Nystrom-Accelerated Primal LS-SVMs: Breaking the
O(an?®) Complexity Bottleneck for Scalable ODEs
Learning

Weikuo Wang'-2, Yue Liao®>**, Huan Luo'>*

College of Civil Engineering and Architecture, China Three Gorges University, Yichang, China
2Hubei Geological Disaster Prevention and Control Engineering Technology Research Center, Yichang, China
3College of Basic Medical Sciences, China Three Gorges University, Yichang, China
“Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Yichang, China
{wkwang, liaoyue, hluo}@ctgu.edu.cn

Abstract

A major problem of kernel-based methods (e.g., least squares support vector ma-
chines, LS-SVMs) for solving linear/nonlinear ordinary differential equations
(ODEs) is the prohibitive O(an®) (a = 1 for linear ODEs and 27 for nonlinear
ODEs) part of their computational complexity with increasing temporal discretiza-
tion points n. We propose a novel Nystrom-accelerated LS-SVMs framework
that breaks this bottleneck by reformulating ODEs as primal-space constraints.
Specifically, we derive for the first time an explicit Nystrom-based mapping and
its derivatives from one-dimensional temporal discretization points to a higher
m-dimensional feature space (1 < m < n), enabling the learning process to
solve linear/nonlinear equation systems with m-dependent complexity. Numer-
ical experiments on sixteen benchmark ODEs demonstrate: 1) 10 — 6000 times
faster computation than classical LS-SVMs and physics-informed neural networks
(PINNSs), 2) comparable accuracy to LS-SVMs (< 0.13% relative MAE, RMSE,
and ||y — 9|| difference) while maximum surpassing PINNs by 72% in RMSE, and
3) scalability to n = 10* time steps with m = 50 features. This work establishes
a new paradigm for efficient kernel-based ODEs learning without significantly
sacrificing the accuracy of the solution.

1 Introduction

Ordinary differential equations (ODEs) are foundational tools for modeling dynamical systems across
scientific domains, including physics, engineering, and biology [} 2]. Classical numerical methods,
such as Runge-Kutta schemes and finite difference discretizations, have been the cornerstone of ODE
solving due to their rigorous error analysis and convergence guarantees. However, these methods
face limitations in achieving satisfactory accuracy with large time steps and incur high computational
costs in long-time integration, particularly for stiff ODEs [3]. Recent advances in machine learning
(ML) have introduced data-driven paradigms for solving ODEs , such as Physics-Informed Neural
Networks (PINNs) [4], neural ODEs [3], and Gaussian process-based solvers [6]. These approaches
demonstrate unique advantages in addressing inverse problems, enabling adaptive resolution, and
directly incorporating observational data. These capabilities are often challenging for classical
techniques.

Among ML-driven methods, kernel-based strategies—particularly Least Squares Support Vector
Machines (LS-SVMs) [7]—have emerged as compelling alternatives for solving ODEs. By refor-

*Corresponding authors

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

mulating the ODEs as a constrained optimization problem in a reproducing kernel Hilbert space
(RKHS), LS-SVMs leverage kernel functions to implicitly capture nonlinear dynamics while ensuring
regularization against overfitting. This framework has shown success in solving initial/boundary
value problems [§]] and parameter estimation tasks [9]], benefiting from the inherent flexibility and
theoretical soundness of kernel methods. However, a critical limitation persists: the computational
complexity of kernel-based ODE solvers scales as O((n + p)3) when solving linear ODEs, and as
O((3n + p — 2)3) per Newton iteration in the case of nonlinear ODEs [8]], where n is the number of
temporal discretization points and p denotes the order of the ODE. This O(an?) (a = 1 for linear
ODE:s and 27 for nonlinear ODEs) scaling constitutes a major computational bottleneck, rendering
traditional LS-SVMs impractical for long-time simulations or fine-grained temporal resolutions, and
thereby undermining their utility in large-scale scientific applications.

To address this challenge, we propose a new Nystrom-accelerated LS-SVMs framework that reduces
the computational complexity to O((m +p)?) for linear ODEs and O((m + p+n)?) per Newton iter-
ation for nonlinear ODEs, where m < n represents the number of subsampled landmark points. The
key innovation of our approach lies in its primal-domain formulation, which strategically integrates
the Nystrom method—traditionally used for low-rank kernel matrix approximations [10]—into the
LS-SVMs optimization procedure. Unlike dual-domain kernel methods, our framework leverages the
Nystrom approximation to construct an explicit finite-dimensional feature map, enabling efficient
computation of high-order derivatives essential for ODE operators. This not only preserves the
theoretical benefits of kernel-based regularization but also facilitates a scalable surrogate model
for high-resolution ODE systems. The main contributions include: (1) a systematic integration
of the Nystrom approximation within the LS-SVMs ODE solver, ensuring stability through error-
controlled subspace selection; (2) a novel application of the Nystrom method to obtain explicit feature
mappings and their derivatives, enabling accurate representation of differential operators; and (3)
comprehensive numerical validation on sixteen benchmark problems—including stiff and nonlinear
systems—demonstrating order-of-magnitude speedups without sacrificing solution fidelity.

This work bridges the gap between the expressive power of kernel methods and the scalability
demands of modern scientific computing. By mitigating the O(an®) complexity barrier, our method
unlocks the potential for LS-SVMs to tackle large-scale ODE problems prevalent in multi-physics
simulations, biological network modeling, and real-time control systems, where traditional kernel
solvers were previously deemed infeasible.

1.1 Related Works

The development of solvers for ordinary differential equations (ODEs) navigates a trade-off between
computational efficiency, theoretical robustness, and application flexibility. This section reviews
the landscape of numerical, neural, and kernel-based methods, outlining the distinct challenges that
motivate our work.

Classical and Enhanced Numerical ODE Solvers: Classical solvers, such as Runge-Kutta schemes
[L1] and linear multistep methods [12], form the bedrock of ODE simulation. Their principal
strength lies in well-established convergence guarantees and explicit error control through adaptive
time-stepping. However, their performance is intrinsically linked to the temporal discretization.
Stiff ODE systems usually necessitate exceedingly small time steps to maintain stability, leading
to prohibitive computational costs in long-time integration. While probabilistic enhancements
[L3] and Bayesian filters [14] introduce valuable uncertainty quantification, they often exacerbate
computational burdens. Even ML-enhanced controllers [15} (16} [17]] primarily optimize existing
parameters without overcoming the fundamental constraints of discretization, leaving scalability
challenges for high-resolution systems largely unresolved.

Neural Networks for ODE Systems: Neural network-based approaches represent a paradigm shift
towards ODEs solving [18|[19]. Neural ODEs [5] offer a continuous-depth framework that adapts
flexibly to irregular time series, and Physics-Informed Neural Networks (PINNs) [4] enable the
seamless solution of inverse problems by incorporating physical laws as soft constraints. Despite
their flexibility, these methods are prone to convergence issues due to non-convex optimization, often
resulting in local minima and unpredictable training outcomes [20]. Furthermore, they can exhibit
numerical instability when applied to stiff systems [21] and suffer from spectral bias [22]], which
impedes the accurate resolution of high-frequency solutions. Although differentiable solvers [23]
improve gradient flow, they inherit the iterative cost of the underlying numerical schemes.

Kernel Methods in ODE Solving: Kernel methods, including formulations based on Least-Squares
Support Vector Machines (LS-SVMs) [[7, 18] and Gaussian processes [6} 24, [25], provide a mathe-
matically rigorous alternative. Operating within Reproducing Kernel Hilbert Spaces (RKHS), they
offer convex optimization landscapes that guarantee convergence to a global minimum, avoiding
the pitfalls of non-convex training endemic to neural networks. This framework yields closed-form
solutions with strong theoretical error bounds, as evidenced in kernel collocation techniques [26].
The primary limitation, however, is their computational scalability: solving the resulting dense linear
system requires matrix inversion with O(an?®) complexity, which becomes prohibitive for large-scale
or long-time ODE simulations.

Scalability in Kernel-Based ODE Solvers: Accelerating kernel methods has been a central focus
in supervised learning, where techniques like the Nystrom method [10, 127, 28] and its advanced
variants [29}[30] successfully reduce complexity to O(m?n) for m < n landmark points via low-
rank matrix approximations. However, these innovations have seen limited translation to the ODE
context. Exceptions, such as reduced-rank Kalman filters [31]], exploit low-rank structures but remain
disconnected from kernelized optimization frameworks like LS-SVMs. Consequently, a significant
gap persists: no prior work has systematically reduced the O(an?) bottleneck of LS-SVMs for ODE
solving while preserving their regularization benefits. Our method addresses this by integrating
Nystrom approximation directly into the LS-SVMs optimization process.

1.2 Novelty and Contributions

Our work bridges the gap between kernelized ODE R |
solvers’ theoretical strengths and their practical scal- ‘= ontinear

Linear The Lagrangian of the problem l
ability constraints. In contrast to classical Nystrom
methods—which are typically applied in the dual et
formulation of kernel-based classification and re-
gression problems using the kernel trick [10]—our
method operates entirely within the primal formula-
tion. This provides an explicit representation of the
nonlinear feature mapping and its high-order deriva-
tives, which is specifically tailored to the temporal
structure of ODEs and ensures stability in stiff sys-
tems (Figure [T). This aligns with trends in data-
driven scientific computing but specifically targets [mar sl
the under-explored challenge of O(an?®) complex- “g—————— ' $
ity in kernel-based ODE solvers. Our framework | y=o'p()+b o= a” [1l(@2.4.]=[1] |
could be extended to large-scale problems in systems e
biology, control theory, and multi-agent dynamics, Figure 1: Flowchart of Nystrom-accelerated LS-
where traditional kernel-based ODEs solvers were SVM:s for Efficient ODE Learning.
previously impractical.

L(@,b,4,.... 2, 9)=0.50" @ +0.57¢" ¢, +

0.5y E + g+t Ae,
KT optimality conditi
oL oL

oy, ey,

(il b

2 Preliminaries

This section describes the problem statement, a short introduction to LS-SVMs (Appendix [A-T)) for
ODEs solving is given to highlight the prohibitive O(an?®) complexity problem considered in this
paper. Consider a general p-th order linear/nonlinear ODE with the following form:

Llyl=y" =ty -y PV, te] (M
where L represents an p-th order linear/nonlinear differential operator depending on the lin-
ear/nonlinear function f(t,y,y, - ,y®~Y), [t1,t,] is the problem domain, t is the input signal,

and y¥)(t) denotes the (-th derivative of y with respect to ¢, £ € [0, p]. The p necessary initial or
boundary conditions for solving the above ODE are

IVP: IV, y] = v,,BVP: BV, [yl = q,, p=0,...,p—1 2)

where ZV,, are the initial conditions (all constraints are applied at the initial value of the independent
variable i.e., t = t;) and BV, are the boundary conditions (the constraints are applied at multiple

values of the independent variable ¢, typically at the ends of the interval [t1, ¢,,] in which the solution
is sought). v,, and g,, are given scalars.

When the function f(t,y,y’, - ,y(pfl)) in Eq. is linear, the p-th order ODE to be solved is
linear. The optimization problem based on LS-SVMs for learning the p-th order linear ODE can be
formulated by the method in Ref [8]. Its solution requires solving a system of (n + p) linear equations
with O((n + p)?) computational complexity. When the function is nonlinear, the p-th order ODE is
nonlinear and written in the following form (initial value problems for illustration):

y(p) :f(t7yay/a"' 7y(p_1))7 y(tl) =V, " ay(p_l)(tl) = Up-1, tl St Stn (3)

Assume the approximate solution: §(t) = w”¢(t) + b. Additional unknowns y; are introduced to
keep the constraints linear in w. This yields the following nonlinear optimization problem:

. 1 s
minimize inw + %Z?:Qef + gZ?:Q&g

w,b,e; &,y

s.t.y? = ’LUT<P(p) (ti) = f (ti7yti)y£i7 e JJE:FI)) +e, 1=2,...,n (4)
yt1) =wle () +b=v,y" V() =TV) =0, £=2,....p
yi=wlot)+b+6&, i=2,...,n.

By using classical kernel trick, Eq.(@) can be effectively solved. For detailed mathematical derivation,
see Appendix[A.2] The nonlinear system, which consists of (3n + p — 2) equations with (3n +p — 2)
unknowns, is solved by Newton’s method [32]]. For each Newton iteration, solving for unknowns
requires the computational complexity of O((3n + p — 2)3). In cases of a long-time interval with
more than 10* time steps, the prohibitive O(27n?) part of the computational complexity causes the
expensive computations or even may stop the run.

