
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INTERLEAVING OPTIMIZERS FOR DNN TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimizers are crucial in deep neural network (DNN) training, affecting model
quality and convergence. Researchers have found that different optimizers often
suit different problems or different stages of a problem. Hence, some studies have
tried to combine different optimizers to better train DNNs. However, existing
methods are limited to simple optimizer switch strategies, which leads to unstable
model quality and slow convergence. In this paper, we propose a fine-grain opti-
mizer switch method called Interleaving Optimizer for Model Training (IOMT),
which automatically switches to the appropriate optimizer among different opti-
mizer types based on the training stage information, achieving faster convergence
and higher test accuracy. IOMT employs surrogate models to estimate the per-
formance of different optimizers during training and is supported by a transfer-
ability assessment to predict the training cost. By combining the transferability
assessment, performance estimation, and training process information with an ac-
quisition function, IOMT calculates the optimization gain of each optimizer and
switches the optimizer with the largest gain for the next training stage. The exper-
imental results on full training and fine-tuning demonstrate that IOMT achieves
faster convergence (e.g., 10% on the stl10 dataset) and better performance (e.g.,
3% accuracy improvement on the cifar10 dataset) compared to existing methods.

1 INTRODUCTION

SGD Adagrad Adam

rosenbrock himmelblau

griewank ackley

start

best

start

best

start

best
best

start
best

best

Figure 1: The different training
processes with various optimizers.

The choice of optimizer and its hyperparameter settings (e.g.,
the learning rate) profoundly impacts the model quality and
convergence speed in deep neural networks (DNNs) (Soy-
daner, 2020; Hassan et al., 2023). Researchers typically use a
single optimizer for the entire training (i.e., a coarse-grain op-
timizer setting) and have some empirical preferences for opti-
mizer selection, such as using SGD for head fine-tuning (Poo-
jary & Pai, 2019) and Adam for LoRA (Hu et al., 2021). How-
ever, recent studies find that different optimizers are not only
suited to specific tasks but also exhibit unique characteristics
and optimization strategies at different stages of a training (Im
et al., 2016). Figure 1 presents the optimization results of
three optimizers with varying runs (i.e., 200 times with dif-
ferent random seeds and hyperparameter settings) on four de-
terministic functions (rosenbrock, himmelblau, griewank and
ackley). Different optimizers follow distinct paths in the same
start point even with varying runs, making it difficult to defini-
tively identify the “one size fits all” optimizer.

To address such challenges of coarse-grain optimizer tuning, some studies have attempted to com-
bine the benefits of different optimizers during a single training process recently. SWATS (Keskar &
Socher, 2017) achieved better generalization by switching from Adam to SGD. Chen et al. proposed
a partially adaptive momentum estimation method, which unifies the adaptive gradient methods (i.e.,
Adam or Amsgrad) with SGD by introducing a partial adaptive parameter (Chen et al., 2018). Ad-
aBound (Luo et al., 2019) employed dynamic bounds on learning rates to achieve a gradual and
smooth transition from adaptive methods to SGD. However, these approaches remain limited in
the optimizer types (i.e., only two kinds of optimizers) and combining methods (i.e., simple switch
strategy), which leads to unstable model quality and high training cost (Sun, 2020).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Based on the idea that “different optimizers suit for different parameter states”, we propose a fine-
grain optimizer switch method called Interleaving Optimizer for Model Training (IOMT). During
the training, IOMT constructs surrogate models for different optimizers to predict their optimiza-
tion benefits under various model parameter states. To better assess the benefits of the optimizers
(i.e., potential loss reduction and convergence speed), IOMT calculates an optimization gain score
for each optimizer using the acquisition function that combines the predicted performance, a trans-
ferability assessment, and training process information. By carefully switching the optimizer with
the highest score during training, IOMT achieves faster convergence and better model quality. To
summarize, the key contributions of this paper are as follows.

• We investigate the distinct strengths and optimization directions of various optimizers across dif-
ferent tasks and parameter states. Furthermore, we demonstrate that combining different optimiz-
ers during training can help achieve higher-quality models and better convergence.

• We present a novel fine-grain optimizer switch method called Interleaving Optimizer for Model
Training (IOMT), which automatically switches suitable optimizers according to the parameter
state during training. IOMT estimates the performance of optimizers under different parameter
states by constructing Gaussian surrogate models and calculates the optimization gain using the
acquisition function. By iteratively selecting the optimizer with the highest gain score, IOMT
produces higher-quality models with faster convergence.

• We implement IOMT and conduct experiments on multiple models and tasks, including full train-
ing and partial fine-tuning. The experimental results demonstrate the advantages of our methods,
such as achieving over 1% improvement in predictive accuracy with 10% reduction in conver-
gence time, while also yielding superior generalization models. In addition, the case study and
several independent experiments are presented to further explore the performance of IOMT.

2 RELATED WORKS AND BACKGROUND

In this section, we provide the background of our work, including the optimizers and the hybrid
optimizer methods. After that, we identify the limitations of existing approaches.

SGD
NAG

Adadelta
RMSpropAdam

AdaMax

1950s 1983 1999

Momentum
Adagrad

2011 2012 2015 2016

NAdam

2024

Adan

2017

AdamW
SWATS

2018

Padam

2019

AdaBound

2020

AdaBelief

2021

AdamP
SAM

2022

Adai

the development of optimizers

Figure 2: The development of neural network optimizers.

Optimizers. The optimizers and their hyperparameters are crucial for training DNNs, as they effec-
tively adjust the model’s parameters to minimize the loss function. The traditional gradient descent
algorithm calculates the gradient of the loss function with respect to the model’s parameters across
the entire dataset and updates the parameters in the direction that reduces the loss (Ruder, 2016).
Following the gradient descent algorithm, researchers have proposed a variety of optimizers. Fig-
ure 2 illustrates a portion of the historical development of these optimizers. Instead of calculating the
gradient using the entire dataset, the Stochastic Gradient Descent (SGD) approximates the gradient
by using only a single sample or a small batch of samples (Robbins & Monro, 1951). To address
the slow convergence in ravines, the momentum technique is introduced in SGD (Sutskever et al.,
2013). The Nesterov Accelerated Gradient (NAG) further enhances convergence speed and accuracy
by incorporating a look-ahead mechanism into the update process (Qu & Li, 2019). Additionally,
researchers have explored methods for adaptive learning rates based on different model parame-
ters, such as RMSProp (Graves, 2013), Adam (Kingma & Ba, 2014), and AdamW (Loshchilov
& Hutter, 2017). Beyond these, researchers have also proposed various second-order optimizers,
such as L-BFGS (Liu & Nocedal, 1989), K-FAC (Martens & Grosse, 2015), and AdaHessian (Yao
et al., 2021)). However, due to their practical application challenges, second-order optimizers are
not further discussed in this paper. Additionally, researchers have attempted to develop new neural
network-based learned optimizers through a meta-learning approach (Andrychowicz et al., 2016;
Harrison et al., 2022).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Hybrid optimizer. Like other hyperparameter settings in training, there is no universal optimal op-
timizer in practical training (Wilson et al., 2017). For instance, SGD with momentum is commonly
used in Computer Vision (CV), while Adam is favored for training transformer models in Natural
Language Processing (NLP) (Yao et al., 2021). Some researchers have explored the performance
of different optimizers during training, noting that different optimizers follow distinct descent paths
at different saddle points (Im et al., 2016). Leveraging insights from multiple optimizers during
model training is crucial in both academic research and practical applications. While numerous
studies have investigated the adjustment of learning rates within optimizers (Gotmare et al., 2018;
He et al., 2016; Smith, 2017), research on switching between different optimizers remains limited.
Existing studies primarily focus on the basic form of switching, which involves transitioning from
one optimizer to another. For example, SWATS (Keskar & Socher, 2017) achieves favorable re-
sults by initially using Adam and then switching to SGD. Padam (Chen et al., 2018) introduces a
partial adaptive parameter to integrate Adam with SGD. Meanwhile, AdaBound (Luo et al., 2019)
implements dynamic bounds on learning rates to facilitate a gradual and smooth transition.

