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ABSTRACT

Optimizers are crucial in deep neural network (DNN) training, affecting model
quality and convergence. Researchers have found that different optimizers often
suit different problems or different stages of a problem. Hence, some studies have
tried to combine different optimizers to better train DNNs. However, existing
methods are limited to simple optimizer switch strategies, which leads to unstable
model quality and slow convergence. In this paper, we propose a fine-grain opti-
mizer switch method called Interleaving Optimizer for Model Training (IOMT),
which automatically switches to the appropriate optimizer among different opti-
mizer types based on the training stage information, achieving faster convergence
and higher test accuracy. IOMT employs surrogate models to estimate the per-
formance of different optimizers during training and is supported by a transfer-
ability assessment to predict the training cost. By combining the transferability
assessment, performance estimation, and training process information with an ac-
quisition function, IOMT calculates the optimization gain of each optimizer and
switches the optimizer with the largest gain for the next training stage. The exper-
imental results on full training and fine-tuning demonstrate that IOMT achieves
faster convergence (e.g., 10% on the stl10 dataset) and better performance (e.g.,
3% accuracy improvement on the cifar10 dataset) compared to existing methods.

1 INTRODUCTION
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Figure 1: The different training
processes with various optimizers.

The choice of optimizer and its hyperparameter settings (e.g.,
the learning rate) profoundly impacts the model quality and
convergence speed in deep neural networks (DNNs) (Soy-
daner, 2020; Hassan et al., 2023). Researchers typically use a
single optimizer for the entire training (i.e., a coarse-grain op-
timizer setting) and have some empirical preferences for opti-
mizer selection, such as using SGD for head fine-tuning (Poo-
jary & Pai, 2019) and Adam for LoRA (Hu et al., 2021). How-
ever, recent studies find that different optimizers are not only
suited to specific tasks but also exhibit unique characteristics
and optimization strategies at different stages of a training (Im
et al., 2016). Figure 1 presents the optimization results of
three optimizers with varying runs (i.e., 200 times with dif-
ferent random seeds and hyperparameter settings) on four de-
terministic functions (rosenbrock, himmelblau, griewank and
ackley). Different optimizers follow distinct paths in the same
start point even with varying runs, making it difficult to defini-
tively identify the “one size fits all” optimizer.

To address such challenges of coarse-grain optimizer tuning, some studies have attempted to com-
bine the benefits of different optimizers during a single training process recently. SWATS (Keskar &
Socher, 2017) achieved better generalization by switching from Adam to SGD. Chen et al. proposed
a partially adaptive momentum estimation method, which unifies the adaptive gradient methods (i.e.,
Adam or Amsgrad) with SGD by introducing a partial adaptive parameter (Chen et al., 2018). Ad-
aBound (Luo et al., 2019) employed dynamic bounds on learning rates to achieve a gradual and
smooth transition from adaptive methods to SGD. However, these approaches remain limited in
the optimizer types (i.e., only two kinds of optimizers) and combining methods (i.e., simple switch
strategy), which leads to unstable model quality and high training cost (Sun, 2020).
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Based on the idea that “different optimizers suit for different parameter states”, we propose a fine-
grain optimizer switch method called Interleaving Optimizer for Model Training (IOMT). During
the training, IOMT constructs surrogate models for different optimizers to predict their optimiza-
tion benefits under various model parameter states. To better assess the benefits of the optimizers
(i.e., potential loss reduction and convergence speed), IOMT calculates an optimization gain score
for each optimizer using the acquisition function that combines the predicted performance, a trans-
ferability assessment, and training process information. By carefully switching the optimizer with
the highest score during training, IOMT achieves faster convergence and better model quality. To
summarize, the key contributions of this paper are as follows.

• We investigate the distinct strengths and optimization directions of various optimizers across dif-
ferent tasks and parameter states. Furthermore, we demonstrate that combining different optimiz-
ers during training can help achieve higher-quality models and better convergence.

• We present a novel fine-grain optimizer switch method called Interleaving Optimizer for Model
Training (IOMT), which automatically switches suitable optimizers according to the parameter
state during training. IOMT estimates the performance of optimizers under different parameter
states by constructing Gaussian surrogate models and calculates the optimization gain using the
acquisition function. By iteratively selecting the optimizer with the highest gain score, IOMT
produces higher-quality models with faster convergence.

• We implement IOMT and conduct experiments on multiple models and tasks, including full train-
ing and partial fine-tuning. The experimental results demonstrate the advantages of our methods,
such as achieving over 1% improvement in predictive accuracy with 10% reduction in conver-
gence time, while also yielding superior generalization models. In addition, the case study and
several independent experiments are presented to further explore the performance of IOMT.

2 RELATED WORKS AND BACKGROUND

In this section, we provide the background of our work, including the optimizers and the hybrid
optimizer methods. After that, we identify the limitations of existing approaches.
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Figure 2: The development of neural network optimizers.

Optimizers. The optimizers and their hyperparameters are crucial for training DNNs, as they effec-
tively adjust the model’s parameters to minimize the loss function. The traditional gradient descent
algorithm calculates the gradient of the loss function with respect to the model’s parameters across
the entire dataset and updates the parameters in the direction that reduces the loss (Ruder, 2016).
Following the gradient descent algorithm, researchers have proposed a variety of optimizers. Fig-
ure 2 illustrates a portion of the historical development of these optimizers. Instead of calculating the
gradient using the entire dataset, the Stochastic Gradient Descent (SGD) approximates the gradient
by using only a single sample or a small batch of samples (Robbins & Monro, 1951). To address
the slow convergence in ravines, the momentum technique is introduced in SGD (Sutskever et al.,
2013). The Nesterov Accelerated Gradient (NAG) further enhances convergence speed and accuracy
by incorporating a look-ahead mechanism into the update process (Qu & Li, 2019). Additionally,
researchers have explored methods for adaptive learning rates based on different model parame-
ters, such as RMSProp (Graves, 2013), Adam (Kingma & Ba, 2014), and AdamW (Loshchilov
& Hutter, 2017). Beyond these, researchers have also proposed various second-order optimizers,
such as L-BFGS (Liu & Nocedal, 1989), K-FAC (Martens & Grosse, 2015), and AdaHessian (Yao
et al., 2021)). However, due to their practical application challenges, second-order optimizers are
not further discussed in this paper. Additionally, researchers have attempted to develop new neural
network-based learned optimizers through a meta-learning approach (Andrychowicz et al., 2016;
Harrison et al., 2022).
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Hybrid optimizer. Like other hyperparameter settings in training, there is no universal optimal op-
timizer in practical training (Wilson et al., 2017). For instance, SGD with momentum is commonly
used in Computer Vision (CV), while Adam is favored for training transformer models in Natural
Language Processing (NLP) (Yao et al., 2021). Some researchers have explored the performance
of different optimizers during training, noting that different optimizers follow distinct descent paths
at different saddle points (Im et al., 2016). Leveraging insights from multiple optimizers during
model training is crucial in both academic research and practical applications. While numerous
studies have investigated the adjustment of learning rates within optimizers (Gotmare et al., 2018;
He et al., 2016; Smith, 2017), research on switching between different optimizers remains limited.
Existing studies primarily focus on the basic form of switching, which involves transitioning from
one optimizer to another. For example, SWATS (Keskar & Socher, 2017) achieves favorable re-
sults by initially using Adam and then switching to SGD. Padam (Chen et al., 2018) introduces a
partial adaptive parameter to integrate Adam with SGD. Meanwhile, AdaBound (Luo et al., 2019)
implements dynamic bounds on learning rates to facilitate a gradual and smooth transition.