3 Proposed Nystrom-accelerated LS-SVMs (NLS-SVMs)

We consider the explicit model, §(t) = w” ¢ (t) + b, as a closed-form approximation solution to the
ODE (i.e., Eq.(I))). A key innovation of the NLS-SVMs approach is its application of the Nystrém
method to directly approximate the high-dimensional nonlinear feature map ¢(¢) and its higher-order
derivatives, enabling the direct substitution of the approximate solution ¢(t) and its derivatives into
the governing equation. Therefore, the NLS-SVMs method bypasses the kernel trick, allowing
the model parameters to be efficiently estimated in primal form, with computational complexity
dependent only on the dimension of the approximated features. Leveraging Mercer’s theorem, the
derivatives of the feature map ¢ (t) can be analytically expressed using derivatives of the kernel
function. To this end, we define the following differential operator:

(VK] (t5) = [VEK (u,0)] (2], = VK ()] = Tt

u=t,v=s" u=t; ,v=t; oucdv?

u=t;,v=t;

)
where [Q2%]; ; denotes the (i, 7)-th entry of matrix Q%. Given a long-time interval {¢;}?_,, the
Nystrom method, as defined in Eq.(34) (Appendix [A.3), is employed to construct an explicit finite-
dimensional feature mapping () € R™ with (m < n). This allows the model parameters w € R™
and b € R to be efficiently estimated in the primal space, circumventing the computational burden
associated with the dual formulation. Throughout this paper, we adopt the radial basis function (RBF)
kernel K (u,v) = exp(—(u —v)?/o?). Using the differential relations established in Eq.(5), the first-
and second-order derivatives of the kernel function are given by:

2

2 =) e,), VO (, 0)] = {4(“”) _ 2} Kuv) ()

o2 o o2

VALK (u,0)] = —

By extending Eq., the p-th order derivative of the feature map () can be explicitly written as:

P () = Vo (t;) = @Z;’;lésm(p) (tx, L) %
NG

These explicit expressions for the feature map and its derivatives enable the direct numerical treatment
of p-th order linear and nonlinear ODE:s introduced in Ref [8] and Eq.(@), entirely within the primal
framework. As a result, the dominant computational complexity is substantially reduced from O(an?)
to O(m?) for linear ODEs and O(n?) for nonlinear ODEs, where m < n.

3.1 NLS-SVMs for learning p-th Order Linear ODE

Consider the general p-th order linear ODE with initial value problem (IVP) in [8]]:

(p) ka? (p k) ’I"(t), te [tlatnL y(tl) =1, y(k_l)(tl) = Uk, k= 27 Ry 4

(3)
The approximate solution can be obtained by solving the following optimization problem:
1 n
minimize -w’w + Zzz_le?)
w,b,e; 2 2 =L
sty () = wle® (¢ [ka =R 4 f)b+ (t) + e, i=2,....nm

y(tl) = wTSO (tl) +b= Ulvy(l 1)(1) =w (P(Zil) (tl) = Vi, = 27 Y4

Lemma 1: Given a differentiable positive definite kernel function K : R x R — R, m landmark
points subsampled from a dataset of n time points, where m < n, and a regularization parameter
~ € R™T, the solution to optimization problem Eq.@) is obtained by solving the following primal
problem.

E+A (TP - 580D - £,8) -A(f, 1) ¢T(t) .. (p® V()T
V(W — £ 80D f0) ~V(fp-1) 1 0
(p(tl) 1 0 0
PP~ (1) 0 0 0
where E € R™*™ is an identity matrix; ¥ = [p(t2), ..., o(t,)]T €
w Ar R(n—l)Xm; v = [QOI(tQ),...,QD/(tn)]T c R(n—l)xvn lIl(p) —
b Vr [Qﬁ(p)l(tg), "'a‘p(p)(tn)]T € R(n;l)xm; fl - [fl(tQ) 7f1(77«)] 1
Q| N | =] v R"L f, = [fo(t2), -, fo(tn)]T e R 1 =[1,..., 1] 6 R -
e (t) € R>X™0®) (1) € RI*X™A = [(TP) — f1 -
Ap Up o= T e RNV = [f1]T € Rlx(”_l);r =
(10) [P(ta), .o, 7(tn)]" € R*~1; w € R™*1. See Appendix A 4] for proof.

3.2 NLS-SVMs for Learning p-th Order Nonlinear ODE
We establish a new paradigm based on NLS-SVM:s for solving Eq. ().

Lemma 2: Given a differentiable positive definite kernel function K : R x R — R, m landmark
points subsampled from a dataset of n time points, where m < n, and a regularization parameter
~v € RT , the solution to optimization problem Eq. @) is given by solving the following primal
problem.

oYy oYy oYy Yy

Do a5 o oy nd Y
Yy Yy Yy oYy b Ys

e b o o Jy,

A7 A ot A | Vs (11)
Ow b 228 Ay -

ee ee ee ee ee A Y

Ypts 9Ypis OYpys Ypis ’ Yp+2
9w b oy Yi p+3

where Y; € R™*1; v, € RY™LY; € R, € R™LY, 3 € R™®=UX1 The non-
linear system, which consists of equations with unknowns (w,b, A1, .., Ap,ys) € R(m+"+p), is
solved by Newton’s method. While more efficient iterative schemes ([33) 134} 35]]) exist, their
exploration falls outside the scope of this paper. It is worth noting that when learning a class

of p-th order nonlinear ODEs, the changes in the ODEs primarily affect the %(chp(p)(ti) —

T
Syt u? ™)) (W@ () = fltiyn,,uh,,-+ 59 ")) function, as indicated by
the Lagrangian loss function. Therefore, the Jacobian matrix needs to bdated based on the

. . Y,
derivation of the four functions %};1 , g—;’l =2 and aY “ . See Appendix for proof.

Convergence analysis: Since the tunable parameters (i.e., regularization parameter y and kernel
parameter o2) in the nonlinear system Eq.(11) influence the structure of the Jacobian matrix, we
theoretically analyze their impact on the convergence behavior of the Newton solver.

Theorem: Consider the system of nonlinear equations in Eq. represented by F(z;02,v) = 0,
where F' : RN — RY(N = m + n + p) depends on a kernel parameter o and a regularization
parameter 7. Let Jp(x; 02,7) denote its Jacobian matrix. Assume a solution x* exists such that
F(z*;0% ~) = 0. The Newton iteration is given by:

i1 = zp — [Jp(@r;0%,7)] 7 F(@h;0%,7) (12)
Suppose the following conditions hold in a ball B(x*, d) of radius 6 > 0 around x*:

1. Lipschitz continuity of the Jacobian: There exists a constant L(a2,~) > 0 such that
|p(z;0%,7) = Jr(y;0®,)l < Lo e —yll, Va,y € B(z".8) (13)

2. Bounded inverse of the Jacobian: The Jacobian matrix J(x; o2, v) is non-singular for all
x € B(z*,9), and there exists a constant 3(c2,) > 0 such that

lTr (20?7 < B(0®,9), Va € B(x",d) (14)
Then, for any initial guess x(€ B(x*, §) satisfying
[leo — *|| < min ((5, I1(> , where K = %6(0’2,’7)14(0'2,’}/) (15)
the iteration converges quadratically to x*, with the error e, = o, — ™ satisfying:
lexsill < Klex]? (16)

Proof: According to Eq.(12)), the error at the next step e;+1 = Txr4+1 — € can be expressed as
(parameters ~y and o2 are omitted for clarity):

er+1 = ex — [Jp(axp)] 7 Flan) = [Jr(en)] ™ (Jp(@oer — (Flay) - () (17)
The term F'(x)) — F(x*) is estimated using Taylor expansion with F(z*) = 0:

1
F(zy) — F(z*) = / Jr(x™ + teg)exdt (18)
0
Substituting this back yields:
1
eri1 = [Jp(xp)] ! (/ [Jr(xr) — Jp(x* +tek)]ekdt) (19)
0
Taking norms and applying the Lipschitz condition (Eq.(I3)) to the integrand gives:
[T (@k) — Jr(x" + tex)|| < Lllex — tex| = L(1 —)] ex|] (20)

The integral fol(l — t)dt = 1/2. Then, applying the bound on the inverse of the Jacobian (Eq.),
I[JF(zk)] || < B, we obtain the final result:

L
lexsall < B 5 llexll” = Kllex|? 1)

Implications: The convergence rate is governed by the product 3(o?,) L(c?,), which is jointly
influenced by the parameters v and o2. Here, the regularization parameter + ensures the non-
singularity of the Jacobian, while the kernel parameter o controls the smoothness of F'. A larger o'
generally reduces the Lipschitz constant L, thereby promoting convergence at the potential cost of
oversmoothing. Consequently, a careful balance between ¢ and 7 is critical to achieving an optimal
trade-off among convergence speed, solution accuracy, and numerical stability.

Computational complexity reduction: The computational complexity of the proposed NLS-SVMs
method, as indicated in Eq.(I0) and Eq.(T)), is substantially reduced compared to traditional LS-
SVMs ODE solvers. It scales with the dimension m (m < n) of the high-dimensional feature ¢ (t;).
For linear ODEs, it decreases from O((n + p)?) to O((m + p)?), while for nonlinear ODEs, the
per-Newton-iteration complexity is lowered from O((3n + p — 2)3) to O((m + p + n)?). Empirical
analysis demonstrates that the proposed approach significantly enhances computational efficiency
while preserving prediction accuracy. Moreover, the memory requirement for linear ODEs decreases
from O((n + p)?) to O((m + p)?) and for nonlinear ODEs decreases from O((3n + p — 2)?) to
O((m + n + p)?). Appendix covers the initial value problem (IVP) for the first-order linear
ODE, Appendix presents the IVP and boundary value problem (BVP) for the second-order linear
ODE, and Appendix provides the derivations for the first-order nonlinear ODE with IVP.

4 Numerical experiments

This section evaluates the performance of the proposed method using sixteen benchmark ODE
problems (see Appendix [B.T). These include six first-order, nine second-order, and one fourth-
order ODE, covering a wide range of common types such as stiff, linear, nonlinear, and singular
ODEs, as well as ODEs with time-varying input signals, undamped free vibration, and higher-order
dynamics. Prior to the performance evaluation, we conducted a preliminary analysis involving kernel
function selection and sampling strategies across all benchmark problems. Convergence behavior was
further examined using Problem 4, a representative nonlinear ODE. Additionally, a comprehensive
comparative study will be performed against suitable baseline models to thoroughly assess the efficacy
of the proposed approach. All numerical experiments in this study were conducted on a computer
system equipped with an Intel(R) Core(TM) 19-14900HX processor, 32 GB of RAM. Source code is
available at: https://github.com/AI4SciCompLab/NLS-SVMs,

RBF kernel justification: The selection of the kernel

function plays a critical role in the proposed methodol- P p e ——
ogy, as it directly governs the model. s capacity to capture ool = e o ridckn |
nonlinear patterns. To illustrate this, we examine Prob- + =+ R@F-Kemel Prediction
lem 1 as a representative case. As shown in Figure[2] the 5 75

radial basis function (RBF) kernel projects samples into
an infinite-dimensional feature space, offering universal
approximation capabilities and robustness to variations
in data scale. In comparison to linear and polynomial
kernels, the RBF kernel demonstrates superior stability t

and accuracy when applied to complex nonlinear systems .

(see results for Problems 4, 5, 6, 14 and 15 in Table [). Figure 2: Numerical results for Problem
Consequently, the RBF kernel is adopted in all subse- | using the Linear, Polynomial and RBF
quent experiments. Both the NLS-SVMs and the classical Kernel within the NLS-SVMs frame-
LS-SVMs are tuned via two hyperparameters: the kernel work.

bandwidth o2 and regularization coefficient v. A comprehensive quantitative analysis of kernel
performance across all benchmark problems is provided in Appendix [B.3](Table).

5.0

2.5

Sampling strategy anal- Tup)e 1. performance comparison of NLS-SVMs with different sam-

ysis for Nystrom land- pjino sirategies on Problem 1
marks: To assess the in-

fluence of sampling strat- (OpDEs Model MAE RMSE ly — 4|, Timess

egy on the performance of ” B S

the proposed NLS-SVMs Random 8.70X1074 1.06)(1074 3.06X1073 0.52

method, we evaluate three P1 Levc?rgge score 7.94x10) 9.47x10) 1.87x10 \ 0.64
Equidistant 7.94x107 9.47x10 1.87x10™ 0.55

distinct approaches that are
equidistant sampling, ran-
dom sampling, and leverage score sampling. The analysis for Problem 1, summarized in Table
[1] reveals that all three sampling methods achieve a comparable level of prediction accuracy. How-
ever, equidistant sampling demonstrates notable advantages in computational efficiency and error
reduction. Specifically, it improves computational speed by approximately 16% compared to lever-
age score sampling and reduces the RMSE by about 10.66% relative to simple random sampling.
Comprehensive numerical results evaluating these sampling strategies across all benchmark problems
are available in Appendix (see Table[5). These results demonstrate that the equidistant sampling
strategy delivers robust and superior performance. It either matches or surpasses the other methods in
the majority of test cases, particularly in challenging scenarios such as stiff systems (e.g., Problem 3),
second-order ODEs (e.g., Problems 8, 9, 10, and 12), and problems with singularities (e.g., Problem
13). Furthermore, equidistant sampling exhibits exceptional stability, maintaining consistently low
error levels across the entire test cases. While the computational efficiency is generally comparable
across all methods, the equidistant strategy frequently attains superior accuracy without incurring
a substantial computational penalty. In many cases, its runtime is nearly identical to that of the
fastest alternative. These collective results indicate that the equidistant sampling strategy provides an
optimal balance between numerical precision and computational expense.

