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ABSTRACT

Researchers have been persistently working to address the issue of missing val-
ues in time series data. While numerous models have been proposed, they often
come with challenges related to assumptions about the model or data and the in-
stability of deep learning. This paper introduces an imputation model that can
be utilized without explicit assumptions. Our imputation model is based on the
Radial Basis Function (RBF) and learns local information from timestamps to
create a continuous function. Additionally, we incorporate time gaps to facilitate
learning information considering the missing terms of missing values. We name
this model the Missing Imputation Multivariate RBFNN (MIM-RBFNN). How-
ever, MIM-RBFNN relies on a local information-based learning approach, which
presents difficulties in utilizing temporal information. Therefore, we propose an
extension called the Missing Value Imputation Recurrent Neural Network with
Continuous Function (MIRNN-CF) using the continuous function generated by
MIM-RBFNN. We evaluate the performance using two real-world datasets and
conduct an ablation study comparing MIM-RBFNN and MIRNN-CF.

1 INTRODUCTION

Multivariate time series data finds extensive application across various domains such as healthcare,
weather forecasting, finance, and transportation (Hsieh et al., |2011; |Kaushik et al., 2020; Jia et al.,
2016; Schwartz & Marcus|, [1990). In healthcare, time series data are used for classifying patient
outcomes, such as mortality or recovery. In contrast, they are employed to tackle regression prob-
lems related to precipitation, stock prices, and traffic volume in domains like weather, finance, and
transportation. However, the collection of multivariate time series data in multiple domains is often
plagued by irregular time intervals and issues like equipment failures in collective devices (Garcia-
Laencina et al), [2010). This instability leads to missing data in multivariate time series datasets,
posing significant challenges for data analysis and mining (Garcia-Laencina et al.l 2015). Conse-
quently, addressing missing data in time series data is recognized as a highly critical issue.

The strategies for addressing missing data can be broadly categorized into two main approaches:
statistical methods and model-centric methods. Statistical approaches for missing value imputation
commonly employ techniques such as mean, median, and the imputation of the most frequently
occurring values (Zhang| 2016)). These methods offer the advantage of simplicity and are relatively
time-efficient. However, they may yield inaccurate results since they do not take into account the
temporal aspects of time series data. In contrast, model-based missing data imputation methods have
been put forward (Nelwamondo et al.,[2007; Josse & Hussonl |2012;/Che et al.,|2018)). These methods
introduce techniques for capturing temporal information within time series data. Nonetheless, they
often rely on strong assumptions, such as presuming that the data adheres to a particular model
distribution, or they incorporate information beyond what is available in multivariate time series
data, such as specific location data. Consequently, these approaches may struggle to capture the
data distribution adequately and may not guarantee good performance on data that deviates from the
model assumptions or lacks location information.

In this study, we propose a missing data imputation model for time series data by leveraging both
the Radial Basis Function Neural Network (RBFNN) and the Recurrent Neural Network (RNN).
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RBFNN is a neural network that utilizes the linear combination of Radial Basis Functions (RBFs),
which are nonlinear. When RBFNN is employed, it approximates data by generating approximate
continuous functions that capture local information within the data (Ng et al., 2004; |Yang et al.,
2022). When Gaussian RBF (GRBF) is used in RBFNN, it learns the covariance structure of the data
by capturing local information. Furthermore, GRBF generates smoother curves over a longer time
span, allowing it to model periodic patterns and nonlinear trends in time series data (Corani et al.,
2021). To extend this capability of learning covariance structures to multivariate time series data,
we introduce the Missing Imputation Multivariate RBFNN (MIM-RBFNN) with respect to the time
stamp (). However, because RBFNN relies on local information to learn covariance structures, it en-
counters challenges in utilizing temporal information effectively. Therefore, we additionally propose
the Missing Value Imputation Recurrent Neural Network with Continuous Function (MIRNN-CF),
which leverages the continuous functions generated by MIM-RBFNN.

2 RELATED WORK

Efficient management of missing data is crucial for smooth time series data analysis. In recent
years, numerous endeavors have put forth strategies to address this issue. The most straightfor-
ward approach involves eliminating instances that contain missing data (Kaiser, |2014). However,
this method can introduce analytical complexities as the rate of missing data increases. In addition
to deletion, various statistical imputation techniques, such as replacing missing values with the mean
value (Allison, 2001), imputing them with the most common value (Titterington, [1985)), and com-
pleting the dataset by using the last observed valid value (Cook et al., 2004)), have been proposed.
One of the benefits of these methods is that they allow for the utilization of a complete dataset
without requiring data deletion.

