
The Mamba in the Llama:
Distilling and Accelerating Hybrid Models

Junxiong Wang1∗ Daniele Paliotta2,3∗ Avner May3 Alexander M. Rush1 Tri Dao3,4

1
Cornell University

2
University of Geneva

3
Together AI

4
Princeton University

Abstract

Linear RNN architectures, like Mamba, can be competitive with Transformer

models in language modeling while having advantageous deployment char-

acteristics. Given the focus on training large-scale Transformer models,

we consider the challenge of converting these pretrained models for de-

ployment. We demonstrate that it is feasible to distill large Transformers

into linear RNNs by reusing the linear projection weights from attention

layers with academic GPU resources. The resulting hybrid model, which

incorporates a quarter of the attention layers, achieves performance com-

parable to the original Transformer in chat benchmarks and outperforms

open-source hybrid Mamba models trained from scratch with trillions

of tokens in both chat benchmarks and general benchmarks. Moreover,

we introduce a hardware-aware speculative decoding algorithm that ac-

celerates the inference speed of Mamba and hybrid models. Overall we

show how, with limited computation resources, we can remove many of

the original attention layers and generate from the resulting model more

efficiently. Our top-performing model, distilled from Llama3-8B-Instruct,

achieves a 29.61 length-controlled win rate on AlpacaEval 2 against GPT-

4 and 7.35 on MT-Bench, surpassing the best 8B scale instruction-tuned

linear RNN model. We also find that the distilled model has natural

length extrapolation, showing almost perfect accuracy in the needle-in-a-

haystack test at 20x the distillation length. Code and pre-trained check-

points are open-sourced at https://github.com/jxiw/MambaInLlama and

https://github.com/itsdaniele/speculative_mamba.

1 Introduction

While Transformers [73] have been an essential architecture in deep learning and have driven

the success of large language models such as GPT [9], Llama [71], and Mistral [37], they

are prohibitively slow for very long sequence generation due to their quadratic complexity

with respect to sequence length and large key-value (KV) cache requirement. Recent linear

RNN models (Mamba [26], Mamba2 [18], GLA [79], RWKV [55], RetNet [68], Griffin [19])

beat Transformers in controlled experiments at small to medium scale, although the best

Transformers still significantly outperform these models on downstream tasks. We note

that the training times of linear RNN models are similar to those of highly optimized

Transformers [79], and therefore scaling up either of these models requires substantial

computational resources.

∗
Equal Contribution. Order determined by coin flip. Correspondence to: junxiong@cs.cornell.edu

and daniele.paliotta@unige.ch

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/jxiw/MambaInLlama
https://github.com/itsdaniele/speculative_mamba

The primary benefit of linear RNN models (Mamba [26], Mamba2 [18]) is that they have

faster inference (5× higher throughput) than Transformers. Efficient inference is emerging as

a critical need for LLM systems such as new applications currently bottlenecked by the large

KV cache of Transformers, e.g. reasoning over multiple long documents [30, 65, 56] and files

in large codebases [61, 42]). Emerging workflows with agents [81, 77] also require large-batch

inference to explore more trajectories and long-context to model complex environments.

These properties motivate the goal of distilling a large pretrained Transformer model into

a linear RNN in order to generate as efficiently as possible. The technical challenges are

two-fold: how to map pretrained Transformer weights to linear RNN weights for distillation,

and how to adapt best-practice Transformer inference techniques, such as speculative

decoding, to the new architecture. We make the following contributions:

• We show that by reusing weights from attention layers, it is possible to distill a large

transformer into a large hybrid-linear RNN with minimal additional compute while

preserving much of its generation quality. We propose a modified Mamba architecture

that can be directly initialized from the attention block of a pretrained model.

• We propose a multistage distillation approach that mirrors the standard LLM pipeline

combining progressive distillation, supervised fine-tuning [39], and directed preference

optimization [58]. This approach shows better perplexity and downstream evaluation

compared with vanilla distillation.

• We develop a hardware-aware speculative sampling algorithm and a fast kernel for

speculative decoding on Mamba and hybrid architectures. We achieve a throughput of

over 300 tokens/second for a Mamba 7B model. Additionally, we show that speculative

decoding can be effectively applied to our hybrid architecture.

Our experiments distill different large-scale open chat LLMs, Zephyr-7B [72], Llama-3 8B [21]

to linear RNN models (hybrid Mamba and Mamba2), using only 20B tokens of training.

Results show that the distilled approach matches the teacher model in standard Chat

benchmarks [84, 43]. We also show that it performs on par or better with all similarly sized

pretrained-from-scatch Mamba models including Mamba 7B models [52, 26] trained from

scratch with 1.2T tokens or NVIDIA Hybrid Mamba2 models [74] trained from scratch with

3.5T tokens in multiple tasks (e.g., MMLU [34], TruthfulQA [47]) in the LM evaluation [25].

Concurrent with this work, MOHAWK [6] distills a Mamba-2 variant based on the Phi-1.5

architecture with limited computation costs and performance loss.

2 From Transformer to Mamba

2.1 Relationship Between Attention and Linear RNNs

We begin by reviewing multihead attention to clarify the shapes of intermediate objects. Nota-

tionally, we use explicit subscripts for the sequence position instead of matrix representation,

to better highlight similarities between the two models.

Attention is computed in parallel for multiple differently parameterized heads. Each head

takes sequence o with hidden size D as an argument and computes,

Qt = WQot, Kt = WKot, Vt = WV ot for all t,

α1 . . . αT = softmax
(
[m1,tQ

⊤
t K1 . . .mT,tQ

⊤
t KT]/

√
D
)

yt =

t∑
s=1

αsVs

where ot ∈ RD×1, W ∈ RN×D Qt,Kt,Vt ∈ RN×1 ms,t = 1(s ≤ t)

Recent work has argued that linear RNNs can be serious competitors to attention in large

language models. Several different linear RNN formulations have been proposed with

similar formulations. For now, we leave the shapes of the parameters At,Bt,Ct abstract,

and note that linear RNNs all take the following form that maps a 1-dimensional sequence

to another through an implicit matrix-valued hidden state h.

ht = Atht−1 +Btxt, yt = C⊤
t ht (1)

2

Linear RNNs have several computational advantages over attention. During training, all yt

values can be computed more efficiently than attention since there is no softmax non-linearity.

During inference, each next yt can be computed serially without requiring a cache.

Despite the superficially different form, there is a natural relationship between linear RNNs

and attention. Linearizing the attention formula by removing the softmax yields:

yt =

t∑
s=1

αsvs =
1√
D

t∑
s=1

ms,tQ
⊤
t Ksvs =

1√
D
Q⊤

t

t∑
s=1

ms,tKsvs

This implies that there exists a linear RNN form of linearized attention, specifically:

ht = mt−1,tht−1 +Ktvt yt =
1√
D
Q⊤

t ht

↓
ht = Atht−1 +Btxt, yt = C⊤

t ht

At = mt−1,t, Bt = WKot, Ct = WQot, xt = WV ot

Note though that this version uses a hidden state of size h ∈ RN×1
. Effectively tracking only

one scalar over time per hidden dimension. Naively applying this transformation leads to

poor results. The issue is that linearizing attention produces a degraded representation of

the original model, as the softmax nonlinearity is critical to attention.

The key to improving these models is to increase the capacity of the linear hidden state to

better capture long-term structure. For example, previous work has shown the use of kernel

methods to improve this approximation [63, 36, 83]. These approaches expand the size of

the hidden state representation to h to RN×N ′
to better match the modeling capacity of

softmax.

2.2 Distilling to an Expanded Linear RNN

To design a effective distilled linear RNN, we aim to stay as close as possible to the original

Transformer parameterization, while also expanding the capacity of the linear RNN in an

efficient manner. We will not attempt to have the new model capture the exact original

attention function, but instead use the linearized form as a starting point for distillation.

Algorithm 1 Attention-Initialized Mamba

1: Shapes: B - Batch, L - Length, D - embed size,

2: N = D/Heads, N ′
- expand

3: Input: ot: (B, D)

4: Output: output: (B, D)

5: New Params: MLP, A
6: for each head Wk,Wq,Wv,Wo : (N,D)
7: expanding grouped KVs do
8: Head Parameter: A : (N,N ′)
9: for all positions t:

10: xt : (B,N)←WV ot

11: Bt : (B,N)←WKot

12: Ct : (B,N)←WQot

13: ∆t : (B,N ′)← MLP(xt)

14: A1:T ,B1:T ,C1:T : (B,N,N ′) ←
Disc(A,B,C,∆)

15: y ← LinearRNN(A,B,C,x)
16: output← output +WO⊤y

17: return output

Specifically, we adapt the parameterization

from Mamba, [26] to increase the hidden

state size, while initializing from the atten-

tion representation. Mamba uses a continu-

ous time state-space model (SSM) to param-

eterize a linear RNN at run time, described

by the differential equation,

h′(k) = Ah(k)+B(k)x(k) y(k) = C(k)h(k)

Where A is a diagonal matrix and other

values are continuous signals. To apply this

formulation to a discrete-time problem like

language modeling, we use a neural network

to produce a sequence of sampling intervals

∆t and samples of the signals at these time

steps. Given these sampling intervals, and

T samples of B,C, Mamba approximates

the continuous-time equation using a linear

RNN as a discretization. We use an overbar

to indicate the discrete-time form, which is

reconstructed dynamically.