Limitations of current approaches. (i) Single optimizer: although researchers are continually en-
hancing existing optimizers to better adapt to model parameter states (e.g., ravines), the associated
computational cost cannot be ignored. In practical training, these complex optimizers do not neces-
sarily outperform basic SGD (Keskar & Socher, 2017). To obtain better models, researchers need
to train with different optimizers, which is a time-consuming process. Additionally, consistent op-
timizer training throughout the entire process (i.e., coarse-grain training) limits both model quality
and convergence speed. (ii) Hybrid optimizer: combining the advantages of different optimizers
can help improve model quality and convergence speed. Existing methods are limited to adjust-
ing learning rates or transitioning between two types of optimizers, neglecting the unique strengths
of different optimizers under different parameter states. Such a coarse mixing approach not only
restricts the stability of the model quality but also impacts convergence speed (Zhuang et al., 2020).

3 OUR PROPOSED METHODS: IOMT

To better utilize multiple optimizers, we propose a novel fine-grain optimizer switch method called
Interleaving Optimiezer for Model Traing (IOMT), which enables adaptive optimizer switching
during model training. In this section, we first provide a brief overview of IOMT. Then, we offer a
detailed introduction including its problem formulation, surrogate model, and acquisition function.

3.1 OVERVIEW OF OUR PROPOSED IOMT
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Figure 3: The workflow of IOMT.

Figure 3 illustrates the workflow of IOMT, and
a detailed description of IOMT with its pseu-
docode is presented in Appendix A. IOMT cal-
culates the transferability weight ωt to assist in
the subsequent selection of optimizers before
the training (Step 1). During each optimizer
switch cycle (i.e., a few iterations), IOMT first
compresses the model parameters θi to get the
input of the surrogate model (Step 2). Then,
IOMT selects the appropriated optimizer oi

for the training of the current stage (Steps 3-
4). Obtaining the training losses, IOMT cal-
culates the performance score s and updates
the corresponding surrogate model gi (Steps 5-
6). By iteratively executing this process, IOMT
achieves the fine-grain optimizer switching.

For selecting the next optimizer (Step 3), IOMT
employs two methods: the weighted random
selection and recommendation based on the surrogate model. In the initial training stages, IOMT
uses the calculated score s to update the sampling weight ωr for randomly selecting optimizers
(Steps 3a and 6a). After acquiring enough training results, IOMT selects the optimizers with the
highest gain e calculated by the acquisition function for each training stage (Step 3b).
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3.2 MOTIVATION AND PROBLEM FORMULATION

1st iter 10ms

(a) start at (0,1.5) with lr=0.01 (b) start at (-1,1.5) with lr=0.01
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Figure 4: The illustration of different optimizer
directions from the same start point.

Before introducing the details of the surro-
gate model and acquisition function in IOMT,
we first provide the hypothesis underlying our
method: “different optimizers offer distinct op-
timization directions and are suited to different
parameter states”. Figure 4 illustrates four ex-
amples of the different optimization directions,
which correspond to the subfigures in Figure 1.
It can be observed that although the five op-
timizers provide similar directions at the first
iteration, their optimization paths diverge sig-
nificantly after a few iterations. Previous stud-
ies have also observed this phenomenon, not-
ing that optimizers exhibit different optimiza-
tion directions under varying parameter states
from both theoretical and visualization perspec-
tives (Im et al., 2016). Therefore, we think that
the category of optimizers, like other hyperparameters, requires fine-grain tuning (i.e., dynamic al-
gorithm configuration) (Adriaensen et al., 2022).

Building on this assumption, IOMT attempts to propose a fine-grain optimizer switch method that
leverages the strengths of different optimizers for distinct parameter states. Let o ∈ O, λ ∈ Λ, and
t ∈ T denote the optimizer type (e.g., SGD), hyperparameter setting (e.g., learning rate as 0.1) and
the training time (e.g., 5 iterations), respectively. Then, the training process with fine-grain optimizer
switches can be defined by a list of configurations C = {c1, c2, ..., cn} where ci = (oi,λi, ti). The
objective of IOMT is to find an optimal C∗ that minimizes the following objective function:

C∗ = argmin
C∈O×Λ×T

L(θ0,M,D, C) (1)

where θ0 is the initial model parameter state, L(·) denotes the loss of the trained model M under
dataset D. Equation (1) can be interpreted as fine-grain optimizer tuning for neural network training.
When all ci ∈ C share the same settings, it aligns with the traditional training process, which is
described further in Section 4.1. For clarity, in the following sections, we set all training times
t ∈ T to a specific value τ , such as 5 iterations.

3.3 ESTIMATING OPTIMIZATION PERFORMANCE WITH SURROGATE MODELS

IOMT employs a Sequential Model-Based Optimization (SMBO) to address this fine-grain opti-
mizer tuning problem, as illustrated in Figure 5. Initially, IOMT trains the model M using random
configurations to obtain training experience (the blue block). Next, IOMT constructs surrogate mod-
els G = {g1, g2, ..., gm} for each optimizer type oi ∈ O = {o1, o2, ..., om} to guide the selection
of suitable configurations (the red block). By iteratively selecting training configurations and up-
dating surrogate models, IOMT achieves a fine-grain optimizer switch training. In this section, we
introduce IOMT’s surrogate model through its selection, input, output, and initialization.
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Figure 5: The training process of our proposed IOMT.

