K
1K1⊤

K)

∥∥∥∥
F

,

where the simplex ETF is normalized to unit Frobenius norm.

In Figure 6a we present the NC metrics of the deepest features of the baseline training scheme on
the MNIST dataset with 3K samples per class. The other lines in Figure 6 show the NC metrics
for a modified training set, where the samples of classes (digits) 4 and 9 are degraded by a uniform
blur (blur kernel of size 9 × 9) that hardens the distinction between them. Each line corresponds
to a different value of weight decay for the last layer’s parameters. Yet, in all of the settings we
reached zero training error at the 40 epoch approximately. The empirical results show that large λW

facilitates reaching reduced NC metrics (closeness to NC structure) by reducing the effect (“inter-
ference”) of the features of the degraded samples on the features of the other classes. This is aligned
with the theory that is established for our model in Section 4.
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F ADDITIONAL MOTIVATION FOR THE MODEL IN EQ. 2

In the model that we consider in Eq. 2, we interpret H as the deepest features of a DNN and H0 as
shallower features of the DNN. In particular, in the large β regime that we theoretically analyze in
the paper, we interpret H0 as the penultimate features (one layer before H). Even though the relation
between H and H0 in our model differs from their explicit relation in many practical DNNs, there
exist networks where it is very reasonable to assume that the deepest features and the penultimate
features are close to each other.

For example, consider the ResNet architecture from (He et al., 2016b), where (under our interpre-
tation of H and H0) the deepest features obey H = H0 + r(H0), where r(·) denotes a residual
block. The residual term can potentially be very small if H0 already separates the classes (e.g.,
it has a “near NC” structure). In fact, in the popular neural ODE framework (Chen et al., 2018),
which is understood as the infinite depth limit of these ResNets, we inherently have that H ≈ H0.
Another example where the concept H ≈ H0 inherently holds is deep equilibrium models (DEQ)
(Bai et al., 2019). These practical DNN frameworks provide the rationality for analyzing our model.
Furthermore, our theoretical results, such as depthwise decrease in the within-class variability, are
aligned also with the empirical behavior of DNN architectures beyond the aforementioned examples
(e.g., plain MLP).
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(a) MSE loss without bias. Deepest features.
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(b) CE loss with bias. Deepest features.
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(c) CE loss with bias. Intermediate features.

Figure 4: The effect of modifying the weight decay (WD) on NC metrics for ResNet18 trained on
MNIST with 3K samples per class. Observe that modifying the WD in the feature mapping increases
the deviation from the baseline more than modifying the WD of the last layer.
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(a) MSE loss without bias. Deepest features.
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(b) CE loss with bias. Deepest features.
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(c) CE loss with bias. Intermediate features.

Figure 5: The effect of modifying the weight decay (WD) on NC metrics for ResNet18 trained on
MNIST with 5K samples per class. Observe that modifying the WD in the feature mapping increases
the deviation from the baseline more than modifying the WD of the last layer.
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(a) Original samples, WD 5e-4 across layers.
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(b) Samples of classes 4 and 9 are blurred, last layer’s WD remains 5e-4. The effect of the blurred classes on
the NC metrics (avg. and other classes) is minor.
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(c) Samples of classes 4 and 9 are blurred, last layer’s WD reduced to 5e-5. The blurred classes affect the
“per-class NC1” of other classes and the NC metrics increase.
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(d) Samples of classes 4 and 9 are blurred, last layer has no WD. The blurred classes further interfere with other
classes and the NC metrics further increase.

Figure 6: The effect of modifying the weight decay (WD) of the last layer’s weights on NC metrics
for ResNet18 trained on MNIST with 3K samples per class where samples from classes 4 and 9 are
blurred. Observe that small WD in the last layer increases the effect of the “pre-class NC1” curves
of the blurred classes on the other classes, and increases also the other NC metrics.
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