
Regularized Neural Ensemblers

Sebastian Pineda Arango1,* Maciej Janowski1,* Lennart Purucker1 Arber Zela1

Frank Hutter2,3,1 Josif Grabocka4

1
University of Freiburg

2
PriorLabs

3
ELLIS Institute Tübingen

4
University of Technology Nürnberg

Abstract Ensemblemethods are known for enhancing the accuracy and robustness ofmachine learning

models by combining multiple base learners. However, standard approaches like greedy or

random ensembling often fall short, as they assume a constant weight across samples for the

ensemble members. This can limit expressiveness and hinder performance when aggregating

the ensemble predictions. In this study, we explore employing regularized neural networks as

ensemble methods, emphasizing the significance of dynamic ensembling to leverage diverse

model predictions adaptively. Motivated by the risk of learning low-diversity ensembles, we

propose regularizing the ensembling model by randomly dropping base model predictions

during the training. We demonstrate this approach provides lower bounds for the diversity

within the ensemble, reducing overfitting and improving generalization capabilities. Our

experiments showcase that the regularized neural ensemblers yield competitive results

compared to strong baselines across several modalities such as computer vision, natural

language processing, and tabular data.

1 Introduction
Ensembling machine learning models is a well-established practice among practitioners and re-

searchers, primarily due to its enhanced generalization performance over single-model predic-

tions (Ganaie et al., 2022; Erickson et al., 2020; Feurer et al., 2015; Wang et al., 2020). Ensembles

are favored for their superior accuracy and ability to provide calibrated uncertainty estimates and

increased robustness against covariate shifts (Lakshminarayanan et al., 2017). Combined with their

relative simplicity, these properties make ensembling the method of choice for many applications,

such as medical imaging and autonomous driving, where reliability is paramount. A popular

set-up consists of ensembling from a pool, after training them separately, a.k.a. post-hoc ensem-

bling (Purucker and Beel, 2023b). This allows users to use models trained during hyperparameter

optimization.

Despite these advantages, selecting post-hoc models that are accurate and diverse remains a

challenging combinatorial problem, especially as the pool of candidate models grows. Commonly

used heuristics, particularly in the context of tabular data, such as greedy selection (Caruana

et al., 2004) and various weighting schemes, attempt to optimize ensemble performance based

on metrics evaluated on a held-out validation set or through cross-validation. However, these

methods face significant limitations. Specifically, choosing models to include in the ensemble and

determining optimal ensembling strategies (e.g., stacking weights) are critical decisions that, if

not carefully managed, can lead to overfitting on the validation data. Although neural networks

are good candidates for generating ensembling weights, few studies rely on them as a post-hoc

ensembling approach. We believe this happens primarily due to a lack of ensemble-related inductive

biases that provide regularization.

*Equal contribution.

AutoML 2025 © 2025 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Samples

M
od

el
s

TabRepo

Samples

QuickTune

Samples

FTC

Samples

Nasbench201

Figure 1: WrongModels Per Samples Across Meta-Datasets. Every dark cell represents data instances
where a model’s prediction is wrong. Different models fail on different instances, therefore,

only instance-specific dynamic ensembles are optimal.

In this work, we introduce a novel approach to post-hoc ensembling using neural networks.

Our proposed Neural Ensembler dynamically generates the weights for each base model in the

ensemble on a per-instance basis, a.k.a dynamical ensemble selection (Ko et al., 2008; Cavalin

et al., 2013). To mitigate the risk of overfitting the validation set, we introduce a regularization

technique inspired by the inductive biases inherent to the ensembling task. Specifically, we propose

randomly dropping base models during training, inspired by previous work on DropOut in Deep

Learning (Srivastava et al., 2014). Furthermore, our method is modality-agnostic, as it only relies

on the base model predictions. For instance, for classification, we use the class predictions of the

base models as input.

In summary, our contributions are as follows:

1. We propose a simple yet effective post-hoc ensembling method based on a regularized neural

network that dynamically ensembles base models and is modality-agnostic.

2. To prevent the formation of low-diversity ensembles, the regularization technique randomly

drops base model predictions during training. We demonstrate theoretically that this lower

bounds the diversity of the generated ensemble, and validate its effect empirically.

3. Through extensive experiments, we show that Neural Ensemblers consistently select com-

petitive ensembles across a wide range of data modalities, including tabular data (for both

classification and regression), computer vision, and natural language processing.

To promote reproducibility, we have made our code publicly available in the following anony-

mous repository
1
. We hope that our codebase, along with the diverse set of benchmarks used in

our experiments, will serve as a valuable resource for the development and evaluation of future

post-hoc ensembling methods.

2 Background and Motivation

Post-hoc ensembling uses set of fitted base models {𝑧1, ..., 𝑧𝑀 } such that every model outputs

predictions 𝑧𝑚 (𝑥) : R𝐷 → R. These outputs are combined by a stacking ensembler 𝑓 (𝑧 (𝑥);𝜃) :=

𝑓 (𝑧1(𝑥), ..., 𝑧𝑀 (𝑥);𝜃) : R𝑀 → R, where 𝑧 (𝑥) = [𝑧1(𝑥), ..., 𝑧𝑀 (𝑥)] is the concatenation of the base

models predictions. While the base models are fitted using a training set DTrain, the ensembler’s

parameters 𝜃 are typically obtained by minimizing a loss function on a validation set DVal such

that:

𝜃 ∈ arg min

𝜃

∑︁
(𝑥,𝑦) ∈D

Val

L(𝑓 (𝑧 (𝑥);𝜃), 𝑦) . (1)

In the general case, this objective function can be optimized using gradient-free optimization

methods such as evolutionary algorithms (Purucker and Beel, 2023b) or greedy search (Caruana

1https://github.com/machinelearningnuremberg/RegularizedNeuralEnsemblers

2

https://github.com/machinelearningnuremberg/RegularizedNeuralEnsemblers

...

...

...

...

...

...

...

...

...

...

...

... ...

...

Figure 2: Architecture of Neural Ensemblers (classification). The stacking mode uses a single MLP

shared across base model class predictions. It outputs the logit per class, used for computing

the final probability via SoftMax. In Model Averaging mode, it generates the unnormalized

weights for every model, which are normalized with SoftMax.

et al., 2004). Commonly, 𝑓 is a linear combination 𝜃 ∈ R𝑀
of the model outputs:

𝑓 (𝑧 (𝑥);𝜃) =
∑︁
𝑚

𝜃𝑚𝑧𝑚 (𝑥). (2)

Additionally, if we constraint the ensembler weights such that ∀𝑖𝜃𝑖 ∈ R+ and

∑
𝑖 𝜃𝑖 = 1 and assume

probabilistic base models 𝑧𝑚 (𝑥) = 𝑝 (𝑦 |𝑥,𝑚), then we can interpret Equation 2 as:

𝑝 (𝑦 |𝑥) =
∑︁
𝑖

𝑝 (𝑦 |𝑥,𝑚)𝑝 (𝑚), (3)

which is referred to as Bayesian Model Average (Raftery et al., 1997), and uses 𝜃𝑚 = 𝑝 (𝑚). In
the general case, the probabilistic ensembler 𝑝 (𝑦 |𝑥) = 𝑝 (𝑦 |𝑧1(𝑥), ..., 𝑧𝑀 (𝑥), 𝛽) is a stacking model

parametrized by 𝛽 .