Convergence analysis and numerical validation: Building upon the theoretical convergence
analysis presented in Section 3.2, which established that the convergence of the Newton-type solver

https://github.com/AI4SciCompLab/NLS-SVMs

is governed by the proper selection of the regularization parameter v and RBF kernel parameter o2,
this section provides an empirical validation of these theoretical findings. The analysis demonstrated
that local quadratic convergence is achieved when these parameters are chosen appropriately. The
numerical experiments confirm the theoretical predictions. For the representative nonlinear system
(Problem 4), the solver exhibits stable residual convergence, typically within 10 to 50 iterations, as
depicted in Figure [3). This robust convergence behavior is consistently observed across a wide range
of tested problems, with detailed results provided in Appendix [B.4](Table[§). The empirical evidence
strongly corroborates the theoretical reliability of the solver for the considered class of problems.
Furthermore, the numerical results validate the theoretically indicated parameter configurations.
Robust and efficient convergence is achieved with v = 10(%/7) for all sixteen benchmark problems.
The kernel parameter is effectively set to o2 = 1/8/10 for first-order ODEs, and ¢ = 1 for
second-order and higher-order ODEs. See Appendix B.5|for more details. These results collectively
demonstrate that the proposed solver delivers numerically stable and efficient convergence across
diverse problem types, firmly aligning with the established theoretical framework.

2.0 T T 0 2.0 0 2.0 110
§ 1] m—y =10, RRN E m—y =10, RRN E —y =10, RRN
o 1" = y=10% RRN 8 o = y=105 RRN 8 o = y=105 RRN lg
Z15 n — y=10, RMSE Z15 —— y=10, RMSE Z45 = y=10, RMSE
[=10°, RMSE < =10°, RMSE] =10°, RMSE
1 y=10° y=10° y=10°,
s i w S w3 4
£1.01 j=] = §10 s §10 =
© il 4% 42 fa @
s il 05 N 05
= 05] 2§ [2§ f2
g i S Hl g "
A 2
0.0 0 10 20 30 40 50 ° 0-0 0 10 20 30 40 50 0 00 0 10 20 30 40 50 0
Number of iterations Number of iterations Number of iterations
o?=1 0 =10 0% =30

Figure 3: Numerical results of convergence analysis for Problem 4

Comparative analysis with
classical numerical methods:
RK4 and EAB: To validate

Table 2: Performance comparison for solving Problems 3, 6, and
11 using NLS-SVMs, RK4, and EAB

the effectiveness of the pro- Opgs Model MAE RMSE Train/s Predict/s
posed NLS-SVM method, we N 3

conducted a comparative study NLS-SVMs 2.06x10% 2.77x10* 0460 0.001
against two classical numerical £ 3 RK4 387107 341x107 0.880 0.880
techniques: the fourth-order EAB 4.97x10° 2.90x10® 0.030 0.030
Runge-Kutta method (RK4) and pe NLS-SVMs 889x10% 1.01x10° 1230 0.001
the Explicit Adams—Bashforth RK4 1.59x107% 1.21x10% 0.021 0.021
(EAB) method. The evaluation EAB 1.28x10° 1.11x10° 0.036 0.036
was performed on three represen- 7 NLSSVMs _ 2.36x10°__ 2.97x10°__ 0.100 __0.001
tative test cases: Problem 3 (stiff P11 pp) 311x106 2.87x10° 0010 0.010
ODE), Problem 6 (nonlinear EAB 1.19x102 6.86x10° 0.020 0.020

ODE), and Problem 11 (singular
ODE). The results are summarized in Table[2] On Problem 3, NLS-SVMs achieved an MAE of
2.06 x 10~8, which is 18.7 times lower than that of RK4 (3.87 x 10~ ") and 2.4 times lower than
that of EAB (4.97 x 10~%), while being 880 and 30 times faster in prediction time, respectively.
For Problem 6, the proposed method delivered an MAE of 8.89 x 104, reflecting a 17.9-fold
improvement over RK4 (1.59 x 1072), along with a 21-fold speedup (0.001 s vs. 0.021 s)
in predictions. In the case of the singular ODE (Problem 11), NLS-SVMs maintained high
accuracy (MAE=2.36 x 10~?), whereas EAB failed with an error nearly 5 million times larger
(MAE=1.19 x 10~2), establishing the proposed approach as a high-accuracy solver. Additional
numerical results are provided in Appendix (Table[6). It is important to note that the proposed
method is not universally superior but offers practical advantages in specific scenarios: (1) it rescues
simulations where EAB may fail on singular systems; (2) it enables real-time control applications to
stiff systems where RK4 may be computationally prohibitive; (3) it maintains reliability at practical
step sizes where other methods require extreme refinement; and (4) it preserves accuracy across a
range of step sizes, unlike the step-sensitive errors observed with RK4 and EAB.

Physics-Informed Neural Network Baseline Selection: To establish a rigorous baseline for compar-
ison with the proposed NLS-SVMs method, a systematic model selection procedure was conducted
for Physics-Informed Neural Networks (PINNs). The selection process comprised two main stages:

first, an architectural optimization within the Vanilla PINN framework, followed by a comparative
evaluation against Fourier Feature PINN to determine the optimal PINN variant. Vanilla PINN
Architecture Selection: An ablation study was performed to identify the most effective network archi-
tecture for Vanilla PINN. We compared a standard three-layer configuration against an eight-layer
architecture using Problem 1 as a benchmark case. The results indicate that the deeper architecture
(MAE = 2.32 x 1073, RMSE = 2.93 x 1073, Time = 1275 s) provides no significant accuracy im-
provement over the three-layer counterpart (MAE = 4.45x 1073, RMSE = 5.05x 1073, Time = 672
s), while incurring a substantial computational overhead (1275 s vs. 672 s). Consequently, the
three-layer architecture was selected as it offers the optimal balance between accuracy and efficiency
for the class of problems under consideration. This model utilizes identity activation functions, a
learning rate of 0.001, and the Adam optimizer, with gradients computed via PyTorch’s automatic dif-
ferentiation. Comparative Evaluation with Fourier Feature PINN: The optimized three-layer Vanilla
PINN was then evaluated against Fourier Feature PINN across all 16 benchmark ODEs. Fourier
Feature PINN demonstrates superior accuracy in the vast majority of cases. For instance, in Problems
3, 11, and 15, it achieves dramatically lower errors (often by several orders of magnitude) in MAE,
RMSE, and L., norm compared to the Vanilla PINN. Notably, it can also lead to substantially faster
training times, as seen in Problems 11 and 15. However, this advantage is not universal. The Vanilla
PINN outperforms its counterpart in specific cases like Problems 4, 7, and most notably Problem 16,
where the Fourier Feature version fails completely with exceedingly high errors. Furthermore, the
Fourier Feature PINN often requires longer computational time, though this is not always the case.
Detailed comparison of numerical results are provided in Appendix [B:3|(Table[7). Based on this
comprehensive analysis, the three-layer Vanilla PINN is selected as the representative PINN baseline
for subsequent comparisons with the proposed NLS-SVM method. The chosen model provides a
meaningful benchmark for evaluating the relative performance of the proposed method, while Fourier
Feature PINN remains recommended for more complex multi-physics or high-gradient scenarios. All
subsequent comparisons with PINNS in this study refer to this optimized three-layer Vanilla PINN
configuration.

00 05 10 15 20 25 30 0 2 4 6 8 10 0 2 4 6 8 10 00 05 1.0 1i5 20 25 30

Problem 4

Problem 11

04 0.6 08

t

Problem 13 Problem 14 Problem 15 Problem 16

Figure 4: Comparison of model predictions against the analytical solution for Problems 1 to 16

5 Results and discussions

Figure [] presents the comparision of solutions obtained by LS-SVMs, PINNs, and proposed NLS-
SVMs for all 16 benchmark ODEs, with corresponding analytical solutions serving as ground truth.
By observation, the proposed NLS-SVMs demonstrate significant improvements in computational
efficiency while maintaining competitive solution accuracy relative to classical LS-SVMs. Table
[3] quantifies the significant computational speedups (10-6000 times) under comparable accuracy
regimes for key benchmarks. Across all test cases, NLS-SVMs achieved comparable solution accuracy
to LS-SVMs (< 0.13% relative MAE, RMSE, and ||y — || difference). Notably, the computational
time (including training and prediction time) of NLS-SVMs was reduced by a factor of 10 to 3355
compared to LS-SVMs, depending on the number of time steps n. In comparison to PINNs, the
proposed NLS-SVMs model exhibited consistently superior accuracy with maximum reduction by
72% in RMSE, while runs 49-6426 times faster than PINNs (see Appendix @]for detailed results).

The scalability of NLS-SVMs is further validated on problems scaled to 100 seconds with n =
5 x 10* time steps. Under these large-scale conditions, conventional LS-SVMs and PINNS failed to
execute due to memory constraints on the tested hardware, whereas NLS-SVMs produced stable and
accurate solutions with execution times between 17.5 and 460 seconds (see Appendix [B.6|for details).
This performance highlights the method’s practical utility in resource-limited settings. While the
framework is validated on ODE:s, the underlying Nystrom acceleration is readily extendable to large-
scale partial differential equations by reformulating the differential operators and to other kernel-based
ML tasks requiring efficient approximation. It is important to acknowledge a primary limitation of the
current method: although it achieves a significant acceleration for nonlinear ODEs, the computational
complexity remains at O(n?). Our future work will focus on breaking this complexity barrier.

Table 3: Comprehensive performance comparison of NLS-SVMs against PINN and LS-SVMs for
solving ODEs: accuracy and efficiency

ODEs Model AR? AMAE/% ARMSE/% Ally — gl /% Speedup
P4 NLS-SVMs vs PINN +0.05 | 5.34 x 10! 17.20 x 10! 11.81 x 102 149
NLS-SVMs vs LS-SVMs ~ +0.00 14.94 x 1072 16.14x 1072 11.29x 10~*! 1370
s NLS-SVMs vs PINN 000 1151x10°2 13.00x10° T 1540x 102 1171
NLS-SVMs vs LS-SVMs ~ +0.00 | 1.00 x 1073 [4.00 x 10™2 | 1.70 x 1072 110
p1g NLS-SVMsvsPINN +0.00 | 1.24 x 10° 1 1.35 x 109 11.79 x 10° 1 6426
NLS-SVMs vs LS-SVMs ~ +0.00 | 1.33 x 1072 | 1.64x 1072 | 6.33 x 1072 158

6 Conclusion

This study introduces a novel Nystrom-accelerated Least Squares Support Vector Machines (NLS-
SVMs) framework for solving ODEs, establishing a significant improvement in computational
efficiency and scalability over classical ML methods such as standard LS-SVMs and physics-informed
neural networks (PINNs). The method successfully overcomes the O(an®) (a = 1 for linear
ODE:s and 27 for nonlinear ODEs) complexity bottleneck inherent in classical LS-SVMs for ODE
problems, achieving speedup factors ranging from 10 to 6000—depending on the problem size and
characteristics—while consistently preserving solution accuracy. Extensive numerical experiments
across 16 benchmark problems confirm the model’s versatility and robustness, with relative errors
remaining below 0.1% across all tested cases. Even for large-scale systems with fine temporal
discretization, the solution time is bounded within 460 seconds, demonstrating the practical viability
of the framework in real-time engineering applications such as dynamic system control and multi-
physics simulation, where conventional kernel methods or neural models are often limited by memory
or latency constraints.

Acknowledgements

The authors acknowledge the funding support provided by the National Natural Science Foundation of
China (No. 52208485), the Key Research Project of the Educational Commission of Hubei Province
of China (Grant No. D20241203), and the Talent Research Startup Fund of China Three Gorges
University (No. 2023RCKJ013).

10

References

[1] Edward L Ince. Ordinary differential equations. Courier Corporation, 2012.

[2] Peter Deuflhard and Folkmar Bornemann. Scientific computing with ordinary differential
equations, volume 42. Springer Science & Business Media, 2012.

[3] George D Byrne and Alan C Hindmarsh. Stiff ode solvers: A review of current and coming
attractions. Journal of Computational physics, 70(1):1-62, 1987.

[4] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686-707, 2019.

[5] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[6] Markus Heinonen, Cagatay Yildiz, Henrik Mannerstrom, Jukka Intosalmi, and Harri
Lihdesmiki. Learning unknown ode models with gaussian processes. In International confer-
ence on machine learning, pages 1959-1968. PMLR, 2018.

[7] JAK Suykens, T Van Gestel, J De Brabanter, B De Moor, and J Vandewalle. Least squares
support vector machines. World Scientific Publishing, Singapore, 2002.

[8] Siamak Mehrkanoon, Tillmann Falck, and Johan AK Suykens. Approximate solutions to
ordinary differential equations using least squares support vector machines. IEEE transactions
on neural networks and learning systems, 23(9):1356-1367, 2012.