Recent studies have introduced imputation methods based on machine learning. These machine
learning-based approaches can be categorized into non-Neural and Neural Network-based methods.
Non-Neural Network-based methods encompass techniques like maximum likelihood Expectation-
Maximization (EM) based imputation (Nelwamondo et al.,|2007), K-Nearest Neighbor (KNN) based
imputation (Josse & Husson, [2012)), and Matrix Factorization (MF) based imputation (Koren et al.,
2009). The EM imputation algorithm predicts missing values by leveraging model parameters. The
K-Nearest Neighbor (KNN) based imputation method imputes missing values by calculating the
mean value of k-neighbor samples surrounding the missing value. In contrast, the Matrix Factor-
ization (MF) based imputation method utilizes low-rank matrices U and V' to perform imputation
on the incomplete matrix. However, these approaches rely on strong assumptions regarding missing
data (Cao et al.| 2018 Du et al . [2023)).

Recently, there has been a growing trend in the development of missing value imputation methods
utilizing Recurrent Neural Networks (RNNs). [Yoon et al.| (2018)) introduced the M-RNN (Multi-
directional Recurrent Neural Network) framework based on RNNs (Yoon et al.| 2018). M-RNN op-
erates bidirectionally, similar to a bi-directional RNN (bi-RNN), to perform imputation for missing
data. Also, some researchers have proposed studies employing a variant of RNN known as the Gate
Recurrent Unit (GRU). Che et al.|(2018) introduced GRU-D, a GRU-based model, which effectively
captures temporal dependencies by integrating masking and time interval-based missing patterns
into the GRU cell, demonstrating improved predictions by utilizing missing patterns. However, the
practical usability of GRU-D may be restrained when there is no clear inherent correlation between
the missing patterns in the dataset and the prediction task. (Cao et al.| (2018) presented BRITS, a
model based on bidirectional recurrent dynamics. BRITS also utilizes masking and time intervals,
achieving strong performance in missing value imputation. Furthermore, there have been proposals
for combining generative adversarial networks (GANs) with models for imputing missing values in
time series data. Luo et al.|(2018) introduced GRUI for imputation, proposing a GRUI-GAN model
that incorporates a generator and discriminator based on GRUI, effectively accounting for temporal
dependencies without ignoring them. Moreover, researchers have been steadily investigating vari-
ous deep learning models such as NAOMI (Liu et al., [2019) for imputing long-term missing data
and SAITS (Du et al.,[2023) based on self-attention. These approaches have consistently driven ad-
vancements in the state-of-the-art for time series imputation. Nevertheless, it is important to note that
deep learning-based imputation models, functioning as autoregressive models, face challenges such
as compounding errors (Liu et al.|, 2019; Venkatraman et al.,[2015), difficulties in training generative
models, non-convergence, and mode collapse (Wu et al., 2020; Salimans et al., [2016)).
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3 RBF FOR MISSING VALUE IMPUTATION OF TIME SERIES DATA

To address the challenge of missing values in time series data, we introduce the MIM-RBFNN
model. It aims to solve the problem by creating an appropriate continuous function for each time
series to handle missing value imputation. The RBF neural network is renowned for effectively ap-
proximating any nonlinear function and is often referred to as a universal function approximator (Yu
et al.,|2011). In this section, we comprehensively explain the structure and learning techniques em-
ployed in MIM-RBFNN, which is grounded in RBF approximation. Before delving into the specifics
of MIM-RBFNN, we define RBF and introduce the concept of nonlinear approximation using RBF.

3.0.1 RADIAL BASIS FUNCTION (RBF)

Radial Basis Function (RBF), denoted as ¢, is a basis function whose value depends on the distance
from a specified point, often called the “center.” It can be mathematically expressed as ¢(z) =
&(|x|). RBFs are real-valued functions as they are defined based on real numbers. Typically, instead
of the origin, a fixed point ¢ is chosen as the center, and the RBF is redefined as p(z) = ¢(|Jx — ¢|).
While the Euclidean distance is commonly used for distance calculation, alternative distance metrics
can also be employed.

3.0.2 NON-LINEAR APPROXIMATION USING RBF

The summation of RBFs is employed to construct an approximation function that suits the given
data. The RBF approximation method is considered continuous due to its reliance on the distance be-
tween two points within a continuous function (RBF). Suppose we represent the RBF as o(|z — ¢;|)
and the approximate function as f(z) = Y .—, w;p(|z — ¢;|), where n denotes the number of RBFs,
and w; signifies the associated weights. The RBF approximation method offers several compelling
advantages. First, it is computationally efficient because it primarily focuses on approximating the
local characteristics near the center ¢; (Wettschereck & Dietterich, [1991). Second, it enhances the
smoothness of data fitting by utilizing multiple RBFs (Carr et al., 2001).

3.1 MULTIVARIATE-RBFNN FOR MISSING DATA IMPUTATION

We utilize non-linear approximation using Radial Basis Functions (RBFs) (¢) to address the chal-
lenge of missing values in multivariate time series data. We extend the RBFNN to a multivariate
RBFNN to effectively handle missing values in multivariate time series. Furthermore, to accommo-

date missing time intervals, we propose using Gaussian RBFs (g (x) = exp (_(%5")2)) This
model is called the Missing value Imputation Multivariate RBFNN (MIM-RBFNN).