2.1 Motivating Dynamic Ensembling

Wemotivate in this Section the need for dynamic ensembling by analyzing base models’ predictions

in real data taken from our experimental meta-datasets. Generally, the distribution 𝑝 (𝑚) can take

different forms. Dynamic ensembling assumes that the performance associated with an ensembler

𝑓 (𝑧𝑚 (𝑥), 𝜃) is optimal if we select the optimal aggregation 𝜃𝑚 (𝑥) = 𝑝 (𝑥 |𝑚) on a per-data point basis,
instead of a static 𝜃 . Tomotivate this observation, we selected four datasets from different modalities:

TabRepo (Tabular data (Salinas and Erickson, 2023)), QuickTune (Computer Vision (Arango et al.,

2024a)), FTC (Arango et al., 2024b) and NasBench 201 (NAS for Computer Vision (Dong and Yang,

2020)). Then, we compute the per-sample error for 100 models in 100 samples. We report the results

in Figure 1, indicating failed predictions with dark colors. We observe that models make different

errors across samples, indicating a lack of optimality in static ensembling weights.

3 Neural Ensemblers

We build the Neural Ensemblers by taking the predictions of𝑀 base models 𝑧 (𝑥) = [𝑧1(𝑥), ..., 𝑧𝑀 (𝑥)]
as input. For regression, 𝑧 (𝑥) : R𝐷 → R𝑀

outputs the base models’ point predictions given by

𝑥 ∈ R𝐷
, while for classification 𝑧 (𝑐) (𝑥) : R𝐷 → [0, 1]𝑀 returns the probabilities predicted by the

base models for class 𝑐2. In our discussion, we consider two functional modes for the ensemblers: as

a network outputting weights for model averaging, or as a stacking model that directly outputs the

2
To simplify notation, we will henceforth make the dependency implicit, denoting 𝑧 (𝑥) just as 𝑧.

3

prediction. In stacking mode for regression, we aggregate the base model point predictions using a

neural network to estimate the final prediction 𝜙 (𝑧; 𝛽), where 𝛽 are the network parameters. In the

model-averaging mode, we use a neural network to compute the weights 𝜃𝑚 (𝑧; 𝛽) to combine the

model predictions as in Equation 4. ∑︁
𝑚

𝜃𝑚 (𝑧; 𝛽) · 𝑧𝑚 (4)

Regardless of the functional mode, the Neural Ensembler has a different output 𝑦 for regression

and classification. In regression, the output 𝑦 is a point estimation of the mean for a normal

distribution such that 𝑝 (𝑦 |𝑥 ; 𝛽) = N (𝑦, 𝜎). For classification, the input is the probabilistic prediction
of the base models per class 𝑧

(𝑐)
𝑚 = 𝑝 (𝑦 = 𝑐 |𝑥,𝑚), while the output is a categorical distribution

𝑦 = 𝑝 (𝑦 = 𝑐 |𝑧, 𝛽). We optimize 𝛽 by minimizing the negative log-likelihood over the validation

dataset DVal as:

min

𝛽
L(𝛽 ;𝐷Val) = min

𝛽

∑︁
(𝑥,𝑦) ∈D

Val

−log 𝑝 (𝑦 |𝑥 ; 𝛽) (5)

3.1 An Architecture with Parameter Sharing

We discuss the architectural implementation of the Neural Ensembler for the classification case,

which we show in Figure 2. For the stacking mode, we use an MLP that receives as input the

base models’ predictions 𝑧 (𝑐) for the class 𝑐 and outputs the corresponding predicted logit for this

class, i.e. 𝜙 (𝑧, 𝑐; 𝛽). The model predictions per class are fed independently into the same network,

enabling the sharing of the network parameters 𝛽 as shown in Figure 6. Subsequently, we compute

the probability 𝑝 (𝑦 = 𝑐 |𝑥) = exp
𝜙 (𝑧,𝑐 ;𝛽)∑

𝑐′ exp
𝜙 (𝑧,𝑐′ ;𝛽) , with 𝜙 (𝑥, 𝑐; 𝛽) = MLP(𝑧 (𝑐) ; 𝛽). In regression, the final

prediction is the output 𝜙 (𝑧; 𝛽).
Formodel averagingmode, we use a novel architecture based on a Deep Set (Zaheer et al., 2017)

embedding of the base models predictions. We compute the dynamic weights 𝜃𝑚 (𝑧; 𝛽) = exp 𝑓𝑚 (𝑧;𝛽)∑
𝑚′ 𝑓𝑚′ (𝑧;𝛽) ,

where the unnormalized weight per model 𝑓𝑚 (𝑧; 𝛽) is determined via two MLPs. The first one

MLP1 : R𝑀 → R𝐻
embeds the predictions per class 𝑧 (𝑐

′)
into a latent dimension of size 𝐻 , whereas

the second network MLP2 : R𝐻 → R𝑀
aggregates the embeddings and outputs the unnormalized

weights, as shown in Equation 6. Notice that the Neural Ensemblers’ input dimension and number

of parameters are independent of the number of classes, due to our proposed parameter-sharing

mechanism. In Appendix𝐶 , we further discuss the advantages of this approach from the perspective

of space complexity.

𝑓𝑚 (𝑧; 𝛽) = MLP2

(∑︁
𝑐′

MLP1

(
𝑧 (𝑐

′)
; 𝛽1

)
; 𝛽2

)
(6)

3.2 Ensemble Diversity

An important aspect when building ensembles is guaranteeing diversity among the models (Wood

et al., 2023; Jeffares et al., 2024). This has motivated some approaches to explicitly account for

diversity when searching the ensemble configuration (Shen et al., 2022; Purucker et al., 2023). A

common way to measure diversity is the ambiguity (Krogh and Vedelsby, 1994), which can be

derived after decomposing the loss function (Jeffares et al., 2024). Measuring diversity is essential

as it helps to avoid overfitting in the ensemble.

Definition 3.1 (Ensemble Diversity via Ambiguity Measure). An ensemble with base models

Z = 𝑧1, ..., 𝑧𝑀 with prediction 𝑧 =
∑

𝑚 𝜃𝑚𝑧𝑚 has diversity 𝛼 := E
[∑

𝑚 𝜃𝑚 (𝑧𝑚 − 𝑧)2

]
.

4

Algorithm 1: Training Algorithm for Neural Ensemblers with Base Models’ DropOut

Input: Base model predictions {𝑧1(𝑥), ..., 𝑧𝑀 (𝑥)}, validation data DVal, probability of

retaining 𝛾 , mode ∈ {Stacking,Averaging}.
Output: Neural Ensembler’s parameters 𝛽

1 Initialize randomly parameters 𝛽 ;

2 while 𝑑𝑜𝑛𝑒 do
3 Sample masking vector 𝑟 ∈ R𝑀 , 𝑟𝑖 ∼ Ber(𝛾);
4 Mask base models predictions 𝑧drop = 𝑟 ⊙ 𝑧 ;
5 if mode = Stacking then
6 Compute predictions 𝜙

(
1

𝛾
𝑧drop

)
;

7 else
8 Compute weights 𝜃𝑚

(
1

𝛾
𝑧drop

)
using Equation 7 ;

9 Compute predictions using Equation 4 ;

10 end
11 Update parameters 𝛽 using ∇L(𝛽 ;DVal)
12 end
13 return 𝛽 ;

3.3 Base Models’ DropOut

Using Neural Ensemblers tackles the need for dynamical ensembling. Moreover, it gives additional

expressivity associated with neural networks. However, there is also a risk of overfitting caused by

a low diversity. Although the error might effectively decrease the validation loss (Equation 5), it

does not necessarily generalize to test samples. Inspired by previous work (Srivastava et al., 2014),

we propose to drop some base models during training forward passes. Intuitively, this forces the

ensembler to rely on different base models to perform the predictions, instead of merely using the

preferred base model(s).