Limitations of current approaches. (i) Single optimizer: although researchers are continually en-
hancing existing optimizers to better adapt to model parameter states (e.g., ravines), the associated
computational cost cannot be ignored. In practical training, these complex optimizers do not neces-
sarily outperform basic SGD (Keskar & Socher, 2017). To obtain better models, researchers need
to train with different optimizers, which is a time-consuming process. Additionally, consistent op-
timizer training throughout the entire process (i.e., coarse-grain training) limits both model quality
and convergence speed. (ii) Hybrid optimizer: combining the advantages of different optimizers
can help improve model quality and convergence speed. Existing methods are limited to adjust-
ing learning rates or transitioning between two types of optimizers, neglecting the unique strengths
of different optimizers under different parameter states. Such a coarse mixing approach not only
restricts the stability of the model quality but also impacts convergence speed (Zhuang et al., 2020).

3 OUR PROPOSED METHODS: IOMT

To better utilize multiple optimizers, we propose a novel fine-grain optimizer switch method called
Interleaving Optimiezer for Model Traing (IOMT), which enables adaptive optimizer switching
during model training. In this section, we first provide a brief overview of IOMT. Then, we offer a
detailed introduction including its problem formulation, surrogate model, and acquisition function.

3.1 OVERVIEW OF OUR PROPOSED IOMT

start

A

A

SGD Adam IOMT

B

C

start
B

A

3. select optimizer 𝑜!

4. train model and
get new parameter 𝜽!"#

5. calculate performance
score 𝑠 (Equation 2)

2. compress the model
parameter state 𝜽!

6. update corresponding
surrogate model 𝑔!

1. compute transferability
weight 𝜔$ (Equation 6)

3a.
weighted
random
sample

3b. get
acquisition

score 𝑒
(Equation 7)

𝑖 < 𝑛!%!

6a. update
sampling
weight 𝜔&

(Equation 3)

6b. update
surrogate
models

yes no

PC
A

co
m

po
ne

nt
 2

PCA component 1

5 opt.
4 opt.
3 opt.
2 opt.
1 opt.

(b) trained model weights

(a) optimization path

optimizer switch cycle (𝜏 iterations)

Figure 3: The workflow of IOMT.

Figure 3 illustrates the workflow of IOMT, and
a detailed description of IOMT with its pseu-
docode is presented in Appendix A. IOMT cal-
culates the transferability weight ωt to assist in
the subsequent selection of optimizers before
the training (Step 1). During each optimizer
switch cycle (i.e., a few iterations), IOMT first
compresses the model parameters θi to get the
input of the surrogate model (Step 2). Then,
IOMT selects the appropriated optimizer oi

for the training of the current stage (Steps 3-
4). Obtaining the training losses, IOMT cal-
culates the performance score s and updates
the corresponding surrogate model gi (Steps 5-
6). By iteratively executing this process, IOMT
achieves the fine-grain optimizer switching.

For selecting the next optimizer (Step 3), IOMT
employs two methods: the weighted random
selection and recommendation based on the surrogate model. In the initial training stages, IOMT
uses the calculated score s to update the sampling weight ωr for randomly selecting optimizers
(Steps 3a and 6a). After acquiring enough training results, IOMT selects the optimizers with the
highest gain e calculated by the acquisition function for each training stage (Step 3b).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 MOTIVATION AND PROBLEM FORMULATION

1st iter 10ms

(a) start at (0,1.5) with lr=0.01 (b) start at (-1,1.5) with lr=0.01

(c) start at (-1.5,2) with lr=0.01 (d) start at (-1.5,2) with lr=0.02

1st iter 10ms

1st iter 10ms 1st iter 10ms

SGD SGDM Adagrad AdamRMSprop

Figure 4: The illustration of different optimizer
directions from the same start point.

Before introducing the details of the surro-
gate model and acquisition function in IOMT,
we first provide the hypothesis underlying our
method: “different optimizers offer distinct op-
timization directions and are suited to different
parameter states”. Figure 4 illustrates four ex-
amples of the different optimization directions,
which correspond to the subfigures in Figure 1.
It can be observed that although the five op-
timizers provide similar directions at the first
iteration, their optimization paths diverge sig-
nificantly after a few iterations. Previous stud-
ies have also observed this phenomenon, not-
ing that optimizers exhibit different optimiza-
tion directions under varying parameter states
from both theoretical and visualization perspec-
tives (Im et al., 2016). Therefore, we think that
the category of optimizers, like other hyperparameters, requires fine-grain tuning (i.e., dynamic al-
gorithm configuration) (Adriaensen et al., 2022).

Building on this assumption, IOMT attempts to propose a fine-grain optimizer switch method that
leverages the strengths of different optimizers for distinct parameter states. Let o ∈ O, λ ∈ Λ, and
t ∈ T denote the optimizer type (e.g., SGD), hyperparameter setting (e.g., learning rate as 0.1) and
the training time (e.g., 5 iterations), respectively. Then, the training process with fine-grain optimizer
switches can be defined by a list of configurations C = {c1, c2, ..., cn} where ci = (oi,λi, ti). The
objective of IOMT is to find an optimal C∗ that minimizes the following objective function:

C∗ = argmin
C∈O×Λ×T

L(θ0,M,D, C) (1)

where θ0 is the initial model parameter state, L(·) denotes the loss of the trained model M under
dataset D. Equation (1) can be interpreted as fine-grain optimizer tuning for neural network training.
When all ci ∈ C share the same settings, it aligns with the traditional training process, which is
described further in Section 4.1. For clarity, in the following sections, we set all training times
t ∈ T to a specific value τ , such as 5 iterations.

3.3 ESTIMATING OPTIMIZATION PERFORMANCE WITH SURROGATE MODELS

IOMT employs a Sequential Model-Based Optimization (SMBO) to address this fine-grain opti-
mizer tuning problem, as illustrated in Figure 5. Initially, IOMT trains the model M using random
configurations to obtain training experience (the blue block). Next, IOMT constructs surrogate mod-
els G = {g1, g2, ..., gm} for each optimizer type oi ∈ O = {o1, o2, ..., om} to guide the selection
of suitable configurations (the red block). By iteratively selecting training configurations and up-
dating surrogate models, IOMT achieves a fine-grain optimizer switch training. In this section, we
introduce IOMT’s surrogate model through its selection, input, output, and initialization.

𝜽! 𝜽" 𝜽# 𝜽$%# 𝜽&𝜽$

configuration
𝑐$ = (𝑜$, 𝜆$, 𝑡$)

SGD

PCA

pvec. surrogate modelsweighted random
Try Adam
first?

①

② ③

④

Adam
Ada.

(Adam …) (SGD …)

……

Figure 5: The training process of our proposed IOMT.

The selection of the surrogate model. IOMT utilizes the Gaussian process (GP) model (Schulz
et al., 2018) as its surrogate model for several reasons. First, compared to other machine learning

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

models, GPs can efficiently train and continuously update the surrogated model as the training pro-
gresses. Second, GPs provide uncertainty estimation for predictions (i.e., the variance information),
which is useful for guiding the optimizer selection (as detailed in Section 3.4). Thirdly, as a pow-
erful probabilistic model, GPs effectively construct the overall distribution based on known points,
offering good flexibility and interpretability.

The input of the surrogate model. At the beginning of each optimizer cycle, IOMT acquires the
input for the surrogate model VECi. The traditional surrogate model in SMBO uses the hyperparam-
eter λi as its inputs. In IOMT, the input VECi also includes a vector representing the parameter state
θi to learn the impact under different parameter states. Considering the high cost of using the full
model parameters, IOMT applies feature engineering to reduce the input size. Specifically, IOMT
uses Principal Component Analysis (PCA) (Labrı́n & Urdinez, 2020) to compress the parameters
layer by layer, lowering the training cost for the surrogate model. To further reduce the training cost
of surrogate models during training, IOMT selects only a few layers of the model as inputs for the
surrogate model (e.g., the classifier layer with a few hidden layers). In the case of partial fine-tuning,
IOMT focuses solely on the trainable parameters (e.g., the matrices A and B in LoRA).

