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ABSTRACT

Large Language Models (LLMs) are computationally intensive, particularly dur-
ing inference. Neuron-adaptive techniques, which selectively activate neurons
in Multi-Layer Perceptron (MLP) layers, offer some speedups but suffer from
limitations in modern Transformers. These include reliance on sparse activa-
tions, incompatibility with attention layers, and the use of costly neuron masking
techniques. To address these issues, we propose the Adaptive Rank Allocation
framework and introduce the Rank and Neuron Allocator (RaNA) adapter. RaNA
adapters leverage rank adapters, which operate on linear layers by applying both
low-rank matrix decompositions and adaptive masking to efficiently allocate com-
pute without depending on activation sparsity. This enables RaNA to be generally
applied to MLPs and linear components of attention modules, while eliminating
the need for expensive maskers found in neuron-adaptive methods. Notably, when
compared to neuron adapters, RaNA improves perplexity by up to 7 points and in-
creases accuracy by up to 8 percentage-points when reducing FLOPs by ∼44%
in state-of-the-art Transformer architectures. These results position RaNA as a
robust solution for improving inference efficiency in modern Transformer archi-
tectures.

1 INTRODUCTION

As Large Language Models (LLMs) have grown in popularity and size, they have begun consuming
a non-trivial amount of compute and time for training and inference (Kim et al. (2023), Pope et al.
(2022)). Adaptive compute methods seek to speed up the inference stage of Transformers (Vaswani
et al. (2023)), the de facto LLM architecture, by identifying and avoiding redundant computations to
save I/O and floating-point operations (FLOPs). Commonly, these methods apply neuron adapters to
the Multi Layer Perceptron (MLP) layers of the Transformer architecture, which dynamically ignore
neurons depending on the input of the layer (Lee et al. (2024), Mirzadeh et al. (2023), Liu et al.
(2023) Zhang et al. (2024)). Utilizing these adapters leads to inference speedups, as the amortized
time complexity of an MLP layer reduces from O(din · dhidden) to O(din · dadapted), where din
represents the input dimension of the MLP, dhidden is the hidden dimension, and dadapted is the
average number of active neurons. For modern Transformer architectures, this results in practical
speedups at the expense of negligible model quality decrease for a sufficient amount of average
active neurons.

Unfortunately, adaptive compute methods using neuron adapters suffer from rapid performance
degradation in modern Transformer architectures (Figs. 1a, 1c). We observe this issue arises from
the limitations of the neuron-adaptive framework, which enforces dynamic neuron allocation based
on activation values. Concretely, we believe this decline is attributed to this framework’s lack of
generalization across different layer types, reliance on sparse activation functions, and costly neu-
ron masking techniques. First, neuron adapters, often tailored to MLPs, can not be directly ap-
plied to non-MLP layers, such as Query, Key, Value, and attention layers, which lack neurons.
In addition, these methods frequently depend on activation-induced sparsity, like that attained by
ReLU (Agarap (2019)), making them ineffective with non-sparse activation functions like SwiGLU
(Shazeer (2020), Zhang et al. (2024)). Further, while recent approaches like CATS (Lee et al. (2024))
or ReLUfication (Mirzadeh et al. (2023)) attempt to handle non-sparse activations, they inefficiently
compute neuron-activations before determining which neurons to exclude. This is concerning as
Transformers architectures like Llama (Touvron et al. (2023)), Gemma (Team et al. (2024)) or Mis-
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(a) Llama2-7b Accuracy v.s.
FLOPs.

(b) Llama2-7b Accuracy v.s. La-
tency.

(c) Pythia Suite Accuracy v.s.
FLOPs.

Figure 1: RaNA improves accuracy-compute tradeoff over neuron adapters. y-axis shows accu-
racy averaged over multiple downstream tasks (Sect. 5.1); for Figs. 1a and 1c, x-axis shows average
FLOPs for a forward pass with sequence length 512; for Fig. 1b x-axis shows average per-token de-
coding latency over a sequence of 492 tokens with initial context lengths ranging from 1 to 1000. We
compare RaNA-adapted models to neuron-adapted versions at various compression rates for (left)
Llama2-7b and (right) Pythia models. Notably, RaNA accuracies decay slower as compression rates
increase compared to neuron-adapters.

tral (Jiang et al. (2023)) rely on non-sparse activation functions, which makes sparsity-based neuron
adapters ineffective for them, pushing us to rely on more computationally intensive neuron adapters.

To address these gaps in the neuron-adaptive setup, we propose the Adaptive Rank Allocation frame-
work, together with the Rank and Neuron Allocator (RaNA) adapter. We note that this rank-adaptive
framework is a more powerful generalization of the neuron-adaptive one. Moreover, we develop
RaNA in this framework, which unlike neuron adapters, can be directly applied to any linear layer,
where it does not rely on activation function sparsity. In addition, when applied to modern MLP
layers with SwiGLU activations, it allows us to better distribute compute across the different linear
layers of the MLP, unlike previous neuron adapters. Concretely, we devise the Adaptive Rank Allo-
cation framework from the observation that any linear layer can be decomposed into the product of
two low-rank matrices and an adaptive router/masker, namely Linear(x) = Wx ≈ A(r(x) ⊙ Bx).
Then, RaNA is a specific adapter following this setup, where we devise specific A and B decompo-
sitions and a masker m(x) for Transformer layers layers like QKV or MLPs.