Formally, we mask the inputs such as 𝑟𝑚 · 𝑧𝑚 , where 𝑟𝑚 ∼ Ber(𝛾), where Ber(𝛾) is the Bernoulli
distribution with parameter 𝛾 with represents the probability of keeping the base model, while

𝛿 = 1 − 𝛾 represents the DropOut rate. We also mask the weights when using model averaging:

𝜃𝑚 (𝑧; 𝛽, 𝑟) = 𝑟𝑚 · exp 𝑓𝑚 (𝑧; 𝛽)∑
𝑚′ 𝑟𝑚′ · exp 𝑓𝑚′ (𝑧; 𝛽) . (7)

As DropOut changes the scale of the inputs, we should apply the weight scaling rule during inference
by multiplying the dropped variables by the retention probability 𝛾 . Alternatively, we can scale

the variables during training by
1

𝛾
. In Algorithm 1, we detail how to train the Neural Ensemblers

by dropping base model predictions. It has two modes, acting as a direct stacker or as a model

averaging ensembler. We demonstrate that base models’ DropOut lower bounds the diversity for a

simple ensembling case in Proposition A.1.

Definition 3.2 (Preferred Base Model). Consider a target variable 𝑦 ∈ 𝑅 and a set of uncorrelated

base models predictions Z = {𝑧𝑚 |𝑧𝑚 ∈ R,𝑚 = 1, ..., 𝑀}. 𝑧𝑝 is the Preferred Base Model if it has the
highest sample correlation to the target, i.e. 𝜌𝑧𝑝 ,𝑦 ∈ [0, 1], 𝜌𝑧𝑝 ,𝑦 > 𝜌𝑧𝑚,𝑦,∀𝑧𝑚 ∈ Z/{𝑧𝑝 }.

Proposition 3.3 (Diversity Lower Bound). As the correlation of the preferred model increases 𝜌𝑝𝑚,𝑦 →
1, the diversity decreases 𝛼 → 1−𝛾 , when using Base Models’ DropOut with probability of retaining 𝛾 .

5

Table 1: Average Normalized NLL across Metadatasets.

FTC NB-Micro NB-Mini QT-Micro QT-Mini TR-Class TR-Reg

Single-Best 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000

Random 1.5450±0.5289 0.6591±0.2480 0.7570±0.2900 6.8911±3.1781 5.8577±3.2546 1.7225±1.9645 1.8319±2.1395

Top5 0.8406±0.0723 0.6659±0.1726 0.6789±0.3049 1.5449±1.8358 1.1496±0.3684 1.0307±0.5732 0.9939±0.0517

Top50 0.8250±0.1139 0.5849±0.2039 0.6487±0.3152 3.3068±2.6197 3.0618±2.2960 1.0929±1.0198 1.0327±0.2032

Quick 0.7273±0.0765 0.5957±0.1940 0.6497±0.3030 1.1976±1.1032 0.9747±0.2082 0.9860±0.2201 1.0211±0.1405

Greedy 0.6943±0.0732 0.5785±0.1972 0.7617±0.3435 0.9025±0.2378 0.9093±0.1017 0.9665±0.0926 1.0149±0.1140

CMAES 1.2356±0.5295 1.0000±0.0000 1.0000±0.0000 4.1728±2.8724 4.6474±3.0180 1.3487±1.3390 1.0281±0.1977

Random Forest 0.7496±0.0940 0.8961±0.3159 0.9340±0.4262 3.7033±2.8145 2.2938±2.2068 1.2655±0.4692 1.0030±0.0871

Gradient Boosting 0.7159±0.1529 1.7288±1.2623 1.2575±0.4460 1.9373±1.2839 2.6193±2.3159 1.4288±1.2083 1.0498±0.2128

SVM 0.7990±0.0909 0.7744±0.2967 0.9358±0.5706 5.4377±3.3807 4.0019±3.6601 1.3884±1.4276 2.7975±3.0219

Linear 0.7555±0.0898 0.7400±0.2827 0.8071±0.2206 1.3960±1.2334 1.1031±0.7038 1.1976±1.1024 3.1488±3.2813

XGBoost 0.8292±0.1434 0.7389±0.2326 0.9092±0.5304 3.7822±3.1194 2.6119±2.3911 1.7697±1.4672 1.2580±0.4875

CatBoost 0.6887±0.0953 0.8092±0.2513 0.9512±0.5083 2.6262±2.6482 2.4145±1.8989 1.2570±1.2859 1.0454±0.1550

LightGBM 0.7973±0.1946 3.6004±2.5822 5.3943±4.7980 3.0378±2.7945 3.6860±3.2856 1.8298±1.1596 1.6250±2.1651

Akaike 0.8526±0.1403 0.5838±0.2031 0.6485±0.3166 3.1574±2.5898 2.6888±2.0620 1.0930±1.0203 1.0221±0.1793

MA 0.9067±0.1809 0.5970±0.2034 0.6530±0.3028 4.7921±3.0780 4.0168±2.8560 1.4724±1.9401 1.3342±1.3515

DivBO 0.7695±0.1195 0.7307±0.3061 0.6628±0.3435 1.2251±1.0293 0.9430±0.2036 1.0023±0.3411 1.0247±0.1473

EO 0.7535±0.1156 0.5801±0.2051 0.6911±0.2875 1.3702±1.6389 0.9649±0.2980 1.0979±1.0289 1.0183±0.0993

NE-Stack 0.7562±0.1836 0.5278±0.2127 0.6336±0.3456 0.7486±0.6831 0.6769±0.2612 1.3268±0.7498 1.2379±0.4083

NE-MA 0.6952±0.0730 0.5822±0.2147 0.6522±0.3131 1.0177±0.5151 0.9166±0.0936 1.0515±1.0003 0.9579±0.0777

Sketch of Proof. We want to compute lim𝜌𝑧𝑝 ,𝑦→1 𝛼 = lim𝜌𝑧𝑝 ,𝑦→1 E
[∑

𝑚 𝜃𝑚 (𝑧𝑚 − 𝑧)2

]
. By using

𝑧 =
∑

𝑚 𝑟𝑚 𝜃𝑚𝑧𝑚 , and assuming, without loss of generality, that the predictions are standardized,

we obtain V(𝑟 · 𝑧𝑚) = 𝛾 . This lead as to lim𝜌𝑧𝑝 ,𝑦→1 𝛼 = 1 − 𝛾 , after following a procedure similar to

Proposition 3.1. We provide the complete proof in Appendix A.

4 Experiments and Results

In this section, we provide empirical evidence of the effectiveness of our approach.