The MIM-RBENN aims to impute missing values by generating a suitable continuous function for
the input data. For this purpose, MIM-RBFNN employs Radial Basis Functions (RBFs), with each
RBF taking a timestamp () as input (g (¢)) and fitting the corresponding value (X/™) at that times-
tamp. Here, x]" represents the m-th feature value of the variable X at timestamp ¢. To model pe-
riodic patterns and nonlinear trends in time series data, we utilize Gaussian Radial Basis Functions
(GRBFs). GRBFs that take a timestamp (¢) as input capture the local information of ¢. Our model
has parameters c; and o for GRBFs, which are trained to create an approximate continuous func-
tion tailored to the target time series data. Additionally, to apply this approach to multivariate time
series, we train different linear weights wj" to create continuous functions for each variable.

We train the center vector ¢y, to determine the optimal center vector for target time series values based
on the input . Each GRBF captures the local characteristics of input variables near c; (Chen et al.,

2013). If we consider H as the diagonal covariance matrix, the GRBF ¢ (t) = exp (M>

20'1.2
is equivalent to exp(—3(t — cx) "' Hy(t — c)). As a result, the RBFNN, by traning o, discovers
the optimal diagonal covariance H}, for target based on input time (Chen et al., 2013). Our MIM-
RBFNN tracks the optimal center vector ¢ and diagonal covariance matrix H}, to capture the local
characteristics of input timestamp ¢, and we extend this approach to multivariate time series data.
t—cp)?
CF™ =%, w,@”ef% illustrates the continuous function generated by MIM-RBFNN for time
series data (X™). In MIM-RBFNN, multivariate time series data share the same GRBFs while being
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Figure 1: MIM-RBFNN architecture. RBFNN; is the i-th RBFNN with ;) as its k-th RBE.

trained to track common ¢, and Hy. Additionally, we compute different linear weights (w;") for each
variable (X™) to create appropriate approximation functions (continuous functions). Therefore, by
sharing the diagonal covariance structure of multivariate time series, we generate a continuous func-
tion (CF™) for imputing missing data. An ablation study regarding the GRBF sharing aspect of
MIM-RBFNN can be found in Appendix[C]

Figure (1] illustrates the architecture of MIM-RBFNN, which comprises four distinct processes: (a)
the Initial RBFNN Process, (b) the Additional RBFNN Process, (c) the Target Residual Process,
and (d) the Missing Time Series Imputation Process. The challenge is determining the number of
RBFs employed in the linear combination to fit the target time series variable for RBF approxima-
tion adequately. However, the precise quantity of RBFs needed for each variable remains uncertain.
We utilize processes (a) and (b) to tackle this issue. Both (a) and (b) role to ascertain the requisite
number of RBFs for approximating the target data, i.e., the observed time series data. As depicted
in (a), the Initial RBFNN Process entails a learning phase dedicated to constructing a continuous
function using the initial RBFNNj. Subsequently, we calculate the approximation error of the con-
tinuous function generated by the initial RBFNNj. If the fitting error surpasses the loss threshold
(MAPE 5%), the Additional RBFNN Process is executed in (b), where additional RBFs are trained.
The Additional RBFNN process in (b) involves training an additional RBFNN with the same ar-
chitecture as the initial RBFNN,. However, during the Additional RBFNN process, if we were to
use the target time series as is, it would necessitate retraining the previously trained RBFNN, which
would lead to an increase in the number of parameters that ought to be trained, resulting in longer
training times (Rasley et al., 2020). Such a scenario can escalate the complexity of the training pro-
cess and introduce confusion (Tian et al., 2015)). Therefore, as illustrated in (c), we exclusively train
RBFs of the additional RBFNN with the target residual process. In (c), the target residual process
calculates the residual of the Continuous Function generated in (a) from the initial observed time
series data to update the target data. The updated target data becomes the first target in (b). The first
additional RBFNN; in (b) utilizes the updated target data to create a continuous function. Subse-
quently, the target data is updated using the continuous function generated by the first additional
RBFNN; and the residual from the updated target data. This updated target data serves as the target
data for the second additional RBFNNs. Process (c) continues until the Additional RBFNN Process
is completed. Finally, MIM-RBFNN combines all the GRBFs trained in (a) and (b) to generate a
Continuous Function for multivariate time series in (d) and imputes missing values.

3.2 INITIAL PARAMETERS OF GRBFs

Unlike MLP networks that typically initialize parameters randomly, RBFNN requires the initial state
of parameters to be explicitly specified (Yu et al., 2011). In this section, we introduce the strategies
for initializing initial parameters in MIM-RBFNN.
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Initial Centers. MIM-RBFNN trains the RBFNN through the processes depicted in Figure[I(a) and
(b). We employ distinct methods to allocate initial centers for the RBFNNs in (a) and (b). GRBFs
have their highest value at the center. Consequently, the RBFNN in the (a) process is assigned initial
centers based on timestamps with higher values in the target multivariate time series data. In the case
of (b), the target time series is updated to the Residual Target by (c). Hence, the initial centers in the
(b) process are assigned to timestamps with higher values in the Residual Target.