The output of the surrogate model. In contrast to the results obtained from training to conver-
gence, IOMT emphasizes the “short-term” benefits each optimizer can achieve given the current
parameter state. Therefore, the output of IOMT’s surrogate model does not use the final loss or
accuracy, but instead employs a computed performance score s ∈ [−1, 1]. During the training
of a stage, IOMT performs multiple iterations of training, resulting in a set of losses, denoted as
l = {l1, l2, ..., lτ}, and l0 represents the loss before training. IOMT first calculates the loss vari-
ation ∆li = li−1−li

max(li,li−1)
for each iteration to get the average reduction µ∆ and variance σ∆. To

estimate the optimization performance of different configurations, IOMT combines the considera-
tions of exploration (i.e., variance σ∆) and exploitation (i.e., mean µ∆) to calculate a weighted score
s = µ∆+ασ∆. However, such a weighted score overlooks the direction of variance. For instance, in
Figure 6(a), optimizers o1 and o3 have the same mean µ∆ and variance σ∆, yet o3 achieves a lower
loss than o1 during training. A similar issue arises in the comparison between o2 with o1 and o3.
To address this problem, we incorporate boundary considerations into the performance calculation,
including the upper bound ∆UPPER = l0−max(l)

max(l0,max(l))×τ and lower bound ∆LOWER = l0−min(l)
max(l0,min(l))×τ .

Then, the final optimization performance score is defined as follows,

s = tanh(
1

3
(µ∆ +∆UPPER +∆LOWER) + ασ∆) (2)

where α represents the weight for variance.

1.2

1.4

1.6

1.8

2

-0.5 5.5

lo
ss

1

3

5

-0.5 5.5

usps
-4.3%

3.1%

5.1%

(a) optimization gain example

iter.

1

3

5

-0.5 5.5

SGD SGDM ADAM
𝑜!

1

3

5

-0.5 5.5

SGD SGDM ADAM
𝑜"

1

3

5

-0.5 5.5

SGD SGDM ADAM
𝑜#

∆$%&'(5.7 5.7 6.1

𝜇) 6.1 6.4 6.1
𝜎) 11.0 4.0 11.0

𝑠 4.5 5.1 6.5

∆*++'(−1.7 1.9 4.1

0

4

8

-0.5 5.5

mnist
-3.4%

3.5%

5.1%1

3

5

-0.5 5.5

SGD SGDM ADAM

(b) two practical examples

Figure 6: Examples of the optimization gain.

The initial weighted random selection. To ob-
tain enough training experience for the construc-
tion of surrogate models, IOMT trains with random
configurations at the start of training. Though ran-
domly selecting configurations for initial training
can yield the necessary experience, IOMT employs
a weighted random initialization method to enhance
the performance of the initial training. Specifically,
IOMT maintains a sampling weight ωr[j] ∈ [0, 1]
for each type of optimizer oj and its surrogate model
gj , presenting the probability of being sampled. This
sampling weight is initially assigned a value of 1 to
achieve a random initialization. After completing
the training with the current configuration, the sam-
pling weight for the corresponding optimizer ωj is
updated to the normalized optimization performance
score as shown in Equation (3), where ωmin repre-
sents the minimal threshold.

ωr[j] = max(
1

2
(s+ 1), ωmin). (3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.4 SELECTING OPTIMIZERS WITH ACQUISITION FUNCTION

Although the calculated optimization performance s can be used to select configurations directly,
given the volatility of the loss and the complexity of model training, IOMT considers additional
factors in the design of acquisition, including variance, transferability, and the training process. In
this section, we introduce considerations designed for the acquisition function used in IOMT.

Consideration of variance. Benefiting from the advantages of the Gaussian process model, the
surrogate model can provide both the mean score sµ and an estimate of the variance sσ . Similar
to traditional hyperparameter optimization methods, IOMT also incorporates a trade-off between
exploration and exploitation in the acquisition function as follows

ACQ(sµ, sσ) = sµ + αsσ, (4)

where α represents the weight for variance, consistent with the definition in Equation (2).

Consideration of transferability. The training cost of DNNs is closely related to the initial model
parameter state θ0. In fine-tuning, closely related upstream and downstream tasks (i.e., high trans-
ferability between the pre-trained model and the new task) are easier to train than those that are
dissimilar. Considering the idea that “a pre-trained model with lower transferability necessitates
more substantial tuning adjustments”, we use the model’s transferability ωt as the weight of the
variance in the acquisition function, as shown in the following equation,

ACQ(sµ, sσ, ωt) = sµ + (1− ωt)sσ. (5)

The transferability ωt is calculated using two types of evaluation metrics, including performance-
based metric ωp and distribution-based metrics ωd. Firstly, the performance-based metric ωp ∈ [0, 1]
is the testing result (e.g., accuracy) which is directly tested with the pre-trained model without deep
refining. Meanwhile, IOMT also uses some feature-based metrics, which analyze the distribution
of the output vectors or labels, to estimate the model’s transferability, including LogME (You et al.,
2021) and Leep (Nguyen et al., 2020). Equation (6) presents the definition of transferability weight.

ωt = βωp + (1− β)
1

k

k∑
i=1

sigmoid(ωi
d). (6)

where ωi
d represents k distribution-based metrics and β represents the weight for two kinds of met-

rics. We use the sigmoid function to constrain the distribution-based metric within the range of [0, 1]
to align with the performance-based metric. Then, the weighted sum reflects the transferability of
the initial model for current tasks. A higher transferability weight indicates higher transferability,
while a lower one suggests lower transferability.

Consideration of training process. Additionally, IOMT takes into account the differing needs in
the early and later stages of training, specifically that “after the model becomes stable, smaller tuning
adjustments are needed.” As training progresses, the model continuously captures the knowledge
required for the current task, leading to a stabilization of the training loss. At the later stages of the
training, the target position on the parameter surface is constrained within a smaller range. In this
context, optimizers with larger amplitudes may disrupt the tuning process. Therefore, the proportion
of variance in the acquisition function should be reduced. Hence, we introduce a periodic halving of
the weight for variance information in IOMT as Equation (7), where i represents the current iteration
and n represents the halving period.

e = sigmoid(sµ + (1− 2−⌊i/n⌋ · ωt)sσ). (7)

4 DISCUSSION

To further introduce our proposed IOMT, we discuss its differences from the hyperparameter tuning
(HPO) and SMBO, along with its advantages and limitations in this section.

4.1 ANALYZING THE DIFFERENCES BETWEEN IOMT AND HPO

Compare with HPO. The optimizer, as one of the hyperparameters in DNNs, its automatic adjust-
ment is a form of HPO and AutoML. However, the vanilla training addresses it as a coarse-grain

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

HPO, where the hyperparameters remain fixed throughout the whole training process. The optimiza-
tion objective of such coarse-grain tuning can be formulated as below,

c∗ = argmin
c∈O×Λ×T

L(θ0,D, c) (8)

where c = (o, λ, t) represents the hyperparameter configurations (same as the defination in Sec-
tion 3.2). Compared to IOMT’s fine-grain tuning (i.e., Equation 1), the vanilla HPO restricts the
way model parameters are updated and the collaboration among different optimizers. Additionally,
though researchers have proposed hybrid methods that combine binary optimizers, these approaches
still integrate the optimizers from rules of thumb rather than performing fine-grain hyperparameter
optimization. For example, SWATS (Keskar & Socher, 2017) switches the training from Adam to
SGD based on the foundation that “Adam quickly adapts to problems in the early training phase,
while SGD promotes better generalization in the later stages”.

Compare with SMBO. IOMT adopts the idea of surrogate models and the acquisition function
in SMBO, but there are significant differences between IOMT and SMBO. First, the SMBO only
considers the impact of hyperparameters on the results, neglecting changes in the model parameter
states. When the initial parameter states differ, the performance evaluation of hyperparameters is
also different. In contrast, IOMT introduces additional parameter inputs to the surrogate model
and considers the training progress in the acquisition function to study the “short-term” gain on
different parameter states. Secondly, SMBO aims to select the best hyperparameters (i.e., coarse-
grain tuning), whereas IOMT aims to obtain the best model (i.e., fine-grain tuning). Compared to
SMBO, IOMT enables the collaboration of various hyperparameters within a single training process.