4.1 Experimental Setup

Meta-Datasets.. In our experiments, we utilize four meta-datasets with pre-computed predictions,

which allows us to simulate ensembles without the need to fit models. These meta-datasets cover

diverse data modalities, including Computer Vision, Tabular Data, and Natural Language Process-

ing. Additionally, we evaluate the method on datasets without pre-computed predictions to assess

the performance of ensembling methods that rely on fitted models during the evaluation. Table

11 reports the main information related to these datasets. Particularly for Nasbench, we created
2 versions by subsampling 100 and 1000 models. The meta-dataset Finetuning Text Classifiers
(FTC) (Arango et al., 2024b) contains the predictions of several language models to evaluate ensem-

bling techniques on text classification tasks by finetuning language models such as GPT2 (Radford

et al., 2019), Bert (Devlin et al., 2018) and Bart (Lewis et al., 2019). We also generate a set of fitted

Scikit-Learn Pipelines on classification datasets. In this case, we stored the pipeline in memory,

allowing us to evaluate our method in practical scenarios where the user has fitted models instead

of predictions. We detailed information about the creation of this meta-dataset in Appendix O.

Altogether, the meta-datasets comprise over 240 datasets in total. The information about each data

set lies in the referred work under the column Task Information in Table 11.

Baselines.. We compare theNeural Ensemblers (NE)with other common and competitive ensemble

approaches. 1) Single best selects the best model according to the validation metric; 2) Random
chooses randomly 𝑁 = 50 models to ensemble, 3) Top-N ensembles the best 𝑁 models according to

the validation metric; 4) Greedy creates an ensemble with 𝑁 = 50 models by iterative selecting the

6

one that improves the metric as proposed by previous work (Caruana et al., 2004); 5) Quick builds

the ensemble with 50 models by adding model subsequently only if they strictly improve the metric;

6) CMAES (Purucker and Beel, 2023b) uses an evolutive strategy with a post-processing method for

ensembling, 7)Model Average (MA) computed the sum of the predictions with constant weights as

in Equation 3. We also compare to methods that perform ensemble search iteratively via Bayesian

Optimization such as 8) DivBO (Shen et al., 2022), and 9) Ensemble Optimization (EO) (Levesque
et al., 2016). We also report results by using common ML models as stackers, such as SVM and

Random Forest. Finally, we include models from Dynamic Ensemble Search (DES) literature such

as KNOP (Cavalin et al., 2013), KNORAE (Ko et al., 2008) and MetaDES (Cruz et al., 2015). We

provide further details on the baselines setup in Appendix E.

NE-S
ta

ck
in

g

G
re

ed
y

NE-M
A
Si

ng
le

Q
ui

ck
SV

M RF

Lin
ea

r
G

BT

K
NO

P

M
et

aD
ES

Top
M M

A

Ran
do

m

K
NO

RAE

Method

0

1

2

3

4

N
or

m
al

iz
ed

N
L

L

0.801
0.908

0.993 1.0 1.047 1.096

1.338

1.532

1.76

2.09

2.389
2.547

2.634

3.561

4.479

Method Type

Constant

DES

Neural

Stacking

Figure 3: Results on Scikit-Learn Pipelines.

Neural Ensemblers’ Setup.. We train the neural

networks for 10000 update steps, with a batch

size of 2048. If the GPU memory is not enough

for fitting the network because of the number

of base models, or the number of classes, we

decreased the batch size to 256. Additionally,

we used the Adam optimizer and a network

with four layers, 32 neurons, and a probability

of keeping base models 𝛾 = 0.25, or alterna-

tively a DropOut rate 𝛿 = 0.75. Notice that the

architecture of the ensemblers slightly varies

depending on the mode, Stacking or Model Av-
erage (MA). For the Stacking mode, we use an

MLPwith four layers and 32 neurons with ReLU

activations. For MA mode, we use two MLPs

as in Equation 6: 1) MLP1 has 3 layers with 32

neurons, while 2) MLP2 has one layer with the

same number of neurons. Although changing some of these hyperparameters might improve the

performance, we keep this setup constant for all the experiments, after checking that the Neural

Ensemblers perform well in a subset of the Quick-Tune meta-dataset (extended version).

4.2 Research Questions and Associated Experiments

RQ 1: Can Neural Ensemblers outperform other common and competitive ensembling methods
across data modalities?

Experimental Protocol. To answer this question, we compare the neural ensembles in stacking

and averaging mode to the baselines across all the meta-datasets. We run every ensembling method

three times for every dataset. In all the methods we use the validation data for fitting the ensemble,

while we report the results on the test split. Specifically, we report the average across datasets of

two metrics: negative log-likelihood (NLL) and classification error. For the tabular classification,

we compute the ROC-AUC. As these metrics vary for every dataset, we normalize metrics by

dividing them by the single-best metric. Therefore, a method with a normalized metric below one

is improving on top of using the single best base model. We report the standard deviation across

the experiments per dataset and highlight in bold the best method.

Results. The results reported in Table 2 and Table 1 show that our proposed regularized neural

networks are competitive post-hoc ensemblers. In general, we observe that the Neural Ensemblers

variants obtain either the best (in bold) or second best (italic) performance across almost all meta-

datasets and metrics. Noteworthily, the greedy approach is very competitive, especially for the FTC
and TR-Class meta-datasets. This is coherent with previous work supporting greedy ensembling as

a robust method for tabular data (Erickson et al., 2020). We hypothesize that dynamic ensembling

7

Table 2: Average Normalized Error across Metadatasets.

FTC NB-Micro NB-Mini QT-Micro QT-Mini TR-Class TR-Class (AUC)

Single-Best 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000

Random 1.3377±0.2771 0.7283±0.0752 0.7491±0.2480 6.6791±3.4638 4.7284±2.9463 1.4917±1.6980 1.7301±1.8127

Top5 0.9511±0.0364 0.6979±0.0375 0.6296±0.1382 0.6828±0.3450 0.8030±0.2909 0.9998±0.1233 0.9271±0.2160

Top50 1.1012±0.1722 0.6347±0.0395 0.5650±0.1587 1.0662±0.9342 1.0721±0.4671 0.9800±0.1773 0.9297±0.2272

Quick 0.9494±0.0371 0.6524±0.0436 0.5787±0.1510 0.7575±0.2924 0.7879±0.2623 0.9869±0.1667 0.9054±0.2232

Greedy 0.9494±0.0374 0.7400±0.1131 0.6033±0.1572 0.9863±0.4286 0.9297±0.1435 0.9891±0.1693 0.9090±0.2197

CMAES 0.9489±0.0392 0.6401±0.0343 0.5797±0.1575 1.0319±0.5000 0.9086±0.1121 0.9935±0.1953 1.1878±1.1457

Random Forest 0.9513±0.0359 0.6649±0.0427 0.6891±0.3039 1.4738±1.3510 1.2530±0.4875 1.0041±0.2330 1.0924±0.6284

Gradient Boosting 1.0097±0.1033 1.2941±0.5094 1.2037±0.3528 0.8514±0.5003 1.6121±1.7023 1.0452±0.3808 1.0663±0.4884

SVM 0.9453±0.0383 0.6571±0.0483 0.7015±0.3067 1.1921±0.8266 1.4579±0.6233 0.9585±0.2160 1.4701±1.3486

Linear 0.9609±0.0347 0.7891±0.1978 0.7782±0.1941 0.7333±0.4457 0.9291±0.3580 0.9776±0.2844 1.0329±0.4022

XGBoost 0.9784±0.0334 0.7886±0.0903 0.7183±0.2628 3.3875±3.1419 2.1067±1.9570 1.3310±1.4402 1.1490±1.0202

CatBoost 1.0271±0.0952 0.9247±0.0652 0.8526±0.2627 1.1858±0.5737 1.4011±0.7817 1.1507±1.0190 1.0179±0.2395