The selection of the surrogate model. IOMT utilizes the Gaussian process (GP) model (Schulz
et al., 2018) as its surrogate model for several reasons. First, compared to other machine learning
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models, GPs can efficiently train and continuously update the surrogated model as the training pro-
gresses. Second, GPs provide uncertainty estimation for predictions (i.e., the variance information),
which is useful for guiding the optimizer selection (as detailed in Section 3.4). Thirdly, as a pow-
erful probabilistic model, GPs effectively construct the overall distribution based on known points,
offering good flexibility and interpretability.

The input of the surrogate model. At the beginning of each optimizer cycle, IOMT acquires the
input for the surrogate model VECi. The traditional surrogate model in SMBO uses the hyperparam-
eter λi as its inputs. In IOMT, the input VECi also includes a vector representing the parameter state
θi to learn the impact under different parameter states. Considering the high cost of using the full
model parameters, IOMT applies feature engineering to reduce the input size. Specifically, IOMT
uses Principal Component Analysis (PCA) (Labrı́n & Urdinez, 2020) to compress the parameters
layer by layer, lowering the training cost for the surrogate model. To further reduce the training cost
of surrogate models during training, IOMT selects only a few layers of the model as inputs for the
surrogate model (e.g., the classifier layer with a few hidden layers). In the case of partial fine-tuning,
IOMT focuses solely on the trainable parameters (e.g., the matrices A and B in LoRA).

The output of the surrogate model. In contrast to the results obtained from training to conver-
gence, IOMT emphasizes the “short-term” benefits each optimizer can achieve given the current
parameter state. Therefore, the output of IOMT’s surrogate model does not use the final loss or
accuracy, but instead employs a computed performance score s ∈ [−1, 1]. During the training
of a stage, IOMT performs multiple iterations of training, resulting in a set of losses, denoted as
l = {l1, l2, ..., lτ}, and l0 represents the loss before training. IOMT first calculates the loss vari-
ation ∆li = li−1−li

max(li,li−1)
for each iteration to get the average reduction µ∆ and variance σ∆. To

estimate the optimization performance of different configurations, IOMT combines the considera-
tions of exploration (i.e., variance σ∆) and exploitation (i.e., mean µ∆) to calculate a weighted score
s = µ∆+ασ∆. However, such a weighted score overlooks the direction of variance. For instance, in
Figure 6(a), optimizers o1 and o3 have the same mean µ∆ and variance σ∆, yet o3 achieves a lower
loss than o1 during training. A similar issue arises in the comparison between o2 with o1 and o3.
To address this problem, we incorporate boundary considerations into the performance calculation,
including the upper bound ∆UPPER = l0−max(l)

max(l0,max(l))×τ and lower bound ∆LOWER = l0−min(l)
max(l0,min(l))×τ .

Then, the final optimization performance score is defined as follows,

s = tanh(
1

3
(µ∆ +∆UPPER +∆LOWER) + ασ∆) (2)

where α represents the weight for variance.
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Figure 6: Examples of the optimization gain.

The initial weighted random selection. To ob-
tain enough training experience for the construc-
tion of surrogate models, IOMT trains with random
configurations at the start of training. Though ran-
domly selecting configurations for initial training
can yield the necessary experience, IOMT employs
a weighted random initialization method to enhance
the performance of the initial training. Specifically,
IOMT maintains a sampling weight ωr[j] ∈ [0, 1]
for each type of optimizer oj and its surrogate model
gj , presenting the probability of being sampled. This
sampling weight is initially assigned a value of 1 to
achieve a random initialization. After completing
the training with the current configuration, the sam-
pling weight for the corresponding optimizer ωj is
updated to the normalized optimization performance
score as shown in Equation (3), where ωmin repre-
sents the minimal threshold.

ωr[j] = max(
1

2
(s+ 1), ωmin). (3)
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3.4 SELECTING OPTIMIZERS WITH ACQUISITION FUNCTION

Although the calculated optimization performance s can be used to select configurations directly,
given the volatility of the loss and the complexity of model training, IOMT considers additional
factors in the design of acquisition, including variance, transferability, and the training process. In
this section, we introduce considerations designed for the acquisition function used in IOMT.

Consideration of variance. Benefiting from the advantages of the Gaussian process model, the
surrogate model can provide both the mean score sµ and an estimate of the variance sσ . Similar
to traditional hyperparameter optimization methods, IOMT also incorporates a trade-off between
exploration and exploitation in the acquisition function as follows

ACQ(sµ, sσ) = sµ + αsσ, (4)

where α represents the weight for variance, consistent with the definition in Equation (2).

Consideration of transferability. The training cost of DNNs is closely related to the initial model
parameter state θ0. In fine-tuning, closely related upstream and downstream tasks (i.e., high trans-
ferability between the pre-trained model and the new task) are easier to train than those that are
dissimilar. Considering the idea that “a pre-trained model with lower transferability necessitates
more substantial tuning adjustments”, we use the model’s transferability ωt as the weight of the
variance in the acquisition function, as shown in the following equation,

ACQ(sµ, sσ, ωt) = sµ + (1− ωt)sσ. (5)

The transferability ωt is calculated using two types of evaluation metrics, including performance-
based metric ωp and distribution-based metrics ωd. Firstly, the performance-based metric ωp ∈ [0, 1]
is the testing result (e.g., accuracy) which is directly tested with the pre-trained model without deep
refining. Meanwhile, IOMT also uses some feature-based metrics, which analyze the distribution
of the output vectors or labels, to estimate the model’s transferability, including LogME (You et al.,
2021) and Leep (Nguyen et al., 2020). Equation (6) presents the definition of transferability weight.

ωt = βωp + (1− β)
1

k

k∑
i=1

sigmoid(ωi
d). (6)

where ωi
d represents k distribution-based metrics and β represents the weight for two kinds of met-

rics. We use the sigmoid function to constrain the distribution-based metric within the range of [0, 1]
to align with the performance-based metric. Then, the weighted sum reflects the transferability of
the initial model for current tasks. A higher transferability weight indicates higher transferability,
while a lower one suggests lower transferability.

Consideration of training process. Additionally, IOMT takes into account the differing needs in
the early and later stages of training, specifically that “after the model becomes stable, smaller tuning
adjustments are needed.” As training progresses, the model continuously captures the knowledge
required for the current task, leading to a stabilization of the training loss. At the later stages of the
training, the target position on the parameter surface is constrained within a smaller range. In this
context, optimizers with larger amplitudes may disrupt the tuning process. Therefore, the proportion
of variance in the acquisition function should be reduced. Hence, we introduce a periodic halving of
the weight for variance information in IOMT as Equation (7), where i represents the current iteration
and n represents the halving period.

e = sigmoid(sµ + (1− 2−⌊i/n⌋ · ωt)sσ). (7)

4 DISCUSSION

To further introduce our proposed IOMT, we discuss its differences from the hyperparameter tuning
(HPO) and SMBO, along with its advantages and limitations in this section.