A1...T ,B1...T ,C1...T = Discretize(A,B1...T ,C1...T ,∆1...T)

3

In this simplest case, with N ′ = 1 and an identity discretization, this approach recovers the

linear attention to linear RNN conversion discussed in the previous section. The benefit

of Mamba is that with N ′ > 1 the continuous-time parameterization allows the model to

learn significantly richer functions, without many more parameters or decreased efficiency.

Specifically the only additional learned parameters will be the sampling rate ∆ and the

dynamic A. These new parameters will control the constructed linear RNN through the

discretization function yielding the new matrix valued linear RNN. Specifically, we take in

the same Bt,Ct ∈ RN×1
and ∆t ∈ RN ′

, but output Bt,Ct ∈ RN ′×N×1
, effectively increasing

the hidden size by a factor of N ′
over the naive linear attention.

A core contribution of Mamba [26, 18] is to demonstrate a hardware-aware factorization of

this algorithm. Implementing the algorithm naively would be prohibitively slow as the new

expanded parameters are quite large. Their approach fuses discretization, state expansion,

and applying the linear RNN into a single kernel, which circumvents fully materializing the

discrete parameters. This allows for large N ′
with relatively small efficiency costs.

2.3 Attention-to-Mamba Initialization and Hybrid Stepwise Training

Our full approach is shown in Algorithm 1. This algorithm feeds the standard Q,K,V
heads from attention directly into the Mamba discretization, and then applies the resulting

linear RNN. As noted above, this can seen as roughly initializing with linearized attention

and allowing the model to learn richer interactions through the expanded hidden state.

Figure 1 shows the resulting architecture. Our version directly replaces Transformer attention

heads directly with fine-tune linear RNN layers. We keep the Transformer MLP layers as

is and do not train them. This approach also requires processing additional components

like grouped query attention that shares keys and values across heads. We note that this

architecture differs from the architecture used in many Mamba systems, which combines

MLP-SSM layers and uses a single head.

This initialization allows us to replace any attention block with a linear RNN block. We

experiment with hybrid models where we keep every n attention layers. Empirically we

found that replacing layers in a stepwise manner was the most effective strategy, i.e. we first

keep every 2 layers, distill, and then every 4, and continue distillation.

Attention

QK V

Mamba

CB x ΔA

Figure 1: Transferring Transformer to Mamba. Weights, in orange, are initialized from the

Transformer (Linear projections for Q, K, and V are initialized using linear projection for

C, B, and X respectively). We replace individual attention heads with Mamba heads, and

then finetune Mamba blocks while freezing the MLP blocks. Shapes are kept mainly the

same. Weights in green are added. New parameters are introduced for the learned A and ∆
parameters.

4

3 Knowledge Distillation for Aligned LMs

Knowledge distillation (KD) [35] serves as a compression technique aimed at training a

smaller network that mimics the behavior of a larger teacher network. After initializing

the model from the Transformer parameters, we aim to distill it to perform on par with the

original language model. We assume that most of the knowledge from the transformer is

maintained in the MLP layers which were transferred from the original model, and focus on

distilling the fine-tuning and alignment steps of the LLM. During this stage, the MLP layers

are kept frozen and the Mamba layers are trained as in Figure 1.

Supervised Fine-Tuning We first apply knowledge distillation to redo the supervised

fine-tuning (SFT) stage of language model adaptation. During this stage, an LLM is trained

to maximize the likelihood of a response y given an input prompt x, i.e. p(y | x). The task

looks similar to conditional generation.

There are two common approaches for distillation in this setting. One method is to use word-

level KL-Divergence. In this setting, the full probability distribution of the student model

p(·; θ) is trained to match the full distribution of the teacher model p(·; θT) by minimizing the

KL divergence over the entire set of next possible tokens at position t. The second method is

sequence-level knowledge distillation (SeqKD) [39]. SeqKD suggests a simple method for

distillation on this style of task, by replacing the ground truth text y1···t with the teacher

generation output ŷ1···t, also known as pseudo-labels.

L(θ) = −
T∑

t=1

α log p(ŷt+1 | ŷ1:t, x, θ) + β KL [p(· | ŷ1:t, x, θT) || p(· | ŷ1:t, x, θ)] (2)

Here θ is trainable parameters of the student model and α and β control the weights of

sequence and word loss term respectively.

Preference Optimization The second stage of instruction-tuning for LLMs is to align them

to a set of user preferences. During this stage, a set of desired preference pairs is used

to improve the model’s output. The objective is to produce outputs y to prompts x that

maximize a reward model r while maintaining close to a reference model. Typically the

reference model is chosen to be the model after supervised fine-tuning. For distillation, we

can conveniently utilize the original teacher, i.e.

max
θ

Ex∼D,y∼p(y|x;θ)
[
rϕ(x, y)

]
− βKL

[
p(y | x; θ) || π(y | x; θT)

]
(3)

This preference model is defined by a reward function rϕ(x, y)dependent on the method used.

Previous research utilizing AI feedback has primarily focused on employing reinforcement

learning methods, such as proximal policy optimization (PPO) [64], to optimize ϕ concerning

this reward. Recently, methods using direct preference optimization (DPO) [58] have been

effective at optimizing this objective with direct gradient updates. Specifically, DPO shows

that, if we have access to preferred yw and dispreferred yl outputs for a given prompt x, we

can reformulate this optimization problem as,

πθ = max
θ

E
(x,yw,yl) ∼D

log σ

(
β log

p(yw|x; θ)
p(yw|x; θT)

− β log
p(yl|x; θ)
p(yl|x; θT)

)
. (4)

This optimization can be performed at the sequence level by scoring the preferred and

dispreferred outputs of the model with the teacher and student and then backpropagating

to the student. As far as we are aware this is the first use of DPO as a distillation objective.

4 Speculative Decoding Algorithms For Linear RNNs

The main goal of the linear RNN formulation is to improve decoding efficiency. For both

attention and linear RNNs, the serial dependency of autoregressive generation inherently

bottlenecks efficiency. Systems cannot utilize all available compute, as they need to wait

for the generation of previous tokens to proceed [67, 41, 11, 76, 10]. Speculative decoding has

emerged as a method for breaking this bottleneck by spending extra compute to speculate

5

Draft Model Verifier Model

Generate draft tokens + cache

Recompute from
cache

Accept Reject

Sample new
token

Recompute from
cache Multistep decode +

cache

To Draft Model

From Verifier

Multistep decode + cache

Figure 2: Multi-Step RNN Speculative Decoding. Left (top): The draft model generates the set

of blue draft tokens sequentially. The draft tokens are then verified. Right (top): Verification

uses the multistep kernel, without materializing the intermediate states. The last token is

rejected and replaced with the true best token. Note, that even though more tokens are

generated we cannot advance the hidden state cache. Left (bottom) The draft model can now

generate more blue draft tokens from the current tokens, resulting in six total. Right (bottom)
When the new draft is verified, the multi-step kernel returns both the hidden state after the

yellow token and the final hidden state, since verification will fall between those positions.

on future generations. In this section, we consider approaches for applying this technique to

large Mamba models, which can then be applied to the distilled models.

4.1 Challenges in RNN Speculation

Speculative decoding uses two models: a draft model, θD, and a verification model, θV . The

fast draft model produces potential future completions, y∗ = argmaxy1:T
p(y1, . . . , yT ; θD),

and the larger verification model checks that these are top ranking at each time step, i.e.

checking p(y∗t |y∗1:t−1; θV). The longer a chain before a verification failure the faster the

output. If a partial chain matches, we can rewind to the last match.

Attention-based models are particularly amenable to speculation, as they are slow at genera-

tion due to sequential nature, but fast at verification due to their ability to check multiple

tokens in parallel. Linear RNN models like Mamba have significantly different performance

characteristics that make them less amenable to speculative decoding. Sequential decoding

using recurrent-style sampling is already significantly faster than attention. Like attention,

there are parallel modes for models like Mamba which are used at training. These are effi-

cient, but are tuned for extremely long sequences. In addition, they rely on hardware-aware

optimizations, such as avoiding materializing intermediate states. These properties make it

difficult to use for speculation for relatively short chains when it is unknown when a conflict

will occur.

An additional challenge arises from caching states in RNN models. The state of an attention

model is represented by the key-value cache, K1:t,V1:t; whereas the state of an RNN model

is simply ht. To be competitive with attention this single RNN state needs to be very large.

During speculation, we need to rewind to a previous state at time step t′. For attention, this

is simply K1:t′ ,V1:t′ ; however, for RNNs this would require caching all h1:t which would

require a large memory overhead.

4.2 Multi-Step Linear RNN Speculation

We propose a new algorithm for linear RNN speculative decoding using hardware-aware

multi-step generation. The core to the approach generation kernel that computes,

yj:k,hj ,hk ←MultiStep(hi, y1:n, i, j, k;A,B,C,∆)

Where i is the starting hidden state, i ≤ j ≤ k, and j . . . k is the range of y outputs needed.