4.2 ANALYZING THE ADVANTAGES OF IOMT

start

A

A

SGD Adam IOMT

B

C

start
B

A

3. select optimizer 𝑜!

4. train model and
get new parameter 𝜽!"#

5. calculate performance
score 𝑠 (Equation 2)

2. compress the model
parameter state 𝜽!

6. update corresponding
surrogate model 𝑔!

1. compute transferability
weight 𝜔$ (Equation 6)

3a.
weighted
random
sample

3b. get
acquisition

score 𝑒
(Equation 7)

𝑖 < 𝑛!%!

6a. update
sampling
weight 𝜔&

(Equation 3)

6b. update
surrogate
models

yes no

PC
A

co
m

po
ne

nt
 2

PCA component 1

5 opt.
4 opt.
3 opt.
2 opt.
1 opt.

(b) trained model weights

(a) optimization path

Figure 7: Analyze of interleaving training.

Accuracy: IOMT achieves a DNN training with in-
terleaving optimizers, enabling collaboration among
multiple optimizers. This fine-grain optimizer tun-
ing not only integrates the optimization strategies of
different optimizers but may also yield an optimiza-
tion path (i.e., the final trained model) that a single
optimizer cannot achieve, resulting in higher accu-
racy. Figure 7(a) provides examples across three dif-
ferent functions, illustrating that IOMT can discover
optimization paths that a single optimizer cannot
achieve. Similarly, the final model weights obtained
from training for the same number of epochs on
the cifar10 dataset using different optimizers show
significant differences, as illustrated in Figure 7(b).
This hybrid approach, which employs multiple opti-
mizers, expands the search space of traditional train-
ing, leading to an improved accuracy upper bound.

Training efficiency: We analyze the time cost of IOMT using the training of ResNet18 (whose
training FLOPs tM ≈ 1.8 × 109) on the cifar10 dataset (i.e., feature dimensions D ≈ 3 × 103,
instance number N = 6× 104, and class number K = 10) with epoch number nEPOCH = 100, batch
size nBZ = 64 and switching iteration number τ = 20 as an example. For the vanilla training, the
time cost for a single epoch is tTRAIN ≈ 2×tM ×N ≈ 2×1014. Compared to vanilla training, IOMT
incurs additional time consumption due to two processes: transferability assessment before training
tEST and the updating of the surrogate model during the training process. First, the tEST includes
the computation for two distribution-based metrics (i.e., LEEP and LogME) and one performance-
based metric. Among them, the time cost for the LEEP and performance-based metrics is equivalent
to a single forward pass (Nguyen et al., 2020), while the computational complexity of LogME is
O(KD2+NKD+D3+ND2) ≈ 3×1010 (You et al., 2021). Then, the transferability assessment
time tEST ≈ tTRAIN (actually smaller in practical, e.g., tEST = tTRAIN × 1%). Second, the additional
time consumption from the updating of the surrogate model tSUR includes the PCA compression of
the selected parameters and the updating of the Gaussian process model. The time complexity of
compression and updating is O(W 2D′) and O(N3

sw), where W ≈ 104 represents the number of
selected parameters (i.e., only the last layer), D′ ≈ 100 represents the number of PCA components,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Test accuracy (%) of the full training with different optimizers.

method usps mnist stl10 cifar10
ResNet18 ViT ResNet18 ViT ResNet18 ViT ResNet18 ViT

SGD 96.10±0.24 97.46±0.70 99.29±0.03 99.50±0.04 86.94±0.49 97.83±0.22 80.73±0.43 97.53±0.03

SGDM 95.83±0.30 97.68±0.11 99.47±0.05 99.65±0.04 86.99±0.36 96.61±0.04 81.64±0.60 97.58±0.04

Adagrad 96.00±0.94 93.40±0.04 99.40±0.06 98.24±0.50 83.38±7.99 78.66±2.54 80.57±0.14 60.95±0.62

RMSprop 95.30±0.55 95.25±0.04 99.13±0.17 98.14±0.09 69.91±2.06 88.62±4.45 71.92±0.41 78.09±0.92

Adam 95.13±0.53 93.26±0.78 99.11±0.06 99.01±0.08 76.49±2.04 82.26±1.16 72.33±0.84 75.23±0.92

SWATS 95.53±0.71 94.00±1.23 99.17±0.11 98.73±0.13 79.76±2.11 88.03±0.44 75.17±0.21 66.15±4.74

Padam 96.10±0.15 97.58±0.11 99.46±0.02 99.66±0.04 85.64±0.48 90.81±0.06 81.58±0.38 96.03±0.03

AdaBound 95.02±0.17 87.64±0.84 99.25±0.06 97.54±0.13 84.48±0.42 86.33±2.39 69.27±5.02 70.91±4.35

ours 96.81±0.21 97.81±0.21 99.51±0.01 99.71±0.02 88.23±0.23 98.21±0.19 84.14±0.11 98.04±0.03

and Nsw = nEPOCH
N

τ×nBZ
≈ 5× 103 represents the total switching operations in the tuning process.

Then, we can calculate tSUR ≈ 109 ≪ tTRAIN. Since tEST is executed only once before training and
tSUR ≪ tTRAIN, the additional time in IOMT is minimal. Furthermore, thanks to its adaptability to
different parameter states, IOMT is able to achieve better convergence speed.

5 EXPERIMENTAL STUDY

To investigate the rationality of IOMT, we conducted experiments and present the experimental
results in this section. We first exhibit two overall experiments to observe the performance of IOMT
in full training and PEFT. Then, we illustrate a case study to observe the practical switching process
of IOMT during training. In addition, several independent experiments are presented to investigate
the significance of designs within IOMT.

In the experiments, we used 4 ImageNet pre-trained models available from PyTorch (Paszke et al.,
2019) (i.e., ResNet18, ResNet152, MobileNet V2, and ViT) and 2 pre-trained NLP models from
HuggingFace (Wolf et al., 2020) (i.e., RoBerta and LLaMA-7B). For the selection of datasets, we
took 4 commonly used CV datasets from PyTorch (i.e., usps, mnist, stl10, and cifar10) and 3 NLP
tasks from Hugging Face (i.e., mrpc, qqp, and wnli). In addition, the experiments were conducted
on a Linux machine with a 128-core 2.6GHz Intel(R) Xeon(R) Platinum 8358 CPU and 512GB
main memory. More details of the models and datasets used in our experiments can be found in
Appendix B.

5.1 OVERALL PERFORMANCE OF IOMT

0
10
20
30
40

0 25 50

SGD Adam SWATS AdaBound ours

1.2

1.4

1.6

1.8

2

-0.5 5.5

lo
ss

1

3

5

-0.5 5.5

usps
-4.3%

3.1%

5.1%

(a) optimization gain example

iter.

1

3

5

-0.5 5.5

SGD SGDM ADAM
𝑜!

1

3

5

-0.5 5.5

SGD SGDM ADAM
𝑜"

1

3

5

-0.5 5.5

SGD SGDM ADAM
𝑜#

∆$%&'(5.7 5.7 6.1

𝜇) 6.1 6.4 6.1
𝜎) 11.0 4.0 11.0

𝑠 4.5 5.1 6.5

∆*++'(−1.7 1.9 4.1

0

4

8

-0.5 5.5

mnist
-3.4%

3.5%

5.1%1

3

5

-0.5 5.5

SGD SGDM ADAM

(b) two practical examples

0

50

100

0 25 50
0

50

100

0 25 50

0

50

100

0 25 50
0

50

100

0 25 50

0

100

200

0 25 50

69

84

99

0 25 50
71

81

91

0 50 100

0

20

40

0 25 50

tra
in

in
g

lo
ss

te
st

 a
cc

ur
ac

y
(%

)

training epoch training epoch

usps stl10

usps stl10

Figure 8: The training loss and test accuracy
line graph.