We empirically validate the rank-adaptive framework and the RaNA adapter. We demonstrate that,
similar to neuron-adaptive setups, the ranks of the AB matrix decomposition in the proposed RaNA
adapters have sparse importances, depending on the input (Figs. 2a, 2b), allowing us to dynamically
prune them. We also show that RaNA adapters attain the lowest error in MLP layers when recovering
the full MLP outputs, outperforming neuron-adaptive methods by 6.7, 18.1 and 7.4 percentage-
points on Llama2-7b, Gemma-2b and Pythia-160M respectively. Further, we show the effectiveness
of RaNA in modern Transformer architectures by applying it to Llama (Touvron et al. (2023)) and
Gemma (Team et al. (2024)). Notably, RaNA closes the gap between full-model and adapted-model
performance, as it outperforms the state-of-the-art method CATS (Lee et al. (2024)) on multiple
compression rates (Tabs. 1, 2). Concretely, at a ∼45% FLOP compression rate, RaNA achieves
an average improvement of 4 perplexity-points and 8 percentage-points in benchmark accuracy for
Llama2-7b, while for Gemma-2b, it improves perplexity by 7 points and accuracy by 5 percentage-
points, compared to prior adapters. Finally, to assess the effectiveness of RaNA’s applicability to
different types of layers and activations, we apply it to the Pythia suite (Biderman et al. (2023)),
a set of varied-sized GPTNeox (Black et al. (2022)) models. Here we also observe that, when
comparing their performance to conventional neuron-adaptive methods, it consistently attains better
perplexity and downstream task performance (Figs. 1c, 4).

2 RELATED WORK AND PRELIMINARIES

Here we discuss key work in neuron-adaptive methods and examine neuron adapters for Transform-
ers with sparse activations and with modern non-sparse activations.

Neuron-adaptive framework: Adaptive compute methods (Han et al. (2021)) are a popular ap-
proach to speed up inference in Transformer (Vaswani et al. (2023)) architectures. A concrete
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instance of them are neuron adapters, which dynamically allocate neurons of the MLP layers to
different inputs using a masker. These neuron-adaptive methods for Transformers stem from the
observation that neuron importance is sparse, and while Transformers allocate equal resources to all
tokens, some tokens require less compute based on context (Li et al. (2023b)). Additionally, redun-
dant computations are common due to model over-parameterization (Frankle & Carbin (2019)).

Nevertheless, the neuron-adaptive framework is constraining, as it only allows us to dynamically
allocate neurons, which are only present on MLP layers of Transformers. Additionally, neuron
adapters do not generalize well to different activation functions in the MLP layers (Zhang et al.
(2024)). Hence, previous work has focused on creating adapters specific to certain activation func-
tions, namely sparse activation functions and non-sparse activation functions.

Neuron adapters for sparse activations: In the case of Transformers leveraging sparse activation
functions like ReLU (Agarap (2019)), neuron adapters rely on the abundance of 0-valued neuron
activations (Li et al. (2023a)). These adapters commonly work by using a small MLP masker that
predicts whether a neuron is going to be active for a given input, then only computing that neuron if
its prediction is positive. Concretely, consider a conventional MLP layer with a ReLU activation:

MLPReLU (x) = Wdown(ReLU(Wupx))) (1)

where Wup ∈ Rd,h and Wdown ∈ Rh,d are the Up-Projection and Down-Projection matrices of the
MLP layer. Then, the neuron adapted version of this MLP follows:

MLP′
ReLU (x) = Wdown(m(x)⊙ ReLU(Wupx)) (2)

where m(x) : R → {0, 1}h is the binary masker, which often is parameterized by a small MLP.
While effective in these type of models, given their strong reliance on the sparsity of neuron activa-
tions, this adapters have unfortunately shown poor performance when applied to Transformers with
non-sparse activations (Zhang et al. (2024)).

Neuron adapters for non-sparse activations: Modern Transformer architectures, like those used
in popular models like Llama (Touvron et al. (2023)), Gemma (Team et al. (2024)), Mistral (Jiang
et al. (2023)) or GPTNeox (Black et al. (2022)), leverage non sparse activation functions like GeLU
(Hendrycks & Gimpel (2023)) for GPTNeox and the more popular SwiGLU (Shazeer (2020)) for
the others. Concretely, an MLP layer with a SwiGLU activation follows:

MLPSwiGLU (x) = Wdown(SiLU(Wgatex)⊙Wupx) (3)

where Wup ∈ Rd,h, Wdown ∈ Rh,d and Wgate ∈ Rd,h are the Up-Projection, Down-Projection and
Gate-Projection matrices of the MLP layer.

Recent work has sought to improve the performance of conventional neuron adapters on non-sparse
activations by developing methods specifically tailored towards them, such as CATS (Lee et al.
(2024)) and ReLUfication (Mirzadeh et al. (2023)). While these approaches have demonstrated
good performance in SwiGLU-based Transformers, they suffer from inefficiencies. The inefficiency
stems from their reliance on calculating exact activation values prior to applying thresholding. For
instance, CATS adapters compute the entire output of the Gate-Projection layer before selecting
which neurons to retain. At large compression rates, this enforces a sub-optimal FLOP allocation
imbalance across the Up, Down and Gate projection layers of the MLP, where the Gate-Projection
layer receives most of the FLOPs.