The kernel is hardware-aware because it avoids materializing key terms off of the fast GPU

6

memory. Specifically, it avoids instantiating mosth1:n as well as the discrete-time linear RNN

parameters. This kernel is aimed to target the issues presented above. Specifically, it can

save a snapshot of the state hj before evaluating the draft tokens. This allows recomputing

the correct state on the fly after a token is rejected. The assumption is that decoding is

bottlenecked by memory and not by compute, as we can compute multiple steps of decoding

with very little overhead over single-step decoding.

Algorithm 2 Multi-Step Linear RNN Specula-

tion

function Verify(y1:k, j,hi)

// y1:k are draft, j is last verified,

// hi is a cached state with i ≤ j
y′j:k,hj ,hk ←

MultiStep(hi, y1:k, i, j, k; θv)
k′ ← FirstConflict(yj:k, y

′
j:k)

return k′,hk if k′ = k else hj

function Speculate(K)

// K tokens are drafted per step

h
cache

← h0

j ← 0
while yj is not end do

k ← j +K
yj+1:k ← argmax p(yj+1:k | y1:j , θD)
j,h

cache
← Verify(y1:k, j,hcache

)

return y1:j

Algorithm 2 and Figure 2 show the full

algorithm. The approach maintains only

one RNN hidden state in cache for verifi-

cation and advances it lazily based on the

success of the multi-step kernel. Since the

distilled models contain transformer layers,

we also extend speculative decoding to At-

tention/RNN hybrid architectures. In this

setting, the RNN layers perform verifica-

tion according to Algorithm 2, while the

transformer layers simply perform parallel

verification.

Note that if the draft model is a Mamba

or hybrid model, the speculation part of

the algorithm gets more complicated, as the

draft model needs to recompute the state for

the tokens accepted in the previous iteration.

This is done similarly to the verifier model,

by caching older entries and recomputing on

the fly during the next round of speculation.

4.3 Speculation Analysis and Hardware Specific Optimization

To verify the effectiveness of this approach we run the speculation using Mamba 7B and

Mamba 2.8B as target models. Results are shown in Table 1. Figure 3 shows the performance

characteristics of the Multi-Step kernel itself.

Model Size GPU K # Gen. Tokens Throughput (toks/s) Speedup
2.8B 3090 3 3.01 259 2.3x

2.8B 3090 4 3.28 289 2.6x

2.8B H100 3 4.04 389 1.71x

2.8B H100 4 3.9 421 1.85x

7B 3090 3 3.19 109 2.1x

7B 3090 4 3.56 110 2.1x

7B H100 3 3.28 271 1.95x

7B H100 4 3.6 272 2x

Table 1: Speedup results for speculative decoding with pure Mamba models. The 2.8B

verifier uses a 130M Mamba draft. The 7B verifier uses a Llama3 1B draft we trained. Data is

from The Pile. K is number of draft tokens produced, # Gen includes an additional token

from the last verifier logits.

2 4 8 16 32
Step Size (K)

0

1

2

3

4

5

Ti
m

e
(m

s)

Multi-step Time (ms)
Single-step Time (ms)

Figure 3: Performance of the multi-step

SSM kernel for generating 32 tokens.

Speedup on H100 GPUs. A naive implementation

of our algorithm already shows strong performance

on Ampere GPUs as shown in Table 1. However,

achieving strong performance on H100 GPUs is much

more challenging. This is mainly due to GEMM oper-

ations being much faster, which makes the overhead

incurred from the caching and recomputation oper-

ations more visible. In practice, the naive implemen-

tation of our algorithm, with several different kernel

7

calls, achieves a decent speedup on 3090 GPUs (1.5x for Mamba 2.8B with 60% acceptance

rate) but no speedup at all on H100s.

We optimized our implementation by fusing kernels, and by adapting the implementation to

easily allow caching and recomputing old steps. Specifically, the verifier model performs i)

recomputation of previous steps from the cache, ii) multistep decoding for the new sequence

of draft tokens and iii) caching within a single kernel 2. For the draft model, recomputation,

decoding and caching are also fused in a single kernel. The resulting implementations

archives speedups on H100s GPUs, as shown in Table 1.

5 Results
5.1 Experimental Setup

Target models. We perform experiments using two LLM chat models: Zephyr-7B [72],

which is a chat fine-tuned Mistral 7B [37], Llama-3 Instruct 8B [21]. For the linear RNN

models, we use hybrid versions of Mamba and Mamba2 with 50%, 25%, 12.5%, and 0%

attention layers. We refer to 0% as a pure Mamba model. Mamba2 is a variant architecture

of Mamba that is designed to be more targeted to recent GPU architectures. Zephyr-Mamba

refers to a distillation from Zephyr [72], while Llama3-Mamba / Llama3-Mamba2 indicates

distillation from Llama-3 instruct 8B [71]. Strictly speaking, our distilled Mamba-Zephyr is

a subquartic model, since Zephyr/Mistral-8B uses sliding window attention architecture.

Our distilled Mamba-Zephyr (50%) has the similar architecture as Samba [60].

Training. Distillation does not require any language modeling pretraining data, but instead

uses the post-training process to adapt the new model. We use a three-stage process. In

the first stage, we use UltraChat [20] and UltraFeedback [17] as seed prompts and use the

teacher model to generate pseudo-labels. The student model is trained in one epoch using

the loss L in Eq 2 with α = 1 and β = 0.1. Models are trained using AdamW optimizer with

β = (0.9, 0.98) with a batch size 64. We use a linear learning rate warm-up (for the first 500
steps) followed by cosine annealing. In the second stage, we use supervised finetuning with

our model on the GenQA [12], InfinityInstruct [3] and OpenHermes 2.5 [70] datasets using

SFT in one epoch, with the same hyperparameters as Zephyr [72]. In the final stage, for

models distilled from Zephyr, we do distilled alignment with our model using DPO on the

UltraFeedback [17] dataset which is consistent with teacher model. While models distilled

from Llama-3 instructed 8B, we use datasets from SimPO [51] and Zephyr [72]. We only

freeze Gated MLP (FFN) in the first stage, while in the second and final stage all parameters

are trained 3. The total distillation process for each hybrid model (e.g., Mamba-Llama3 (50%

att)) takes less than five days in 8x80G A100.

Baselines. In addition to the core Transformer architectures, the main baselines we

compare against are other large-scale linear RNN models. We compare with both pure SSM

architectures, such as TRI Mamba 7B [52] trained with 1.2T tokens and Falcon Mamba 7B4

trained with more than 5T tokens, hybrid SSM architectures, such as Nvidia Hybrid Mamba

2 [74] trained with 3.7T tokens, and other linear hybrid RNN models, such as Recurrent

Gemma-9B Instruct [8, 19].

After the release of the new SoTA transformer models at the 8B and 3B scales, Llama-3.1

and Llama-3.2, we have streamlined the distillation process and are now distilling using

the larger Llama-3.1 70B teacher model while initializing models with similarly sized 3B

and 8B scales, respectively. We distill our model on the GenQA [12] and InfinityInstruct [3]

datasets, resulting in Mamba-Llama3.2-3B, Mamba2-Llama3.2-3B, Mamba-Llama3.1-8B, and

Mamba2-Llama3.1-8B. Additionally, we perform further DPO on top of these models using

the same dataset as before, resulting in Mamba-Llama3.2-3B-dpo, Mamba2-Llama3.2-3B-dpo,

Mamba-Llama3.1-8B-dpo, and Mamba2-Llama3.1-8B-dpo. The distillation phase takes eight

days on 8xA100 and four days on 8xH100.

2Additionally, we implement the convolutional part of the Mamba block using a circular buffer

which allows us to keep track of the old entries and include them in the convolution when they are

needed for recomputation.

3We freeze the MLP layers in the first stage because we want to produce a model similar to the

initialization model. However, in the end-to-end distillation, we only focus on the KL loss, so training

all parameters (not freezing the MLP layers) will give better results.

4https://huggingface.co/tiiuae/falcon-mamba-7b

8

5.2 Evaluation on Chat Benchmarks

We evaluate our models using both single-turn, AlpacaEval [43] and multi-turn chat bench-

marks, MT-Bench [84]. These benchmarks assess the model’s ability to follow instructions

and respond to challenging prompts across a wide variety of domains.