We first compared our proposed IOMT with the
training using a single optimizer or hybrid op-
timizers under full training and PEFT. Specifi-
cally, five commonly used optimizers were tested
for single optimizer training: SGD (Robbins &
Monro, 1951), SGDM (Sutskever et al., 2013), Ada-
grad (Duchi et al., 2011), RMSProp (Graves, 2013),
and Adam (Kingma & Ba, 2014). For hybrid op-
timizer training, we included SWATS (Keskar &
Socher, 2017), Padam (Chen et al., 2018), and Ad-
aBound (Luo et al., 2019). The initial learning rate
and training epochs of each method were setting as
[0.1,0.01,0.001] and 100. For IOMT, we set the ini-
tial steps nini = 50 and training time τ = 25 itera-
tions. More details of the baselines and settings are
presented in Appendix C.

Experiments on full training. The experimental re-
sults show that the switching method proposed in
IOMT can always achieve good improvements in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

test accuracy (i.e., 1%-3%), as shown in Table 1. However, other hybrid methods often perform
worse than training with a single optimizer, especially in complex tasks (i.e., stl10 and cifar10
datasets). Additionally, compared to other methods, IOMT exhibits smaller variance, indicating
more stable performance outputs. To illustrate the convergence of IOMT, we present the training
loss and test accuracy of each method in the Figure 8. For ease of observation, the baselines with
significant fluctuations are not displayed in the figure. It can be observed that IOMT shows a faster
convergence speed compared to the vanilla method.

Experiments on PEFT. In addition to the full training, we also compared the proposed IOMT with
baselines on the PEFT that only update partial of the model parameters, including the head fine-
tuning (Poojary & Pai, 2019) in CV problems and the LoRA (Hu et al., 2021) in NLP tasks. To
analyze the convergence performance, we terminated the training when the convergence conditions
were satisfied, i.e., the change of loss is less than 1 × 10−4 in 10 consecutive epochs or the train-
ing reaches 100 epochs. Table 2 presents a partial of the experimental results, more experimental
results and setting details can be found in the Appendix C. Like its performance in full training,
IOMT achieves higher accuracy and F1 score (up to 2%) for both CV and NLP tasks. In terms of
convergence time, the end-to-end results shown in the table indicate that IOMT has a faster con-
vergence speed in PEFT (e.g., 10% faster on usps. Meanwhile, the time cost for transferability
assessment (i.e., the time indicated after “+” in the table) is much smaller than the training time,
which is consistent with the discussion in Section 4.2.

Table 2: Test accuracy (%), F1 score (%) and convergence time (sec.) of the PEFT. ViT for the CV
datasets (i.e., usps and stl10) and RoBerta for the NLP datasets (i.e., mrpc and qqp).

method usps stl10 mrpc qqp
accuracy time accuracy time accuracy F1 score accuracy F1 score

SGD 94.42±0.21 3169 97.75±0.16 275 85.21±0.35 87.21±0.32 82.13±0.52 75.19±0.82

SGDM 95.67±0.14 2397 98.37±0.10 483 85.54±0.69 86.27±0.41 83.30±0.63 75.27±0.82

Adagrad 95.37±0.21 2220 98.34±0.09 284 84.94±0.59 87.29±0.46 83.47±0.79 73.28±0.83

RMSprop 94.64±0.53 2208 97.91±0.07 568 84.09±0.76 89.24±0.74 82.09±0.63 74.09±0.92

Adam 94.47±0.49 2215 98.36±0.03 694 86.52±0.71 90.37±0.92 82.27±0.71 74.92±0.84

SWATS 95.12±0.21 2643 98.38±0.10 822 86.27±0.62 90.34±0.42 80.79±0.81 74.80±0.19

Padam 95.72±0.42 2234 98.38±0.10 598 80.64±0.32 87.07±0.82 73.04±0.91 80.93±0.83

AdaBound 95.42±0.11 2232 98.30±0.14 199 68.38±0.59 81.22±0.94 78.64±0.49 79.01±0.42

ours 96.12±0.10 2030+2 99.01±0.09 180+1 87.99±0.13 91.36±0.15 85.57±0.14 81.18±0.31

In summary, IOMT demonstrates excellent tuning performance and convergence speed across dif-
ferent training approaches, various models, and downstream tasks. The combination of model trans-
ferability analysis and optimizer switching based on parameter surface characteristics effectively
assists DNN training.

5.2 CASE STUDY FOR THE SWITCHING PROCESS OF IOMT

1
1.2
1.4
1.6
1.8

2
2.2
2.4

0 10 20 30 40 50 60
#training epoch

SGDM

tra
in

in
g

lo
ss

init

SGD

SGD SGDM IOMT switch line

A B C

Figure 9: The training loss line of the case study
with vanilla FT and IOMT.

To observe IOMT’s switching process, we con-
ducted a case study with a simple task hy-
menoptera from Kaggle and a restricted opti-
mizer space (only for SGD and SGDM). The
training loss and the optimizer switch process
are plotted in Figure 9. After the initial stages
with weighted random sampling, IOMT selects
the suitable optimizer with faster convergence
speed for training, i.e., the SGDM selected in
Figure 9. After that, the optimizer switch op-
eration occurs when a decrease in the conver-
gence speed of the optimizer (Point A) or de-
tects a local stable state (Point C). Additionally,
during tuning, IOMT may also undergo temporary switches to adjust the optimization state (Point
B). This case study demonstrates that IOMT can effectively select the appropriate optimizer based
on the model parameter state, thereby improving convergence speed and model quality.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.3 INDEPENDENT EXPERIMENTS

Additionally, we conducted several independent experiments to further analyze the effectiveness of
IOMT. In this section, we outline the main conclusions, with further details available in Appendix D.

The optimizer selection strategy. IOMT employs an optimizer selection strategy that considers
variance, transferability, and training process. Table 7 presents comparative results for different
selection strategies. Compared to random or periodic switching, IOMT achieves higher accuracy
(up to 2%) and lower variance. Additionally, the ablation experimental results indicate that the
designs for transferability assessment and variance reduction further enhance its advantages.

The initial selection method. Compared with random selection, the weighted selection in IOMT
significantly enhances the stability of the surrogate model, which reduces variability in the training
outcomes, as shown in Figure 10(a).

The model compression technique. Table 10 illustrates the effects of various feature compression
techniques on training results. For the selected tasks (i.e., usps and mnist), simple methods like
random projection and PCA outperform the more complex UMAP technique. This suggests that
basic compression techniques are adequate for training the surrogate model.

The optimizer search space. We broadened the hyperparameter space of candidate optimizers to
explore how this expanded search space affects IOMT’s performance. The experimental results
shown in Figure 11 indicate that IOMT continues to perform well in the enlarged search space.

The influence of hyperparameter setting. We also performed an experimental analysis on the
hyperparameters in IOMT, including the initial step nini, switch step size τ , and the number of PCA
components. Figure 10(b-d) presents the experimental results, demonstrating that a small initial step
(e.g., only 10 for small dataset usps), switch step size (10% of an epoch) and PCA components (e.g.,
2) can achieve good accuracy. A more detailed analysis can be found in Appendix D.

60

20

95

80
0 100

training epoch

usps

mnist

100
96.5

95.5

99.5

99.2
10 100

init step 𝑛!"!

usps

mnist

te
st

 a
cc

ur
ac

y
(%

)

va
lid

at
io

n
ac

cu
ra

cy
 (%

)

95

91
99.7

99.0

10% 100%
switch step 𝜏 = 𝑥 epoch

usps

mnist

99

95

99.3
2 10

PCA components

usps

mnist

96

99.5

(a) (b) (c) (d)

init

Figure 10: The experimental results of independent experiments.