LightGBM 0.9774±0.0369 1.2866±0.6738 1.2278±0.8503 2.4846±2.5747 3.1337±2.9066 1.0954±0.4326 1.1228±0.9022

Akaike 1.0242±0.0723 0.6328±0.0384 0.5667±0.1578 1.0323±0.8817 1.0346±0.4554 0.9832±0.1784 1.1146±1.0218

MA 1.0709±0.0845 0.6381±0.0349 0.5610±0.1490 1.1548±0.8465 1.2173±0.6107 1.0917±1.0135 0.9977±0.2278

DivBO 1.0155±0.1452 0.6915±0.0536 0.9120±0.1524 1.3935±1.4316 1.0635±0.7587 1.0908±1.0104 1.0899±1.0297

EO 1.0208±0.1159 0.6365±0.0445 0.5704±0.1619 1.0185±0.6464 1.0367±0.4394 1.0851±1.0136 0.9377±0.2310

NE-Stack 0.9491±0.0451 0.6331±0.0378 0.5836±0.1592 0.6104±0.3656 0.7545±0.2960 1.0440±0.3309 1.0035±0.5295

NE-MA 0.9527±0.0402 0.6307±0.0363 0.5621±0.1483 0.8297±0.4974 0.8236±0.2240 0.9592±0.2144 0.9028±0.2157

contributes partially to the strong results for the Neural Ensemblers. However, the expressivity

gained is not enough, because it can lead to overfitting. To understand this, we compare to Dynamic

Ensemble Selection (DES) methods. Specifically, we use KNOP,MetaDES, and KNORAE, and evaluate
all methods in Scikit-learn Pipelines meta-dataset, as we can easily access the fitted models. We

report the results of the test split in Figure 3, where we distinguish among four types of models to

facilitate the reading: Neural, DES, Stacking and Constant. We can see that Neural Ensemblers are

the most competitive approaches, especially on stacking mode. Additionally, we report the metrics

on the validation split in Figure 6 (Appendix F), where we observe that some dynamic ensemble

approaches such as Gradient Boosting (GBT), Random Forest (RF) and KNORAE exhibit overfitting,

while Neural Enemblers are more robust.

RQ 2: What is the impact of the DropOut regularization scheme?
Experimental Protocol. To understand how much the base learners DropOut helps the

Neural Ensemblers, we run an ablation by trying the following values for the DropOut rate

𝛿 ∈ {0.0, 0.1, . . . , 0.9}. We compute the average NLL for three seeds per dataset and divide this

value by the one obtained for 𝛿 = 0.0 in the same dataset. In this setup, we realize that a specific

DropOut rate is improving over the default network without regularization if the normalized NLL

is below 1.

Results. Our ablation study demonstrates that non-existing or high DropOut are detrimental to

the Neural Ensembler performance in general. As shown in Figure 4, this behavior is consistent in

all datasets and both modes, but TR-Reg metadataset on Stacking mode. In general, we observe that

Neural Ensemblers obtain better performance when using base models’ DropOut. Furthermore,

we show how the mean weight per model is related to the mean error of the models for different

DropOut rates in Figure 15 in the Appendix N.

RQ 3: How sensible are the Neural Ensemblers to its hyperparameters?
Experimental Protocol. While our proposed Neural Ensembler (NE) usesMLPswith 4 layers and

32 neurons per layer by default, it is important to understand how sensitive the NE’s performance is

to changes in its hyperparameters. To this end, we conduct an extensive ablation study by varying

the number of layers 𝐿 ∈ {1, 2, 3, 4, 5} and the number of neurons per layer (hidden dimension)

𝐻 ∈ {8, 16, 32, 64, 128} in the stacking mode of the NE. For each configuration, we compute the

Negative Log Likelihood (NLL) on every task in the metadatasets and normalize these values by

8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DropOut Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

N
L

L

Stacking

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DropOut Rate

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25
Model Average

FTC NB (1000) NB (100) QT-Micro QT-Mini TR-Class TR-Reg

Figure 4: Ablation of the DropOut rate.

the performance obtained with the default hyperparameters (𝐿 = 4, 𝐻 = 32). This normalization

allows us to compare performance changes across different tasks and metadatasets, accounting for

differences in metric scales. A normalized NLL value below one indicates improved performance

compared to the default setting.

Results. Our findings indicate that there is no single hyperparameter configuration that is

optimal across all datasets. However, our default configuration (𝐿 = 4, 𝐻 = 32) strikes a balance,

providing robust performance across diverse tasks without the need for extensive hyperparameter

tuning, and can be effectively applied in various settings without the need for dataset-specific

hyperparameter optimization.

Significance on D Datasets with a lot of Classes.. Given the high performance between Greedy
and NE-MA, we wanted to understand when the second one would obtain strong significant results.

We found that that NE-MA is particularly well-performing in datasets with a large number of

classes. Given Table 11, we can see that four meta-datasets have a high (> 10) number of classes,

thus they have datasets with a lot of classes. We selected these metadatasets (NB(100), NB(1000),
QT-Micro, QT-Mini), and plotted the significance compared to Greedy and Random Search. The
results reported in Figure 9 demonstrate that our approach is significantly better than Greedy in

these metadatasets.

Additional research questions.. We further discuss interesting research questions in the Appendix

due to the limited space. Some of these include: i) how much the validation data size affects the

Neural Ensembler (Appendix J), ii) what happens if we train the Neural Ensemblers on a merged

split containing both training and validation data (Appendix K), and iii) the disadvantages of Neural
Ensemblers acting on the original input space (Appendix L).

5 Related Work

Ensembles for Tabular Data. For tabular data, ensembles are known to perform better than

individual models (Sagi and Rokach, 2018; Salinas and Erickson, 2023).Therefore, ensembles are

often used in real-world applications (Dong et al., 2020), to win competitions (Koren, 2009; Kaggle,

2024), and by automated machine learning (AutoML) systems as a modeling strategy (Purucker

and Beel, 2023b; Purucker et al., 2023). Methods like Bagging (Breiman, 1996) or Boosting (Freund

et al., 1996) are often used to boost the performance of individual models. In contrast, post-hoc

ensembling (Shen et al., 2022; Purucker and Beel, 2023a) aggregates the predictions of an arbitrary

set of fitted base models. Post-hoc ensembles can be built by stacking (Wolpert, 1992) ensemble

selection (a.k.a. pruning) (Caruana et al., 2004) , or through a systematic search for an optimal

ensemble (Levesque et al., 2016).

9

20 40 60 80 100 120

Hidden Dim.

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
or

m
al

iz
ed

N
L

L

Hidden Dimension(Stacking)

FTC

NB (1000)

NB (100)

QT-Micro

QT-Mini

TR-Class

TR-Reg

(a)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Hidden Layers

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

N
L

L

Hidden Layers (Stacking)

FTC

NB (1000)

NB (100)

QT-Micro

QT-Mini

TR-Class

TR-Reg

(b)

Figure 5: Ablation study of Neural Ensembler hyperparameters: number of neurons per layers (a) and

number of layers (b). Normalized NLL values below one indicate improved performance over

the default setting (𝐿 = 4, 𝐻 = 32).