[9] Siamak Mehrkanoon, Saeid Mehrkanoon, and Johan AK Suykens. Parameter estimation of
delay differential equations: an integration-free Is-svm approach. Communications in Nonlinear
Science and Numerical Simulation, 19(4):830-841, 2014.

[10] Christopher Williams and Matthias Seeger. Using the nystrém method to speed up kernel
machines. Advances in neural information processing systems, 13, 2000.

[11] John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19-26, 1980.

[12] Ernst Hairer, Gerhard Wanner, and Syvert P Ngrsett. Solving ordinary differential equations I:
Nonstiff problems. Springer, 1993.

[13] Patrick R Conrad, Mark Girolami, Simo Sirkkéd, Andrew Stuart, and Konstantinos Zygalakis.
Statistical analysis of differential equations: introducing probability measures on numerical
solutions. Statistics and Computing, 27(4):1065-1082, 2017.

[14] Filip Tronarp, Hans Kersting, Simo Sirkkd, and Philipp Hennig. Probabilistic solutions to
ordinary differential equations as nonlinear bayesian filtering: a new perspective. Statistics and
Computing, 29(6):1297-1315, 2019.

[15] Philipp Hennig, Michael A Osborne, and Hans P Kersting. Probabilistic Numerics: Computation
as Machine Learning. Cambridge University Press, 2022.

[16] Nicholas Kridmer, Nathanael Bosch, Jonathan Schmidt, and Philipp Hennig. Probabilistic ode
solutions in millions of dimensions. In International Conference on Machine Learning, pages
11634-11649. PMLR, 2022.

[17] Jonathan Schmidt, Nicholas Kridmer, and Philipp Hennig. A probabilistic state space model for
joint inference from differential equations and data. Advances in neural information processing
systems, 34:12374-12385, 2021.

[18] Andrew J Meade Jr and Alvaro A Fernandez. The numerical solution of linear ordinary

differential equations by feedforward neural networks. Mathematical and Computer Modelling,
19(12):1-25, 1994.

11

[19] Hyuk Lee and In Seok Kang. Neural algorithm for solving differential equations. Journal of
computational physics, 91(1):110-131, 1990.

[20] Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow
pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing,
43(5):A3055-A3081, 2021.

[21] Suyong Kim, Weiqi Ji, Sili Deng, Yingbo Ma, and Christopher Rackauckas. Stiff neural ordinary
differential equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(9), 2021.

[22] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In International
conference on machine learning, pages 5301-5310. PMLR, 2019.

[23] Amir Gholami, Kurt Keutzer, and George Biros. Anode: unconditionally accurate memory-
efficient gradients for neural odes. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence, pages 730-736, 2019.

[24] Oliver Hamelijnck, Arno Solin, and Theodoros Damoulas. Physics-informed variational state-
space gaussian processes. Advances in Neural Information Processing Systems, 37:98505—
98536, 2024.

[25] Frank Dondelinger, Dirk Husmeier, Simon Rogers, and Maurizio Filippone. Ode parameter
inference using adaptive gradient matching with gaussian processes. In Artificial intelligence
and statistics, pages 216-228. PMLR, 2013.

[26] NR0960 Aluru. A point collocation method based on reproducing kernel approximations.
International Journal for Numerical Methods in Engineering, 47(6):1083-1121, 2000.

[27] Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more: Nystrom computa-
tional regularization. Advances in neural information processing systems, 28, 2015.

[28] Andrea Della Vecchia, Ernesto De Vito, Jaouad Mourtada, and Lorenzo Rosasco. The nystrom
method for convex loss functions. Journal of Machine Learning Research, 25(360):1-60, 2024.

[29] Petros Drineas and Michael W Mahoney. Randnla: randomized numerical linear algebra.
Communications of the ACM, 59(6):80-90, 2016.

[30] Cameron Musco and Christopher Musco. Recursive sampling for the nystrom method. Advances
in neural information processing systems, 30, 2017.

[31] Philippe Moireau and Dominique Chapelle. Reduced-order unscented kalman filtering with
applicationto parameter identification in large-dimensional systems. ESAIM: Control, Optimisa-
tion and Calculus of Variations, 17(2):380-405, 2011.

[32] Carl T Kelley. Iterative methods for linear and nonlinear equations. SIAM, 1995.

[33] Ron S Dembo, Stanley C Eisenstat, and Trond Steihaug. Inexact newton methods. SIAM
Journal on Numerical analysis, 19(2):400-408, 1982.

[34] Stanley C Eisenstat and Homer F Walker. Globally convergent inexact newton methods. SIAM
Journal on Optimization, 4(2):393-422, 1994.

[35] Ioannis K Argyros and Said Hilout. Weaker conditions for the convergence of newton’s method.
Journal of complexity, 28(3):364-387, 2012.

[36] Susmita Mall and Snehashish Chakraverty. Comparison of artificial neural network archi-
tecture in solving ordinary differential equations. Advances in Artificial Neural Systems,
2013(1):181895, 2013.

[37] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving

ordinary and partial differential equations. /IEEE transactions on neural networks, 9(5):987—
1000, 1998.

12

[38] Yonghyeon Jeon, Kyung Ryeol Baek, and Sunyoung Bu. Deferred correction neural network
techniques for solving ordinary differential equations. Engineering Applications of Artificial
Intelligence, 135:108771, 2024.

[39] A Prothero and A Robinson. On the stability and accuracy of one-step methods for solving
stiff systems of ordinary differential equations. Mathematics of Computation, 28(125):145-162,
1974.

[40] Ivan Ryzhikov, Eugene Semenkin, and Ilia Panfilov. Evolutionary optimization algorithms
for differential equation parameters, initial value and order identification. In International
Conference on Informatics in Control, Automation and Robotics, volume 2, pages 168—176.
SCITEPRESS, 2016.

[41] Nirmal Kumar, Ali Akbar Shaikh, Sanat Kumar Mahato, and Asoke Kumar Bhunia. Applications
of new hybrid algorithm based on advanced cuckoo search and adaptive gaussian quantum
behaved particle swarm optimization in solving ordinary differential equations. Expert Systems
with Applications, 172:114646, 2021.

[42] Ali Sadollah, Hadi Eskandar, Joong Hoon Kim, et al. Approximate solving of nonlinear
ordinary differential equations using least square weight function and metaheuristic algorithms.
Engineering Applications of Artificial Intelligence, 40:117-132, 2015.

[43] Luma NM Tawfiq and Ashraf AT Hussein. Design feed forward neural network to solve singular
boundary value problems. International Scholarly Research Notices, 2013(1):650467, 2013.

[44] Hongli Sun, Muzhou Hou, Yunlei Yang, Tianle Zhang, Futian Weng, and Feng Han. Solving
partial differential equation based on bernstein neural network and extreme learning machine
algorithm. Neural Processing Letters, 50(2):1153—-1172, 2019.

[45] Shagun Panghal and Manoj Kumar. Optimization free neural network approach for solving
ordinary and partial differential equations. Engineering with Computers, 37(4):2989-3002,
2021.

[46] William E Boyce, Richard C DiPrima, and Douglas B Meade. Elementary differential equations
and boundary value problems. John Wiley & Sons, 2021.

[47] Endre Siili and David F Mayers. An introduction to numerical analysis. Cambridge university
press, 2003.

[48] Alaeddin Malek and R Shekari Beidokhti. Numerical solution for high order differential
equations using a hybrid neural network—optimization method. Applied Mathematics and
Computation, 183(1):260-271, 2006.

[49] Yanfei Lu, Qingfei Yin, Hongyi Li, Hongli Sun, Yunlei Yang, and Muzhou Hou. The Is-svm
algorithms for boundary value problems of high-order ordinary differential equations. Advances
in Difference Equations, 2019(1):195, 2019.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction regarding the efficiency and
accuracy of our proposed NLS-SVMs are empirically validated by the comprehensive
experiments in Section 4. Furthermore, the discussion in Section 5 accurately reflects the
scope and limitations of our work.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See Section 5. It is important to acknowledge a primary limitation of the
current method: although it achieves a significant acceleration for nonlinear ODEs, the
computational complexity remains at O(n?).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

14

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theorem (including proof) and Lemmas are provided in Section 3, and the
proofs for Lemmas are provided in Appendices A.4 and A.5.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Reproducibility notes are present in Appendices A and B.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

15

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The python code implementing the proposed NLS-SVMs method is available
athttps://github.com/AI4SciCompLab/NLS-SVMs,

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section 4 and Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We visualize our experimental results with informative figures and tables.
These include key metrics like R?, RMSE, and MAE.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://github.com/AI4SciCompLab/NLS-SVMs
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 4. All numerical experiments in this study were conducted on a
computer system equipped with an Intel(R) Core(TM) 19-14900HX processor, 32 GB of
RAM.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Potential positive impacts include accelerating scientific discovery and engi-
neering design, as discussed in Sections 5 and 6.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:The answer NA means that the paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The source code implemented in this study is proprietary and developed entirely
by the authors. No external assets such as third-party code, data, or pre-trained models were
used. Therefore, all materials are appropriately credited and utilized in accordance with
their original terms.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

18

13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Full documentation is provided to ensure the complete reproducibility of our
work. All newly introduced code is well-documented and accompanied by usage examples.

Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

19

paperswithcode.com/datasets

Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The answer NA means that the core method development in this research does
not involve LLMs as any important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Technical Appendices

A.1 Least Squares Support Vector Machines (LS-SVMs)

The learning objective of LS-SVMs is to find a nonlinear mapping relationship [7] between the input
variable ¢; € R and the output variable y; € R from the given training dataset {x;,y;}" ;. The
goal in a regression problem is to estimate a model of the form y(z) = w’ () + b. A simple
description of the mathematical model follows:

1 n
minimize : J, (w, ;) = ~w’ w + 12,_165 (22)
w,b,e; 2 2 =
subject to : y; = wl p(x;) + b+ e, i=1,...,n (23)

where e; € R denotes the error variable, -y is a regularization parameter, b € R is the bias term,
w € R" is the weight parameters, ¢ (x;) € R" is a high-dimensional feature variable of input data
x; , where ©(-) : R? — R is the feature map and h is the dimension of the feature space, and ¥;
indicates the output data. The dual solution is then given by

Q+Ln/v| 1 al [y
L7 |0 } {b} = [0} (24)

where ;; = K(z;,x;) = p(x;)T¢(x;) is the ij-th entry of the kernel matrix. 1,, = [1,...,1]T €
R™, o = [a1,...,a,]T,y = [y1,-..,9yn|T and I, ,, is the identity matrix. The model in the dual
form becomes: y(z) = > 1, a; K (x, z;) + b.

A.2 LS-SVM for p-th order nonlinear ODE

The Lagrangian of the constrained optimization problem becomes

1 Y —n Y —n
L(w,b,ei&ivyisaimi, Bi) = ~w w+ 521:1622 + 52,;:151-2

2
N
> (wTso(”) (ti)— f (ti,yff’_”, yéyt) - ei)
i—2 (25)
- B (chp (t1) +b— vl) — =By (chp(p_l) (t1) — vp>

N
= i (g — Wl (t) —b—&)
i—2

After obtaining KKT optimality conditions and making use of Mercer’s theorem, the solution is
obtained in the dual by solving the following nonlinear system of equations:

Q% Q(l) h? Onfl O(n—l)x(n—l) [«] [f(y)]
=1 T a0 T n On—l
(Qo) Qg hy v | 1 -1, B o
h1 ho [Qg}m L1 ol | = | .. (26)
Bpfl Up—1
of | 17 1 .| 0 A b 0
L D(y) I, 4 0n—1 o | O O(n—l)x(n—l) U L 4 - - 051 -
where
Q =Q{+ 1 1/y, Q=Q0+1,1/7,D(y) =diag(f'(y))
8f t7y 8f t7y
F) =1 o) o ()] () = | 20 SR
Y t=t2,y=y2 Y t=tn,y=Yn

a = [0527 s 7an]T N = [7727 s 77771]T Y = [yQa s ayn]T) Qg = [Qg]g:nzm
Q% = [Q%]Q:n,Q:n ’ Q(l) = [Q(l)] 2:n,2:n’ ho = {[98] 1,270 [98} 1,n:|

ha = [[94],, [90],,] 001 = [0,..,0] e R

21

A.3 Nystrom Method for Feature Formulation

This appendix section presents the nonlinear feature mapping using Nystrom method [7] . Firstly,
given the input dataset {t;}?; , the corresponding kernel matrix consisting of Gaussian kernel
functions is denoted as (n,n) € R"*" , where Q; ; = K(t;,t;),i,j = 1,...,n . According to
Mercer’s theorem, in a high-dimensional h(n < h < oo) feature space, the following relation can be
obtained:

K(tit;) = Yp_rsur(ts) dn(t;) 27)
where ¢; > ¢ > .-+ > 0 represent the eigenvalues; ¢1, ¢, - - - , @y, represent the corresponding

eigenfunctions. The eigenvalues and eigenfunctions are associated with the following integral
equation:

/ K (2) (Op(t)dt = sxéu(2) (28)

where p(t) represents the continuous-type probability density function of the input space ¢. In case
of a large-scale training dataset {;, y; }7, it is assumed that the input space {t;}""_, is distributed
independently and identically between them, and all of them are sampled from p(t). To approximate
the integral equation of the above eigenfunction, m sample data {5,y }72; (m < n) can be selected

from the large-scale training dataset {¢;, y; } ,, In this case, p(t) can be approximated by the sampled
input dataset {¢,},-, so that the continuous p(t) can be characterized by the discrete {5}, . Then,

Eq.(28) can be written as follows:

LS K (2, t)k(1) & e(2) 29)

For the selected sample data {t}%,, the corresponding kernel matrix £2(1,m) and the decomposi-
tion of its eigenvalues and eigenvectors can be described by the following relation:

where Q,,) € R™*"™ represents the small-scale kernel matrix approximating the large-scale orig-
inal kernel matrix (1, n) by Q1) = Qm) [Qm,m)) ™ Qm,n) With elements Q. = K(t,,t.),
S,z=1,....,m; ‘i’(me) € R™*"™ represents a matrix consisting of the eigenvectors of the kernel

matrix Q,,) , where Dy = ék(ts),s,k =1,...,m, and]\(me) = diag([¢1;...;$m]) € R™X™
represents the diagonal matrix consisting of the eigenvalues of the kernel matrix €2, ,,). Since

Q(1,m) is a symmetric semi-positive definite matrix, each element in [\(me) is no less than 0.