Initial Weights. The RBFNN weights determine each GRBF’s magnitude, signifying the center
value of a symmetrical Gaussian distribution curve for the GRBF function (Shaukat et al.| [2021])).
We assign initial centers to times with the highest errors, indicating that the times around the initial
centers have low values. Therefore, to assign the initial centers at the center of the symmetrical
Gaussian distribution curve of the initial centers (c; = t), we assign the target value (X;™) of each
time series to the initial weights (w}") of each time series.

Initial Sigmas. The o in the RBFNN represents the width of each GRBF, which in turn defines
the receptive field of the GRBF. Moreover, training the ¢ aims to uncover the optimal diagonal
covariance matrix H based on the input time stamp’s target time series values (Chen et al., [2013).
Since our MIM-RBFNN takes time ¢ as its input, the receptive fields of the GRBFs are closely tied to
the local information of the time stamp ¢ that MIM-RBFNN utilizes. Consequently, we incorporate
a time gap to facilitate the learning of local information by each Gaussian RBF, taking into account
missing values in the surrounding time points (Cao et al., 2018} [Yoon et al., 2017).

0 ifi =0
o =ty —tp—1 itm* ;1 =1&n>0 (1)

n n—1 =

6M  —tp A tay ifm™, =0&n >0

Equation[I]represents the time gap. This time gap calculation measures the time difference between
the current timestamp and the timestamps without missing values. Since the s of the GRBFs define
their receptive ranges, we introduce the time gap as a factor into o to enable each GRBF to account
for missing values. Furthermore, to facilitate the joint learning of the covariance structure in each
multivariate time series, we initialize the o for each time series as the mean of their corresponding
time gaps. The ablation study concerning the initial o can be reviewed in Appendix [B] Besides, a
more comprehensive description of the backpropagation algorithm for MIM-RBFNN parameters is
found in Appendix

4 TEMPORAL INFORMATION WITH RECURRENT NEURAL NETWORK

In this section, we describe the covariance structure trained with MIM-RBFNN and the imputation
model utilizing RNN. As previously explained, MIM-RBFNN leverages local information from mul-
tivariate time series data to perform missing value imputation. However, the approximation achieved
using RBFNN relies on learning local information based on observed values to create a continuous
function. Furthermore, since our MIM-RBFNN also learns based on local information, its utilization
of temporal information is relatively limited compared to Recurrent Neural Networks (RNNs) (Liu
et al., 2020; \Gao & Er} 2005). This limitation becomes more pronounced as the length of the miss-
ing value term increases, potentially impacting imputation performance. Therefore, we propose an
imputation model that combines the continuous function generated by MIM-RBFNN with the bidi-
rectional recurrent dynamics temporal information learned by RNNs.

4.1 BIDIRECTIONAL RECURRENT WITH RBF CONTINUOUS FUNCTION

Figure 2] illustrates the architecture that combines the continuous function generated by MIM-
RBFNN with bidirectional recurrent dynamics. This model is called the ”Missing value Imputation
Recurrent Neural Network with Continuous Function” (MIRNN-CF). The input data for MIRNN-
CF includes Continuous Function data, a time gap matrix, a Mask matrix, and incomplete time series
data. MIRNN-CF employs an RNN that utilizes feature-based estimation loss, historical-based es-
timation loss, and consistency loss for bidirectional RNN training, similar to previous studies (Cao
et al., 2018; Miao et al., |2021)). Besides, we propose a Continuous-concatenate estimation loss that
combines the continuous function with RNN predictions.
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Figure 2: MIRNN-CF architecture.

4.2 MIRNN-CF STRUCTURE

The structure of MIRNN-CF is based on the state-of-the-art BRITS model (Cao et al., [2018)) with
modifications. In a standard RNN, the hidden state h; is continually updated to learn temporal in-
formation (Elman), [1990). Historical-based estimation assesses the hidden state h;_; with a linear
layer. Equation [2] represents historical-based estimation ;.

Ty = Wihi1+ b, (2

Z‘; = (1 — mt)it + myxe (3)

Equation [3|represents the imputed complete data obtained from the historical-based estimation (Cao
et al., |2018)). To incorporate the covariance structure of multivariate time series data into the esti-

mation based on the RNN’s hidden state, we concatenate the Continuous Function data with the
estimated z§.

Ry = WeyCF; + Wyea§ + by 4)

R; = (1 — mt)Rt + mMiT¢ (5)

Equation [4| represents the regression layer concatenating historical-based estimation with Continu-
ous Function data. In Equation ] C'F; refers to the continuous function data generated by MIM-
RBFNN. Equation [5| depicts the complete data based on the estimation from Equation @] However,
incorporating the covariance structure of this continuous function data, I?;, involves combining its

own covariance structure, potentially limiting the utilization of information from other features. To
include information from other features, we employ feature-based estimation.