Ensembles for Deep Learning. Ensembles of neural networks (Hansen and Salamon, 1990;

Krogh and Vedelsby, 1994; Dietterich, 2000) have gained significant attention in deep learning

research, both for their performance-boosting capabilities and their effectiveness in uncertainty es-

timation. Various strategies for building ensembles exist, with deep ensembles (Lakshminarayanan

et al., 2017) being the most popular one, which involves independently training multiple initializa-

tions of the same network. Extensive empirical studies (Ovadia et al., 2019; Gustafsson et al., 2020)

have shown that deep ensembles outperform other approaches for uncertainty estimation, such as

Bayesian neural networks (Blundell et al., 2015; Gal and Ghahramani, 2016; Welling and Teh, 2011).

Dynamic Ensemble Selection. Our Neural Ensembler is highly related to dynamic ensemble se-

lection. Both dynamically aggregate the predictions of base models per instance (Cavalin et al., 2013;

Ko et al., 2008). Traditional dynamic ensemble selection methods aggregate the most competent

base models by paring heuristics to measure competence with clustering, nearest-neighbor-based,

or traditional tabular algorithms (like naive Bayes) as meta-models (Cruz et al., 2018, 2020). In

contrast, we use an end-to-end trained neural network to select and weight the base models per

instance.

Mixture-of-Experts. Our idea of generating ensemble base model weights is closely connected

to the mixture-of-experts (MoE) (Jacobs et al., 1991; Jordan and Jacobs, 1993; Shazeer et al., 2017),

where one network is trainedwith specialized sub-modules that are activated based on the input data.

Alternatively, we could include a layer, aggregating predictions by encouraging diversity (Zhang

et al., 2020). In contrast to these approaches, our Neural Ensemblers can ensemble any (black-box)

model and are not restricted to gradient-based approaches.

6 Conclusions

In this work, we tackled the challenge of post-hoc ensemble selection and the associated risk

of overfitting on the validation set. We introduced the Neural Ensembler, a neural network that

dynamically assigns weights to base models on a per-instance basis. To reduce overfitting, we

proposed a regularization technique that randomly drops base models during training, which we

theoretically showed enhances ensemble diversity. Our empirical results demonstrated that Neural

Ensemblers consistently form competitive ensembles across diverse data modalities, including

tabular data (classification and regression), computer vision, and natural language processing.

10

Acknowledgments

The authors gratefully acknowledge the scientific support and HPC resources provided by the

Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-

Universität Erlangen-Nürnberg (FAU) under the NHR project v101be. NHR funding is provided by

federal and Bavarian state authorities. NHR@FAU hardware is partially funded by the German

Research Foundation (DFG) – 440719683. This research was partially supported by the following

sources: TAILOR, a project funded by EU Horizon 2020 research and innovation programme

under GA No 952215; the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)

under grant number 417962828 and 499552394 - SFB 1597; the European Research Council (ERC)

Consolidator Grant “Deep Learning 2.0” (grant no. 101045765). Frank Hutter acknowledges

financial support by the Hector Foundation. The authors acknowledge support from ELLIS and

ELIZA. Funded by the European Union. Views and opinions expressed are however those of the

author(s) only and do not necessarily reflect those of the European Union or the ERC. Neither the

European Union nor the ERC can be held responsible for them.

References

Arango, S. P., Ferreira, F., Kadra, A., Hutter, F., and Grabocka, J. (2024a). Quick-tune: Quickly

learning which pretrained model to finetune and how. In The Twelfth International Conference on
Learning Representations.

Arango, S. P., Janowski, M., Purucker, L., Zela, A., Hutter, F., and Grabocka, J. (2024b). Ensembling

finetuned language models for text classification. In NeurIPS 2024 Workshop on Fine-Tuning in
Modern Machine Learning: Principles and Scalability.

Bischl, B., Casalicchio, G., Feurer, M., Hutter, F., Lang, M., Mantovani, R. G., van Rijn, J. N., and

Vanschoren, J. (2019). Openml benchmarking suites. arXiv:1708.03731v2 [stat.ML].

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty in neural

network. In Proceedings of the 32nd International Conference on Machine Learning, volume 37 of

Proceedings of Machine Learning Research, pages 1613–1622, Lille, France. PMLR.

Breiman, L. (1996). Bagging predictors. Machine learning, 24:123–140.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,

P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,

Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S.,

Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020).

Language models are few-shot learners. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS ’20, Red Hook, NY, USA. Curran Associates Inc.

Caruana, R., Niculescu-Mizil, A., Crew, G., and Ksikes, A. (2004). Ensemble selection from libraries

of models. In Machine Learning, Proceedings of the Twenty-first International Conference (ICML
2004), Banff, Alberta, Canada, July 4-8, 2004. ACM.

Cavalin, P. R., Sabourin, R., and Suen, C. Y. (2013). Dynamic selection approaches for multiple

classifier systems. Neural computing and applications, 22:673–688.

Cruz, R. M., Hafemann, L. G., Sabourin, R., and Cavalcanti, G. D. (2020). Deslib: A dynamic ensemble

selection library in python. Journal of Machine Learning Research, 21(8):1–5.

11

Cruz, R. M., Sabourin, R., and Cavalcanti, G. D. (2018). Dynamic classifier selection: Recent advances

and perspectives. Information Fusion, 41:195–216.

Cruz, R. M., Sabourin, R., Cavalcanti, G. D., and Ren, T. I. (2015). Meta-des: A dynamic ensemble

selection framework using meta-learning. Pattern recognition, 48(5):1925–1935.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT: pre-training of deep bidirectional

transformers for language understanding. CoRR, abs/1810.04805.

Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. In Multiple Classifier Systems,
pages 1–15, Berlin, Heidelberg. Springer Berlin Heidelberg.

Dong, X. and Yang, Y. (2020). Nas-bench-201: Extending the scope of reproducible neural architec-

ture search. In International Conference on Learning Representations (ICLR).

Dong, X., Yu, Z., Cao, W., Shi, Y., and Ma, Q. (2020). A survey on ensemble learning. Frontiers
Comput. Sci., 14(2):241–258.

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., and Smola, A. (2020). Autogluon-

tabular: Robust and accurate automl for structured data. arXiv preprint arXiv:2003.06505.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., and Hutter, F. (2015). Efficient

and robust automated machine learning. In Advances in Neural Information Processing Systems
28, pages 2962–2970. Curran Associates, Inc.

Freund, Y., Schapire, R. E., et al. (1996). Experiments with a new boosting algorithm. In icml,
volume 96, pages 148–156. Citeseer.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model

uncertainty in deep learning. In Proceedings of the 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pages 1050–1059, New York,

New York, USA. PMLR.

Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M., and Suganthan, P. N. (2022). Ensemble deep

learning: A review. Engineering Applications of Artificial Intelligence, 115:105151.

Gustafsson, F. K., Danelljan, M., and Schön, T. B. (2020). Evaluating Scalable Bayesian Deep Learning

Methods for Robust Computer Vision. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops.

Hansen, L. K. and Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(10):993–1001.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixtures of local

experts. Neural Computation, 3:79–87.

Jeffares, A., Liu, T., Crabbé, J., and van der Schaar, M. (2024). Joint training of deep ensembles fails

due to learner collusion. Advances in Neural Information Processing Systems, 36.

Jordan, M. I. and Jacobs, R. A. (1993). Hierarchical mixtures of experts and the em algorithm. Neural
Computation, 6:181–214.

Kaggle (2024). Write-ups from the 2024 automl grand prix. https://www.kaggle.com/
automl-grand-prix. (accessed: 14.09.2024).