3 ADAPTIVE RANK ALLOCATION FRAMEWORK

We begin by presenting the Adaptive Rank Allocation Framework, which addresses the shortcom-
ings of the neuron-adaptive approach, specifically its limitation to neuron adaptation and its frequent
reliance on neuron sparsity. Adaptive compute frameworks generally involve two key parts: dynam-
ically allocated components and a function to determine their use based on the input. We make the
observation that such an adaptive compute setup can be applied at the granularity of linear layers,
where the dynamically allocated components are the ranks of a weight matrix, while the function
that determines which ranks are leveraged by a given input is a router or masker. This is the main
observation that motivates our Adaptive Rank Allocation Framework, which can be applied to arbi-
trary linear layers without relying on activation function sparsity.
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Concretely, consider any linear layer Linear(x) = Wx, where W ∈ Ro,i. Under the Adaptive Rank
Allocation framework, we replace this linear layer by:

Linear’(x) = A(r(x)⊙Bx) (4)

This simple setup has two parts. First, we have a set of static matrices A and B, where A ∈ Ro,d

and B ∈ Rd,i. Second, we have the adaptive component r(x), where r : Ri → Rd. Ideally we want
r(x) to be sparse, as that allows us to save I/O and floating-point operations. If r(x) is sparse, our
rank adapted layer from Eqn. 4 becomes essentially a low-rank matrix multiplication, where the the
low-rank matrix (A diag(r(x)) B) has rank= ∥r(x)∥0. Notably, the FLOPs consumed by such a
matrix multiplication are proportional to the rank of such matrix, hence why sparsity is desirable.

Generalization of Neuron-Adaptive Methods: We note that the Adaptive Rank Allocation frame-
work is a strict generalization of the neuron-adaptive one, where neuron adapters can be viewed as a
specific instance of rank adapters with appropriate choices of A, B and r(x). In Prop. 1, we illustrate
this for ReLU-based MLPs, but we note the proof easily extends to other activation functions:
Proposition 1. Consider an MLP(x)ReLU layer (Eqn. 1) and its neuron adapted version
MLP′(x)ReLU (Eqn. 2). Then, there exists a rank adapted MLP∗

ReLU (i.e. an MLP whose linear
layers have been rank adapted) s.t. MLP∗

ReLU (x) = MLP′(x)ReLU for all x ∈ Ri.

Proof. Let MLP∗
ReLU (x) = Adown(rdown(x)⊙Bdown(ReLU(Aup(rup(x)⊙Bupx)))).

Then, by setting Adown := Wdown, Bdown := I, Aup := I, Bup := Wup, rdown := mdown, and
rup := 1, it follows that:

MLP∗
ReLU (x) = Wdown(m2(x)⊙ I(ReLU(I(1⊙Wupx))))

= Wdown(m2(x)⊙ ReLU(Wupx)) = MLP′
ReLU (x).

In summary, this result shows that rank adaptation can generalize neuron adaptation, highlighting
the increased versatility and applicability of the Adaptive Rank Allocation framework.

4 RANK AND NEURON ALLOCATOR ADAPTERS

Here, we introduce the Rank and Neuron Allocator (RaNA) adapters, which serve as specific in-
stances of the Adaptive Rank Allocation framework. At their core, RaNA adapters leverage Linear
Layer Rank adapters that operate at the granularity of linear layers, which we also introduce in this
section. Concretely, we begin in Sect. 4.1 by diving into the Linear Layer Rank adapter, a versa-
tile adapter which employs approximately optimal A and B matrices, along with a dynamic rank
allocation mechanism, adjusted based on the input distribution. As stand-alone adapters, while ef-
fective in QKV, Up-Projection, and Gate-Projection layers, Linear Layer Rank adapters struggle in
Down-Projection layers. To overcome this limitation, we propose RaNA adapters.

RaNA adapters operate at the level of QKV and MLP layers, combining Linear Layer Rank adapters
with neuron-thresholding techniques, a setup that has demonstrated the best empirical performance
when adaptively compressing layers (Figs. 3a, 3b, 3c, 3d). Notably, these adapters address the
inefficiencies of previous non-sparse neuron adapters by avoiding the costly exact computation of
specific linear layer outputs prior to applying neuron thresholding. Furthermore, they empirically
demonstrate their effectiveness in model accuracy and perplexity compared to other adapters (Tabs.
1, 2).

4.1 LINEAR LAYER RANK ADAPTERS

The Adaptive Rank Allocation framework, unlike the neuron-adaptive one, does not impose limi-
tations on the A or B matrices or the routing function r(x) when adapting a linear layer through
Linear′(x) = A(m(x) ⊙ Bx) ≈ Wx . We leverage these properties to introduce the Linear Layer
Rank Adapters. Here, we want to find the optimal A, B and r(x) that, in expectation over the input
distribution, best recover the original output of the linear layer. Formally, we want:

argminA,B,rEx(∥Wx−A(r(x)⊙Bx)∥2F ) (5)

Evidently, optimally finding A, B and r is non-trivial. Hence, we choose to address this problem by
breaking it into two steps. First, we propose a set of A and B matrices that solve a similar problem
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to Eqn. 5, which ignores the routing function. Then, with our election of A and B matrices, we
propose an optimal input-dependent masker, which serves as a router, for our Linear Layer Rank
Adapter.

A and B matrices: First, we devise a set of A and B matrices for our rank-adapted layer
Linear’(x) = A(r(x)⊙Bx). We start off by relaxing the optimization problem from Eqn. 5 so that
we can obtain good candidate A and B matrices analytically. Concretely, we remove the router from
the picture and frame the problem as finding fixed low-rank matrices Ar and Br, where r denotes
the rank of the matrices, that minimize our objective. Namely, the relaxed objective becomes:

argminAr,Br
Ex(∥Wx−ArBrx∥2F ) (6)

Note that this relaxed problem is not only convenient, but also a decent choice, as it is equivalent to
solving the original problem from Eqn. 5 with a fixed router r(x) that always outputs 1’s for the first
r elements of the output vector and 0’s for the rest. In practice, we do not have access to the actual
distribution of the inputs x, hence we reframe the problem to its empirical version:

argminAr,Br
∥WX −ArBrX∥2F (7)

where each column of X ∈ Ri,k, namely xi, is a hidden-state input that our linear layer observes
in practice. Notably, we used k = 32,000 samples in our experiments, as we empirically found that
going beyond that did not impact our objective.