4.1 ANALYZING THE DIFFERENCES BETWEEN IOMT AND HPO

Compare with HPO. The optimizer, as one of the hyperparameters in DNNs, its automatic adjust-
ment is a form of HPO and AutoML. However, the vanilla training addresses it as a coarse-grain

6
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HPO, where the hyperparameters remain fixed throughout the whole training process. The optimiza-
tion objective of such coarse-grain tuning can be formulated as below,

c∗ = argmin
c∈O×Λ×T

L(θ0,D, c) (8)

where c = (o, λ, t) represents the hyperparameter configurations (same as the defination in Sec-
tion 3.2). Compared to IOMT’s fine-grain tuning (i.e., Equation 1), the vanilla HPO restricts the
way model parameters are updated and the collaboration among different optimizers. Additionally,
though researchers have proposed hybrid methods that combine binary optimizers, these approaches
still integrate the optimizers from rules of thumb rather than performing fine-grain hyperparameter
optimization. For example, SWATS (Keskar & Socher, 2017) switches the training from Adam to
SGD based on the foundation that “Adam quickly adapts to problems in the early training phase,
while SGD promotes better generalization in the later stages”.

Compare with SMBO. IOMT adopts the idea of surrogate models and the acquisition function
in SMBO, but there are significant differences between IOMT and SMBO. First, the SMBO only
considers the impact of hyperparameters on the results, neglecting changes in the model parameter
states. When the initial parameter states differ, the performance evaluation of hyperparameters is
also different. In contrast, IOMT introduces additional parameter inputs to the surrogate model
and considers the training progress in the acquisition function to study the “short-term” gain on
different parameter states. Secondly, SMBO aims to select the best hyperparameters (i.e., coarse-
grain tuning), whereas IOMT aims to obtain the best model (i.e., fine-grain tuning). Compared to
SMBO, IOMT enables the collaboration of various hyperparameters within a single training process.

4.2 ANALYZING THE ADVANTAGES OF IOMT
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Figure 7: Analyze of interleaving training.

Accuracy: IOMT achieves a DNN training with in-
terleaving optimizers, enabling collaboration among
multiple optimizers. This fine-grain optimizer tun-
ing not only integrates the optimization strategies of
different optimizers but may also yield an optimiza-
tion path (i.e., the final trained model) that a single
optimizer cannot achieve, resulting in higher accu-
racy. Figure 7(a) provides examples across three dif-
ferent functions, illustrating that IOMT can discover
optimization paths that a single optimizer cannot
achieve. Similarly, the final model weights obtained
from training for the same number of epochs on
the cifar10 dataset using different optimizers show
significant differences, as illustrated in Figure 7(b).
This hybrid approach, which employs multiple opti-
mizers, expands the search space of traditional train-
ing, leading to an improved accuracy upper bound.

Training efficiency: We analyze the time cost of IOMT using the training of ResNet18 (whose
training FLOPs tM ≈ 1.8 × 109) on the cifar10 dataset (i.e., feature dimensions D ≈ 3 × 103,
instance number N = 6× 104, and class number K = 10) with epoch number nEPOCH = 100, batch
size nBZ = 64 and switching iteration number τ = 20 as an example. For the vanilla training, the
time cost for a single epoch is tTRAIN ≈ 2×tM ×N ≈ 2×1014. Compared to vanilla training, IOMT
incurs additional time consumption due to two processes: transferability assessment before training
tEST and the updating of the surrogate model during the training process. First, the tEST includes
the computation for two distribution-based metrics (i.e., LEEP and LogME) and one performance-
based metric. Among them, the time cost for the LEEP and performance-based metrics is equivalent
to a single forward pass (Nguyen et al., 2020), while the computational complexity of LogME is
O(KD2+NKD+D3+ND2) ≈ 3×1010 (You et al., 2021). Then, the transferability assessment
time tEST ≈ tTRAIN (actually smaller in practical, e.g., tEST = tTRAIN × 1% ). Second, the additional
time consumption from the updating of the surrogate model tSUR includes the PCA compression of
the selected parameters and the updating of the Gaussian process model. The time complexity of
compression and updating is O(W 2D′) and O(N3

sw), where W ≈ 104 represents the number of
selected parameters (i.e., only the last layer), D′ ≈ 100 represents the number of PCA components,
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Table 1: Test accuracy (%) of the full training with different optimizers.

method usps mnist stl10 cifar10
ResNet18 ViT ResNet18 ViT ResNet18 ViT ResNet18 ViT

SGD 96.10±0.24 97.46±0.70 99.29±0.03 99.50±0.04 86.94±0.49 97.83±0.22 80.73±0.43 97.53±0.03

SGDM 95.83±0.30 97.68±0.11 99.47±0.05 99.65±0.04 86.99±0.36 96.61±0.04 81.64±0.60 97.58±0.04

Adagrad 96.00±0.94 93.40±0.04 99.40±0.06 98.24±0.50 83.38±7.99 78.66±2.54 80.57±0.14 60.95±0.62

RMSprop 95.30±0.55 95.25±0.04 99.13±0.17 98.14±0.09 69.91±2.06 88.62±4.45 71.92±0.41 78.09±0.92

Adam 95.13±0.53 93.26±0.78 99.11±0.06 99.01±0.08 76.49±2.04 82.26±1.16 72.33±0.84 75.23±0.92

SWATS 95.53±0.71 94.00±1.23 99.17±0.11 98.73±0.13 79.76±2.11 88.03±0.44 75.17±0.21 66.15±4.74

Padam 96.10±0.15 97.58±0.11 99.46±0.02 99.66±0.04 85.64±0.48 90.81±0.06 81.58±0.38 96.03±0.03

AdaBound 95.02±0.17 87.64±0.84 99.25±0.06 97.54±0.13 84.48±0.42 86.33±2.39 69.27±5.02 70.91±4.35

ours 96.81±0.21 97.81±0.21 99.51±0.01 99.71±0.02 88.23±0.23 98.21±0.19 84.14±0.11 98.04±0.03

and Nsw = nEPOCH
N

τ×nBZ
≈ 5× 103 represents the total switching operations in the tuning process.

Then, we can calculate tSUR ≈ 109 ≪ tTRAIN. Since tEST is executed only once before training and
tSUR ≪ tTRAIN, the additional time in IOMT is minimal. Furthermore, thanks to its adaptability to
different parameter states, IOMT is able to achieve better convergence speed.