Model (% Att) Size Align
MT-Bench

(score)

MT-Bench

(Round 1)

MT-Bench

(Round 2)

AlpacaEval

(LC win %)

AlpacaEval

(win %)

Zephyr 7B DPO 7.34 - - 13.200.96 10.990.96

Mamba-Zephyr (50%) 7B DPO 7.31 - - 20.660.74 16.691.10

Mamba-Zephyr (25%) 7B DPO 7.03 - - 17.160.69 13.111.00

Mamba-Zephyr (12.5%) 7B DPO 6.40 - - 15.320.66 12.961.02

Llama-3.1-Instruct 8B RLHF 8.0 - - 20.9 21.8
Mamba-Llama3.1 (50%) 8B 7.7 8.0 7.3 18.971.23 21.221.23

Mamba2-Llama3.1 (50%) 8B 7.6 8.1 7.0 18.991.24 21.551.24

Mamba-Llama3.2 (50%) 3B 6.9 7.6 6.1 13.571.08 15.541.08

Mamba2-Llama3.2 (50%) 3B 6.5 7.1 5.8 12.611.05 14.341.05

Llama-3-Instruct 8B RLHF 8.00 - - 22.901.26 22.601.26

Mamba-Llama3 (50%) 8B DPO 7.35 7.82 6.88 29.611.31 26.691.31

Mamba-Llama3 (25%) 8B DPO 6.86 7.56 6.15 25.851.26 22.501.26
Mamba-Llama3 (12.5%) 8B DPO 6.46 6.91 6.01 20.761.16 17.931.16

Mamba2-Llama3 (50%) 8B DPO 7.32 7.93 6.70 26.781.26 22.691.26
Mamba2-Llama3 (25%) 8B DPO 6.74 7.24 6.24 22.751.18 19.011.18
Mamba2-Llama3 (12.5%) 8B DPO 6.48 6.83 6.13 20.251.13 16.881.13
Mamba2-Llama3 (0%) 8B DPO 5.64 6.16 5.11 14.490.93 10.880.93

Falcon Mamba Instruct 7B SFT 6.40 7.25 5.55 4.040.45 2.150.45

GPT-3.5-turbo - RLHF 7.94 - - 22.70 14.10

GPT-4o - RLHF - - - 57.461.47 51.331.47

Table 2: Chat benchmark results for open-access and proprietary models on MT-Bench

and AlpacaEval. MT-Bench scores model responses using GPT-4. AlpacaEval version two

measures the win-loss rate between baseline models and GPT-4 scored by GPT-4 Turbo.

Table 2 shows the performance of our models on chat benchmarks compared with large

transformer models. The distilled hybrid Mamba model (50%) achieves a similar score in

the MT-benchmark as the teacher model, and slightly better than the teacher model on

the AlpacaEval benchmark in both LC win rate and overall win rate. The distilled hybrid

Mamba (25% and 12.5%) performance is slightly worse than that of the teacher models in the

MT benchmark but still surpasses some large transformers even with more parameters in

AlpacaEval. The distilled pure (0%) model does degrade significantly in accuracy. Notably,

the distilled hybrid model performs better than Falcon Mamba, which was trained from

scratch with more than 5T tokens.

5.3 Evaluation on General Benchmarks

Zero Shot Evaluation. We utilize the open-source LM Evaluation Harness library [25] (branch

big-refactor) to assess 10 tasks, with the following evaluation metrics: WinoGrande (WG)

accuracy [62], PIQA (PQ) accuracy [7], HellaSwag (HS) normalized accuracy [82], ARC-Easy

and ARC-Challenge (AE and AC) accuracy and normalized accuracy, [15], MMLU (MM),

accuracy [33], OpenBookQA (OB) normalized accuracy [54], TruthFulQA (TQ) accuracy [46],

PubMedQA (PM) accuracy [38], and RACE (RA), accuracy [40]. Each task is evaluated by

analyzing the probability assigned by the model to each potential answer choice.

Table 3 shows zero shot evaluation in LM Eval benchmark for Mamba and Mamba2 distilled

from different teacher models. Both hybrid Mamba-Llama3 and Mamba2-Llama3 models,

distilled from the Llama-3 Instruct 8B, perform better compared to the open-source TRI

Mamba and Nvidia Mamba models trained from scratch. Performance degrades with more

linear RNN layers, but is still competitive at 25% to models trained from scratch.

5.4 Hybrid speculative decoding

Setup We perform speculative decoding using the distilled hybrid models. We run

experiments using both Hybrid Mamba 50% and Hybrid Mamba 25% as main models. For

the draft models, we train 2 and 4-layer Transformer Draft models on the OpenHermes2.5

9

Model (% Att) WG PI HS AE AC MM OB TQ PM RA AVG

TRI Mamba-7B 71.42 81.01 77.93 77.53 46.67 33.39 46.20 32.09 72.30 37.99 57.65

Nvidia Hybrid Mamba-8B 71.27 79.65 77.68 77.23 47.70 51.46 42.80 38.72 69.80 39.71 59.60

Llama-3.1-8B-Instruct 73.88 80.79 79.21 81.78 55.20 68.12 43.20 42.67 75.20 44.78 64.48

Llama3.1-Mamba (50%) 72.77 79.33 75.91 82.24 53.84 62.13 42.80 40.02 72.00 42.11 62.32

Llama3.1-Mamba-DPO (50%) 73.80 80.41 77.36 84.01 56.57 63.50 44.20 46.07 74.40 43.44 64.38

Llama3.1-Mamba2 (50%) 71.74 78.89 75.36 82.20 52.65 61.01 41.60 40.31 72.60 42.11 61.85

Llama3.1-Mamba2-DPO (50%) 74.11 80.03 79.69 84.81 59.73 59.74 44.00 50.22 74.60 46.12 65.31
Llama-3.2-3B-Instruct 67.48 75.68 70.43 74.07 45.90 60.43 36.00 38.01 69.60 40.67 57.83

Llama3.2-Mamba (50%) 67.32 77.31 70.37 77.65 48.38 54.48 39.40 42.02 66.40 40.29 58.36

Llama3.2-Mamba-DPO (50%) 67.40 77.31 72.56 79.97 52.65 55.09 41.60 48.53 70.00 43.64 60.88
Llama3.2-Mamba2 (50%) 66.06 76.01 69.13 76.68 46.67 53.12 38.80 34.78 63.80 39.81 56.49

Llama3.2-Mamba2-DPO (50%) 67.32 77.69 74.45 80.26 54.10 52.47 42.40 50.28 65.40 43.44 60.78

Mamba-Zephyr (50%) 68.82 80.36 76.91 81.40 55.63 55.43 42.60 41.99 72.60 42.20 61.79

Mamba-Llama3 (50%) 68.98 78.02 78.43 74.45 51.96 57.81 44.00 47.69 73.00 38.56 61.30

Mamba-Llama3 (25%) 62.83 78.07 75.00 74.28 47.35 53.50 40.00 43.64 65.40 36.94 57.70

Mamba-Llama3 (12.5%) 59.75 75.08 71.71 70.58 43.60 49.81 41.40 41.41 62.40 34.45 55.02

Mamba2-Llama3 (50%) 71.51 81.45 79.47 78.83 58.19 55.70 44.20 57.74 72.4 38.85 63.84
Mamba2-Llama3 (25%) 64.80 78.73 77.7 76.35 52.47 53.71 42.40 55.33 64.80 39.23 60.55

Mamba2-Llama3 (12.5%) 63.38 76.82 73.14 75.84 50.26 50.78 39.60 50.00 65.80 36.46 58.21

Mamba2-Llama3 (0%) 58.56 76.82 70.75 74.12 47.95 45.19 39.00 40.20 62.20 32.63 54.74

Table 3: Evaluation on LM Eval benchmark for Mamba and Mamba2 distilled from Llama-3

Instruct 8B.

dataset [70], for approximately 3 full epochs, following the “shrink and fine-tune” approach

from [66]. Specifically, we initialize the draft layers using layers from the Zephyr-7B model

(we take layers at indices [0, 31] for the 2-layer model and [0, 10, 20, 31] for the 4-layer model),

and the embeddings and language model head also from the Zephyr-7B model [72]. We

perform loss masking on the prompt, thus only considering next token prediction loss

(cross-entropy) on the chat continuations from the training set. Speculative decoding

experiments are run on a single NVIDIA RTX 3090 on data from OpenHermes2.5.

Draft Model K Target Model (% Att) # Gen. Tokens Speedup

2 layers
4 Mamba-Zephyr (50%) 2.48 1.8x

4 Mamba-Zephyr (25%) 2.64 1.88x

4 layers
4 Mamba-Zephyr (50%) 3 1.81x

4 Mamba-Zephyr (25%) 3 1.8x

4 layers 3 Mamba-Llama3 (50%) 2.7 1.6x

4 layers 4 Mamba-Llama3 (50%) 3.6 1.58x

Table 4: Performance metrics for different draft and target model configurations for K = 4 on

data from OpenHermes2.5. # Gen is the average number of generated tokens per speculative

decoding step and includes an additional token from the last verifier logits.

Results Table 4 shows results for hybrid speculative decoding with, using both the Zephyr

and Llama hybrid models with different configurations. For both the 50% and 25% distilled

models, we achieve speedups of over 1.8x on the Zephyr-Hybrid compared to the non-

speculative baseline. We also show that the 4-layer draft model we trained achieves a higher

acceptance rate, but it adds some additional overhead due to the increased draft model size.

For the Llama-hybrid models, the speedups are more modest since the draft model is larger

due to the large embedding table of Llama 3. In subsequent work, we will focus on making

these draft models smaller.