12

https://www.kaggle.com/automl-grand-prix
https://www.kaggle.com/automl-grand-prix

Ko, A. H., Sabourin, R., and Britto Jr, A. S. (2008). From dynamic classifier selection to dynamic

ensemble selection. Pattern recognition, 41(5):1718–1731.

Koren, Y. (2009). The bellkor solution to the netflix grand prize. Netflix prize documentation,
81(2009):1–10.

Krogh, A. and Vedelsby, J. (1994). Neural network ensembles, cross validation, and active learning.

In Advances in Neural Information Processing Systems, volume 7. MIT Press.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable predictive uncertainty

estimation using deep ensembles. Advances in neural information processing systems, 30.

Levesque, J., Gagné, C., and Sabourin, R. (2016). Bayesian hyperparameter optimization for ensemble

learning. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence,
UAI 2016, June 25-29, 2016, New York City, NY, USA. AUAI Press.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., and Zettle-

moyer, L. (2019). BART: denoising sequence-to-sequence pre-training for natural language

generation, translation, and comprehension. CoRR, abs/1910.13461.

McEwen, J. D., Wallis, C. G., Price, M. A., and Mancini, A. S. (2021). Machine learning assisted

bayesian model comparison: learnt harmonic mean estimator. arXiv preprint arXiv:2111.12720.

Olson, R. S., Bartley, N., Urbanowicz, R. J., andMoore, J. H. (2016). Evaluation of a tree-based pipeline

optimization tool for automating data science. In Proceedings of the Genetic and Evolutionary
Computation Conference 2016, GECCO ’16, pages 485–492, New York, NY, USA. ACM.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J., Lakshminarayanan, B.,

and Snoek, J. (2019). Can you trust your model's uncertainty? Evaluating predictive uncertainty

under dataset shift. In Advances in Neural Information Processing Systems 32, pages 13991–14002.
Curran Associates, Inc.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-

hofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,

M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830.

Poduval, P., Patnala, S. K., Oberoi, G., Srivasatava, N., and Asthana, S. (2024). Cash via optimal

diversity for ensemble learning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’24, page 2411–2419, New York, NY, USA. Association for

Computing Machinery.

Purucker, L. (2024). phem: Python hydrological ensemble model. https://github.com/
LennartPurucker/phem. GitHub repository.

Purucker, L. and Beel, J. (2023a). Assembled-openml: Creating efficient benchmarks for ensembles

in automl with openml. arXiv preprint arXiv:2307.00285.

Purucker, L. O. and Beel, J. (2023b). Cma-es for post hoc ensembling in automl: A great success

and salvageable failure. In International Conference on Automated Machine Learning, pages 1–1.
PMLR.

Purucker, L. O., Schneider, L., Anastacio, M., Beel, J., Bischl, B., and Hoos, H. (2023). Q(d)o-es:

Population-based quality (diversity) optimisation for post hoc ensemble selection in automl. In

International Conference on Automated Machine Learning, pages 10–1. PMLR.

13

https://github.com/LennartPurucker/phem
https://github.com/LennartPurucker/phem

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models are

unsupervised multitask learners.

Raftery, A. E., Madigan, D., and Hoeting, J. A. (1997). Bayesian model averaging for linear regression

models. Journal of the American Statistical Association, 92(437):179–191.

Sagi, O. and Rokach, L. (2018). Ensemble learning: A survey. WIREs Data Mining Knowl. Discov.,
8(4).

Salinas, D. and Erickson, N. (2023). Tabrepo: A large scale repository of tabular model evaluations

and its automl applications.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., and Dean, J. (2017). Outra-

geously large neural networks: The sparsely-gated mixture-of-experts layer. In International
Conference on Learning Representations.

Shen, Y., Lu, Y., Li, Y., Tu, Y., Zhang, W., and Cui, B. (2022). Divbo: diversity-aware cash for ensemble

learning. Advances in Neural Information Processing Systems, 35:2958–2971.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a

simple way to prevent neural networks from overfitting. The journal of machine learning research,
15(1):1929–1958.

Wagenmakers, E.-J. and Farrell, S. (2004). Aic model selection using akaike weights. Psychonomic
bulletin & review, 11:192–196.

Wang, X., Kondratyuk, D., Christiansen, E., Kitani, K. M., Alon, Y., and Eban, E. (2020). Wisdom

of committees: An overlooked approach to faster and more accurate models. In International
Conference on Learning Representations.

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin dynamics. In

Proceedings of the 28th International Conference on International Conference on Machine Learning,
ICML’11, page 681–688, Madison, WI, USA. Omnipress.

Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2):241–259.

Wood, D., Mu, T., Webb, A. M., Reeve, H. W., Lujan, M., and Brown, G. (2023). A unified theory of

diversity in ensemble learning. Journal of Machine Learning Research, 24(359):1–49.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J. (2017).

Deep sets. Advances in neural information processing systems, 30.

Zaidi, S., Zela, A., Elsken, T., Holmes, C. C., Hutter, F., and Teh, Y. (2021). Neural ensemble search

for uncertainty estimation and dataset shift. Advances in Neural Information Processing Systems,
34:7898–7911.

Zhang, S., Liu, M., and Yan, J. (2020). The diversified ensemble neural network. In Larochelle,

H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in Neural Information
Processing Systems, volume 33, pages 16001–16011. Curran Associates, Inc.

14

Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [N/A]

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

(see https://2022.automl.cc/ethics-accessibility/) [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources, etc.)? [Yes]

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning details and results, etc.)? [Yes]

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes]

(d) Did you report the uncertainty of your results (e.g., the standard error across random seeds

or splits)? [Yes]

(e) Did you report the statistical significance of your results? [Yes] See Appendix G.

(f) Did you use enough repetitions, datasets, and/or benchmarks to support your claims? [Yes]

(g) Did you compare performance over time and describe how you selected the maximum

runtime? [No]

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [No]

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes]

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all dependencies (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation instructions, and execution commands (either

in the supplemental material or as a url)? [Yes]

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes]

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes]

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [No]

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [No]

4. If you used existing assets (e.g., code, data, models). . .

15

https://2022.automl.cc/ethics-accessibility/

(a) Did you cite the creators of used assets? [Yes]

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A]

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes]

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to institutional review board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [Yes]

(b) Did you include complete proofs of all theoretical results? [Yes]

16

Appendix

We want to summarize here all the appendix sections:

• Section A presents the proofs of propositions in the main paper.

• Section B discusses the limitations of our proposed method and its broader impacts.

• Section D further details research similar to our work.

• Section O explains the process of gathering and preparing the FTC and Scikit-learn Pipelines
metadatasets used in our experiments.

• Section F includes supplementary tables and figures, such as average ranks and detailed perfor-

mance metrics, that support and expand upon the main experimental results reported in the

paper.

• Section H includes he computational cost associated with our method compared to baseline

approaches, including runtime evaluations and discussions on efficiency.

• Section I includes the results of a proof-of-concept experiment using overparameterized base

models (e.g., 10th-degree polynomials), demonstrating the effectiveness of our Neural Ensembler

even when base models have high capacity.

• Section G includes the Critical Difference diagrams corresponding to our main results, illustrating

the statistical significance of performance differences among methods and how to interpret these

diagrams.

• Section J explores the impact of using different amounts of validation data to train the Neural

Ensembler, assessing its sample efficiency and how performance scales with varying data sizes.

• Section K explores the effect of merging the training and validation datasets on the performance

of both base models and ensemblers.