5 EXPERIMENTAL STUDY

To investigate the rationality of IOMT, we conducted experiments and present the experimental
results in this section. We first exhibit two overall experiments to observe the performance of IOMT
in full training and PEFT. Then, we illustrate a case study to observe the practical switching process
of IOMT during training. In addition, several independent experiments are presented to investigate
the significance of designs within IOMT.

In the experiments, we used 4 ImageNet pre-trained models available from PyTorch (Paszke et al.,
2019) (i.e., ResNet18, ResNet152, MobileNet V2, and ViT) and 2 pre-trained NLP models from
HuggingFace (Wolf et al., 2020) (i.e., RoBerta and LLaMA-7B). For the selection of datasets, we
took 4 commonly used CV datasets from PyTorch (i.e., usps, mnist, stl10, and cifar10) and 3 NLP
tasks from Hugging Face (i.e., mrpc, qqp, and wnli). In addition, the experiments were conducted
on a Linux machine with a 128-core 2.6GHz Intel(R) Xeon(R) Platinum 8358 CPU and 512GB
main memory. More details of the models and datasets used in our experiments can be found in
Appendix B.

5.1 OVERALL PERFORMANCE OF IOMT
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Figure 8: The training loss and test accuracy
line graph.

We first compared our proposed IOMT with the
training using a single optimizer or hybrid op-
timizers under full training and PEFT. Specifi-
cally, five commonly used optimizers were tested
for single optimizer training: SGD (Robbins &
Monro, 1951), SGDM (Sutskever et al., 2013), Ada-
grad (Duchi et al., 2011), RMSProp (Graves, 2013),
and Adam (Kingma & Ba, 2014). For hybrid op-
timizer training, we included SWATS (Keskar &
Socher, 2017), Padam (Chen et al., 2018), and Ad-
aBound (Luo et al., 2019). The initial learning rate
and training epochs of each method were setting as
[0.1,0.01,0.001] and 100. For IOMT, we set the ini-
tial steps nini = 50 and training time τ = 25 itera-
tions. More details of the baselines and settings are
presented in Appendix C.

Experiments on full training. The experimental re-
sults show that the switching method proposed in
IOMT can always achieve good improvements in
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test accuracy (i.e., 1%-3%), as shown in Table 1. However, other hybrid methods often perform
worse than training with a single optimizer, especially in complex tasks (i.e., stl10 and cifar10
datasets). Additionally, compared to other methods, IOMT exhibits smaller variance, indicating
more stable performance outputs. To illustrate the convergence of IOMT, we present the training
loss and test accuracy of each method in the Figure 8. For ease of observation, the baselines with
significant fluctuations are not displayed in the figure. It can be observed that IOMT shows a faster
convergence speed compared to the vanilla method.

Experiments on PEFT. In addition to the full training, we also compared the proposed IOMT with
baselines on the PEFT that only update partial of the model parameters, including the head fine-
tuning (Poojary & Pai, 2019) in CV problems and the LoRA (Hu et al., 2021) in NLP tasks. To
analyze the convergence performance, we terminated the training when the convergence conditions
were satisfied, i.e., the change of loss is less than 1 × 10−4 in 10 consecutive epochs or the train-
ing reaches 100 epochs. Table 2 presents a partial of the experimental results, more experimental
results and setting details can be found in the Appendix C. Like its performance in full training,
IOMT achieves higher accuracy and F1 score (up to 2%) for both CV and NLP tasks. In terms of
convergence time, the end-to-end results shown in the table indicate that IOMT has a faster con-
vergence speed in PEFT (e.g., 10% faster on usps. Meanwhile, the time cost for transferability
assessment (i.e., the time indicated after “+” in the table) is much smaller than the training time,
which is consistent with the discussion in Section 4.2.

Table 2: Test accuracy (%), F1 score (%) and convergence time (sec.) of the PEFT. ViT for the CV
datasets (i.e., usps and stl10) and RoBerta for the NLP datasets (i.e., mrpc and qqp).

method usps stl10 mrpc qqp
accuracy time accuracy time accuracy F1 score accuracy F1 score

SGD 94.42±0.21 3169 97.75±0.16 275 85.21±0.35 87.21±0.32 82.13±0.52 75.19±0.82

SGDM 95.67±0.14 2397 98.37±0.10 483 85.54±0.69 86.27±0.41 83.30±0.63 75.27±0.82

Adagrad 95.37±0.21 2220 98.34±0.09 284 84.94±0.59 87.29±0.46 83.47±0.79 73.28±0.83

RMSprop 94.64±0.53 2208 97.91±0.07 568 84.09±0.76 89.24±0.74 82.09±0.63 74.09±0.92

Adam 94.47±0.49 2215 98.36±0.03 694 86.52±0.71 90.37±0.92 82.27±0.71 74.92±0.84

SWATS 95.12±0.21 2643 98.38±0.10 822 86.27±0.62 90.34±0.42 80.79±0.81 74.80±0.19

Padam 95.72±0.42 2234 98.38±0.10 598 80.64±0.32 87.07±0.82 73.04±0.91 80.93±0.83

AdaBound 95.42±0.11 2232 98.30±0.14 199 68.38±0.59 81.22±0.94 78.64±0.49 79.01±0.42

ours 96.12±0.10 2030+2 99.01±0.09 180+1 87.99±0.13 91.36±0.15 85.57±0.14 81.18±0.31

In summary, IOMT demonstrates excellent tuning performance and convergence speed across dif-
ferent training approaches, various models, and downstream tasks. The combination of model trans-
ferability analysis and optimizer switching based on parameter surface characteristics effectively
assists DNN training.

5.2 CASE STUDY FOR THE SWITCHING PROCESS OF IOMT
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Figure 9: The training loss line of the case study
with vanilla FT and IOMT.

To observe IOMT’s switching process, we con-
ducted a case study with a simple task hy-
menoptera from Kaggle and a restricted opti-
mizer space (only for SGD and SGDM). The
training loss and the optimizer switch process
are plotted in Figure 9. After the initial stages
with weighted random sampling, IOMT selects
the suitable optimizer with faster convergence
speed for training, i.e., the SGDM selected in
Figure 9. After that, the optimizer switch op-
eration occurs when a decrease in the conver-
gence speed of the optimizer (Point A) or de-
tects a local stable state (Point C). Additionally,
during tuning, IOMT may also undergo temporary switches to adjust the optimization state (Point
B). This case study demonstrates that IOMT can effectively select the appropriate optimizer based
on the model parameter state, thereby improving convergence speed and model quality.
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5.3 INDEPENDENT EXPERIMENTS

Additionally, we conducted several independent experiments to further analyze the effectiveness of
IOMT. In this section, we outline the main conclusions, with further details available in Appendix D.