6 Conclusion
We consider the problem of maintaining LLM abilities while increasing decoding speed

through a combination of distillation and speculative decoding. We first show that a

Transformer LLM can be used to effectively initialize a Mamba linear RNN model while

maintaining original abilities. We then show that through a combination of distillation on

supervised instructions and preferences, we can improve the model’s ability with relatively

little compute. Finally, we show that the Mamba model can be significantly sped up at

inference time through the use of a hardware-aware speculative decoding method. The

full model nears LLM chat accuracy, and is accelerated with speculative decoding. We

believe these results show that transformer knowledge can be transferred effectively to other

architectures, opening up the potential for customizing the inference profile of LLMs beyond

optimizing attention.

10

Acknowledgement

We thank Together AI for providing compute for some of the experiments. This work has

benefited from helpful discussions with Albert Gu at CMU, François Fleuret and Vincent

Micheli at the University of Geneva, Albert Tseng and Wen-Ding Li at Cornell University.

References
[1] S. Arora, S. Eyuboglu, A. Timalsina, I. Johnson, M. Poli, J. Zou, A. Rudra, and C. Ré.

Zoology: Measuring and improving recall in efficient language models. arXiv preprint
arXiv:2312.04927, 2023.

[2] S. Arora, S. Eyuboglu, M. Zhang, A. Timalsina, S. Alberti, D. Zinsley, J. Zou, A. Rudra,

and C. Ré. Simple linear attention language models balance the recall-throughput

tradeoff. arXiv preprint arXiv:2402.18668, 2024.

[3] BAAI. Infinity instruct. arXiv preprint arXiv:2406.XXXX, 2024.

[4] M. Beck, K. Pöppel, M. Spanring, A. Auer, O. Prudnikova, M. Kopp, G. Klambauer,

J. Brandstetter, and S. Hochreiter. xlstm: Extended long short-term memory. arXiv
preprint arXiv:2405.04517, 2024.

[5] N. Bhendawade, I. Belousova, Q. Fu, H. Mason, M. Rastegari, and M. Najibi. Speculative

streaming: Fast llm inference without auxiliary models. arXiv preprint arXiv:2402.11131,

2024.

[6] A. Bick, K. Y. Li, E. P. Xing, J. Z. Kolter, and A. Gu. Transformers to ssms: Distilling

quadratic knowledge to subquadratic models. arXiv preprint arXiv:2408.10189, 2024.

[7] Y. Bisk, R. Zellers, J. Gao, Y. Choi, et al. PIQA: Reasoning about Physical Commonsense

in Natural Language. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 7432–7439, 2020.

[8] A. Botev, S. De, S. L. Smith, A. Fernando, G.-C. Muraru, R. Haroun, L. Berrada,

R. Pascanu, P. G. Sessa, R. Dadashi, et al. Recurrentgemma: Moving past transformers

for efficient open language models. arXiv preprint arXiv:2404.07839, 2024.

[9] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,

P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances
in neural information processing systems, 33:1877–1901, 2020.

[10] T. Cai, Y. Li, Z. Geng, H. Peng, J. D. Lee, D. Chen, and T. Dao. Medusa: Simple

llm inference acceleration framework with multiple decoding heads. arXiv preprint
arXiv:2401.10774, 2024.

[11] C. Chen, S. Borgeaud, G. Irving, J.-B. Lespiau, L. Sifre, and J. Jumper. Accelerating

Large Language Model Decoding with Speculative Sampling, 2023.

[12] J. Chen, R. Qadri, Y. Wen, N. Jain, J. Kirchenbauer, T. Zhou, and T. Goldstein.

Genqa: Generating millions of instructions from a handful of prompts. arXiv preprint
arXiv:2406.10323, 2024.

[13] Z. Chen, X. Yang, J. Lin, C. Sun, J. Huang, and K. C.-C. Chang. Cascade speculative

drafting for even faster llm inference. arXiv preprint arXiv:2312.11462, 2023.

[14] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord.

Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457, 2018.

[15] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord.

Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge.

arXiv preprint arXiv:1803.05457, 2018.

11

[16] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,

J. Hilton, R. Nakano, et al. Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021.

[17] G. Cui, L. Yuan, N. Ding, G. Yao, W. Zhu, Y. Ni, G. Xie, Z. Liu, and M. Sun. Ultrafeedback:

Boosting language models with high-quality feedback. arXiv preprint arXiv:2310.01377,

2023.

[18] T. Dao and A. Gu. Transformers are ssms: Generalized models and efficient algorithms

through structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

[19] S. De, S. L. Smith, A. Fernando, A. Botev, G. Cristian-Muraru, A. Gu, R. Haroun,

L. Berrada, Y. Chen, S. Srinivasan, et al. Griffin: Mixing gated linear recurrences with

local attention for efficient language models. arXiv preprint arXiv:2402.19427, 2024.

[20] N. Ding, Y. Chen, B. Xu, Y. Qin, S. Hu, Z. Liu, M. Sun, and B. Zhou. Enhancing chat

language models by scaling high-quality instructional conversations. In Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pages 3029–3051,

2023.

[21] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,

A. Schelten, A. Yang, A. Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

[22] D. Fu, S. Arora, J. Grogan, I. Johnson, E. S. Eyuboglu, A. Thomas, B. Spector, M. Poli,

A. Rudra, and C. Ré. Monarch mixer: A simple sub-quadratic gemm-based architecture.

Advances in Neural Information Processing Systems, 36, 2024.

[23] D. Y. Fu, T. Dao, K. K. Saab, A. W. Thomas, A. Rudra, and C. Re. Hungry hungry hippos:

Towards language modeling with state space models. In The Eleventh International
Conference on Learning Representations, 2022.

[24] Y. Fu, P. Bailis, I. Stoica, and H. Zhang. Break the sequential dependency of llm inference

using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

[25] L. Gao, J. Tow, B. Abbasi, S. Biderman, S. Black, A. DiPofi, C. Foster, L. Golding,

J. Hsu, A. Le Noac’h, H. Li, K. McDonell, N. Muennighoff, C. Ociepa, J. Phang,

L. Reynolds, H. Schoelkopf, A. Skowron, L. Sutawika, E. Tang, A. Thite, B. Wang,

K. Wang, and A. Zou. A framework for few-shot language model evaluation, 12 2023.

URL https://zenodo.org/records/10256836.

[26] A. Gu and T. Dao. Mamba: Linear-time sequence modeling with selective state spaces.

arXiv preprint arXiv:2312.00752, 2023.

[27] A. Gu, K. Goel, and C. Ré. Efficiently Modeling Long Sequences with Structured State

Spaces. arXiv preprint arXiv:2111.00396, 2021.

[28] A. Gu, K. Goel, A. Gupta, and C. Ré. On the Parameterization and Initialization of

Diagonal State Space Models. Advances in Neural Information Processing Systems, 35:

35971–35983, 2022.

[29] A. Gu, B. Rozière, H. Leather, A. Solar-Lezama, G. Synnaeve, and S. I. Wang. Crux-

eval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

[30] M. Guo, J. Ainslie, D. Uthus, S. Ontanon, J. Ni, Y.-H. Sung, and Y. Yang. Longt5:

Efficient text-to-text transformer for long sequences. arXiv preprint arXiv:2112.07916,

2021.

[31] A. Gupta, A. Gu, and J. Berant. Diagonal State Spaces are as Effective as Structured

State Spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

[32] Z. He, Z. Zhong, T. Cai, J. D. Lee, and D. He. Rest: Retrieval-based speculative decoding.

arXiv preprint arXiv:2311.08252, 2023.

12

https://zenodo.org/records/10256836

[33] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt.

Measuring Massive Multitask Language Understanding. In International Conference on
Learning Representations, 2020.

[34] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt.

Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

[35] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

[36] K. Irie, I. Schlag, R. Csordás, and J. Schmidhuber. Going beyond linear transformers

with recurrent fast weight programmers. Advances in neural information processing
systems, 34:7703–7717, 2021.

[37] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. l. Casas,

F. Bressand, G. Lengyel, G. Lample, L. Saulnier, et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

[38] Q. Jin, B. Dhingra, Z. Liu, W. W. Cohen, and X. Lu. PubMedQA: A Dataset for Biomedical

Research Question Answering. arXiv preprint arXiv:1909.06146, 2019.

[39] Y. Kim and A. M. Rush. Sequence-level knowledge distillation. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 1317–1327, 2016.

[40] G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy. RACE: Large-scale ReAding Comprehension

Dataset From Examinations. arXiv preprint arXiv:1704.04683, 2017.

[41] Y. Leviathan, M. Kalman, and Y. Matias. Fast Inference from Transformers via Specula-

tive Decoding. In Proceedings of the 40th International Conference on Machine Learning,

volume 202 of Proceedings of Machine Learning Research, pages 19274–19286. PMLR, 23–29

Jul 2023. URL https://proceedings.mlr.press/v202/leviathan23a.html.

[42] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone, C. Akiki, J. Li,

J. Chim, et al. Starcoder: may the source be with you! arXiv preprint arXiv:2305.06161,

2023.

[43] X. Li, T. Zhang, Y. Dubois, R. Taori, I. Gulrajani, C. Guestrin, P. Liang, and T. B.