We can then analytically find the optimal Ar and Br matrices that solve this problem.
Theorem 1. Let Ur ∈ Ro,r be the first r singular vectors of WX , then by the Eckart-Young theorem
(Eckart & Young (1936)), the Ar and Br that optimize the objective from Eqn. 7 are:

Ar := Ur, Br := UT
r W.

The proof for Theorem 1 is provided in Appendix A.1. Therefore, we pick our A,B matrices as
A := U , B := UTW . Next, we demonstrate how to pick a masker/router to effectively leverage
these matrices in an input-adaptive manner.

B-Masker: With our A = U and B = UTW matrices at hand, we devise a sparse router r(x)
function that minimizes the adapter’s error (Eqn. 5). For simplicity, we opt for a binary r(x), i.e. a
masker r(x) = m(x) : Ri → {0, 1}i that allows us to allocate different ranks (and hence different
amount of FLOPs) to different input hidden states. Formally, we want m(x) that optimizes:

argminm(x)

k∑
i

∥Wxi − U(m(xi)⊙ UTWxi)∥2F , s.t. Ex[∥m(x)∥0] = r

≡ argmaxm(x)

k∑
i

∥m(xi)⊙ UTWxi∥2F , s.t. Ex[∥m(x)∥0] = r

(8)

The constraint in Eqn. 8 enforces that expected rank of the matrix W ′ = U diag(m(x)) UTW is r.
This constraint directly controls the FLOPs that the rank-adaptive model will consume on average.

Observe that, for any hidden state x, we can compute the contribution of each rank in our adapter
to the output of the original linear layer. To do this, we examine the contribution of each column
vector in A = U (equivalently, the contribution of each rank of A B) to the output o = Linear(x) ≈
A(m(x) ⊙ Bx). Specifically, we note that the contribution to the Frobenius norm ||o||2F from the
i-th column vector of A, ui, is given by (Bx)2i , due to the orthogonality of the columns in A = U .
This allows us to identify the important ranks of our A, B decomposition for a given input x and
create a sparse masker m(x) for it (Figs. 2a, 2b), which just keeps the most descriptive ranks. We
call this the B-Masker, as it uses the B matrix to select the most important ranks for x. Formally:

m(x)i = B-masker(x)i =
{
1 if (Bx)2i ≥ t,

0 otherwise.
(9)

In Eqn. 9, the threshold t is picked so that, on average, a desired amount of FLOPs is consumed
in our adapted layer. We note that the B-masker is efficient to use when the matrix from our linear
layer W ∈ R(o,i) has an output dimension o that is bigger than its inner dimension i, as this makes
computing (Bx)2 cheap. Hence, it is convenient to use this masker in practice for the Up-Projection
and Gate-Projection layers of our models, where o ≈ 4i, or the QKV layers, where o ≈ 3i.
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MLP-Sigmoid Masker: An alternative option to the B-masker, which has the potential to be more
efficient, and that works for any linear layer, is a small MLP masker with a Sigmoid activation
function, just like that used commonly in the neuron-adaptive literature (Liu et al. (2023), Zhang
et al. (2024)). Concretely, we use the parametrization m(x) = σ(CDx) where C ∈ Rr,r′ , D ∈
Rr′,i, i is the dimension of the hidden states x, r′ is the inner dimension of the predictive masker,
and r is the rank of the matrix W from the linear layer the masker corresponds to. In our experiments,
we train this masker on a binary cross-entropy loss to match the output of the B-masker.

4.2 FUSING RANK ADAPTERS AND NEURON THRESHOLDING FOR RANA

Building on the insights from the previous section, we observe that Linear Layer Rank Adapters
independently perform well for QKV, Up-Projection, and Gate-Projection layers due to their use of
tall and narrow matrices. However, they may encounter difficulties with Down-Projection layers,
which involve short and wide matrices. To overcome this limitation, RaNA combines Linear Layer
Rank Adapters with neuron-thresholding adapters, specifically for the Down-Projection layers. Fur-
ther, RaNA implements a FLOP allocation procedure across the various components of the adapter,
addressing the imbalance found in previous neuron-adaptive methods, where FLOP distribution is
heavily skewed toward specific components.

RaNA in QKV layers: For the QKV layers, we just replace the linear QKV layers with Linear
Layer Rank Adapters, namely:

QKV(x) = Wx ≈ QKV′(x) = A(m(x)⊙Bx) (10)
where m(x) is a B-masker, as we find it outperforms the MLP-Sigmoid masker (Fig. 3d).

RaNA in MLP layers: For MLP layers, we demonstrate how RaNA is applied to SwiGLU-based
MLPs and note that its application to MLPs with other activation functions follows the same ap-
proach, excluding the Gate-Projection adapter. Namely, we use Linear Layer Rank Adapters for the
Up-Projection and Gate-Projection matrices and use neuron-thresholding for the Down-Projection
matrices. Formally, our RaNA adapted MLP’(x) is described by the following:

MLP’(x) = Down’(SiLU(Gate’(x))⊙ Up’(x)))
where Up’(x) = Aup(mup(x)⊙Bupx),

Gate’(x) = Agate(mgate(x)⊙Bgatex),

Down’(x) = Wdown(mdown(x)⊙ x)

(11)

where mup(x) and mgate(x) are B-maskers and mdown(x) is a simple neuron thresholding masker:

m(x)i = neuron-thresholding(x)i =
{
1 if |xi| ⊙ ||W down

i,: ||F ≥ t,

0 otherwise.
(12)

RaNA FLOP Allocation: Prior neuron-adapters for non-sparse activation functions are forced to
ineffectively allocate FLOPs across their components (Sect. 2). On the other hand, RaNA’s flexi-
bility permits us to freely distribute FLOPs across the adapter components, therefore we propose a
FLOP allocation strategy specifically for RaNA. At the Linear Layer Rank Adapter level, we per-
form a simple line search to balance FLOPs between the B-Masker and the target sparsity, selecting
the configuration that minimizes the output error with respect to the original linear layer. Similarly,
at the MLP level, we conduct a grid search to distribute FLOPs among the Up’, Gate’, and Down’
layers, with each component further balancing FLOPs between its masker and target sparsity. We
then retain the configuration that achieves the greatest error reduction in the MLP output.