Then we can utilize the eigenvalues and eigenvectors of the small-scale kernel matrix @ = (m, m)
to extract the features based on the proposed NLS-SVMs. By replacing z in Eq.(29) with ¢, and
substituting s, z, k = 1, ..., ¢ all into Eq.(29) and writing the summary equation in the form of Eq.(30),
the following equation is derived:

“ 1 R
br(ts) = vVmPgy; % = —3i (31)

Substituting Eq.(3T) into Eq.(29) leads to the k-th eigenfunction expression:

(bk(tz) ~ gZilK(tzyts)(i)sk (32)

The relation between the high-dimensional vector ¢(¢;) and the eigenfunction ¢(¢;) can be derived

as follows:
P () (ts) = Sohy Sk dr () V/ <k br(t5) (33)

Since o7 (t;)¢(t;) = St pr(ti)er(t;), substituting this into Eq. and combining it with
Eq.(31), we get the following:

on(ts) = Varon(t) = “gzznzléskff<tk,ti> (34)

The high-dimensional feature vector ¢(t;) € R™ (m < n) can be obtained from Eq.(34), where
‘p(tl) = [‘Pl (ti)a ey @m(tl)]T

22

A.4 NLS-SVMs for Lemma 1

Proof 1: The constraint conditions include n time-discrete equations where each represents the
discretized form of the ODE equation itself at each time point. The Lagrangian of the constrained
optimization problem (Eq.(9)) becomes:

P
L(w,b, A1, Ap) = %wTw 2 (0T (1) = (@ | fet) @ |+ £y (8 b+ r(ti)))T
k=1
P

(wTe® (t) = (@ [Z Pt @™ |+ 1y)b+ 7 (1))

k=1
+ Al (wT<p(t1) —+ b— ’Ul)
oA (wTLp(p_l)(tl) _ vp) (35)

Then the Karush—Kuhn—Tucker (KKT) optimality conditions are as follows:

OL(w,b,A1,..., A -
= 5 p):[E+A(\IJ<P>—f1\I'<p V= fp¥)]w
—[A(Fp - D]b+ @ ()M + -+ (P V(1)) A, — Ar
OL(w,b,\1,...,)\ -
= 3 p):[v(\y(m—f&“’ Ve =)]w
~[V(fp- D))o+~ Vr (36)

OL(w,b, A1, ..., Ap)
O

=pt)Tw+b—v,

3L(w,b,)\1,...,)\p) o (p—1) T
aAp - (4‘0 (tl)) w Up

Therefore, these equations in the matrix from gives the linear system in Eq.(I0). The model in the
primal problem: §(t) = wT () + b

A.5 Nystrom Method for Lemma 2

Proof 2: The Lagrangian of the constrained optimization problem Eq.(@) in its primal form becomes:

1 _ T
L(wa b7 >‘17 >\[)3 yl) = 7wTw + 1 (wTso(p) (t’L) - f(thyt(f) 1)’ "'7y£i7yt7,))

2 2

(WTQO(p) (ti) - f(thyg)_l)ﬂ 7y1/577yt1)) + % (yt7 - wT('p(tl) - b)T
(yti — chp(ti) — b) +Ap (ngo(p) (t1) — vp>

o+ A (who(t) +b— 1) (37)

Then the KKT optimality conditions are as follows:

23

8[/(0),(),)\1,... ,Ap,yi) -V Jacobian 6}/rl

&.d ! 8(w7b; Ala"w)\payi)
6L(w, b,)\1, ey)\p, y;) — Vv Jacobian 8Y'Q

ob 2 8(wab7>‘17---7>\payi)
6L(w, b,)\1, ey)\p7 y’L) —Y; Jacil;ian 8Y3

8A1 8(w’b7>\17"'7>\payi) (38)
8L(w, b,)\1, ceey /\p, yz) -V Jacobian 8Yp+2

8)\,, 2 a(wvb7)‘1a"'7)‘p7yi)
8L(w,b,)\1,. .. ,/\p,yi) Jacobian alfp—i-fi

=Y, —
yi e O(w. b, A1, Ap, i)

Therefore, these equations in the matrix from gives the nonlinear system in Eq.(IT). The model in the
primal form becomes §j(t) = w? () + b.

A.6 NLS-SVMs for Solving First-Order ODE with IVP
As a first example, consider the following first-order IVP:
y/(t) - fl (t)y(t) = T(t)v y(tl) =1, th <t < i, (39)

Then start by assuming the approximate solution to be of the form §j(t) = w” ¢ (t) + b. In the NLS-
SVMs framework, the approximate solution can be obtained by solving the following optimization
problem:

.. 1 v
minimize -w’w + 72?,1612
w,b,ei 2 2 -

st y(t)=wle' (t)=fi(t;) [wle(t;) +b] +7(t) +e, i=2,....,n
y(t1) =wlp(t1) +b=v (40)

The Lagrangian of the constrained optimization problem becomes

L(w,bN) = gwTw+ 2 (W (t) — Rt [wTe(t) +8] (1)
: (chp/(ti) — filts) [wTep(ts) +b] — r(ti))
+ A (who(t) +b—v1) (41)
Then the Karush—Kuhn-Tucker (KKT) optimality conditions are as follows: W =

0, BL(‘(;I;Z’“\) = 0, 2LbA) — 0, therefore, the solution to Eq. is obtained by solving the
following primary problem:

E+A(W—f %) -A(f-1) —¢" (1)] [w] [Ar
Ve -fe) —v(f1 -1 b | =| vr 42)

p (t1) 1 0 A v1
where E € R9%9 is an identity matrix; ¥ = [p(t2),...,p(t,)]T € Rr=Dxm, g —
[/ (t2), ., @' (ta)]T € ROTDX™ f = [fi(ta), ... ita)]” € R 1 = [1,..,1]7 €
Rn—l; ‘P(tl) c Rlxm;A _ ’}/[‘I’l _ f\I’}T c Rmx(n—l);v — 'Y[—f].]T c Rlx(n—l);,r, —_

[r(t2), ..., (tn)]T € R"71; w € R™*1; 4 is a regularization parameter.

The model in the primary form becomes (t) = w” p(t) + b

24

A.7 NLS-SVMs for Solving Second-Order ODEs with IVP and BVP

IVP Case Let us consider a second-order IVP of the form:

y'(t) = L)Y (1) + fo)y(t) + (1), y(tr) =v1, ¥ (b) =ve, t1 <t <ty (43)
The approximate solution, §(t) = w” ¢ (t) +b, is then obtained by solving the following optimization
problem:

s 1 gl
minimize inerfZ?:lef

w,b,e;

sty (t) =w'e" (t) = filt)w’ @ (t:) + fa (t:) [wheo (t:) + 6] +7 () + e

y'(t) = whe' (1) = v
y(t) =wle(t) +b=uv (44)
The Lagrangian of the constrained optimization problem becomes

L(w,b A Aa) = 07w+ 1 (W7 (1) — ()™ () — ol [ep(t:) + 8] (1))

2 2

(T (k) = fi(t)w™ @ (1) = falts) [wTp(t:) +b] = 7(t:))

+ M\ (w p(t1)+b— 111) + A2 (WTSO/(tl) — U2) (45)
Then the Karush—Kuhn-Tucker (KKT) optimality conditions are as follows: W =

(')L(u.v b /\1,)\2) SL(w7b,)\1,)\2) 8L(w b /\1,)\2)
0, ab =0, X1 =0, Oz
obtained by solving the following primary problem:

= 0, therefore, the solution to Eq. is

E+A(T -~ f1¥ — f20) —A(f2-1) " (1) (¢'(t2)" w AT
('I’/I fl‘I’ f2) -V (f2 . 1) 1 0 b _ Vr
go(tl) 1 0 0 /\1 - V1
@’ (t1) 0 0 0 A2 V2
(46)
where E € R™*™ is an identity matrix; ¥ = [p(t2),...,0(t,)]T € RE-Dxm,

W=))T € RV S (),)T R
[f1(t2), ., fu(t)} € R"Y fo = [falta), ., fotn)]" € R*H 1 = [1,..., 17 € k- Y
So(tl) c R1><q’ /(1) c Rlxm,A _ 'Y[‘I’H fl‘I’/ f2]T c Rmx(n 1).V —_ ’Y[f2]
R =D = [1(tg), ..., r(tn)]T € R"™1; w € R™*1; v is a regularization parameter.

The model in the primary form becomes 7(t) = w ¢ (t) + b.
BVP Case Consider the second-order BVP of ODEs of the form

y'(t) = HOY 0+ LOy®) +r@#), yt)=aq, yYtn)=a t<t<t.. @7)
Then the parameters of the closed-form approximation of the solution can be obtained by solving the
following optimization problem:

L 1
minimize —-w’w + ZZ 1€
w,b,e; 2

st y'(t) = ‘UTSOH (ti) = fi(t)w @ (t:) + f2 (t:) [w o (t:) + 0] + 7 (t:) + e

yt) =wleo(t) +b=q

y(tn) = wT(P (tn) +b=qn (48)
The same procedure can be applied to derive the Lagrangian and afterward the KKT optimality
conditions. Then, one can show that the solution to Eq.(@8) is obtained by solving the following
linear system:

LA 0 f¥) A(RD) () gt [] [A7
V(¥ — f1U — fo0) ~V (fz2-1) 1 1 b _ Vr
e (t1) 1 0 0 A1 qQ
go(tn) 1 0 0)\2 dn
(49)

25

where E € R™*™ is an identity matrix; ¥ = [p(t2),..., o(t,_1)]T € RO=2Dxm. @/ —
(

[Sﬁl(tz),---7@,(tn—l)]T c R(an)xm;‘I,// — [@//(t2)7~--7@” to)]T c R(n 2) ><m fl —
[f1(t2), s fitn=1)]T € R*72 fo = [fa(ta), ..., fo(tn—1)]" € R %1 =[1,...,1]T e R"" %
@ (t1) € R™™p (t,) € R™A = 40" — f1¥ — 0] Rmx(n*z) = ’Y[le}

R (=2 = [1(ty), ..., (tn)]T € R"™2; w € R™*1; v is a regularization parameter.

The model in the primary form becomes §(t) = w’ ¢(t) + b.

A.8 NLS-SVMs for Solving First-Order nonlinear ODE

Here, we take Eq.(3) as the object of study. The Lagrangian of the constrained optimization problem
becomes

L(w,b A y) = 37w+ L (wFe! () — f(tw) (w7 (1)~ F(ti0))

2 (= wo(t) =) (g —wTp(t) = b) + A (W e(t) +b—w) (50)

Then the Karush—Kuhn-Tucker (KKT) optimality conditions are as follows:
Y, W =Y, aL(“’al;’\’yl) Y3, aL("" b AYi) _ Y, therefore, the solution to Eq. .
is obtained by solving the following primary problem

) CRC) SRR) SR:) <1

6L(w bAYyi)

do’ ANy w Y:

oYy oY, oY, 9Ys b Y-

Ow b O d%, _ 2 (5 1)
Y3 9Ys Y3 Y3 A - }/'3

Ow ab oA é@j

oYy Yy 9Ya 9 Yi Y,

9w b Ox Oy

where Y1 € R™*1; Y2 € R™*1,¥3 € RY¥1,Y4 € R®=D*1 The nonlinear system, which
consists of equations with unknowns (w, b, A, y;), is solved by Newton’s method. The model in the
primary form becomes 7(t) = wT p(t) + b.