2 = W.RS + b, 6)

Equation|[6]describes the feature-based estimation. In Equation[4] we train the self-covariance. There-
fore, to utilize only the information from other variables, we set the diagonal parameters of W, to
zeros in Equation E] (Cao et al., 2018)). In other words, 2; in Equation E] is a feature-based estima-
tion that leverages the covariance structure of the Continuous Function data. Finally, we employ
a temporal decay factor (7;) (Che et al.| [2018) in Equation [/|to combine feature-based estimation
with historical-based estimation. We also follow the structure of previous feature-based estimation
and historical-based estimation studies to combine both estimations using Equation [8| as shown in
Equation[9]

vt = T(Wrds + by) (7

Br = oc(Wa[yom] + bs) (8)

T =002+ (1—5) Oy )

Tr=mQx+(1—my) OF (10)

MIRNN-CF operates bidirectionally through the processes mentioned above to derive z/*"*" and

zbek taking their average as the prediction for complete data. The hidden state update in MIRNN-
CF utilizes [hy ® ¥¢] and [Z; © my] as inputs to update the RNN cell. In other words, MIRNN-CF
leverages Continuous Function data, time gap matrix, Mask matrix, and Incomplete time series data
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to predict complete data ;. MIRNN-CF minimizes the combined loss function, as shown in Equa-
tion which includes the feature-based estimation loss (L ¢), historical-based estimation loss (£4,),
Continuous-concatenate estimation loss (L..), and the consistency 10ss (Lcons)-

LAMIRNN—cF = MO LIX, X))+ MO Ly(X, X)+

5 5 o S 11
MO LK, Z) + MO Loo(X,R) + Leons (X700, 00k

5 EVALUATION

We evaluate the performance of our proposed models, MIM-RBFNN and MIRNN-CF, using real-
world datasets. We compare their missing value imputation performance with baseline models using
the mean absolute error (MAE) and mean relative error (MRE) metrics. Furthermore, we conduct
an Ablation Study to compare the effectiveness of temporal information learning between MIM-
RBFNN and MIRNN-CEF. The experiments were conducted on an Intel Core 3.60GHz server with a
Geforce RTX 3090 GPU and 64GB of RAM.

5.1 DATASETS AND BASELINE

Air Quality Data. We utilized Beijing air quality data, including PM 2.5 collected from 36 monitor-
ing stations from May 1, 2014, to April 30, 2015 (Yi et al,|2016) to evaluate missing data imputation.
It provides data with missing values, ground truth data, and the geographical information of each
monitoring station. Approximately 25% of the data contains missing values, while the ground data
covers around 11% of ground-truth values for the missing data. We trained the model using the ob-
served data. We compared the imputed complete data, generated utilizing the observed information
from the incomplete data, with the ground truth.

Human Activity Data. We also utilized the Localization Data for Person Activity dataset available
from the UCI Machine Learning Repository (Cao et al.,2018;|Miao et al.,2021) to assess imputation
performance. This dataset captures the activities of five individuals engaged in various tasks, with
each person wearing four tags (ankle left, ankle right, belt, and chest) to record the x-coordinate, y-
coordinate, and z-coordinate data for each tag. These experiments were conducted five times for each
person, resulting in approximately 4,000 data points, each consisting of 40 consecutive time steps.
Notably, this dataset does not contain any missing values. To evaluate missing value imputation, we
artificially generated missing values randomly at rates of 30%, 50%, and 80%, while the original
dataset served as the ground truth.

Baseline. For performance comparison, we have chosen eight baseline models. We selected models
that utilize temporal information less significantly, similar to MIM-RBFNN (such as Mean, k-nearest
neighbor, MICE). Additionally, we included three models (M-RNN, BRITS) and a self-attention
model (SAITs) to compare with RNN-based models like MIRNN-CF.

5.2 RESULT

Table [I] presents the missing value imputation performance on real-world datasets. We rounded
the MRE values to four decimal places for both datasets, while MAE values for the air quality
dataset were rounded to two decimal places. For the human activity dataset, they were rounded
to four decimal places. For the experimental settings, we kept all random seeds fixed. For the air
quality dataset, we used 36 consecutive time steps, a batch size of 64, and a hidden size of 64
as constants. Additionally, we generated continuous functions for the 36 monitoring stations using
MIM-RBENN. For the human activity dataset, we used 40 consecutive time steps, a batch size
of 64, and a hidden size of 64 as fixed parameters. Similarly, we generated continuous functions
for each person’s experiment, creating four continuous functions for each person’s four tags using
MIM-RBFNN.