6 CONCLUSION

The selection of optimizers and their hyperparameters plays a crucial role in deep neural network
(DNN) training. Traditionally, researchers use a single optimizer during the whole training (i.e., a
coarse-grain optimizer tuning), which limits the model quality and convergence speed. Currently,
some works attempt to leverage the advantages of different optimizers during training to achieve
higher-quality models. However, these methods are still constrained by merely adjusting the learning
rate or transitioning between two types of optimizers, overlooking the unique strengths of various
optimizers under different parameter states. To better combine the benefits of different optimiz-
ers, we introduce a fine-grain optimizer switch method called Interleaving Optimizers for Model
Training (IOMT) in this paper. Specifically, IOMT constructs surrogate models during training to
estimate the performance of different optimizers under varying model parameter states. In addition,
IOMT employs a transferability assessment to enhance the selection of optimizers. Combining the
predicted performance and transferability information with an acquisition function, IOMT gets the
estimation of optimization gain for each optimizer and switches the optimizer with the largest score
for the training stage. The experimental results on full training and PEFT demonstrate that IOMT
achieves a better model quality (e.g., 3% accuracy improvement on stl10 dataset) with faster conver-
gence (e.g., 10% on the stl10 dataset). In addition, a case study and two independent experiments
further investigate the optimizer switching process and design details of IOMT.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Steven Adriaensen, André Biedenkapp, Gresa Shala, Noor Awad, Theresa Eimer, Marius Lindauer,
and Frank Hutter. Automated dynamic algorithm configuration, 2022. URL https://arxiv.
org/abs/2205.13881.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom
Schaul, Brendan Shillingford, and Nando de Freitas. Learning to learn by gradient descent by
gradient descent, 2016. URL https://arxiv.org/abs/1606.04474.

Francesco Barbieri, Jose Camacho-Collados, Leonardo Neves, and Luis Espinosa-Anke. Tweet-
eval: Unified benchmark and comparative evaluation for tweet classification. arXiv preprint
arXiv:2010.12421, 2020.

Jose Camacho-collados, Kiamehr Rezaee, Talayeh Riahi, Asahi Ushio, Daniel Loureiro, Dimosthe-
nis Antypas, Joanne Boisson, Luis Espinosa Anke, Fangyu Liu, and Eugenio Martı́nez Cámara.
TweetNLP: Cutting-edge natural language processing for social media. In Wanxiang Che and
Ekaterina Shutova (eds.), Proceedings of the 2022 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations, pp. 38–49, Abu Dhabi, UAE, December
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-demos.5. URL
https://aclanthology.org/2022.emnlp-demos.5.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. arXiv preprint
arXiv:1806.06763, 2018.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intel-
ligence and statistics (AISTATS), pp. 215–223. JMLR Workshop and Conference Proceedings,
2011.

William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the International Workshop on Paraphrasing, 2005.

Timothy Dozat. Incorporating Nesterov Momentum into Adam. In Proceedings of the 4th Interna-
tional Conference on Learning Representations (ICLR), pp. 1–4.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research (JMLR), 12(7), 2011.

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A closer look
at deep learning heuristics: Learning rate restarts, warmup and distillation. arXiv preprint
arXiv:1810.13243, 2018.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

James Harrison, Luke Metz, and Jascha Sohl-Dickstein. A closer look at learned optimization:
Stability, robustness, and inductive biases, 2022. URL https://arxiv.org/abs/2209.
11208.

Esraa Hassan, Mahmoud Y Shams, Noha A Hikal, and Samir Elmougy. The effect of choosing
optimizer algorithms to improve computer vision tasks: a comparative study. Multimedia Tools
and Applications (MTA), 82(11):16591–16633, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), pp. 770–778, 2016.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples, 2021. URL https://arxiv.org/abs/1907.07174.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

11

https://arxiv.org/abs/2205.13881
https://arxiv.org/abs/2205.13881
https://arxiv.org/abs/1606.04474
https://aclanthology.org/2022.emnlp-demos.5
https://arxiv.org/abs/2209.11208
https://arxiv.org/abs/2209.11208
https://arxiv.org/abs/1907.07174

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan J. Hull. A database for handwritten text recognition research. IEEE Transactions on
pattern analysis and machine intelligence (TPAMI), 16(5):550–554, 1994.

Daniel Jiwoong Im, Michael Tao, and Kristin Branson. An empirical analysis of the optimization of
deep network loss surfaces. arXiv preprint arXiv:1612.04010, 2016.

Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from
adam to sgd. arXiv preprint arXiv:1712.07628, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Caterina Labrı́n and Francisco Urdinez. Principal component analysis. In R for Political Data
Science, pp. 375–393. Chapman and Hall/CRC, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528, 1989.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning (ICML), pp. 2408–2417, 2015.

Cuong Nguyen, Tal Hassner, Matthias Seeger, and Cedric Archambeau. Leep: A new measure
to evaluate transferability of learned representations. In International Conference on Machine
Learning (ICML), pp. 7294–7305. PMLR, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Neural Information Processing Systems (NeurIPS), 2019. URL
https://api.semanticscholar.org/CorpusID:202786778.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
J. Control Optim., 30(4):838–855, July 1992. ISSN 0363-0129. doi: 10.1137/0330046. URL
https://doi.org/10.1137/0330046.

Ramaprasad Poojary and Akul Pai. Comparative study of model optimization techniques in fine-
tuned cnn models. In 2019 International Conference on Electrical and Computing Technologies
and Applications (ICECTA), pp. 1–4. IEEE, 2019.

Guannan Qu and Na Li. Accelerated distributed nesterov gradient descent. IEEE Transactions on
Automatic Control, 65(6):2566–2581, 2019.

Esther Kim Quora. (2017). Question Pairs Dataset, Version 2. Retrieved May 1, 2024 from https:
//www.kaggle.com/datasets/quora/question-pairs-dataset.

12

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://api.semanticscholar.org/CorpusID:202786778
https://doi.org/10.1137/0330046
https://www.kaggle.com/datasets/quora/question-pairs-dataset
https://www.kaggle.com/datasets/quora/question-pairs-dataset

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Eric Schulz, Maarten Speekenbrink, and Andreas Krause. A tutorial on gaussian process regression:
Modelling, exploring, and exploiting functions. Journal of Mathematical Psychology, 85:1–16,
2018.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference
on applications of computer vision (WACV), pp. 464–472. IEEE, 2017.

Derya Soydaner. A comparison of optimization algorithms for deep learning. International Journal
of Pattern Recognition and Artificial Intelligence (IJPRAI), 34(13):2052013, 2020.

Ruo-Yu Sun. Optimization for deep learning: an overview. Journal of the Operations Research
Society of China, 8(2):249–294, 2020.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initializa-
tion and momentum in deep learning. In International conference on machine learning (ICML),
pp. 1139–1147. PMLR, 2013.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. ArXiv, abs/2302.13971, 2023. URL https://api.semanticscholar.
org/CorpusID:257219404.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Advances in neural information process-
ing systems (NeurIPS), 30, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-
of-the-art natural language processing, 2020.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 35(12):10665–10673, 2021.

Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. Logme: Practical assessment of pre-
trained models for transfer learning. In International Conference on Machine Learning (ICML),
pp. 12133–12143. PMLR, 2021.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in ob-
served gradients. Advances in Neural Information Processing Systems (NeurIPS), 33:18795–
18806, 2020.

A OVERALL ALGORITHM AND PSEUDOCODE OF IOMT

For ease of reading, Table 3 provides the explanations of key notations used in this paper for IOMT.

In this section, we provide an overview of IOMT with the pseudocode in Algorithm 1. For ease
of understanding, we only switch the types of optimizers in the description while keeping the hy-
perparameters and training time constant (i.e., ti = τ iterations). Before the model’s training,
IOMT first calculates the transferability weight ωt to assist in the subsequent selection of optimizers
(Line 3). Then, a randomly selected initial optimizer oj is used for model training and loss calcu-
lation (Lines 8-9). When the number of iterations meets the time constant τ , IOMT calculates the

13

https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 3: The description of notations used in IOMT.

notation description

switch step τ the number of iterations for a single switch cycle.
init step nini the number of switch cycles for the initial phase.

selection weights ωr the sample weights for the initial phase
transferability weight ωt the transferability weight which is calculated by the performance-

based metric ωt and distribution-based metric ωd

Algorithm 1: Basic framework of our proposed IOMT.