The optimizer selection strategy. IOMT employs an optimizer selection strategy that considers
variance, transferability, and training process. Table 7 presents comparative results for different
selection strategies. Compared to random or periodic switching, IOMT achieves higher accuracy
(up to 2%) and lower variance. Additionally, the ablation experimental results indicate that the
designs for transferability assessment and variance reduction further enhance its advantages.

The initial selection method. Compared with random selection, the weighted selection in IOMT
significantly enhances the stability of the surrogate model, which reduces variability in the training
outcomes, as shown in Figure 10(a).

The model compression technique. Table 10 illustrates the effects of various feature compression
techniques on training results. For the selected tasks (i.e., usps and mnist), simple methods like
random projection and PCA outperform the more complex UMAP technique. This suggests that
basic compression techniques are adequate for training the surrogate model.

The optimizer search space. We broadened the hyperparameter space of candidate optimizers to
explore how this expanded search space affects IOMT’s performance. The experimental results
shown in Figure 11 indicate that IOMT continues to perform well in the enlarged search space.

The influence of hyperparameter setting. We also performed an experimental analysis on the
hyperparameters in IOMT, including the initial step nini, switch step size τ , and the number of PCA
components. Figure 10(b-d) presents the experimental results, demonstrating that a small initial step
(e.g., only 10 for small dataset usps), switch step size (10% of an epoch) and PCA components (e.g.,
2) can achieve good accuracy. A more detailed analysis can be found in Appendix D.
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6 CONCLUSION

The selection of optimizers and their hyperparameters plays a crucial role in deep neural network
(DNN) training. Traditionally, researchers use a single optimizer during the whole training (i.e., a
coarse-grain optimizer tuning), which limits the model quality and convergence speed. Currently,
some works attempt to leverage the advantages of different optimizers during training to achieve
higher-quality models. However, these methods are still constrained by merely adjusting the learning
rate or transitioning between two types of optimizers, overlooking the unique strengths of various
optimizers under different parameter states. To better combine the benefits of different optimiz-
ers, we introduce a fine-grain optimizer switch method called Interleaving Optimizers for Model
Training (IOMT) in this paper. Specifically, IOMT constructs surrogate models during training to
estimate the performance of different optimizers under varying model parameter states. In addition,
IOMT employs a transferability assessment to enhance the selection of optimizers. Combining the
predicted performance and transferability information with an acquisition function, IOMT gets the
estimation of optimization gain for each optimizer and switches the optimizer with the largest score
for the training stage. The experimental results on full training and PEFT demonstrate that IOMT
achieves a better model quality (e.g., 3% accuracy improvement on stl10 dataset) with faster conver-
gence (e.g., 10% on the stl10 dataset). In addition, a case study and two independent experiments
further investigate the optimizer switching process and design details of IOMT.
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A OVERALL ALGORITHM AND PSEUDOCODE OF IOMT

For ease of reading, Table 3 provides the explanations of key notations used in this paper for IOMT.

In this section, we provide an overview of IOMT with the pseudocode in Algorithm 1. For ease
of understanding, we only switch the types of optimizers in the description while keeping the hy-
perparameters and training time constant (i.e., ti = τ iterations). Before the model’s training,
IOMT first calculates the transferability weight ωt to assist in the subsequent selection of optimizers
(Line 3). Then, a randomly selected initial optimizer oj is used for model training and loss calcu-
lation (Lines 8-9). When the number of iterations meets the time constant τ , IOMT calculates the
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Table 3: The description of notations used in IOMT.

notation description

switch step τ the number of iterations for a single switch cycle.
init step nini the number of switch cycles for the initial phase.

selection weights ωr the sample weights for the initial phase
transferability weight ωt the transferability weight which is calculated by the performance-

based metric ωt and distribution-based metric ωd

Algorithm 1: Basic framework of our proposed IOMT.

Input: Training Dataset D = {Dtrain, Dtest}, m optimizers O = {o1, ..., om}, the model for training
M with initial parameter state θ0, the init steps nini, the switch step size τ , the training epochs
nepoch

1 initialize: nt ← 0, n← 0, G ← {g1, g2, ..., gm}, ωr ← {1|1, ...,m}, j ← RandomSelect(m),
losses← [], v ← CompressModel(M,θ0)

2 /* calculate the transferability weight before the training */
3 ωt ← CalculateTransferabilityWeight(M,θ0, Dtrain) // as Equation (6)
4 /* training models with interleaving optimizers */
5 for i in [1, nepoch] do
6 for BATCH in Dtrain do
7 n← n+ 1

8 θn ← TrainModel(M,θn−1, BATCH, oj)
9 l← CalculateLoss(M,θn, BATCH), losses.append(l)

10 if n%τ = 0 then
11 s← CalculateOptimizationGain(losses) // as Equation (2)
12 gj ← UpdateSurrogateModel(gj ,v, s)
13 v ← CompressModel(M,θn)
14 // init steps with a weighted random selection
15 if nt < nini then
16 ωr[j]← UpdateSampleWeight(s) // as Equation (3)
17 j ← WeightedRandomSelect(ωr)
18 // following steps with a surrogated selection
19 else
20 j ← SurrogatedSelect(v, ωt,G,O)
21 end
22 nt ← nt + 1, losses← []
23 end
24 end
25 end

Output: the trained model M with parameter state θn

performance score s based on all losses within time ti (Line 11). Subsequently, the current opti-
mizer oj is updated by the surrogate model gj using the optimization gain s and the model features
v calculated at the end of the previous round (Lines 12-13). Based on the results from weighted
random selection or surrogate model selection, IOMT obtains the suitable optimizer for the next
training stage (Lines 14-20) and continues this process iteratively until the final training results θn

are achieved.

For the selection of the suitable optimizer, IOMT employs two types of methods: the weighted
random selection and the surrogate model selection for the following steps. In the initial training
steps (i.e., nt < τ ), IOMT uses the optimization gain s to update the sampling weight ωr for
randomly select configurations for training (Lines 14-17). After obtaining enough training results
(i.e., nt ≥ τ ), IOMT utilizes the trained surrogate models to select the configurations used for the
following training (Line 20). The configuration with the highest score (i.e., Equation 7) is selected
for the next training iteration.
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B DATASETS AND MODELS USED IN EXPERIMENTS

In the experiments, we used 4 CV datasets from Pytorch (Paszke et al., 2019) (i.e., usps, mnist, stl10,
and cifar10) and 2 NLP datasets from Hugging Face (Wolf et al., 2020) (i.e., mrpc and qqp). The
information on these downstream tasks is as follows:

• usps (Hull, 1994): a classical digit dataset automatically scanned from envelopes by the U.S.
Postal Service containing a total of 9,298 16×16 pixel grayscale samples, which includes 10
classes of figures.