Please refer to Appendix A.2 for a pseudocode implementation of RaNA.

5 EXPERIMENTS AND RESULTS

In this section, we present experiments and results for the following claims:
1. The contribution of ranks in Linear Layer Rank Adapters is sparse. Just like this is a

desirable property for neuron-adaptive approaches to work well, it is also one for the Linear
Layer Rank Adapters, which we use in RaNA. Notably, the distribution of the contributions
of each rank in the AB decomposition (to the recovery of the original output of the linear
layer) of our rank adapters is concentrated at 0, and is heavy tailed (Figs. 2a, 2b). This
validates Linear Layer Rank adapters and practically means that we can effectively mask
out many of the ranks with near-0 contributions.
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2. RaNA adapters attain lowest errors on Transformer layers when replicating original
layer outputs. When compared to other adapters, RaNA attains the lowest mean squared
error when comparing its outputs to those of the original layers (Figs. 3a, 3b, 3c, 3d). Con-
cretely, we conduct a study of the error in the Llama2-7b, Gemma-2b and Pythia-160M
models using multiple adaptive methods, targeting a ∼50% reduction in the FLOPs of the
compressed layers. Notably, RaNA achieves average errors of 10.5% and 2.18%, surpass-
ing the 17.22% and 20.31% attained by CATS on MLP layers for Llama2-7b and Gemma-
2b respectively. Likewise, in Pythia-160M, RaNA achieves average errors of 7.87% and
0.36% in MLP and QKV layers respectively, outperforming the 15.23% and 1.29% errors
obtained with neuron adapters and SVD-based adapters.

3. RaNA outperforms neuron adapters in perplexity and downstream tasks. Using
RaNA, we attain lower perplexity and higher average accuracy on multiple NLP bench-
marks in modern Transformers compared to neuron-adapters. Notably, RaNA outperforms
the state-of-the art CATS adapter across multiple FLOP compression levels (Tabs. 1, 2, Fig.
1a) for SwiGLU based architectures. In the case of Llama2-7b, we achieve an improvement
of 8 percentage-points in accuracy and 4 perplexity-points on a 42% model compression
rate. Similarly, for Gemma-2b, we attain an improvement of 5 percentage-points in accu-
racy and 7 perplexity-points on a 45% model compression rate. We also show that RaNA
not only preserves a theoretical advantage in the accuracy-FLOP trade-off but also practi-
cally in the accuracy-latency trade-off (Fig. 1b). Further, RaNA outperforms conventional
neuron-adapters in GeLU-based Pythia models across multiple model sizes and compres-
sion levels (Figs. 1c, 4).

5.1 EXPERIMENTAL SETUP

Here we describe the settings under which we run our experiments.

Models and Adapters: We conduct experiments using Llama2-7b, Gemma-2b, and multiple GPT-
Neox models from the Pythia suite. In Sect. 5.3, we evaluate the following adapters, which are
mainly implemented in PyTorch.

• RaNA: Our proposed adapter from Sect. 4.2.
• CATS: A state-of-the-art adapter for MLP layers leveraging SwiGLU activations. We refer

to their work (Lee et al. (2024)) for more details.
• SliceGPT: A recent structured pruning method, which compresses linear layers by rotating

and slicing them, including MLP and QKV layers. We refer to their work (Ashkboos et al.
(2024)) for more details.

• Neuron-Adaptive: A standard neuron adapter for MLP layers with a small MLP masker,
such as that leveraged by Zhang et al. (2024) or Liu et al. (2023), using 6% of MLP FLOPs
for the masker, as done by Zhang et al. (2024).

• Linear-Layer-Rank-Adapters with MLP maskers (LLRA): An adapter that applies Linear
Layer Rank adapters leveraging an MLP-based masker (Sect. 4.1) to all linear layers in
QKV and MLPs.

For output error assessments in Sect. 5.3, we additionally use a fixed low-rank singular value de-
composition (SVD) comparison.

Datasets: We use the RedPajama (Computer (2023)) dataset for Llama2-7b and Gemma-2b, and
the Pile (Gao et al. (2020)) dataset for Pythia models when evaluating rank contribution sparsity
(Sect. 5.2), output errors (Sect. 5.3), and perplexity (Sect. 5.3), and for devising any data-dependent
adapter component (e.g. A and B matrices in RaNA, the activation threshold in CATS and the slicing
and rotating procedure of SliceGPT). Downstream-task performance is assessed using HellaSwag
(Zellers et al. (2019)), PIQA (Bisk et al. (2019)), WinoGrande (Sakaguchi et al. (2019)), Arc-Easy
(Clark et al. (2018)), Arc-Challenge (Clark et al. (2018)), RACE (Lai et al. (2017)) and OBQA
(Mihaylov et al. (2018)).

Fine-tuning: To assess accuracy and perplexity (Sect. 5.3), we fine-tune adapted models using the
Huggingface library (Wolf et al. (2020)) and LoRA adapters (Hu et al. (2021)) for ∼31M tokens
on Llama2-7b and Gemma-2b, with an AdamW optimizer, where learning rates were determined
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from various options, depending on the model’s performance following 6M tokens of training. In a
similar setup, Pythia models are fine-tuned for ∼61M tokens with the exception of not leveraging
LoRA adapters. In addition, for SliceGPT, we leveraged a fixed 1e-5 learning rate and trained in
float16 precision.