The empirical results demonstrate that both MIM-RBFNN and MIRNN-CF exhibit enhanced im-
putation performance compared to baseline models when applied to real-world datasets. The im-
putation performance was notably superior. As seen in Table [, MIRNN-CF significantly improves
imputation performance over baseline models, particularly showcasing a 30% to 50% enhancement
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Table 1: Imputation performance comparison (MAE(MRE))

Method Air quality Human activity
30% 50% 80%

Mean 55.5(0.779) | 0.453(0.274)  0.453 (0.274) 0.454 (0.275)
KNN 29.4(0.413) | 0.497 (0.0.301) 0.709 (0.429) 1.208 (0.730)
MF 38.2(0.536) | 0.465(0.282)  0.478 (0.290) 0.482 (0.291)
MRNN 20.5(0.299) | 0.363(0.213)  0.433(0.263) 0.441 (0.266)
SAITS 19.3(0.281) | 0.343(0.208)  0.372 (0.221) 0.423 (0.258)
BRITS 13.1(0.186) | 0.171(0.103)  0.287 (0.174) 0.310 (0.188)
MIM-RBFNN | 22.1 (0.31) | 0.150(0.091)  0.163 (0.098) 0.265 (0.161)
MIRNN-CF | 12.3(0.172) | 0.101 (0.061) 0.138 (0.084) 0.224 (0.136)

in the MAE metric compared to the baseline BRITS model for human activity data. We also found
that MIM-RBFNN performs better than BRITS in human activity data across all missing rates. How-
ever, MIM-RBFNN does not outperform other deep learning models regarding air quality data. Due
to the modest performance of MIM-RBFNN, the missing imputation performance of MIRNN-CF
falls short of showing substantial improvements over baseline models for air quality data compared
to human activity data. To analyze this further, we conduct a comparative analysis of MIM-RBFNN’s
results for both datasets.

......................................................................................................................
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Figure 3: Comparison of continuous function

Figure (3] illustrates the continuous function generated by MIM-RBFNN. MIM-RBEFNN performs
better than the baseline on human activity data but falls short of the baseline on air quality data. To
investigate this further, we compare the continuous functions for both datasets. Figure[3](a) presents
the continuous function for air quality data. Upon examining Figure 3|(i), it becomes evident that the
continuous function struggles to perform proper imputation in long-term missing cases, primarily
because no data is available to capture the local covariance structure. However, Figure [3| (ii) shows
that, despite long-term missing data, the continuous function has learned the multivariate covari-
ance structure, following a trend similar to other variables. On the other hand, human activity data
was generated with a 30% random missing rate. Figure 3] (b) demonstrates that human activity data,
with its shorter instances of long-term missing compared to air quality data, leverages observation
data to learn the local covariance structure for imputation. In conclusion, MIM-RBFNN’s utiliza-
tion of temporal information is modest, making it challenging to handle imputation for long-term
missing data. However, for scenarios where long-term missing data is not as prevalent, such as in
Figure [3] (b), MIM-RBFNN can learn local covariance structures effectively and perform well even
with substantial missing rates.

5.3 ABLATION STUDY OF MIRNN-CF

As previously mentioned, we identified that MIM-RBFNN faces challenges when dealing with long-
term missing data. To address this issue, we proposed the inclusion of temporal information learning
in MIRNN-CF. In this section, we present an ablation study to delve deeper into this topic.
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Figure 4: Comparison of continuous functions according to missing term

To validate the effectiveness of using temporal information learning in MIM-RBFNN to address
long-term missing imputation challenges, we employ the Electricity Transformer Temperature
(ETT) dataset available from the UCI Machine Learning Repository (Zhou et al.| [2021). The ETT
dataset comprises seven multivariate time series data collected hourly and 15-minute intervals from
July 1, 2016, to June 26, 2018. To maintain consistency with our previous experiments, we focus on
the hourly dataset, specifically the data spanning 12 months from July 1, 2016, to June 30, 2017. To
generate long-term missing data, we produced long-term missing data with a missing rate of 20%,
including missing terms ranging from 50 to 80, along with random missing values. In comparison,
we also create random missing data with a 20% missing rate, containing short-term missing values
about the temporal missing term from 1 to 8.

For the ETT dataset, the performance metrics (MAE and MRE) reveal that MIM-RBFNN yields an
MAE of 1.298 (MRE of 0.226) for long-term missing data and an MAE of 0.735 (MRE of 0.129) for
random missing data. These results highlight the challenges faced by MIM-RBFNN when dealing
with long-term missing data, similar to what was observed in the air quality dataset. However, lever-
aging MIM-RBFNN to implement MIRNN-CF results in a notable performance improvement, par-
ticularly for long-term missing data, where MIRNN-CF achieves an MAE of 0.563 (MRE of 0.098).
Figure [] visually represents the ablation study’s outcomes. Figure [ (a) showcases the continuous
function generated by MIM-RBFNN (represented by the orange line) for long-term missing data,
along with the results obtained by MIRNN-CF utilizing this continuous function (depicted by the red
line). The results in (a) exhibit challenges in generating a continuous function for long-term missing
data, akin to the observations made in Figure E} Nevertheless, MIRNN-CF, which learns tempo-
ral information, effectively performs imputation. Furthermore, Figure [d] (b) displays the continuous
function for random missing data (orange line) and imputation results similar to those obtained with
MIRNN-CF (red line).