• mnist (LeCun et al., 1998): a handwritten digits dataset with 28x28 grayscale figures, which has a
training set of 60,000 examples and a test set of 10,000 examples.

• stl10 (Coates et al., 2011): a 10-classes 96x96 color figure dataset, which has 500 training images
and 800 test images per class. The dataset is inspired by the cifar-10 (Krizhevsky et al., 2009) but
with some modifications.

• cifar10 (Krizhevsky et al., 2009): a 10-classes 32x32 color figure dataset, which has 5,000 training
images and 1,000 test images per class.

• mrpc (Dolan & Brockett, 2005): the Microsoft Research Paraphrase Corpus, which consists of
5.8k sentence pairs that were automatically extracted from online news sources. The sentence
pairs have been annotated by human raters to indicate whether the sentences within each pair are
semantically equivalent.

• qqp (Quora): the Quora Question Pairs dataset, which consists of over 400,000 pairs of questions.
Each question pair is annotated with a binary value indicating whether the two questions are
paraphrases of each other.

As for the pre-trained models, we used 4 ImageNet pre-trained models available from Py-
Torch (Paszke et al., 2019) (i.e., ResNet18, ResNet152, MobileNet V2, and ViT) and a pre-trained
NLP models RoBerta (Camacho-collados et al., 2022) and LLaMA-7B (Touvron et al., 2023) from
HuggingFace (Wolf et al., 2020) which trained on 124M tweets from January 2018 to December
2021, and finetuned for sentiment analysis with the TweetEval benchmark (Barbieri et al., 2020).
It can be found that among the downstream tasks, stl10, mrpc and qqp are relatively close to the
upstream task, and usps and mnist have a certain correlation with the upstream task. We selected
downstream datasets with varying degrees of relevance to the upstream task, to better analyze the
performance of the proposed method in different scenarios.

C DETAILS OF OVERALL EXPERIMENTS

C.1 EXPERIMENT SETTINGS

In the overall experiment, we compared 5 single optimizer methods (i.e., SGD (Robbins & Monro,
1951), SGDM (Sutskever et al., 2013), Adagrad (Duchi et al., 2011), RMSProp (Graves, 2013)
and Adam (Kingma & Ba, 2014)), 3 hybrid methods (i.e., SWATS (Keskar & Socher, 2017),
Padam (Chen et al., 2018), and AdaBound (Luo et al., 2019)), and the proposed IOMT. The sin-
gle methods are all from the PyTorch implementation, and except for the learning rate being set in
[0.1,0.01,0.001] and the epoch number being set to 100, the other hyperparameters are set to the
default values in PyTorch. Additionally, for the three hybrid methods, we installed and used the
original implementations from the authors via Github and PyPI. The hyperparameter settings were
kept at their defaults, except for the epoch number, which was adjusted to be consistent with the
other methods. In addition, all the experiments in this paper are conducted 3 times with different
random seeds to avoid randomness.

C.2 MORE EXPERIMENTAL RESULTS

In addition to the results in Section 5.1, we also conducted more experiments to analyze the charac-
teristics of IOMT, and the results are presented in this section.

We first compared IOMT with additional baselines, including various optimizers (i.e.,
ASGD (Polyak & Juditsky, 1992), AdamW (Loshchilov & Hutter, 2019), Nadam (Dozat), and
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Adamax (Kingma & Ba, 2017)) and training with learning rate schedulers (i.e., StepLR and
CosineAnnealingLR in PyTorch). The results of these experiments are shown in Table 3, where
we retained only the best results for training with a scheduler, specifically those obtained using
SGDM. IOMT consistently achieved the highest test accuracy among all the methods evaluated.

Table 4: Test accuracy (%) of the full training with more baselines.

ASGD AdamW Ndam Adamax SGDM stepLR cosLR ours

usps 95.83 95.62 95.32 96.06 95.83 91.31 95.80 96.81
mnist 99.25 98.97 99.18 99.32 99.47 94.72 99.46 99.51

Additionally, we also conducted experiments using a complex imbalanced dataset ImageNet-
A (Hendrycks et al., 2021), with the results displayed in Table 5. IOMT’s dynamic adaptation
to critical saddle points enhances performance on complex problems, resulting in over a 2% im-
provement in top-1 accuracy.

Table 5: Test accuracy (%) of the full training on ImageNet-A dataset.

SGD SGDM Adagrad RMSprop Adam SWATS Padam AdaBound ours

acc@1 15.24 16.19 5.20 4.13 3.53 3.68 16.31 4.33 18.47
acc@3 30.74 31.20 13.12 10.42 9.87 8.94 31.76 11.23 33.83
acc@5 38.29 39.68 17.49 17.52 13.83 12.55 40.01 15.46 41.32

In addition to the results presented in Table 2, we also conducted more PEFT experiments on differ-
ent models. Table 6 shows the experimental results. IOMT achieves superior test accuracy across
more models and tasks.

Table 6: The testAcc. (%) and tuning time (sec.) for the vanilla method and our IOMT under the
head fine-tuning. The time of IOMT includes the tuning time and the transferability estimation time.

task usps mnist stl10
model method testAcc. (%) time (sec.) testAcc. (%) time (sec.) testAcc. (%) time (sec.)