Performance Evaluations: We use LM-evaluation harnesses (Gao et al. (2023)) for downstream-
task performance evaluation in a zero-shot setting for Llama2-7b and Pythia models, and a five-shot
setting for Gemma-2b. Perplexity is measured on a held-out subset of each model’s fine-tuning
dataset. Further, FLOP compression is assessed by measuring the average FLOPs required to decode
512-token sequences.

Latency Evaluations: For our latency evaluations, we leverage 100 sequences from the RedPajama
dataset, where adapted models are timed in the task of decoding a sequence of 492 tokens with an
initial context ranging from 1 to 1000 tokens. Evaluations are performed on an NVIDIA L40S GPU.

5.2 RANK CONTRIBUTION SPARSITY

A key property of adaptive compute methods is having sparse contributions from the pruned com-
ponents to the module’s output. In RaNA, we adaptively prune the ranks of the AB matrix in the
decomposition Wx ≈ A(m(x) ⊙ Bx), which effectively means pruning the column vectors of the
A matrix (Sect. 4.1). Concretely, we aim for sparsity in the contribution of each column vector of
the A matrix to the output of the linear layer, which we obtain by measuring (Bx)2i . To measure
this, we study the histograms of these contributions in Llama2-7b, Gemma-2b, and Pythia-160M
models, shown in Figs. 2a, 2b. The distributions exhibit heavy tails with concentrations near zero,
allowing us to mask out irrelevant values and retain the most impactful ones.

(a) Llama2-7b. (b) Gemma-2b.

Figure 2: The contribution of ranks in Linear Layer Rank Adapters is sparse for multiple layer
types (Sect. 5.2). Histograms outline the contribution of different column-vectors from the A matrix
in the Linear Layer Rank Adapter decomposition Wx ≈ A(m(x) ⊙ Bx) to the original layers for
Llama2-7b (left) and Gemma-2b (right). Red dashed line indicates a 50% sparsity threshold.

5.3 RANA EVALUATIONS

Output Errors: To assess the compression capabilities of RaNA, we apply it to the MLP and QKV
layers of Llama2-7b, Gemma-2b and Pythia-160M. Further, we measure the error that RaNA and
other adapters induce in these layers when adapting them to consume ∼50% of their FLOPs, as it is
a common compression ratio in the pruning literature (Ma et al. (2023), Ashkboos et al. (2024)). For
the MLPs, we measure the normalized error |MLP(x)−MLP′(x)|22

|MLP(x)|22
, where MLP’ is the adapted MLP;

we do the analogous measurement for the QKV layers too. Intuitively, an effective adapter produces
small errors, as that allows it to recover the model’s original behavior better. Notably, from Figs.
3a, 3b, 3c, 3d, we can observe that RaNA attains the lowest error across all layers when compared
to neuron-adapters and other adapter types. Concretely, in the case of Llama2-7b, RaNA attains an
average error of 10.5%, while CATS attains an average error of 17.22% in MLP layers. Further,
for Gemma-2b’s MLPs, RaNA achieves an error of 2.18%, while CATS attains an error of 20.31%.
Similarly, for Pythia-160M, RaNA achieves average errors of 7.87% and 0.36% across MLP and
QKV layers respectively, while other approaches attain average errors of 15.23% and 0.36%. This
demonstrates RaNA’s capacity to effectively compress modern Transformer layers, which we further
show translates into practical downstream task performance and perplexity improvements.

Downstream Task Performance and Perplexity: To examine the performance of RaNA adapters
beyond their compression capabilities, we measure the perplexities and downstream task perfor-
mance when applied to Llama2-7b, Gemma-2b, and a set of varied sized Pythia models. For these
evaluations, we first apply the given adapter to the MLP and/or QKV layers of the model at hand,
targeting a specific FLOP reduction ratio. Concretely, for Llama and Pythia models we apply RaNA
to MLP and QKV layers, while for Gemma we only apply it to MLP layers. Further, we fine-tune
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(a) Llama2-7b
MLP layers.

(b) Llama2-7b
QKV layers.

(c) Gemma-2b
MLP layers.

(d) Pythia-160M
MLP layers.

Figure 3: RaNA adapters attain lowest errors on Transformer layers when replicating original
layer outputs. y-axis shows the error percentage; x-axis shows layer number. Errors induced by
different adapters are compared when compressing layers of Llama2-7b, Gemma-2b and Pythia-
160M to 50% FLOPs. RaNA attains the lowest error consistently across model layers (Sect. 5.3).

Method FLOP Compression Arc Arc HellaSwag PIQA RACE WinoGrande Avg PPL
Rate Easy Challenge Acc

Llama2-7b 0% 76.26% 43.52% 57.08% 78.07% 39.62% 69.14% 60.61% 6.39

RaNA 42% 68.81% 36.86% 51.96% 74.76% 39.71% 66.14% 56.37% 8.04

CATS 42% 56.31% 27.13% 41.01% 68.28% 35.12% 57.22% 47.51% 12.36

SliceGPT 42% 40.15% 21.84% 35.35% 59.85% 34.35% 55.49% 41.17% 18.39

RaNA 30% 72.85% 39.76% 54.63% 77.42% 40.48% 66.85% 58.67% 7.29

CATS 32% 69.49% 36.01% 53.16% 76.28% 38.76% 65.59% 56.55% 7.55

SliceGPT 31% 48.19% 26.19% 40.24% 65.07% 36.84% 59.59% 46.02% 13.95

RaNA 17% 73.86% 41.55% 56.09% 77.80% 39.52% 69.38% 59.70% 6.63

CATS 15% 75.17% 41.55% 56.96% 77.48% 39.52% 68.27% 59.82% 6.37

SliceGPT 17% 58.29% 31.31% 46.73% 70.73% 38.56% 63.22% 51.47% 10.65

Table 1: RaNA outperforms neuron-adapters in perplexity and accuracy in Llama2-7b. Per-
plexity is measured on∼300K tokens of RedPajama. Average accuracy is aggregated over the listed
benchmarks. The compression rate outlines the average FLOP compression rate for decoding a 512-
token long sequence.

the adapted models. Finally, we measure their perplexity on a held-out subset of the dataset used for
fine-tuning and measure their accuracies for multiple NLP benchmarks.