6 CONCLUSIONS

In this study, we proposed two models for addressing missing values in multivariate time series
data: MIM-RBFNN, which leverages the learning of local covariance structures using GRBF, and
MIRNN-CEF, a hybrid model combining continuous function generation with RNN. We demon-
strated the effectiveness of MIM-RBFNN through experiments on real-world datasets. However,
MIM-RBENN primarily relies on local information to generate continuous functions, revealing chal-
lenges in learning temporal information and the complexities of long-term missing data imputation.
To tackle these issues, we introduced MIRNN-CF, which utilizes MIM-RBFNN’s continuous func-
tions, as verified through experiments on air quality data and an ablation study focused on long-term
missing data imputation. Nevertheless, we approached this by developing separate models for MIM-
RBFNN and MIRNN-CF. As a future research direction, we plan to investigate the development of
a unified model that simultaneously learns local covariance structures based on RBF’s local infor-
mation and temporal information through RNN.
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A BACK PROPAGATION ALGORITHM OF MIM-RBFNN

To generate a continuous function for time series data based on the time stamp (), we update the
optimal parameters (¢, o, w) of each GRBF using the Backpropagation (BP) algorithm. Each g -
rameter is updated as follows: W™ = W™ — [r % 8W"’ C=C—1lr+2L and X =Y — Ir x 2L

where [r denotes the learning rate. o o
pr= e T o sz”sok L= Z(XIH_TW (12)
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Equations|[I3] [T4] [I3|represent the parameter updates of MIM-RBFNN using gradient descent. Here,
i indicates the k-th GRBF. The parameters of each GRBF are updated based on its receptive field.
In particular, each GRBF learns the covariance structure within its receptive field and returns zero for
data outside its receptive field, minimizing its impact on data beyond that field. Equation 3] shows
the update process for weights (W) for each time series (X""). Equations [14| and [15|depict the
update process for the centers (ci) and sigmas (o) of GRBFs, respectively, while jointly considering
the covariance structure of multivariate time series data. Based on this BP algorithm, each GRBF
iteratively seeks the optimal centers, weights, and sigmas for its receptive field, building upon the
values from the previous update step (Wu et al.| [2012).

B APPENDIX : COMPARISON OF INITIAL SIGMA IN MIM-RBFNN

The parameter sigma (o) of RBFNN determines the width of the radial basis function, which repre-
sents the receptive field of the RBF. We assign the initial os of MIM-RBFNN using Equation |1 to
accommodate missing values in time series data. In this section, we analyze the impact of the initial
o assignment on time series missing value imputation. For comparative analysis, we compare two
methods of assigning the initial o in MIM-RBFNN: one where it is assigned randomly following
N(0,1), and the other using Equation

Table 2: Imputation performance comparison for initial o (MAE(MRE))

Method Air quality ETT ‘
Random Long term
MIM-RBFNN 22.1(0.31) | 0.735(0.129) 1.298 (0.226)
MIM-RBFNN + Random | 25.9 (0.363) | 0.836 (0.147) 1.470 (0.256)

Table 3: Imputation performance comparison for initial o0 (MAE(MRE))

Method Human activity
30% 50% 80%
MIM-RBFNN 0.150 (0.091) 0.163 (0.098) 0.224 (0.136)
MIM-RBFNN + Random | 0.216 (0.131) 0.276 (0.167) 0.886 (0.536)

Table [2] and [3] display the results of missing data imputation performance based on the random o
and the initial o assignment using Equation[I] Upon reviewing Tables [2]and 3] it is evident that for
all datasets, assigning the initial o as described in Equation[I]to accommodate missing values yields

13
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better results compared to randomly assigning o, which stresses the importance of considering the
receptive field of RBF concerning time gaps when imputing missing values, highlighting the effec-
tiveness of our initial o assignment method. Furthermore, we generated synthetic data to analyze the
changes in the receptive field of MIM-RBFNN during the o learning process. We used Lorenz-96
data as our synthetic dataset (Karimi & Paull, [2010), creating 200 time stamps with five variables.
Subsequently, we introduced random missing data, accounting for 30% of the data. In terms of im-
putation performance (MAE(MRE)), MIM-RBFNN (1.706 (0.418)) outperforms MIM-RBFNN +
Random (2.141 (0.525)), showcasing the superior performance of MIM-RBFNN that accounts for
the time gaps.
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Figure 3] illustrates the learning progress on synthetic data, where green points represent the ground
truth of missing data, blue points represent observed data, and the red line represents the continuous
function. When examining the violet boxes in Figure |§| (a) and (b), it becomes evident that the con-
tinuous function of MIM-RBFNN, which accounts for time gaps, is adapting to missing time points.
In contrast, for MIM-RBFNN + Random, the learning process is only biased towards the observed
data, emphasizing that the initial o of MIM-RBFNN allows it to create a continuous function using
a receptive field that considers missing data.