B Supplementary Material

B.1 Sixteen benchmark ODE problems

Problem 1: Consider the first-order ODE with time varying coefficient [8, 36, 37] v'(¢t) +

(t4+ £)y =+ 20442 (£2255) e € [0,3],5(0) = 1

Problem 2: Consider thd Dahlquist’s problem as a non-stiff linear problem [38]] given by y/(t) =
_y(t)7t € (07 10]) y(O) =1

Problem 3: Consider a well-known stiff test problem, the Prothero—Robinson equation [38, 39,
y'(t) = —10%(y(t) — sint) + cost, t € (0,10];y(0) = 0

Problem 4: Consider the following nonlinear first-order ODE, which is studied by Junaid et al
[400.y'(t) = y(t) — 5.t € (0,3],y(0) = 1

Problem 5: Consider the following nonlinear first-order ODE [38]] defined by v/ (t) = y%(¢),t €
(0,1],y(0) = -1

Problem 6: Consider the following nonlinear first-order ODE [41]] defined by y/(¢t) =
2071 /y(t) —Int +t7 1t € (1,1.2],y(1) =0

Problem 7: Consider the following second-order IVP [42] defined by " (t) + 0.3y'(t) + y(t) =
1,¢ € (0,20],y(0) = 0,4'(0) = 0, the interval solution for this test problem is considered from 0 to
20, which is assumed to be a wide range for solutions.

Problem 8: Consider the second ODE having the initial conditions based on the laws of physics as
follows [42]: 3y"(t) + 18y(t) = 0,t € (0,2],y(0) = —%,4/(0) = 1

Problem 9: Consider the following second order damped free vibration equation [36]: y"(t) +
4y'(t) +4y(t) = 0,¢ € [0,10], y(0) =1,9'(0) =1

26

Problem 10: Consider the following second-order ODE with time-varying input signal [37]]: y"(¢) +
2/ (1) +y(t) = —fe~ /% cost, t € [0,10],5(0) = 0,4'(0) = 1

Problem 11: Consider a second-order singular ordinary differential equation [43]: " (¢) + ;¥'(t) +
cos(t) + % =0,t €[0,1],5(0) = 1,y(1) = cos(1)

Problem 12: Consider the following second-order ODE [44]]: v"(t) + y(t) = 2,t € [0,1],y(0) =
Ly(1)=0

Problem 13: Consider a singular differential equation [45,43]]:y" (t) + 152ty/ (t) + L1y (t) = 0,t €
[0,1],9(0) = 1,y(1) =

Problem 14: Consider one of the most famous second order ODE. It is given as follows [42]
46):y" (1) + (/' (1))* — 2e7v") = 0, € (0,1],y(0) = 0,y(1) = 0

Problem 15: Consider the following nonlinear second-order ODE [41] 47] defined by y"(t) =

, 2
—y(t) + Q(yy((f))) te[-1,1],y(=1) = y(1) = 0.324027137

Problem 16: Consider a fourth-order linear ODE [48] 49] defined by y®*)(t) = 120t,t €
[—11,y(=1) =Ly (1) =5,5(1) =3,4'(1) = 5

B.2 NLS-SVMs for Solving Second-order ODE in Terms of Problem 15

, 2
Problem15 : y'(t) = —y(t) + %,t € [-1,1],y(-1) = y(1) = 0.324027137

1
minimize -—w? w + 27 e+ ZZ & (52)
w,b,eq, Euy12
sty (t) = wh@" (t) = —y(ts) +2(y'(t:)* /y(ts) +ei, i=2,...,n—1

The Lagrangian of the constrained optimization problem becomes

L(w,b,xl,xmyn—%wwg(T (1) ~ (~lt) + 20y () /y())

(w%") = (—y(t:) + 20/ (0))*/y(0))) + 3 (s =" (t) =)
(yz b) + A1 (T (t1)+b*Q1) + A2 (wTQO(tN)‘i’b*Qn)
(53)
Further simplified:
1 T
Liw,b, A1 A2 i) = o w + 2 (Tl (1) — (~ui + 207 (1)) 1)
(T (1) = (—yi + 27 (1)) /i) + 5 (i —w p(t) = 1)
(yi —wo(t —b)+)\1 (wheo(t1) +b—q1) + X2 (W (tn) +b—an)
(54)

Then the Karush—Kuhn—Tucker (KKT) optimality conditions are as follows:

27

Y]. . aL(wa bv)‘17)\27 y’L)

- = @+ [(eh) Tl w — 21,0 i + 1] — 4, Tl w/90)®

(pt,w — 2(9";‘*’)2/% +)] + Y=, [yi — pr,w — b

+ A, + Ay,

6L(w, b,)\1,)\27 yi)

v ob :7[—I]T[yz—gotlw—b1]+)\1+/\2
OL(w,b, A1, A2, Y;
Ys: - : Qy):90t1w+b*Q1
O\
L(w,b, A\, A2, Y
Y'4:a (w’) A Q’y):SOtNQJ-l-b—Qn

OAg

6L(w, b,)\1, /\27 yz)

Y5:
0y;

+ 7y — pr,w — bl
Construct the Jacobian matrix and establish the matrix equation:
i) SR SHRG) SHRC) SHNG) <1

oY, 0Ys oYs Y, oYy
Ow ob 01 02 Bgi
- oy, ovs

w Yl
b Ys
aej)\1 = Yﬂ
oYy 9va vy vy oYy Ao Yy
Ow ab 228! 02 0%5 Y-
oYy Yi 5

840 61) 0)\1 8)\2 a’yl

Fill the results of the Jacobian matrix calculation into the equation matrix:

R B CARCAREE R Y,
'yITcpéi ~ITT 1 1 ZT; b Y,
© 1 0 0 s M=V
@, 1 0 0 gi A2 11@
e I 0 0 g’Z@ yi 5
where
oY1 /

Yi

K2

2(ph,w)? !
—— ty,] diag oo | eh| o) e

i %

+ diag {[(pé’w -

.| prw . [elw
— = E +(¢!)" ¢} —4diag {t] so;} — (o))" {dlag [;} {cpi’i

(55)

(56)

(57)

(58)

=7[2(¢},w)?/yi + 1] © [@] w — 2(¢} w)*/yi + yi]

(59)

(60)

(61)

)2

oY1 .. [2(¢]w)?
oy 1 dine [i
/ v, 20 w)? '
Avo! T di P10 O {(ptiw vi +yz] + Ph,w ©) {2(90&“’
— 4y}, diag |-
" y? Yi Yi

28

Y5

2 / 2 /»
o2

i Yi
. [erw
} 4 diag [tl‘ } wi} — VP, (64)

(2

2(ph w)?
((Ptq‘) i

+ {diag {cpgw —
) Yi

2 / 2 2 / 2 2 / 2 2 / 2
VS _ diag {(Lp“w) {soé’,;w _ 2phw) +yl} + { (Phw)” | 1} { () | 1} + 1}

y; y? Yi
(65)

Use Newton'’s iteration to solve for w and b, and then construct the prediction equation in the original
space: (t) = wTp(t) + b.

B.3 RBF kernel justification, Sampling for Nystrom landmarks and PINN baseline
comparison

Table 4: Comparative performance evaluation of Linear, Polynomial, and RBF Kernels for NLS-
SVMs in Solving ODEs

ODEs Model MAE RMSE ly — 9l
Problem 1 Linear 1.70x10° 2.00x10° 5.05%x10°
Poly 1.92x102 2.45x107% 1.29x10"
RBF 7.94x10* 9.47x10* 1.87x107
Problem 2 Linear 1.54x10° 2.15%10° 1.13x10'
Poly 3.37x10" 3.91x10" 7.44x10"
RBF 3.16x10° 3.77x10° 9.75x10°
Problem 3 Linear 6.34x107T 7.15x107 1.24x10°
Poly 1.19x10" 1.43x10" 4.80x10"
RBF 2.06x10° 2.77x10®% 1.40x107
Problem 4 Linear 3.29x10° 4.67x10° 1.24x10
Poly 3.16x10° 4.45x10° 1.16x10'
RBF 547x10% 6.92x10* 1.50x107
Problem 5 Linear 1.07x10° 1.44x10° 5.82x10°
Poly 1.53x10° 1.76x10° 2.84x10?
RBF 8.79x10* 1.07x10° 1.67x107
Problem ¢ Linear 401x10° 5.05x10° 1.67x10"
Poly 9.67x10* 1.10x10° 1.85x10°
RBF 8.89x10* 1.01x10° 1.70x10?
Problem 7 linear 4.68x107 6.05x107T 1.56x10°
Poly 3.82x10" 5.52x10" 1.47x10°
RBF 1.43x10° 1.67x10° 3.02x1073
Problem s Linear 430x107 5.23x107T 2.01x10°
Poly 3.42x10" 3.93x10" 6.70x10™
RBF 5.66x10° 7.05x10° 2.23x10™*
Problem 9 Linear 1.91x10° 2.60x10° 1.59x10'
Poly 8.05x107" 9.67x10" 1.73x10°
RBF 5.74x10° 6.92x10° 2.21x10™*
Linear 1.17x10° 1.61x10° 8.50x10°
Problem 10 p " 523x107 6.25x107 1.36x10°
RBF 4.29x10° 6.06x10°% 3.09x10°
Problem 11 inear 9.62x102% 1.27x107 5.79x10!

Poly 7.13x10* 8.90x10* 1.60x10?
RBF 236x10° 2.97x10° 9.43x10°

Continued on next page

29

ODEs Model MAE RMSE ly — 4l
Linear 9.75x107 1.27x10° 5.54x10°

Problem12 o 0" 275107 3.24x10° 5.02x10°
RBF 3.15x10° 3.94x10° 1.31x10°®
Linear 4.55x10° 6.58x10° 2.84x10"
Problem13 0" 127x10° 1.50x10° 2.91x10°
RBF 3.48x10° 4.36x10° 1.45%x10°
Linear 2.12x10> 2.63x10> 7.68x10?
Problem 14 o 0" 238102 2.82x102 4.42x102
RBF 1.17x10° 1.57x10° 3.85%x10°®
Linear 1.08x10T 1.22x107T 1.76x107
Problem15 b0 203x10" 3.30x107 7.96x10"
RBF 1.68x107 1.98x107 3.46x107
Problem 16 -inear 427x10"” 6.18x10"”° 3.53x10'™®

Poly 1.67x10" 1.92x10" 2.86x10™!
RBF 1.72x10° 2.06x10° 5.07x107

Table 5: Comparative performance evaluation of NLS-SVMs utilizing Equidistant, Random, and
Leverage-based sampling strategies for solving ODEs

ODEs Model MAE RMSE ly =3l Time/s
Problem 1 Random 8.70x10* 1.06x10° 3.06x10° 0.52
Leverage score 7.94x10™ 9.47x10™* 1.87x10° 0.64
Equidistant 7.94x10* 9.47x10* 1.87x10° 0.55
Problem 2 Random 3.41x10° 4.06x10° 8.14x10° 0.52
Leverage score 3.22x10° 3.82x10° 7.51x10® 0.57
Equidistant 3.16x10° 3.77x10° 9.75x10° 0.55
Problem 3 Random 1.31x107 1.75x107 8.99x107 0.53
Leverage score 3.12x10° 4.02x10®° 1.79x107 0.53
Equidistant 2.06x10® 277x10® 1.40x107 0.56
Problem 4 Random 5.47x10" 6.92x10*% 1.50x10° 9.53
Leverage score 5.47x10% 6.92x10* 1.50x107 14.1
Equidistant 547x10* 6.92x10* 1.50x10° 10.2
Problem 5 Random 8.79x10* 1.07x10° 1.67x10° 1.07
Leverage score 8.79x10™ 1.07x10° 1.67x10° 1.02
Equidistant 8.79x10* 1.07x10° 1.67x10° 0.97
Problem ¢ Random 8.89x10* 1.01x10° 1.70x10° 0.80
Leverage score 8.88x10™ 1.01x10° 1.70x10° 1.45
Equidistant 8.89x10* 1.01x10° 1.70x10% 0.69
Problem 7 Random 1.43x10° 1.66x10° 3.02x10° 0.45
Leverage score 1.43x10° 1.66x10° 3.02x10° 0.54
Equidistant 1.43x10° 1.67x10° 3.02x10° 0.50
Problem s Random 9.92x10° 1.29x107 4.87x107* 0.44
Leverage score 6.90x10° 8.79x10° 3.02x10* 0.46
Equidistant 5.66x10° 7.05x10° 2.23x10* 0.44
Problemg Random 8.43x10° 1.15x10* 3.88x107 0.43
Leverage score 6.07x10° 7.54x10° 2.45x10* 0.45
Equidistant 5.74x10° 6.92x10° 221x10* 047
Problem 10 Random 1.63x107 2.25x107 1.05x10° 0.44
Leverage score 2.29x107 2.65x107 8.12x107 0.43
Equidistant 420x10® 6.06x10° 3.09x10° 0.49
Problem 11 Random 9.02x10° 1.08x10° 2.90x10® 0.43