From Tabs. 1, 2, we observe that RaNA outperforms the state-of-the-art CATS adapters across a var-
ied set of compression rates in SwiGLU based Transformers. Notably, not only does it outperforms
when applied to MLP and QKV layers, as shown for Llama2-7b (Tab. 1), but it also does when only
applied to the MLP layers as shown for Gemma-2b (Tab. 2). Notably, we opted for not adapting
QKV layers in Gemma-2b for simplicity, as they constitute just a small proportion of FLOPs (∼5%)
relative to the MLP layers. Particularly, for Llama2-7b, RaNA improves over neuron-adaptive meth-
ods by attaining 4 less perplexity-points and 8 more percentage-points in accuracy when reducing
FLOPs by 42% on the overall model. Moreover, both RaNA and CATS outperform SliceGPT in both
perplexity and downstream task performance (Tab. 1, Fig. 5) for all FLOP compression rates, high-
lighting the benefits of adaptive compression methods compared to static ones. Similarly, at a 45%
compression, for Gemma-2b, RaNA achieves 7 less perplexity-points and 5 more percentage-points
in accuracy than prior neuron adapters.

We attribute RaNA’s strong performance to its notable compression capacity, its ability to more
evenly distribute FLOPs across the Up-Project, Down-Project, and Gate-Project layers, and its
direct applicability to QKV and MLP layers, all of which posed challenges for previous neu-
ron adapters. In addition, from Figs. 1c and 4, we observe that RaNA applied to MLP and
QKV layers outperforms neuron adapters across the varied sized set of GeLU based Pythia mod-
els in both average accuracy and perplexity. This highlights RaNA’s capacity to be generally
applicable to modern Transformer models with non-sparse activations, like SwiGLU in the case

9
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Method FLOP Compression Arc Arc HellaSwag PIQA RACE WinoGrande Avg PPL
Rate Easy Challenge Acc

Gemma-2b 0% 59.47% 29.95% 46.90% 70.24% 36.17% 56.83% 49.93% 11.05

RaNA 44% 58.84% 29.18% 42.34% 69.31% 34.83% 54.46% 48.16% 13.83

CATS 47% 51.43% 24.57% 35.07% 65.94% 28.42% 52.64% 43.01% 21.02

RaNA 32% 61.74% 31.66% 45.38% 70.40% 35.89% 51.62% 49.45% 11.74

CATS 34% 59.55% 29.61% 44.51% 70.95% 34.55% 54.38% 48.92% 12.60

RaNA 19% 59.26% 29.78% 46.42% 69.31% 35.98% 55.01% 49.29% 11.18

CATS 20% 62.79% 32.94% 47.84% 72.25% 35.50% 55.41% 51.12% 11.41

Table 2: RaNA outperforms neuron-adapters in perplexity and accuracy in Gemma-2b. Per-
plexity is measured on∼300K tokens of RedPajama. Average accuracy is aggregated over the listed
benchmarks. The compression rate outlines the average FLOP compression rate for decoding a 512-
token long sequence.

of Llama and Gemma or GeLU in the case of Pythia. Together, these results show RaNA’s
effectiveness beyond individual layer compression, demonstrating practical improvements over
state-of-the-art neuron adaptive techniques in perplexity and downstream task evaluations. Fur-
ther, we attribute RaNA’s and CATS’ strong performance compared to SliceGPT, a static struc-
tured pruning approach, to their adaptive nature. The adaptiveness in RaNA and CATS al-
lows them to dynamically determine weight matrices on the fly as a function of the input, as
opposed to always using static ones like conventional structured pruning approaches; in prac-
tice, we observe adaptiveness allows them to obtain a better performance-compute trade-off.

Figure 4: Perplexities are measured across adapted
Pythia models, as a complementary measurement to
accuracies outlined in Fig 1c. y-axis shows perplex-
ity measured over 300K tokens of the Pile dataset
(Sect. 5.1); x-axis shows average FLOPs for a for-
ward pass with sequence length 512.

Notably, from Fig.1b, we can observe
how RaNA is capable of realizing practical
speedups for varied compression rates in the
case of Llama2-7b, as well as attaining a bet-
ter accuracy-latency trade off than previous
neuron adapters. This positions RaNA as a
practical adapter to speed up Transformer in-
ference when adaptively compressing mod-
els.

6 CONCLUSION
AND FUTURE WORK

We present the Adaptive Rank Allocation
framework and RaNA adapters, designed to
address the limitations of neuron-adaptive
methods in modern Transformer architec-
tures. By moving beyond neuron-based adaptation, RaNA is effectively applicable to both MLP
and QKV layers, leveraging low-rank matrix decompositions and adaptive routers. Empirical re-
sults demonstrate that RaNA achieves greater performance over existing neuron-adaptive methods
like CATS, providing improvements in perplexity and accuracy across benchmarks when reducing
FLOPs. For instance, RaNA yields 4 fewer perplexity-points and an improvement of 8 percentage-
points in accuracy for Llama2-7b when compressing FLOPs by 42%.