C APPENDIX : COMPARISON OF MULTIVARIATE RBF AND SINGLE VARIATE
RBF

We propose MIM-RBFNN, which shares the same RBF for training the diagonal covariance struc-
ture of multivariate time series data. In this section, we analyze the impact of sharing the same RBF
on imputing missing values in multivariate time series data. To conduct this analysis, we compare
RBFNN and MIM-RBENN, which use separate RBFs instead of sharing the same one. We refer to
the model that uses separate RBFs as "Missing data imputation Single RBFNN” (MIS-RBFNN).
MIS-RBFNN is identical to MIM-RBFNN except that it uses separate RBFs for each variable.

Table 4: Imputation performance comparison between MIM-RBFNN and MIS-RBFNN
(MAE(MRE))

Method Air quality ETT ]
Random Long term
MIM-RBFNN | 22.1 (0.310) | 0.735 (0.129) 1.298 (0.226)
MIS-RBFNN | 26.8 (0.377) | 0.751 (0.132)  1.507 (0.262)
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Table 5: Imputation performance comparison for initial 0 (MAE(MRE))

Method Human activity
30% 50% 80%
MIM-RBENN | 0.150 (0.091) 0.163 (0.098) 0.224 (0.136)
MIS-RBFNN | 0.182(0.110) 0.203 (0.123)  0.286 (0.173)

MIM-RBFNN employs the same set of shared RBFs for all variables and learns all variables within
a single model, utilizing distinct weights (w™) for each variable. However, MIS-RBFNN employs
separate and unique RBFs for each variable, necessitating one MIS-RBFNN model per variable.
Consequently, for the Air quality dataset, we utilized 36 distinct MIS-RBFNN models, while for the
ETT dataset, we employed seven different MIS-RBFNN models to generate continuous functions.
Likewise, for the Human activity dataset, following the approach used in previous experiments, we
used MIS-RBFNN to create continuous functions for each individual’s experiment with four tags.
The results of missing data imputation for MIM-RBFNN and MIS-RBFNN are found in Table ]
and [5] Upon reviewing Table ] and [3} it becomes evident that MIM-RBFNN consistently outper-
forms MIS-RBFNN across all datasets, which emphasizes the fact that MIM-RBFNN, through the
use of shared RBFs, learns multivariate diagonal covariance structures, thereby enhancing its miss-
ing value imputation performance.

D APPENDIX : COMPARISON OF SINGLE VARIATE RBF AND INITIAL SIGMA

Finally, we consolidate the results in Appendix [B]and [C| and analyze the impact of the initial o in
MIS-RBFNN.

Table 6: Imputation performance comparison (MAE(MRE))

Method Air quality ETT ‘
Random Long term
MIM-RBFNN 22.1(0.310) | 0.735(0.129) 1.298 (0.226)
MIM-RBFNN + Random | 25.9 (0.363) | 0.836 (0.147) 1.470 (0.256)
MIS-RBFNN 26.8 (0.377) | 0.751 (0.132)  1.507 (0.262)
MIS-RBFNN + Random | 32.5(0.457) | 0.947 (0.167) 1.682 (0.293)

Table 7: Imputation performance comparison (MAE(MRE))

Method Human activity
30% 50% 80%
MIM-RBFNN 0.150 (0.091) 0.163 (0.098) 0.224 (0.136)
MIM-RBFNN + Random | 0.216 (0.131) 0.276 (0.167) 0.886 (0.536)
MIS-RBFNN 0.182(0.110)  0.203 (0.123)  0.286 (0.173)

MIS-RBFNN + Random

0.359 (0.217)

0.577 (0.349)

1.295 (0.783)

Table [6] and [7] present the aggregated missing data imputation performance. The results in Table [6]
and [/| demonstrate that the performance of MIM-RBFNN, utilizing the initial o assignment based
on Equation [I|and employing common RBFs, is superior. Additionally, we observed that the initial
o assignment using Equation [1| outperforms random ¢ assignment in MIS-RBFNN using a single
RBF for all datasets. This further accentuates the effectiveness of considering the time gap in RBF’s
receptive field for missing data imputation, as discussed in Appendix

15



	Introduction
	Related work
	RBF for missing value imputation of time series data
	Radial Basis Function (RBF)
	Non-linear Approximation using RBF

	Multivariate-RBFNN for Missing data Imputation 
	Initial Parameters of GRBFs

	Temporal information With Recurrent Neural Network
	bidirectional recurrent with RBF Continuous Function
	MIRNN-CF structure

	Evaluation
	Datasets and baseline
	result
	Ablation Study of MIRNN-CF

	Conclusions
	Back Propagation Algorithm of MIM-RBFnn
	Appendix : Comparison of initial sigma in MIM-RBFNN
	Appendix : Comparison of Multivariate RBF and Single variate RBF
	Appendix : Comparison of Single variate RBF and initial sigma