R
es

N
et

18

SGDM 68.86±0.71 534 71.59±1.88 4443 91.87±1.27 18551
Adam 66.04±0.11 543 71.16±1.46 4876 91.02±1.87 14909
SWATS 68.55±0.51 453 73.27±0.38 4651 92.02±1.86 14285
Padam 65.32±1.20 505 70.41±0.52 4743 92.36±0.36 19919
AdaBound 67.80±0.27 568 72.66±0.31 4944 92.23±1.37 34858
ours 70.64±0.80 527+4 74.79±3.38 4801+6 93.56±0.41 13240+25

R
es

N
et

15
2

SGDM 72.27±0.12 4443 77.54±1.02 7437 96.66±0.32 78232
Adam 71.73±1.26 4876 77.64±1.72 7636 96.11±0.32 48541
SWATS 71.82±0.27 5121 78.47±0.18 9211 96.66±0.51 115560
Padam 72.31±0.69 5594 76.18±1.17 8878 96.51±0.39 107856
AdaBound 72.94±1.33 4508 78.33±0.67 12934 95.44±2.47 152592
ours 74.36±0.41 5001+6 79.60±0.60 7637+8 97.60±0.28 44381+68

M
ob

ile
N

et
v2 SGDM 91.28±0.39 18551 93.74±0.77 50294 92.14±0.71 11464

Adam 89.86±0.22 12237 93.82±0.11 55024 91.31±0.71 15208
SWATS 90.68±0.25 17921 93.90±0.28 57655 92.77±0.27 12971
Padam 90.69±0.67 18940 92.71±0.22 51656 91.69±0.29 12941
AdaBound 91.36±0.37 17328 93.67±0.94 46955 91.39±0.45 24367
ours 92.32±0.39 13240+8 94.65±0.06 56121+11 93.28±0.79 14972+70

D DETAILS OF INDEPENDENT EXPERIMENTS

The selection of optimizer switch strategy. Compared to switching optimizers with simple strate-
gies, IOMT employs the transferability assessment ωt and variance halving in its acquisition func-
tion. To estimate the effectiveness of our design, we compared IOMT with two simple strategies
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(random switch “random” and periodic replacement “cyclical”) and two ablation versions (without
transferability assessment “w/o ωt” and without variance halving “w/o halve”). The experimental
result in Table 7 shows that simple random or periodic switching fails to produce high test accuracy.
In addition, the usage of transferability assessment and variance halving both effectively enhance
the adaptability of the current task, resulting in improved accuracy (up to 2%) and lower variance.
Additionally, we also compared IOMT with these strategies under other models (i.e., ResNet152
“RN152” and MobileNet V2 “MN”), as shown in Figure 8 and Figure 9

Table 7: Experimental results for different switch strategies under full training on ResNet18.

method usps mnist
trainAcc. (%) testAcc. (%) time (sec.) trainAcc. (%) testAcc. (%) time (sec.)

random 98.36±2.22 94.27±1.41 225 98.91±0.39 98.33±0.46 1916
cyclical 97.38±1.63 92.88±1.94 223 99.49±0.20 98.94±0.25 1914
w/o ωt 99.55±0.27 95.82±0.42 205 99.72±0.09 99.25±0.07 2101
w/o halve 99.54±0.22 95.70±0.35 226 99.67±0.21 99.19±0.08 2095
ours 99.67±0.19 96.51±0.08 227 99.85±0.17 99.48±0.03 1965

Table 8: The independent experimental re-
sult for transferability assessment.

metric w/o ωt with ωt

R
N

15
2 trainAcc. (%) 80.47 81.10

testAcc. (%) 72.6 75.29
time (sec.) 3531 3347+9

M
N

trainAcc. (%) 98.38 98.42
testAcc. (%) 91.57 91.93
time (sec.) 26084 23271+8

Table 9: The independent experimental result for dif-
ferent optimizer switching strategies.

metric random cyclical ours

R
N

15
2 trainAcc. (%) 76.56 77.79 81.10

testAcc. (%) 71.49 71.95 75.29
time (sec.) 3271 3299 3347+9

M
N

trainAcc. (%) 97.58 98.01 98.42
testAcc. (%) 90.33 90.73 91.93
time (sec.) 24997 23712 23271+8

The initial selection method. We compared the impact of using random selection and weighted
selection during the initial phase on subsequent training. In the experiments, we set the initial phase
to 20 epochs and used a switch step size of τ = 25.

The model compression technique. We compared the impact of using other compression tech-
niques within IOMT on the results, as shown in Table 10.

1st iter 10ms

(a) start at (0,1.5) with lr=0.01 (b) start at (-1,1.5) with lr=0.01

(c) start at (-1.5,2) with lr=0.01 (d) start at (-1.5,2) with lr=0.02

1st iter 10ms

1st iter 10ms 1st iter 10ms

SGD SGDM Adagrad RMSprop Adam
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Figure 11: Test accuracy (%) for IOMT
and baselines across various optimizer
space on usps.

The optimizer space. We examined how different candi-
date hyperparameter spaces affected the performance of
IOMT. In addition to the original HP space described in
Section 5.1 (where learning rate∈ [0.1, 0.01, 0.001]), we
systematically expanded this space by including the fol-
lowing components: (1) weight decay for SGD, (2) mo-
mentum for SGDM, (3) weight decay for Adagrad, (4)
weight decay for RMSprop, (5) alpha for RMSprop, and
(6) weight decay for Adam. The ranges for these addi-
tional hyperparameters are as follows: weight decay val-
ues ∈ [1e-2, 1e-3, 1e-4], momentum ∈ [0.5, 0.6, 0.7, 0.8,
0.9], and alpha ∈ [0.5, 0.6, 0.7, 0.8, 0.9]. Figure 11 illus-
trates the performance of the baseline methods compared
to IOMT as the search space diversifies. For the baseline
methods, we report the best accuracy achieved within the search space. Overall, IOMT demon-
strates robust performance and consistently surpasses the baseline methods, even as the number of
candidate hyperparameters increases.
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Table 10: Experimental results for different compression techqniues under full training on ResNet18.

method usps mnist
trainAcc. (%) testAcc. (%) time (sec.) trainAcc. (%) testAcc. (%) time (sec.)

RP 99.72±0.12 96.44±0.17 201 99.61±0.15 99.22±0.18 1869
UMAP 98.56±1.45 95.15±2.15 253 99.73±0.06 98.98±0.13 2182
PCA 99.58±0.13 96.34±0.25 222 99.86±0.13 99.48±0.06 1974

The hyperparameter settings. In the experiments, we set the default hyperparameter configuration
to nini = 20, τ = 25, and n components= 2. Based on the results presented in Figure 10, we have
made the following observations.

• init step nini: Thanks to the ongoing updates of the surrogate model during training in IOMT,
even a small initial step (i.e., nini = 20) can produce models with high test accuracy.

• switch step size τ : A smaller step size facilitates quicker switching of the optimizer, which en-
hances accuracy (e.g., τ = 20% of an epoch). Conversely, a larger step size makes it more
challenging to collect training data for the surrogate model, resulting in a longer switching cycle
and greater variance in the results.

• PCA components number: Selecting a small number of PCA components (for example, 2) can
often yield good performance in IOMT. On the other hand, using a larger number of components
may impair the surrogate model’s ability to learn effectively, resulting in greater variance in test
accuracy.
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