Leverage score 2.46x107 3.06x10° 8.66x10° 0.42

Continued on next page

30

ODEs Model MAE RMSE ly —9ll,, Time/s
Equidistant 2.36x10° 2.97x107 9.43x10° 0.45
Problem 12 Random 2.87x10% 3.50x10° 1.13x107 0.42
Leverage score 1.35x107 1.68x107 6.31x107 0.42
Equidistant 3.15x10° 3.94x10° 1.31x10° 0.46
Problem 13 Random 8.76x107 1.13x10° 4.29x10° 0.42
Leverage score 5.48x107 6.89x107 2.28x10° 0.42
Equidistant 3.48x107 436x107 1.45x10° 048
Problem 14 Random 2.07x10° 2.67x10° 7.13x10° 1.38
Leverage score 1.95x10° 2.63x10° 6.66x10° 1.39
Equidistant 1.17x10° 1.57x10° 3.85x10° 1.39
Problem 15 Random 1.99x107 2.35x107 4.40x107 3.54
Leverage score 1.73x107 2.04x107 3.60x107 3.19
Equidistant 1.68x107 1.98x107 3.46x107 3.25
Problem 16 Random 3.57x10% 4.42x10* 1.54x107° 0.43
Leverage score 2.09x10° 2.57x10° 833x10° 0.45
Equidistant 1.72x10° 2.06x10° 5.07x10° 0.42

Table 6: Comparative performance evaluation of NLS-SVMs, RK4, and EAB methods for solving

ODEs Model MAE RMSE Train/s Predict/s
Problem 1 NLS-SVMs 7.94x10* 9.47x10* 0.550 0.001
RK4 2.20x10° 1.80x10° 0.011 0.011
EAB 3.23x10% 1.74x10* 0.013 0.013
Problem 2 NLS-SVMs 3.16x10° 3.77x10° 0.480 0.002
RK4 1.42x107 8.96x10® 0.019 0.019
EAB 293x10° 1.36x10° 0.021 0.021
Problem 3 NLS-SVMs 2.06x10° 2.77x10% 0460 0.001
RK4 3.87x107 3.41x107 0.880 0.880
EAB 497x10% 2.90x10® 0.030 0.030
Problema NLS-SVMs 5.47x10% 6.92x10* 14.530 0.001
RK4 3.79x10° 2.78x10° 0.022 0.022
EAB 9.41x10* 6.45x10* 0.016 0.016
Problem s NLS-SVMs 8.79x10* 1.07x10° 4.590 0.001
RK4 3.58x107 3.38x107 0.013 0.013
EAB 1.79x10* 1.41x10* 0.011 0.011
Problem 6 NLS-SVMs 8.89x107% 1.01x10° 1230 0.001
RK4 7.94x107% 5.61x10% 0.021 0.021
EAB 1.28x10° 1.11x10° 0.036 0.036
Problem7 NLS-SVMs 1.43x10° 1.67x10° 0.150 0.001
RK4 1.66x10° 1.42x10° 0.012 0.012
EAB 401x10° 3.49x10° 0.013 0.013
Problem s ~ NLS-SVMs 5.66x10° 7.05x10° 0.066 0.001
RK4 3.61x10° 2.81x10° 0.023 0.023
EAB 1.26x10" 7.32x10% 0.018 0.018
Problemg ~ NLS-SVMs 5.74x10° 6.92x10° 0.170 0.001
RK4 8.21x10°% 3.08x10° 0.022 0.022
EAB 2.32x10° 1.11x10° 0.026 0.026
Problem 10 NLS-SVMs 429x10° 6.06x10° 0.075 0.001
RK4 1.00x10° 1.00x10° 0.029 0.029
EAB 5.48x10° 4.62x10° 0.018 0.018

Continued on next page

31

ODEs Model MAE RMSE Train/s Predict/s
NLS-SVMs 2.36x10° 2.97x10° 0.100 0.001

Problem 11 pyy 3.11x10° 2.87x10° 0.010 0.010
EAB 1.19x102% 6.86x10° 0.020 0.020
Problem 12 NLS-SVMs 3.15x10° 3.94x10° 0.043 0.001
RK4 5.75x107 5.20x107 0.016 0.016
EAB 5.38x10° 4.61x10° 0.023 0.023
Problem 13 NLS-SVMs 3.48x10° 436x107 0.098 0.001
RK4 1.57x10° 1.21x10° 0.011 0.011
EAB 479x107 4.15x107 0.024 0.024
Problem 14 NES-SVMs 1.17x10° 1.57x10° 1390 0.001
RK4 9.42x10° 8.18x10° 0.025 0.025
EAB 9.75x10% 7.57x10* 0.019 0.019
Problem 15 NLS-SVMs 1.68x10° 1.98x107 1.690 0.001
RK4 1.04x10* 9.10x10° 0.023 0.023
EAB 1.35x10% 9.89x10° 0.020 0.020
Problem 16 NES-SVMs 1.72x10° 2.06x10° 0.410 0.001
RK4 3.75x10% 4.89x10* 0.019 0.019
EAB 3.57x10° 4.36x10° 0.023 0.023

Table 7: Comparative performance evaluation of Vanilla PINN versus Fourier Feature-enhanced
PINN for solving ODEs

ODEs Model MAE RMSE ly — gl Time/s
Problem 1 venilla PINN 4.45x10° 5.05x10° 9.91x10° 672.00
Fourier Feature PINN 1.02x102 1.55x102 3.41x102 549.00
Problem 2 YanillaPINN 2.03x10° 2.09x10° 3.26x10° 403.00
Fourier Feature PINN 1.33x10° 1.64x10° 6.43x10° 762.00
Problem 3 YanillaPINN 1.82x107 2.88x107 1.03x10° 1209.00
Fourier Feature PINN ~ 8.51x10* 1.15x107® 3.72x10® 1556.00
Problem 4 venillaPINN 5.35x107 721x107 1.81x10° 496.00
Fourier Feature PINN ~ 5.57x10° 6.67x10° 1.50x10' 956.00
Problem 5 venillaPINN 1.03x10° 1.04x10° 1.13x10° 166.00
Fourier Feature PINN 1.90x107° 2.26x10° 4.41x10° 166.00
Problem e vanillaPINN 1.47x10% 1.76x10% 3.57x102 75.60
Fourier Feature PINN ~ 2.32x102 2.47x10? 3.86x10' 217.00
Problem 7 VanillaPINN 6.58x107 8.06x102 1.63x107 1021.00
Fourier Feature PINN ~ 7.88x10" 8.35x10" 1.42x10° 1279.00
Problem s vanillaPINN 5.23x10° 5.92x10° 1.04x10% 1392.00
Fourier Feature PINN 1.13x10" 1.26x10" 1.87x10" 2170.00
Problem g YenillaPINN 8.66x10° 9.96x10° 1.89x10™* 776.00
Fourier Feature PINN ~ 8.35x10" 8.72x10"" 9.55x10"" 1534.00
Problem 10 Y2nilla PINN 3.12x107 4.07x107 8.62x107 636.00
Fourier Feature PINN ~ 2.61x10" 3.31x10" 7.02x10" 2364.00
Problem 11 Yanilla PINN 1.62x10° 1.89x10° 3.32x10° 817.00
Fourier Feature PINN ~ 2.81x10® 3.48x10% 1.16x107 16.30
Problem 12 Yanilla PINN 2.28x10° 2.29x10° 2.60x10° 969.00
Fourier Feature PINN ~ 1.56x10® 1.93x10® 5.91x10® 16.70
Problem 13 vanillaPINN 422x10° 5.72x107° 1.05x10% 1475.00
Fourier Feature PINN ~ 2.77x107 3.42x107 9.56x107 33.60
Problem 14 Yanilla PINN 8.22x10° 8.77x10° 1.34x10° 112.40

Continued on next page

32

ODEs Model MAE RMSE lly — 9|, Time/s
Fourier Feature PINN ~ 7.38x107 9.17x107 2.02x10% 36.00

Problem 15 Ynilla PINN 242x10° 2.62x10° 3.62x10° 230.00
Fourier Feature PINN ~ 2.14x10% 2.66x10® 6.68x107 85.40

Problem 16 Yanilla PINN 1.24><10;)2 1.35><1o;)2 1.80><10’12 2699.00
Fourier Feature PINN 7.51x10 8.74x10 2.38%x10 697.00

B.4 Convergence analysis of iterative solver

Table 8: Convergence behavior and computational efficiency of NLS-SVMs across varying iteration
counts for solving ODEs

ODEs Index 50 100 200 300 400 500
Problem 4 Residuals 5.1x10° 3.9x10° 3.5%x10° 1.6x10° 6.4x10° 1.1x10*
RMSE 6.92x10% 6.92x10™* 6.92x10* 6.92x10* 6.92x10* 6.92x10*
Time/s 10.2 24.1 53.0 81.2 107.4 135.0
Problem 5 Residuals 5.1x10" 5.1x10" 5.1x10" 5.1x10" 5.1x10" 5.1x10"
RMSE 1.07x10° 1.07x10® 1.07x10° 1.07x10° 1.07x10° 1.07x10?
Time/s 1.8 12.0 30.5 48.8 65.5 84.0
Problem 6 Residuals 6.0x10% 6.0x10% 6.0x10%7 6.0x107 6.0x10° 6.0x107
RMSE 1.01x10° 1.01x10® 1.01x10® 1.01x10° 1.01x10° 1.01x10?
Time/s 0.7 0.9 1.7 29 5.4 7.7
Problem 14 Residuals 5.1x10° 5.6x10° 6.4x10° 7.3%10! 8.3x10T 9.5x107
RMSE 497x10% 5.36x10° 1.84x10° 1.58x10° 1.57x10°% 1.57x10®
Time/s 0.6 0.7 0.8 1.0 1.3 1.4
Problem 15 Residuals 1.9x107 14x10° 8.6x10° 29x10° 2.5x10° 7.1x10°
RMSE 1.98x107 1.98x107 1.98x107 1.98x107 1.98x107 1.98x107
Time/s 0.8 0.9 1.3 22 3.3 6.6

B.5 Hyperparameters for Training

Table 9: Hyperparameter configurations for PINN, LS-SVMs and NLS-SVMs in solving ODEs

2

ODEs Model Total sample Sub-sample Epoch/Iteration o ol
PINN 1000 - 10000 -
Problem1 ¢ ouMms 1000 - - 10 107
NLS-SVMs 100 150 - 10 107
PINN 10000 - 10000 -
Problem2 | ¢ ouMs 10000 - - 10 107
NLS-SVMs 10000 50 - 10 107
PINN 10000 - 20000 -
Problem3 | ¢ cuMs 10000 - - 10 107
NLS-SVMs 10000 50 - 10 107
PINN 1000 - 10000 E—
Problem4 | ¢ cuMms 1000 - 50 10 10°
NLS-SVMs 1000 50 50 10 10°
PINN 600 - 10000 E—
Problem5 | ¢ cuMms 600 - 25 8 10°
NLS-SVMs 600 20 25 8 10°
PINN 300 - 10000 E—
Problem6 | ¢ cups 300 - 50 1 108

33

Continued on next page

ODEs Model Total sample Sub-sample Epoch o

NLS-SVMs 300 20 50 1 10°
PINN 1000 - 10000 E—
ProblemT | < ovMms 1000 : ; 1107
NLS-SVMs 1000 50 - 1 107
PINN 1000 - 20000 E—
Problem8 | ¢ cuMms 1000 i ; 1107
NLS-SVMs 1000 50 - 1 107
PINN 1000 - 10000 E—
Problem9 | ¢ cuMms 1000 1000 ; 1107
NLS-SVMs 1000 50 - 1 107
PINN 1000 - 10000 E—
Problem10 | ¢ cuMs 1000 i ; 1107
NLS-SVMs 1000 50 - 1 107
PINN 1000 - 10000 S
Problem 11 | ¢ cuMms 1000 - ; 1107
NLS-SVMs 1000 20 - 1 107
PINN 1000 - 10000 S
Problem12 | ¢ cuMms 1000 - ; 1107
NLS-SVMs 1000 20 ; 1 107
PINN 1000 - T0000 S
Problem13 | ¢ cuMms 1000 - - 1 107
NLS-SVMs 1000 20 ; 1 107
PINN 200 - 10000 S
Problem 14 | ¢ cyMs 200 - 500 1 107
NLS-SVMs 200 10 500 1 107
PINN 300 - 20000 E—
Problem15 | ¢ cuMs 300 - 400 1 107
NLS-SVMs 300 10 400 1 107
PINN 1000 - 10000 S
Problem16 | ¢ cuvs 1000 :] 1 107
NLS-SVMs 1000 20 : 1 107

Table 10: Hyperparameter configuration for NLS-SVMs in large-scale ODEs solving

2

ODEs Model t Total sample Sub-sample o 0%

Problem 1 NLS-SVMs [0,100] 50000 200 10 107
Problem 3 NLS-SVMs [0,100] 50000 200 10 107
Problem 5 NLS-SVMs [0,100] 10000 100 8 10°
Problem 7 NLS-SVMs [0,100] 50000 100 1 107
Problem 8 NLS-SVMs [0,50] 20000 200 1 107
Problem 9 NLS-SVMs [0,100] 50000 200 1 107
Problem 10 NLS-SVMs [0,100] 50000 200 1 107
Problem 11 NLS-SVMs [0,100] 50000 200 1 107
Problem 12 NLS-SVMs [0,100] 50000 200 1 107