Hashimoto. Alpacaeval: An automatic evaluator of instruction-following models.

https://github.com/tatsu-lab/alpaca_eval, 2023.

[44] O. Lieber, B. Lenz, H. Bata, G. Cohen, J. Osin, I. Dalmedigos, E. Safahi, S. Meirom,

Y. Belinkov, S. Shalev-Shwartz, et al. Jamba: A hybrid transformer-mamba language

model. arXiv preprint arXiv:2403.19887, 2024.

[45] B. Y. Lin. ZeroEval: A Unified Framework for Evaluating Language Models, July 2024.

URL https://github.com/yuchenlin/ZeroEval.

[46] S. Lin, J. Hilton, and O. Evans. TruthfulQA: Measuring How Models Mimic Human

Falsehoods. arXiv preprint arXiv:2109.07958, 2021.

[47] S. Lin, J. Hilton, and O. Evans. Truthfulqa: Measuring how models mimic human

falsehoods. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 3214–3252, 2022.

[48] X. Liu, L. Hu, P. Bailis, I. Stoica, Z. Deng, A. Cheung, and H. Zhang. Online speculative

decoding. arXiv preprint arXiv:2310.07177, 2023.

[49] S. Massaroli, M. Poli, D. Fu, H. Kumbong, R. Parnichkun, D. Romero, A. Timalsina,

Q. McIntyre, B. Chen, A. Rudra, et al. Laughing hyena distillery: Extracting compact

recurrences from convolutions. Advances in Neural Information Processing Systems, 36,

2024.

13

https://proceedings.mlr.press/v202/leviathan23a.html
https://github.com/tatsu-lab/alpaca_eval
https://github.com/yuchenlin/ZeroEval

[50] H. Mehta, A. Gupta, A. Cutkosky, and B. Neyshabur. Long Range Language Modeling

via Gated State Spaces. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=5MkYIYCbva.

[51] Y. Meng, M. Xia, and D. Chen. Simpo: Simple preference optimization with a reference-

free reward. arXiv preprint arXiv:2405.14734, 2024.

[52] J. Mercat, I. Vasiljevic, S. Keh, K. Arora, A. Dave, A. Gaidon, and T. Kollar. Linearizing

large language models. arXiv preprint arXiv:2405.06640, 2024.

[53] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. arXiv
preprint arXiv:1609.07843, 2016.

[54] T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal. Can a Suit of Armor Conduct

Electricity? A New Dataset for Open Book Question Answering. arXiv preprint
arXiv:1809.02789, 2018.

[55] B. Peng, E. Alcaide, Q. Anthony, A. Albalak, S. Arcadinho, H. Cao, X. Cheng, M. Chung,

M. Grella, K. K. GV, et al. Rwkv: Reinventing rnns for the transformer era. arXiv preprint
arXiv:2305.13048, 2023.

[56] B. Peng, J. Quesnelle, H. Fan, and E. Shippole. Yarn: Efficient context window extension

of large language models. arXiv preprint arXiv:2309.00071, 2023.

[57] M. Poli, S. Massaroli, E. Nguyen, D. Y. Fu, T. Dao, S. Baccus, Y. Bengio, S. Ermon, and

C. Ré. Hyena hierarchy: Towards larger convolutional language models. In International
Conference on Machine Learning, pages 28043–28078. PMLR, 2023.

[58] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct

preference optimization: Your language model is secretly a reward model. Advances in
Neural Information Processing Systems, 36, 2024.

[59] T. R. Ralambomihanta, S. Mohammadzadeh, M. S. N. Islam, W. Jabbour, and L. Liang.

Scavenging hyena: Distilling transformers into long convolution models. arXiv preprint
arXiv:2401.17574, 2024.

[60] L. Ren, Y. Liu, Y. Lu, Y. Shen, C. Liang, and W. Chen. Samba: Simple hybrid

state space models for efficient unlimited context language modeling. arXiv preprint
arXiv:2406.07522, 2024.

[61] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, T. Re-

mez, J. Rapin, et al. Code llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023.

[62] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial

winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

[63] I. Schlag, K. Irie, and J. Schmidhuber. Linear transformers are secretly fast weight

programmers. In International Conference on Machine Learning, pages 9355–9366. PMLR,

2021.

[64] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy

optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[65] U. Shaham, E. Segal, M. Ivgi, A. Efrat, O. Yoran, A. Haviv, A. Gupta, W. Xiong, M. Geva,

J. Berant, et al. Scrolls: Standardized comparison over long language sequences. arXiv
preprint arXiv:2201.03533, 2022.

[66] S. Shleifer and A. M. Rush. Pre-trained summarization distillation. CoRR,

abs/2010.13002, 2020. URL https://arxiv.org/abs/2010.13002.

[67] B. Spector and C. Re. Accelerating llm inference with staged speculative decoding.

arXiv preprint arXiv:2308.04623, 2023.

14

https://openreview.net/forum?id=5MkYIYCbva
https://arxiv.org/abs/2010.13002

[68] Y. Sun, L. Dong, S. Huang, S. Ma, Y. Xia, J. Xue, J. Wang, and F. Wei. Retentive network:

A successor to transformer for large language models. arXiv preprint arXiv:2307.08621,

2023.

[69] Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao, L. Yang, S. Ruder, and

D. Metzler. Long range arena: A benchmark for efficient transformers. In International
Conference on Learning Representations, 2020.

[70] Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants,

2023. URL https://huggingface.co/datasets/teknium/OpenHermes-2.5.

[71] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,

N. Goyal, E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language

models. arXiv preprint arXiv:2302.13971, 2023.

[72] L. Tunstall, E. Beeching, N. Lambert, N. Rajani, K. Rasul, Y. Belkada, S. Huang, L. von

Werra, C. Fourrier, N. Habib, et al. Zephyr: Direct distillation of lm alignment. arXiv
preprint arXiv:2310.16944, 2023.

[73] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and

I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[74] R. Waleffe, W. Byeon, D. Riach, B. Norick, V. Korthikanti, T. Dao, A. Gu, A. Hatamizadeh,

S. Singh, D. Narayanan, et al. An empirical study of mamba-based language models.

arXiv preprint arXiv:2406.07887, 2024.

[75] J. Wang, J. N. Yan, A. Gu, and A. M. Rush. Pretraining without attention. arXiv preprint
arXiv:2212.10544, 2022.

[76] H. Xia, T. Ge, P. Wang, S.-Q. Chen, F. Wei, and Z. Sui. Speculative Decoding: Exploiting

Speculative Execution for Accelerating Seq2seq Generation. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages 3909–3925, Singapore, Dec. 2023.

Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.257.

URL https://aclanthology.org/2023.findings-emnlp.257.

[77] J. Yang, C. E. Jimenez, A. Wettig, K. Lieret, S. Yao, K. Narasimhan, and O. Press.

Swe-agent: Agent computer interfaces enable software engineering language models,

2024.

[78] N. Yang, T. Ge, L. Wang, B. Jiao, D. Jiang, L. Yang, R. Majumder, and F. Wei. Infer-

ence with reference: Lossless acceleration of large language models. arXiv preprint
arXiv:2304.04487, 2023.

[79] S. Yang, B. Wang, Y. Shen, R. Panda, and Y. Kim. Gated linear attention transformers

with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

[80] S. Yang, B. Wang, Y. Zhang, Y. Shen, and Y. Kim. Parallelizing linear transformers with

the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024.

[81] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing

reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

[82] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hellaswag: Can a machine

really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[83] M. Zhang, K. Bhatia, H. Kumbong, and C. Ré. The hedgehog & the porcupine:

Expressive linear attentions with softmax mimicry. arXiv preprint arXiv:2402.04347,

2024.

[84] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P.

Xing, H. Zhang, J. E. Gonzalez, and I. Stoica. Judging llm-as-a-judge with mt-bench

and chatbot arena, 2023.

15

https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://aclanthology.org/2023.findings-emnlp.257

A Evaluation on Long Context Tasks

Figure 4: Needle in a Haystack evaluation. Green squares represent a high retrieval success

rate, while the white dashed line marks the longest examples encountered during distillation

training. The Y-axis indicates the distance to the retrieved target.

Figure 4 illustrates the results of Needle in a Haystack. Although the distillation length is only

2k, our distilled 3B models (Mamba-Llama3.2-3B (50%) and Mamba2-Llama3.2-3B (50%))

achieve perfect accuracy up to 10k, which is better than Llama-3.2-3B-Instruct. Similarly, the

distilled 8B models (Mamba-Llama3.1-8B (50%) and Mamba2-Llama3.1-8B (50%)) achieve

perfect accuracy up to 16k, with Mamba-Llama3.1-8B demonstrating good results up to 38k.

B Benchmark Evaluation

We also report few-shot evaluations on OpenLLMLeaderboard by conducting 25 shots on

ARC-Challenge [14], 10 shots on HellaSwag [82], 5 shots on MMLU [34], and 5 shots on

Winogrande [62]. For TruthFulQA, the mc2 metric is reported in this benchmark. For

GSM8K [16], we follow the evaluation for instruct tuned model [51], which uses ZeroEval [45],

a benchmark designed for chat models. We also include the CRUX [29] from that benchmark,

which is designed for evaluating reasoning on code. All models are evaluated with greedy

decoding in the ZeroEval.