Input: Training Dataset D = {Dtrain, Dtest}, m optimizers O = {o1, ..., om}, the model for training
M with initial parameter state θ0, the init steps nini, the switch step size τ , the training epochs
nepoch

1 initialize: nt ← 0, n← 0, G ← {g1, g2, ..., gm}, ωr ← {1|1, ...,m}, j ← RandomSelect(m),
losses← [], v ← CompressModel(M,θ0)

2 /* calculate the transferability weight before the training */
3 ωt ← CalculateTransferabilityWeight(M,θ0, Dtrain) // as Equation (6)
4 /* training models with interleaving optimizers */
5 for i in [1, nepoch] do
6 for BATCH in Dtrain do
7 n← n+ 1

8 θn ← TrainModel(M,θn−1, BATCH, oj)
9 l← CalculateLoss(M,θn, BATCH), losses.append(l)

10 if n%τ = 0 then
11 s← CalculateOptimizationGain(losses) // as Equation (2)
12 gj ← UpdateSurrogateModel(gj ,v, s)
13 v ← CompressModel(M,θn)
14 // init steps with a weighted random selection
15 if nt < nini then
16 ωr[j]← UpdateSampleWeight(s) // as Equation (3)
17 j ← WeightedRandomSelect(ωr)
18 // following steps with a surrogated selection
19 else
20 j ← SurrogatedSelect(v, ωt,G,O)
21 end
22 nt ← nt + 1, losses← []
23 end
24 end
25 end

Output: the trained model M with parameter state θn

performance score s based on all losses within time ti (Line 11). Subsequently, the current opti-
mizer oj is updated by the surrogate model gj using the optimization gain s and the model features
v calculated at the end of the previous round (Lines 12-13). Based on the results from weighted
random selection or surrogate model selection, IOMT obtains the suitable optimizer for the next
training stage (Lines 14-20) and continues this process iteratively until the final training results θn

are achieved.

For the selection of the suitable optimizer, IOMT employs two types of methods: the weighted
random selection and the surrogate model selection for the following steps. In the initial training
steps (i.e., nt < τ), IOMT uses the optimization gain s to update the sampling weight ωr for
randomly select configurations for training (Lines 14-17). After obtaining enough training results
(i.e., nt ≥ τ), IOMT utilizes the trained surrogate models to select the configurations used for the
following training (Line 20). The configuration with the highest score (i.e., Equation 7) is selected
for the next training iteration.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B DATASETS AND MODELS USED IN EXPERIMENTS

In the experiments, we used 4 CV datasets from Pytorch (Paszke et al., 2019) (i.e., usps, mnist, stl10,
and cifar10) and 2 NLP datasets from Hugging Face (Wolf et al., 2020) (i.e., mrpc and qqp). The
information on these downstream tasks is as follows:

• usps (Hull, 1994): a classical digit dataset automatically scanned from envelopes by the U.S.
Postal Service containing a total of 9,298 16×16 pixel grayscale samples, which includes 10
classes of figures.

• mnist (LeCun et al., 1998): a handwritten digits dataset with 28x28 grayscale figures, which has a
training set of 60,000 examples and a test set of 10,000 examples.

• stl10 (Coates et al., 2011): a 10-classes 96x96 color figure dataset, which has 500 training images
and 800 test images per class. The dataset is inspired by the cifar-10 (Krizhevsky et al., 2009) but
with some modifications.

• cifar10 (Krizhevsky et al., 2009): a 10-classes 32x32 color figure dataset, which has 5,000 training
images and 1,000 test images per class.

• mrpc (Dolan & Brockett, 2005): the Microsoft Research Paraphrase Corpus, which consists of
5.8k sentence pairs that were automatically extracted from online news sources. The sentence
pairs have been annotated by human raters to indicate whether the sentences within each pair are
semantically equivalent.

• qqp (Quora): the Quora Question Pairs dataset, which consists of over 400,000 pairs of questions.
Each question pair is annotated with a binary value indicating whether the two questions are
paraphrases of each other.

As for the pre-trained models, we used 4 ImageNet pre-trained models available from Py-
Torch (Paszke et al., 2019) (i.e., ResNet18, ResNet152, MobileNet V2, and ViT) and a pre-trained
NLP models RoBerta (Camacho-collados et al., 2022) and LLaMA-7B (Touvron et al., 2023) from
HuggingFace (Wolf et al., 2020) which trained on 124M tweets from January 2018 to December
2021, and finetuned for sentiment analysis with the TweetEval benchmark (Barbieri et al., 2020).
It can be found that among the downstream tasks, stl10, mrpc and qqp are relatively close to the
upstream task, and usps and mnist have a certain correlation with the upstream task. We selected
downstream datasets with varying degrees of relevance to the upstream task, to better analyze the
performance of the proposed method in different scenarios.

C DETAILS OF OVERALL EXPERIMENTS

C.1 EXPERIMENT SETTINGS

In the overall experiment, we compared 5 single optimizer methods (i.e., SGD (Robbins & Monro,
1951), SGDM (Sutskever et al., 2013), Adagrad (Duchi et al., 2011), RMSProp (Graves, 2013)
and Adam (Kingma & Ba, 2014)), 3 hybrid methods (i.e., SWATS (Keskar & Socher, 2017),
Padam (Chen et al., 2018), and AdaBound (Luo et al., 2019)), and the proposed IOMT. The sin-
gle methods are all from the PyTorch implementation, and except for the learning rate being set in
[0.1,0.01,0.001] and the epoch number being set to 100, the other hyperparameters are set to the
default values in PyTorch. Additionally, for the three hybrid methods, we installed and used the
original implementations from the authors via Github and PyPI. The hyperparameter settings were
kept at their defaults, except for the epoch number, which was adjusted to be consistent with the
other methods. In addition, all the experiments in this paper are conducted 3 times with different
random seeds to avoid randomness.

C.2 MORE EXPERIMENTAL RESULTS

In addition to the results in Section 5.1, we also conducted more experiments to analyze the charac-
teristics of IOMT, and the results are presented in this section.

We first compared IOMT with additional baselines, including various optimizers (i.e.,
ASGD (Polyak & Juditsky, 1992), AdamW (Loshchilov & Hutter, 2019), Nadam (Dozat), and

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Adamax (Kingma & Ba, 2017)) and training with learning rate schedulers (i.e., StepLR and
CosineAnnealingLR in PyTorch). The results of these experiments are shown in Table 3, where
we retained only the best results for training with a scheduler, specifically those obtained using
SGDM. IOMT consistently achieved the highest test accuracy among all the methods evaluated.

Table 4: Test accuracy (%) of the full training with more baselines.

ASGD AdamW Ndam Adamax SGDM stepLR cosLR ours

usps 95.83 95.62 95.32 96.06 95.83 91.31 95.80 96.81
mnist 99.25 98.97 99.18 99.32 99.47 94.72 99.46 99.51

Additionally, we also conducted experiments using a complex imbalanced dataset ImageNet-
A (Hendrycks et al., 2021), with the results displayed in Table 5. IOMT’s dynamic adaptation
to critical saddle points enhances performance on complex problems, resulting in over a 2% im-
provement in top-1 accuracy.

Table 5: Test accuracy (%) of the full training on ImageNet-A dataset.

SGD SGDM Adagrad RMSprop Adam SWATS Padam AdaBound ours

acc@1 15.24 16.19 5.20 4.13 3.53 3.68 16.31 4.33 18.47
acc@3 30.74 31.20 13.12 10.42 9.87 8.94 31.76 11.23 33.83
acc@5 38.29 39.68 17.49 17.52 13.83 12.55 40.01 15.46 41.32

In addition to the results presented in Table 2, we also conducted more PEFT experiments on differ-
ent models. Table 6 shows the experimental results. IOMT achieves superior test accuracy across
more models and tasks.

Table 6: The testAcc. (%) and tuning time (sec.) for the vanilla method and our IOMT under the
head fine-tuning. The time of IOMT includes the tuning time and the transferability estimation time.

task usps mnist stl10
model method testAcc. (%) time (sec.) testAcc. (%) time (sec.) testAcc. (%) time (sec.)