Future work seems promising. First, exploring the applicability of RaNA to other architectures, such
as vision transformers or those leveraging different activation functions than the ones studied in this
work could extend its impact. Additionally, investigating alternative matrix decomposition tech-
niques and router configurations within Linear Layer Rank adapters could further improve RaNA’s
effectiveness. Finally, exploring a FLOP allocation strategy at the model level, rather than focusing
solely on individual layers, presents a promising opportunity to improve RaNA’s overall capacity.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Here we prove Theorem 1.

Proof. Let Mr be a rank r matrix. The matrix Mr that obtains the lowest possible error
(∥WX −Mr∥2F ) is the rank-r singular value decomposition of WX , namely Mr = UrΣrV

T
r .

Now, solving for Ar, Br:

ArBrX = Mr = UrΣrV
T
r =⇒ ArBr = UrΣrV

T
r X+

where X+ is the pseudo-inverse of X . Hence, we have found the optimal ArBr for eqn. 7, namely:

ArBr = UrΣrV
T
r X+ = Ur(U

T
r W ).

A.2 ALGORITHM

We provide a pseudocode implementation of RaNA below:

Algorithm 1 RANA Layer Compression

1: procedure COMPRESSLAYER(layer, decomposition, prune ratio)
2: // Find optimal rank and thresholds for compression
3: rank, threshold← ComputeOptimalParameters(decomposition, prune ratio)
4: // Create compressed layer using low-rank approximation
5: compressed layer ← DecomposeToRankN(layer, rank)
6: // Apply adaptive thresholding for dynamic sparsity
7: masked layer ← ApplyThresholdMask(compressed layer, threshold)
8: return masked layer
9: end procedure

Algorithm 2 RANA MLP Transformation

1: procedure TRANSFORMMLP(mlp, input data, prune ratios)
2: // Transform each component with different pruning ratios
3: up masked← CompressLayer(mlp.up proj, prune ratios.up)
4: gate masked← CompressLayer(mlp.gate proj, prune ratios.gate)
5: // Compute activation threshold for downstream pruning
6: act threshold← ComputeActivationThreshold(mlp, input data, prune ratios.down)
7: // Construct efficient MLP with dynamic sparsity
8: efficient mlp← CreateDynamicMLP(up masked, gate masked,mlp.down proj, act threshold)
9: return efficient mlp

10: end procedure

Algorithm 3 RANA Forward Pass

1: procedure FORWARDPASS(input, compressed layer)
2: // Dynamic pruning based on activation magnitudes
3: activations← ComputeActivations(input)
4: pruned activs← ApplyDynamicMask(activations)
5: // Efficient forward computation using compressed weights
6: output← ComputeOutput(pruned activs)
7: return output
8: end procedure
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A.3 ABLATIONS AND ADDITIONAL RESULTS

Compressing MLPs only vs. MLPs + QKVs:

As an ablation study, we look at how compressing both MLPs and QKVs compare to only com-
pressing MLPs to the same FLOP compression ratio in Llama2-7b. In addition, we study how our
FLOP-allocation algorithm for MLP layers impacts performance by evaluating an adapted model
that leverages the FLOP allocation procedure in the MLP layers and evaluating the same adapted
model with the exception that it uniformly allocates FLOPs across the components of each individual
MLP layer.

Concretely, we compress three Llama2-7b models by ∼31% of their FLOPs and evaluate their per-
plexity on ∼300K tokens of the RedPajama dataset, without fine-tuning. First, we look at a vanilla
RaNA adapted model, which leverages the FLOP allocation algorithm at the MLP level and that also
compresses QKV layers. Second, we look at a model with the same setup, except without compress-
ing QKV layers, but still compressing ∼31% of the overall total FLOPs. Third, we look at a model
that compresses both QKV and MLP layers but does not leverage the FLOP allocation procedure
for MLP layers.

Model Version FLOP Compression Rate PPL

Llama2-7b - MLP + QKV + FLOP Allocation 31% 8.40

Llama2-7b - MLP + FLOP Allocation 31% 8.79

Llama2-7b - MLP + QKV (No FLOP Allocation) 32% 9.10

Table 3: Perplexity Evaluation for Different RaNA Settings.

As we can observe in Tab. 3, the best model is the one combining both MLP + QKV compression and
the FLOP allocation procedure in the MLPs, while the two other versions fall behind in perplexity.

Accuracy-FLOPs tradeoff including SliceGPT:
Here, in Fig. 5, we include the SliceGPT curve for the Accuracy-FLOPs trade-off in Llama2-7b.

Figure 5: Llama2-7b Accuracy v.s. FLOPs.
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A.4 FLOP COMPRESSION BREAKDOWN

Here we leave in Tab. 4 the FLOP compression breakdown across MLP and QKV layers of the main
adapted models.

Model Total FLOP Compression MLP FLOP Compression QKV FLOP Compression

Gemma-2b-RaNA 44% 61% 0%

Gemma-2b-CATS 47% 65% 0%

Gemma-2b-RaNA 32% 45% 0%

Gemma-2b-CATS 34% 48% 0%

Gemma-2b-RaNA 19% 27% 0%

Gemma-2b-CATS 20% 28% 0%

Llama2-7b-RaNA 42% 47% 46%

Llama2-7b-CATS 42% 65% 0%

Llama2-7b-RaNA 30% 34% 33%

Llama2-7b-CATS 32% 50% 0%

Llama2-7b-RaNA 17% 19% 18%

Llama2-7b-CATS 15% 23% 0%

Table 4: FLOP Compression Comparison for Different Models. Total, MLP, and QKV FLOP
compression rates are reported for the Gemma-2b and Llama2-7b models with RaNA and CATS
adapters.
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