Table 5 shows that the performance of our distilled hybrid models matches that of the best

open-source linear RNN models on the Open LLM Leaderboard, while outperforming their

corresponding open-source instruct models in GSM8K and CRUX.

C Analysis

Comparison with other distillation approaches Table 6 (left) compares the perplexity

of different model variants. We distill using Ultrachat as seed prompt [20] in one epoch

and compare the perplexity. We find that removing more layers gets significantly worse.

We also compare our distillation approach with a previous baseline. This approach distills

a Transformer model into a Hyena model [57], as proposed in [59]. They use a different

distillation approach using progressive knowledge transfer, wherein the student model is

trained starting from the first layer and progressively extending to subsequent layers. While

16

Model (% Att) ARC HS MMLU WG TQ GSM8K CRUX

Falcon Mamba-7B 62.03 80.82 62.11 73.64 53.42 41.32 8.88

RecurrentGemma-9B 52.00 80.40 60.50 73.60 38.60 38.51 26.25

Mamba-Llama3 (50%) 56.57 78.99 59.26 69.06 58.85 67.85 27.88

Mamba-Llama3 (25%) 55.03 75.66 52.68 62.83 55.03 40.64 15.62

Mamba-Llama3 (12.5%) 52.90 72.46 49.20 59.19 53.00 26.91 11.25

Mamba2-Llama3 (50%) 60.41 77.97 56.67 71.35 66.60 59.36 24.88

Mamba2-Llama3 (25%) 59.22 76.88 53.94 64.88 64.64 38.13 13.25

Mamba2-Llama3 (12.5%) 53.33 72.16 50.85 63.61 61.12 35.03 10.25

Mamba2-Llama3 (0%) 53.51 70.31 44.21 58.91 52.31 - -

Table 5: Results on the Open LLM Leaderboard and ZeroEval Leaderboard. For GSM8K

and CRUX, we chose the zero-shot evaluation using ZeroEval, which is designed for

evaluating instruct models. We evaluated the corresponding instruct-tuned models for

Falcon Mamba-7b and RecurrentGemma-9B, specifically Falcon Mamba-7b-instruct and

RecurrentGemma-9B-it.

Model (% Att) PPL Ratio

Teacher: Zephyr (7B) 2.02 1

Mamba-Zephyr (50%) 2.09 1.03

Mamba-Zephyr (25%) 2.20 1.09

Mamba-Zephyr (6.25%) 2.46 1.22

Mamba-Zephyr (0%) 3.36 1.66

Teacher: Pythia (70M) 51.4 1

Distill Hyena 121.2 2.36

Model Hyb Mamba Hyb Mamba

(50% Att) (25% Att)

Dis 5.55 5.01

Dis+SFT 5.61 4.97

Dis+DPO 5.42 4.84

Dis+SFT+DPO 6.69 6.10

Table 6: (Left) Perplexity comparison between our distillation approach and [59]. (Right)

Ablation study of different alignment methods of the Distilled Hybrid Mamba on the

MT-benchmark using OpenHermes 2.5 as the SFT dataset.

it is challenging to compare, our distill shows a smaller degradation (1.03 for 50 % attention,

1.09 for 25 % attention, 1.22 for 6.35% attention, and 3.36 for no attention), while the Distill

Hyena model is trained in WikiText [53] dataset with a much smaller model and shows large

perplexity degrade.

Does distilling from preferences help? In Table 6 (Right), we show the impact of different

steps in the alignment process of the distillation. We observe that SFT or DPO alone does

not yield much improvement, while SFT + DPO yields the best score. Models are trained

using Zephyr as the teacher model and the OpenHermes 2.5 [70] dataset as the SFT dataset,

and UltraFeedback [17] as the DPO dataset.

Pseudo Label Distillation Ablations. We consider several different model ablation studies

in Table 7. For these experiments we consider training for 5k steps using the pseudo-label

approaches on the Ultrachat [20] dataset. Table 7 (Left) presents the results of distillation

with various initializations. According to this table, initializing weights from a transformer

Model

Mamba

(0% Att)

Hyb Mamba

(50% Att)

Froz -Froz Froz -Froz

+ Attention-Init 3.36 66.7 2.09 9.1

-Attention-Init 18.2 20.3 7.4 11.2

Model

Hyb Mamba

(25% Att)

Hyb Mamba

(50% Att)

Step -Step Step -Step

+ Interleave 2.20 2.29 2.09 -

-Interleave 2.89 - 2.41 -

Table 7: (Left) Perplexity comparison with different initialization at first stage. (Right)

Perplexity comparison with different Mamba interleaving layers and stepwise distillation at

first stage.

17

is crucial for performance. Without weight initialization from a transformer, perplexity

significantly worsens for both pure Mamba models and hybrid models. Also, freezing MLP

layers can help the student model focus on learning the interaction of tokens and better

mimic attention layers. Table 7 (Right) shows also see smaller benefits from progressive

distillation and interleaving the attention layers with Mamba.

Attention Initialization. We compare the default random initialization of Mamba with

reusing the linear projection from the attention using the same recipe. Both models are

trained using Zephyr as the teacher model and the OpenHermes 2.5 [70] dataset as the SFT

dataset, and UltraFeedback [17] as the DPO dataset.

Model
LAMBADA

(ppl)
MMLU ARC-C TruthfulQA HellaSwag

MT-Bench

(score)

AlpacaEval

(LC win %)

+ Attention init 6.20 47.98 49.15 46.67 75.07 6.69 14.11
- Attention init 55.01 26.21 25.26 34.01 27.91 1.04 0.02

Table 8: Performance of Zephyr-Mamba (50% attention) with different initialization.

Table 8 compares the performance of the hybrid model using two different initialization

methods: default random initialization and reusing the linear projection from the attention.

The model performs significantly better with reusing the linear projection from the attention

compared to random initialization, across all evaluated benchmarks. This result confirms

that initialization from attention weights is critical.

Model
LAMBADA

(ppl)
MMLU ARC-C TruthfulQA HellaSwag

MT-Bench

(score)

AlpacaEval

(LC win %)

50% Att w Mamba 6.20 47.98 49.15 46.67 75.07 6.69 14.11
50% Att w/o Mamba 151.98 24.46 21.93 32.39 27.91 1.01 0

Table 9: Performance of Hybrid-Mamba with different initialization.

Necessity of Linear RNN. We train a model that removes Mamba blocks from the model

entirely using the same recipe to see if the model can adapt. Both models are trained using

Zephyr as the teacher model, with the OpenHermes 2.5 [70] dataset as the SFT dataset and

UltraFeedback [17] as the DPO dataset. Table 9 compares the performance of the model

with and without Mamba blocks. The model with Mamba performs significantly better than

the one without it. This confirms that adding Mamba layers is critical and that the improved

performance is not solely attributable to the remaining attention mechanism.

D Related Work

Attention-free models. Attention-free models offer improved computational and memory

efficiency, making them increasingly popular for various language processing tasks, including

autoregressive language modeling. Models like S4 [27] and its subsequent variants [31, 28]

have shown promising results in long-range synthetic tasks [69]. Gated SSM architectures,

such as GSS [50] and BiGS [75], incorporate a gating mechanism into SSMs for (bidirectional)

language modeling. The recently introduced Mamba model [26] argues that the static

dynamics of these methods fail to incorporate input-specific context selection within the

hidden state, which could be crucial for tasks like language modeling. Mamba has been

shown to outperform Transformers across different model sizes and scales. Additionally,

several other sub-quadratic model architectures [57, 79, 19, 1, 2, 22, 4, 80] and hybrid

architectures [23, 44] have also been proposed.

Distillation from Transformers. There have been relatively few attempts to distill on to

linear RNN style models. Laughing Hyena [49] proposes to distill the long convolution into a

state space representation, enabling constant time inference in Hyena [57]. Ralambomihanta

et al. [59] introduces a progressive knowledge approach to distill small transformer models

(70M) into Hyena models. [6]

Speculative Decoding. Speculative decoding [67, 41, 11, 76, 10] has recently emerged as a

promising method to accelerate the inference process of large language models, particularly

18

Transformers. This approach utilizes a smaller draft model to speculatively generate

candidate tokens, which the larger target model then verifies. Leviathan et al. [41], Chen et al.

[11] proposed a rejection sampling scheme to improve inference quality, while Spector and

Re [67] organized candidate tokens into a tree structure to enable more efficient verification.

Subsequent work has examined both trained draft models [5, 13, 48] and training-free draft

models [32, 78, 24].

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning

research, addressing issues of reproducibility, transparency, research ethics, and societal

impact. Do not remove the checklist: The papers not including the checklist will be desk
rejected. The checklist should follow the references and follow the (optional) supplemental

material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these

questions. For each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or

the relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for

NA).