R
es

N
et

18

SGDM 68.86±0.71 534 71.59±1.88 4443 91.87±1.27 18551
Adam 66.04±0.11 543 71.16±1.46 4876 91.02±1.87 14909
SWATS 68.55±0.51 453 73.27±0.38 4651 92.02±1.86 14285
Padam 65.32±1.20 505 70.41±0.52 4743 92.36±0.36 19919
AdaBound 67.80±0.27 568 72.66±0.31 4944 92.23±1.37 34858
ours 70.64±0.80 527+4 74.79±3.38 4801+6 93.56±0.41 13240+25

R
es

N
et

15
2

SGDM 72.27±0.12 4443 77.54±1.02 7437 96.66±0.32 78232
Adam 71.73±1.26 4876 77.64±1.72 7636 96.11±0.32 48541
SWATS 71.82±0.27 5121 78.47±0.18 9211 96.66±0.51 115560
Padam 72.31±0.69 5594 76.18±1.17 8878 96.51±0.39 107856
AdaBound 72.94±1.33 4508 78.33±0.67 12934 95.44±2.47 152592
ours 74.36±0.41 5001+6 79.60±0.60 7637+8 97.60±0.28 44381+68

M
ob

ile
N

et
v2 SGDM 91.28±0.39 18551 93.74±0.77 50294 92.14±0.71 11464

Adam 89.86±0.22 12237 93.82±0.11 55024 91.31±0.71 15208
SWATS 90.68±0.25 17921 93.90±0.28 57655 92.77±0.27 12971
Padam 90.69±0.67 18940 92.71±0.22 51656 91.69±0.29 12941
AdaBound 91.36±0.37 17328 93.67±0.94 46955 91.39±0.45 24367
ours 92.32±0.39 13240+8 94.65±0.06 56121+11 93.28±0.79 14972+70

D DETAILS OF INDEPENDENT EXPERIMENTS

The selection of optimizer switch strategy. Compared to switching optimizers with simple strate-
gies, IOMT employs the transferability assessment ωt and variance halving in its acquisition func-
tion. To estimate the effectiveness of our design, we compared IOMT with two simple strategies

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(random switch “random” and periodic replacement “cyclical”) and two ablation versions (without
transferability assessment “w/o ωt” and without variance halving “w/o halve”). The experimental
result in Table 7 shows that simple random or periodic switching fails to produce high test accuracy.
In addition, the usage of transferability assessment and variance halving both effectively enhance
the adaptability of the current task, resulting in improved accuracy (up to 2%) and lower variance.
Additionally, we also compared IOMT with these strategies under other models (i.e., ResNet152
“RN152” and MobileNet V2 “MN”), as shown in Figure 8 and Figure 9

Table 7: Experimental results for different switch strategies under full training on ResNet18.

method usps mnist
trainAcc. (%) testAcc. (%) time (sec.) trainAcc. (%) testAcc. (%) time (sec.)

random 98.36±2.22 94.27±1.41 225 98.91±0.39 98.33±0.46 1916
cyclical 97.38±1.63 92.88±1.94 223 99.49±0.20 98.94±0.25 1914
w/o ωt 99.55±0.27 95.82±0.42 205 99.72±0.09 99.25±0.07 2101
w/o halve 99.54±0.22 95.70±0.35 226 99.67±0.21 99.19±0.08 2095
ours 99.67±0.19 96.51±0.08 227 99.85±0.17 99.48±0.03 1965

Table 8: The independent experimental re-
sult for transferability assessment.

metric w/o ωt with ωt

R
N

15
2 trainAcc. (%) 80.47 81.10

testAcc. (%) 72.6 75.29
time (sec.) 3531 3347+9

M
N

trainAcc. (%) 98.38 98.42
testAcc. (%) 91.57 91.93
time (sec.) 26084 23271+8

Table 9: The independent experimental result for dif-
ferent optimizer switching strategies.

metric random cyclical ours

R
N

15
2 trainAcc. (%) 76.56 77.79 81.10

testAcc. (%) 71.49 71.95 75.29
time (sec.) 3271 3299 3347+9

M
N

trainAcc. (%) 97.58 98.01 98.42
testAcc. (%) 90.33 90.73 91.93
time (sec.) 24997 23712 23271+8

The initial selection method. We compared the impact of using random selection and weighted
selection during the initial phase on subsequent training. In the experiments, we set the initial phase
to 20 epochs and used a switch step size of τ = 25.

The model compression technique. We compared the impact of using other compression tech-
niques within IOMT on the results, as shown in Table 10.

1st iter 10ms

(a) start at (0,1.5) with lr=0.01 (b) start at (-1,1.5) with lr=0.01

(c) start at (-1.5,2) with lr=0.01 (d) start at (-1.5,2) with lr=0.02

1st iter 10ms

1st iter 10ms 1st iter 10ms

SGD SGDM Adagrad RMSprop Adam

97.4

96.2

0 6

96.8

42te
st

 a
cc

ur
ac

y
(%

)

additional HP space

baseline ours

Figure 11: Test accuracy (%) for IOMT
and baselines across various optimizer
space on usps.

The optimizer space. We examined how different candi-
date hyperparameter spaces affected the performance of
IOMT. In addition to the original HP space described in
Section 5.1 (where learning rate∈ [0.1, 0.01, 0.001]), we
systematically expanded this space by including the fol-
lowing components: (1) weight decay for SGD, (2) mo-
mentum for SGDM, (3) weight decay for Adagrad, (4)
weight decay for RMSprop, (5) alpha for RMSprop, and
(6) weight decay for Adam. The ranges for these addi-
tional hyperparameters are as follows: weight decay val-
ues ∈ [1e-2, 1e-3, 1e-4], momentum ∈ [0.5, 0.6, 0.7, 0.8,
0.9], and alpha ∈ [0.5, 0.6, 0.7, 0.8, 0.9]. Figure 11 illus-
trates the performance of the baseline methods compared
to IOMT as the search space diversifies. For the baseline
methods, we report the best accuracy achieved within the search space. Overall, IOMT demon-
strates robust performance and consistently surpasses the baseline methods, even as the number of
candidate hyperparameters increases.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 10: Experimental results for different compression techqniues under full training on ResNet18.

method usps mnist
trainAcc. (%) testAcc. (%) time (sec.) trainAcc. (%) testAcc. (%) time (sec.)

RP 99.72±0.12 96.44±0.17 201 99.61±0.15 99.22±0.18 1869
UMAP 98.56±1.45 95.15±2.15 253 99.73±0.06 98.98±0.13 2182
PCA 99.58±0.13 96.34±0.25 222 99.86±0.13 99.48±0.06 1974

The hyperparameter settings. In the experiments, we set the default hyperparameter configuration
to nini = 20, τ = 25, and n components= 2. Based on the results presented in Figure 10, we have
made the following observations.

• init step nini: Thanks to the ongoing updates of the surrogate model during training in IOMT,
even a small initial step (i.e., nini = 20) can produce models with high test accuracy.

• switch step size τ : A smaller step size facilitates quicker switching of the optimizer, which en-
hances accuracy (e.g., τ = 20% of an epoch). Conversely, a larger step size makes it more
challenging to collect training data for the surrogate model, resulting in a longer switching cycle
and greater variance in the results.

• PCA components number: Selecting a small number of PCA components (for example, 2) can
often yield good performance in IOMT. On the other hand, using a larger number of components
may impair the surrogate model’s ability to learn effectively, resulting in greater variance in test
accuracy.

18

	Introduction
	Related Works and Background
	Our Proposed Methods: IOMT
	Overview of our proposed IOMT
	Motivation and Problem Formulation
	Estimating optimization performance with surrogate models
	Selecting Optimizers with Acquisition Function

	Discussion
	Analyzing the Differences between IOMT and HPO
	Analyzing the Advantages of IOMT

	Experimental Study
	Overall Performance of IOMT
	Case study for the switching process of IOMT
	Independent Experiments

	Conclusion
	Overall Algorithm and Pseudocode of IOMT
	Datasets and Models used in Experiments
	Details of Overall Experiments
	Experiment Settings
	More Experimental Results

	Details of Independent Experiments