34

B.6 Assessment of NLS-SVMs for long-time integration of ODEs

100001 __ Analytical Solution 1.01
== = NLS-SVMs Prediction - {
8000 0s 0.2
6000 -0.4
> 0.0
4000 -0.6|
2000 05 —08!
° -1.0| -1.0/
0 20 40 6 80 100 0 20 40 60 8 100 0 20 40 60 8 100
t t t
Problem 1 Problem 3 Problem 5
15 0.4/ 10
» 0.2/ [HEARIMA R 0.8
> > 0.0 06
0.5 —0-21 R o4
02
-0.4|
ool | | | | | 0.0
0 20 40 . 60 80 100 06 10 20 30 40 50 0 20 40 60 8 100
t t
Problem 7 Problem 8 Problem 9
0.75 1.0 4
0.50 0.5 3
LES = 00l >2
0.00
-0.5| 1
-0.25
| | | | | -0 0
N 0 20 40 60 8 100 0 20 40 60 80 100
t t
Problem 10 Problem 11 Problem 12

Figure 5: NLS-SVMs predictions against analytical solutions for twelve benchmark problems

B.7 Performance comparison of PINN, LS-SVMs and NLS-SVMs

Table 11: Comparative performance evaluation of PINN, LS-SVMs, and NLS-SVMs in solving
ODEs: accuracy metrics and computational efficiency

ODEs Model R’ MAE RMSE ly—9ll., Timels
Problem 1 PINN 0.99999 4.45x10° 5.05x10° 9.91x10° 672.00
LS-SVMs 0.99999 4.81x10* 5.72x10* 1.17x10° 9.79
NLS-SVMs 0.99999 7.94x10™* 9.47x10* 1.87x10° 0.55
Problem 2 PINN 0.999890 2.03x10° 2.09x10° 3.26x10° 403.00
LS-SVMs 0.99999 6.87x107 8.55x107 3.07x10° 1587.00
NLS-SVMs 0.99999 3.16x10° 3.77x10° 9.75x10° 0.55
Problem 3 PINN 0.74911 1.82x107 2.88x10T 1.03x10° 1209.00
LS-SVMs 0.99999 2.55x10° 3.23x10° 1.36x107 1879.00
NLS-SVMs 0.99999 2.06x10® 2.77x10® 1.40x107 0.56
Problem 4 PN 0.94554 5.35x10T 721107 1.81x10° 496.00
LS-SVMs 0.99999 5.26x10° 7.80x10° 2.13x10* 3774.00
NLS-SVMs 0.99999 5.47x10* 6.92x10* 1.50x10° 10.20
Problems PINN 0.99995 1.03x10° 1.04x10° 1.13x10° 166.00
LS-SVMs 0.99994 8.89x10* 1.11x10° 1.84x10° 9.71
NLS-SVMs 0.99994 8.79x10* 1.07x10° 1.67x10° 0.97
Problem 6 PN 0.89021 1.47x107 1.76x10° 3.57x10> 75.60
LS-SVMs 0.99993 4.47x10* 5.11x10* 8.63x10* 13.20
NLS-SVMs 0.99974 8.89x10* 1.01x10° 1.70x10° 0.69

35

Continued on next page

ODEs Model R? MAE RMSE ly — 9l Time/s
PINN 0.91449 6.58x107 8.06x102 1.63x10" 1021.00

ProblemT | ¢ ouMs 099997 143x10° 1.66x10° 3.02x10° 22.90
NLS-SVMs 0.99997 1.43x10° 1.67x10® 3.02x10° 0.50
Problems PINN 0.99973 5.23x10° 5.92x10° 1.04x107 1392.00
LS-SVMs 0.99999 7.14x10°% 8.93x10° 2.86x10° 20.80
NLS-SVMs 0.99999 5.66x10° 7.05x10° 2.23x10* 0.44
Problemo PINN 0.99999 8.66x10° 9.96x10° 1.89x10™* 776.00
LS-SVMs 0.99999 1.60x10° 1.92x10° 6.20x10° 20.20
NLS-SVMs 0.99999 5.74x10° 6.92x10° 2.21x10* 0.47
Problem 10 PINN 0.98291 3.12x10° 4.07x10° 8.62x10” 636.00
LS-SVMs 0.99999 9.40x10° 1.34x10° 3.99x10° 24.70
NLS-SVMs 0.99999 4.29x10® 6.06x10® 3.09x10% 0.49
Problem 11 PN 0.99999 1.62x10° 1.89x10° 3.32x10° 817.00
LS-SVMs 0.99999 2.81x10% 3.48x10° 1.16x107 16.30
NLS-SVMs 0.99999 2.36x10° 2.97x10° 9.43x10° 045
Problem 12 PN 0.99999 2.28x10° 2.29x10° 2.60x10° 969.00
LS-SVMs 0.99999 1.56x10% 1.93x10® 5.91x10° 16.70
NLS-SVMs 0.99999 3.15x10° 3.94x10° 1.31x10® 0.46
Problem 13 PIN 0.99987 4.22x10° 5.72x10° 1.05x102 1475.00
LS-SVMs 0.99999 2.77x107 3.42x107 9.56x107 33.60
NLS-SVMs 0.99999 3.48x107 4.36x107 1.45x10° 0.48
Problem 14 PINN 0.99999 8.22x10° 8.77x10° 1.34x10° 112.40
LS-SVMs 0.99999 7.38x107 9.17x107 2.02x10° 36.00
NLS-SVMs 0.99999 1.17x10° 1.57x10° 3.85x10° 1.39
Problem 15 PINN 0.99774 2.42x10° 2.62x10° 3.62x10° 230.00
LS-SVMs 0.99999 2.14x10% 2.66x10° 6.68x107 85.40
NLS-SVMs 0.99999 1.68x107 1.98x107 3.46x107 3.25
Problem 16 PTIN 0.99812 1.24x107 1.35x107 1.80x107 2699.00

LS-SVMs 0.99999 1.50x10* 1.88x10* 6.84x10* 24.30
NLS-SVMs 0.99999 1.72x10° 2.06x10° 5.07x10° 0.42

Table 12: Performance evaluation of NLS-SVMs for long-time integration of ODESs: accuracy and
computational efficiency

ODEs Model R’ MAE RMSE lly —9ll,, Time/s

Problem1 NLS-SVMs 0.99999 1.38x10* 4.23x10%* 4.40x10° 34.80
Problem3 NLS-SVMs 0.99999 5.95x10® 1.18x107 1.76x10° 24.20
Problem5 NLS-SVMs 0.99999 9.96x10° 236x107 2.70x10° 413
Problem7 NLS-SVMs 099911 1.59x10° 4.01x10° 2.36x102 299.00
Problem8 NLS-SVMs 0.99999 4.09x10% 5.08x10% 1.71x10° 24.70
Problem 9 NLS-SVMs 099996 2.55x10* 6.31x10* 6.33x10° 459.00
Problem 10 NLS-SVMs 0.99999 2.72x10° 5.47x10° 3.49x10* 460.00
Problem11 NLS-SVMs 099981 7.85x10° 9.62x10° 1.55x10° 372.00
Problem 12 NLS-SVMs 0.99709 6.55x107 7.27x107 1.05x107T 379.00

36

B.8 Performance improvements

Table 13: Benchmarking NLS-SVMs against PINN and LS-SVMs on ODE problems: accuracy and

speed
ODEs Model AR? AMAE/% ARMSE/% Ally — 9l /% Speedup
Prol NLS-SVMs vs PINN +0.00000 | 3.66x 107! | 4.10x 107!] 8.04x 107} 41222
NLS-SVMs vs LS-SVMs ~ +0.00000 1 3.13 x 1072 $3.75x 1072 1 7.00 x 102 118
Pro2 NLS-SVMs vs PINN +0.00010] 2.03x10°1 | 2.09x 10"] 3.25x10" ! 1733
NLS-SVMs vs LS-SVMs ~ +0.00000 1 2.47 x 10°% 12.92x107% 16.68 x 10°* 4 2885
Pros NLS-SVMs vs PINN +0.25088 | 1.82 x 107 12.88 x 10T 1 1.03 x 1072 12159
NLS-SVMs vs LS-SVMs ~ +0.00000 | 4.90 x 10~7 | 4.60 x 10~7 14.00 x 107 43355
Prod NLS-SVMs vs PINN +0.05445 | 5.34 x 107 17.20 x 10T 1 1.81 x 107 149
NLS-SVMs vs LS-SVMs ~ +0.00000 1 4.94 x 1072 16.14 x 1072 11.29 x 10~} 4370
Pros NLS-SVMs vs PINN -0.00001 | 1.51x10°2 13.00x 10-% 15.40 x 102 171
NLS-SVMs vs LS-SVMs ~ +0.00000 J 1.00 x 1072 | 4.00 x 107% | 1.70 x 102 410
Pro6 NLS-SVMs vs PINN -0.10953 | 1.38 x 107 11.66 x 10° 1 3.40 x 10° 4190
NLS-SVMs vs LS-SVMs ~ -0.00019 14.42 x 1072 14.99 x 1072 18.37 x 102 119
ProT NLS-SVMs vs PINN +0.08548 | 6.44 x 10° 17.89 x 10° 11.60 x 10T 12042
NLS-SVMs vs LS-SVMs ~ +0.00000 1 0.00 x 10° 11.00 x 107% 1 0.00 x 10° 146
Pros NLS-SVMs vs PINN +0.00026 | 5.17 x 10°' | 585 x 10~ 1 | 1.02 x 10° 43164
NLS-SVMs vs LS-SVMs +0.00000 14.95 x 1072 16.16 x 1072 1 1.94 x 1072 147
Pro9 NLS-SVMs vs PINN +0.00000 [2.92x107° | 3.04x 10°° 13.20x 10~ ° 11651
NLS-SVMs vs LS-SVMs ~ +0.00000 1 4.14 x 1072 15.00 x 1072 1 1.59 x 1072 143
Proio NES-SVMs vs PINN +0.01708 | 3.12 x 10° 14.07 x 10° 18.62 x 10° 11298
NLS-SVMs vs LS-SVMs ~ +0.00000 13.35 x 10°¢ 14.72x107% | 9.00 x 1077 450
Proi1 NLS-SVMsvs PINN +0.00000 | 1.62x 107 | 1.90x 1077] 3.32x 1077 11816
NLS-SVMs vs LS-SVMs ~ +0.00000 | 2.57 x 10°¢ | 3.18 x 107% | 1.07 x 10~° 136
Prolz NLS-SVMsvs PINN +0.00000 | 2.28 x 10°° | 2.29 x 10~°] 2.60 x 10™° 12107
NLS-SVMs vs LS-SVMs ~ +0.00000 | 1.25 x 1076 | 1.54 x 107% | 4.60 x 10~¢ 136
Pro1g NLS-SVMsvs PINN +000012 1 4.22x 107"][572x 107"] 1.05 x 10° 43073
NLS-SVMs vs LS-SVMs ~ +0.00000 1 7.10 x 10°¢ 19.40 x 107% 1 4.94 x 107° 170
Prota NLS-SVMsvs PINN +0.00000 [7.05x10~% | 720x10"% 19.55x 107 181
NLS-SVMs vs LS-SVMs ~ +0.00000 14.32x 107° 16.53x 107° 11.83x 10~* 126
Prots NLS-SVMsvs PINN 4000225 [2.42x 1071 [2.62x10° 1 [3.62x 10! 71
NLS-SVMs vs LS-SVMs ~ +0.00000 1 1.47 x 107° 1 1.71 x 107° | 3.22 x 107° 126
Pro1g NLS-SVMsvs PINN +0.00187 | 1.24 x 107 11.35 x 10° 11.79 x 10° 16426
NLS-SVMs vs LS-SVMs ~ +0.00000 } 1.33 x 1072 | 1.64 x 1072] 6.33 x 102 158

37

	Introduction
	Related Works
	Novelty and Contributions

	Preliminaries
	Proposed Nyström-accelerated LS-SVMs (NLS-SVMs)
	NLS-SVMs for learning p-th Order Linear ODE
	NLS-SVMs for Learning p-th Order Nonlinear ODE

	Numerical experiments
	Results and discussions
	Conclusion
	 Technical Appendices
	Least Squares Support Vector Machines (LS-SVMs)
	LS-SVM for p-th order nonlinear ODE
	Nyström Method for Feature Formulation
	NLS-SVMs for Lemma 1
	Nyström Method for Lemma 2
	NLS-SVMs for Solving First-Order ODE with IVP
	NLS-SVMs for Solving Second-Order ODEs with IVP and BVP
	NLS-SVMs for Solving First-Order nonlinear ODE

	 Supplementary Material
	Sixteen benchmark ODE problems
	NLS-SVMs for Solving Second-order ODE in Terms of Problem 15
	RBF kernel justification, Sampling for Nyström landmarks and PINN baseline comparison
	Convergence analysis of iterative solver
	Hyperparameters for Training
	Assessment of NLS-SVMs for long-time integration of ODEs
	Performance comparison of PINN, LS-SVMs and NLS-SVMs
	Performance improvements