The checklist answers are an integral part of your paper submission. They are visible to

the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also

include it (after eventual revisions) with the final version of your paper, and its final version

will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their

evaluation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to

answer "[No] " provided a proper justification is given (e.g., "error bars are not reported

because it would be too computationally expensive" or "we were unable to find the license for

the dataset we used"). In general, answering "[No] " or "[NA] " is not grounds for rejection.

While the questions are phrased in a binary way, we acknowledge that the true answer

is often more nuanced, so please just use your best judgment and write a justification to

elaborate. All supporting evidence can appear either in the main paper or the supplemental

material, provided in appendix. If you answer [Yes] to a question, in the justification please

point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper
checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately

reflect the paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are supported by

our theoretical analysis in section 2 and experimental results in section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the

claims made in the paper.

19

• The abstract and/or introduction should clearly state the claims made, including

the contributions made in the paper and important assumptions and limitations.

A No or NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect

how much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that

these goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the

authors?

Answer: [Yes]

Justification: We discuss the limitation of this paper in Section ??
Guidelines:

• The answer NA means that the paper has no limitation while the answer No

means that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their

paper.

• The paper should point out any strong assumptions and how robust the

results are to violations of these assumptions (e.g., independence assumptions,

noiseless settings, model well-specification, asymptotic approximations only

holding locally). The authors should reflect on how these assumptions might

be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach

was only tested on a few datasets or with a few runs. In general, empirical

results often depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the

approach. For example, a facial recognition algorithm may perform poorly

when image resolution is low or images are taken in low lighting. Or a speech-

to-text system might not be used reliably to provide closed captions for online

lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed

algorithms and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach

to address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might

be used by reviewers as grounds for rejection, a worse outcome might be that

reviewers discover limitations that aren’t acknowledged in the paper. The

authors should use their best judgment and recognize that individual actions in

favor of transparency play an important role in developing norms that preserve

the integrity of the community. Reviewers will be specifically instructed to not

penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assump-

tions and a complete (and correct) proof?

Answer: [Yes]

Justification: We show all the theorems and formulas in Section 2.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.

• All assumptions should be clearly stated or referenced in the statement of any

theorems.

20

• The proofs can either appear in the main paper or the supplemental material,

but if they appear in the supplemental material, the authors are encouraged to

provide a short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be com-

plemented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce

the main experimental results of the paper to the extent that it affects the main

claims and/or conclusions of the paper (regardless of whether the code and data

are provided or not)?

Answer: [Yes]

Justification: We will release our model and code. Everything will be open-sourced.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be

perceived well by the reviewers: Making the paper reproducible is important,

regardless of whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the

steps taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various

ways. For example, if the contribution is a novel architecture, describing the

architecture fully might suffice, or if the contribution is a specific model and

empirical evaluation, it may be necessary to either make it possible for others

to replicate the model with the same dataset, or provide access to the model.

In general. releasing code and data is often one good way to accomplish this,

but reproducibility can also be provided via detailed instructions for how

to replicate the results, access to a hosted model (e.g., in the case of a large

language model), releasing of a model checkpoint, or other means that are

appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all

submissions to provide some reasonable avenue for reproducibility, which may

depend on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it

clear how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should

describe the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there

should either be a way to access this model for reproducing the results

or a way to reproduce the model (e.g., with an open-source dataset or

instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which

case authors are welcome to describe the particular way they provide for

reproducibility. In the case of closed-source models, it may be that access to

the model is limited in some way (e.g., to registered users), but it should be

possible for other researchers to have some path to reproducing or verifying

the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient

instructions to faithfully reproduce the main experimental results, as described in

supplemental material?

Answer: [Yes]

Justification: We will definitely release our model and code. Everything will

be open-sourced. we will discuss the detailed steps and resources required for

reproduction in Section 5.

21

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might

not be possible, so “No” is an acceptable answer. Papers cannot be rejected

simply for not including code, unless this is central to the contribution (e.g., for

a new open-source benchmark).

• The instructions should contain the exact command and environment needed

to run to reproduce the results. See the NeurIPS code and data submis-

sion guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy)
for more details.

• The authors should provide instructions on data access and preparation,

including how to access the raw data, preprocessed data, intermediate data,

and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for

the new proposed method and baselines. If only a subset of experiments are

reproducible, they should state which ones are omitted from the script and

why.

• At submission time, to preserve anonymity, the authors should release

anonymized versions (if applicable).

• Providing as much information as possible in supplemental material (appended

to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,

hyperparameters, how they were chosen, type of optimizer, etc.) necessary to

understand the results?

Answer: [Yes]

Justification: We report the training details, include dataset, hyper-parameters and

optimizer and etc in section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level

of detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as

supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other

appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We present the error bars in the evaluation benchmarks in Tables 2

and 5, following the standard for these benchmarks.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments

that support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly

stated (for example, train/test split, initialization, random drawing of some

parameter, or overall run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form

formula, call to a library function, bootstrap, etc.)

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard

error of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the

hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in

tables or figures symmetric error bars that would yield results that are out of

range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the

text how they were calculated and reference the corresponding figures or tables

in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the

computer resources (type of compute workers, memory, time of execution) needed

to reproduce the experiments?

Answer: [Yes]

Justification: We report the number of GPUs and the training time for GPUs in

Section 5. Given the extensive GPU time required for LLM training, we use only a

very limited amount, which is conducive to reproduction.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal

cluster, or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the

individual experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more

compute than the experiments reported in the paper (e.g., preliminary or failed

experiments that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with

the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and respect the NeurIPS

Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of

Ethics.

• If the authors answer No, they should explain the special circumstances that

require a deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and

negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss Broader Impacts in section ??.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no

societal impact or why the paper does not address societal impact.

23

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended

uses (e.g., disinformation, generating fake profiles, surveillance), fairness

considerations (e.g., deployment of technologies that could make decisions

that unfairly impact specific groups), privacy considerations, and security

considerations.

• The conference expects that many papers will be foundational research and

not tied to particular applications, let alone deployments. However, if there

is a direct path to any negative applications, the authors should point it out.

For example, it is legitimate to point out that an improvement in the quality

of generative models could be used to generate deepfakes for disinformation.

On the other hand, it is not needed to point out that a generic algorithm for

optimizing neural networks could enable people to train models that generate

Deepfakes faster.

• The authors should consider possible harms that could arise when the technol-

ogy is being used as intended and functioning correctly, harms that could arise

when the technology is being used as intended but gives incorrect results, and

harms following from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible

mitigation strategies (e.g., gated release of models, providing defenses in

addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor

how a system learns from feedback over time, improving the efficiency and

accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for

responsible release of data or models that have a high risk for misuse (e.g., pretrained

language models, image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discuss risk of pretrained language models in section ??.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example

by requiring that users adhere to usage guidelines or restrictions to access the

model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The

authors should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many

papers do not require this, but we encourage authors to take this into account

and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models),

used in the paper, properly credited and are the license and terms of use explicitly

mentioned and properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or

dataset.

• The authors should state which version of the asset is used and, if possible,

include a URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and

terms of service of that source should be provided.

24

• If assets are released, the license, copyright information, and terms of use in

the package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can

help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the

license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach

out to the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the

documentation provided alongside the assets?

Answer: [Yes]

Justification: We communicate the details of the dataset/code/model as part of

their submissions via structured templates.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as

part of their submissions via structured templates. This includes details about

training, license, limitations, etc.

• The paper should discuss whether and how consent was obtained from people

whose asset is used.

• At submission time, remember to anonymize your assets (if applicable). You

can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does

the paper include the full text of instructions given to participants and screenshots,

if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human

subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor

research with human subjects.

• Including this information in the supplemental material is fine, but if the main

contribution of the paper involves human subjects, then as much detail as

possible should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection,

curation, or other labor should be paid at least the minimum wage in the

country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with
Human Subjects
Question: Does the paper describe potential risks incurred by study participants,

whether such risks were disclosed to the subjects, and whether Institutional Review

Board (IRB) approvals (or an equivalent approval/review based on the requirements

of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human

subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor

research with human subjects.

25

paperswithcode.com/datasets
paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or

equivalent) may be required for any human subjects research. If you obtained

IRB approval, you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between

institutions and locations, and we expect authors to adhere to the NeurIPS

Code of Ethics and the guidelines for their institution.

• For initial submissions, do not include any information that would break

anonymity (if applicable), such as the institution conducting the review.

26

	Introduction
	From Transformer to Mamba
	Relationship Between Attention and Linear RNNs
	Distilling to an Expanded Linear RNN
	Attention-to-Mamba Initialization and Hybrid Stepwise Training

	Knowledge Distillation for Aligned LMs
	Speculative Decoding Algorithms For Linear RNNs
	Challenges in RNN Speculation
	Multi-Step Linear RNN Speculation
	Speculation Analysis and Hardware Specific Optimization

	Results
	Experimental Setup
	Evaluation on Chat Benchmarks
	Evaluation on General Benchmarks
	Hybrid speculative decoding

	Conclusion
	Evaluation on Long Context Tasks
	Benchmark Evaluation
	Analysis
	Related Work