• Section L explores an alternative formulation of the Neural Ensembler that operates on the

original input space rather than on the predictions of the base model, including experimental

results and discussions of its effectiveness.

• In section M, we study whether the performance of the models changes when using base models

found by Bayesian Optimization or randomly.

A Proofs

Proposition A.1 (Diversity Lower Bound). As the correlation of the preferred model 𝜌𝑝𝑚,𝑦 → 1, the
diversity 𝛼 → 1 − 𝛾 , when using Base Models’ DropOut with probability of retaining 𝛾 .

Proof. Without loss of generality, we assume that the random variables are standardized. We follow

a similar procedure as for Proposition 2, by considering 𝑧 =
∑

𝑚 𝑟𝑚 𝜃𝑚𝑧𝑚 . We demonstrate that

V(𝑟 · 𝑧𝑚) = 𝛾 , given that 𝑟 ∼ Bernoulli(𝛾).

V(𝑟𝑚 · 𝑧𝑚) = V(𝑟𝑚) · V(𝑧𝑚) + V(𝑧𝑚) · E(𝑟𝑚)2 + V(𝑟𝑚) · E(𝑧𝑚)2
(8)

V(𝑟𝑚 · 𝑧𝑚) = V(𝑟𝑚) + E(𝑟𝑚)2
(9)

V(𝑟𝑚 · 𝑧𝑚) = 𝛾 (1 − 𝛾) + 𝛾2
(10)

V(𝑟𝑚 · 𝑧𝑚) = 𝛾 . (11)

17

Then, we evaluate the variance of the ensemble using DropOut V(𝑧):

V(𝑧) = V

(∑︁
𝑚

𝑟𝑚 · 𝜃𝑚 · 𝑧𝑚

)
(12)

V(𝑧) =
∑︁
𝑚

V(𝑟𝑚 · 𝜃𝑚 · 𝑧𝑚) (13)

V(𝑧) =
∑︁
𝑚

𝜃 2

𝑚V(𝑟𝑚 · 𝑧𝑚) (14)

V(𝑧) = 𝛾
∑︁
𝑚

𝜃 2

𝑚 . (15)

Applying Equation 15 into Equation ??, we obtain:

lim

𝜌𝑧𝑝 ,𝑦→1

𝛼 = lim

𝜌𝑧𝑝 ,𝑦→1

E

[∑︁
𝑚

𝛾𝑚 · 𝜃𝑚 (𝑧𝑚 − 𝑧)2

]
(16)

= lim

𝜌𝑧𝑝 ,𝑦→1

∑︁
𝑚

𝜃𝑚

(
1 − 𝛾

∑︁
𝑚

𝜃 2

𝑚

)
(17)

= lim

𝜌𝑧𝑝 ,𝑦→1

(
1 − 𝛾

∑︁
𝑚′

𝜌2

𝑧𝑚′ ,𝑦

)
(18)

= 1 − 𝛾 · lim

𝜌𝑧𝑝 ,𝑦→1

(∑︁
𝑚′

𝜌2

𝑧𝑚′ ,𝑦

)
(19)

lim

𝜌𝑧𝑝 ,𝑦→1

𝛼 = 1 − 𝛾 . (20)

□

B Limitations, Broader Impact and Future Work
While our proposed method offers several advantages for post-hoc ensemble selection, it is im-

portant to recognize its limitations. Unlike simpler ensembling heuristics, our approach requires

tuning multiple training and architectural hyperparameters. Although we employed a fixed set

of hyperparameters across all modalities and tasks in our experiments, this robustness may not

generalize to all new tasks. In such cases, hyperparameter optimization may be necessary to

achieve optimal performance. However, this could also enhance the results presented in this paper.

Additionally, some bayesian approaches (McEwen et al., 2021) could further increase the robustness

to the size of the validation data set.

Our approach is highly versatile and can be seamlessly integrated into a wide variety of

ensemble-based learning systems, significantly enhancing their predictive capabilities. Because our

method is agnostic to both the task and modality, we do not expect any inherent negative societal

impacts. Instead, its effects will largely depend on how it is applied within different contexts and

domains, making its societal implications contingent on the specific use case. In the future, we aim

to explore in-context learning (Brown et al., 2020), where a pretrained Neural Ensembler could

generate base model weights at test time, using their predictions as contextual input. We discuss

broader impact and limitations in Appendix B.

C Space complexity of Neural Ensemblers
In this section, we discuss the memory advantage of the parameter-sharing mechanism by compar-

ing it with a version without parameter-sharing. Take an instance 𝑥 , such as an image or a text,

18

and consider a set of predictions from the𝑀 base models for C classes 𝑧 = {𝑧 (1)
1
, ..., 𝑧

(1)
𝑀
, ..., 𝑧

(𝐶)
𝑀

}. If
we vectorize these predictions, then 𝑧 ∈ R𝐶 ·𝑀

. Using a two-layer neural network with hidden size

𝐻 and without parameter sharing (stacking mode) will demand 𝐶 ·𝑀 · 𝐻 parameters in the first

layer and 𝐻 ·𝐶 parameters in the last layer. Hence, the space complexity is O(𝐶 ·𝑀 +𝑀). On the

other hand, our parameter-sharing neural ensembler consist in a neural network that receives as

input 𝑧 (𝑐) = {𝑧 (𝑐)
1
, ..., 𝑧

(𝑐)
𝑀

}, i.e. only the predictions for class 𝑐 . This means that the first and second

layer would have𝑀 · 𝐻 and 𝐻 neurons respectively, with a space complexity O(𝑀).

D Related Work Addendum

Ensemble Search via Bayesian Optimization. Ensembles of models with different hyperparameters

can be built using Bayesian optimization by iteratively swapping a model inside an ensemble with

another one that maximizes the expected improvement (Levesque et al., 2016). DivBO (Shen et al.,

2022) and subsequent work (Poduval et al., 2024) combine the ensemble’s performance and diversity

as a measure for expected improvement. Besides Bayesian Optimization, an evolutionary search can

find robust ensembles of deep learning models (Zaidi et al., 2021). Although these approaches find

optimal ensembles, they can overfit the validation data used for fitting if run for many iterations.

E Baselines Details

We describe the setup for the baselines evaluation. Most of the baselines, except random, use the

validation set for training the ensembling model or choosing the base models. For all the models that

expected a fixed set of 𝑁 base models, we used 𝑁 = 50, following previous work insights (Feurer

et al., 2015). Some metadatasets (Nasbench201-Mini,QuickTune-Mini incurred in a large memory

cost that made a few baselines fail in some datasets. Since this only happened in less than 10% of

the datasets, we imputed the metrics for this specific cases, by using the metric of single-best as the
imputation value. This mimics a real-world application scenario where the ensembler fall backs to

just a single-best approach, which uses few memory for ensembling.

• Single best selects the best model according to the validation metric;

• Random chooses 50 random models to ensemble;

• Top-N ensembles the best 𝑁 ∈ {5, 50} models according to the validation metrics;

• Greedy (Caruana et al., 2004) creates an ensemble with 𝑁 = 50 models by iterative selecting the

one that improves the metric as proposed by previous work;

• Quick builds the ensemble with 50 models by adding model subsequently only if they strictly

improve the metric;

• CMAES (Purucker and Beel, 2023b) uses an evolutive strategy with a post-processing method for

ensembling. We used the implementation in the Phem library (Purucker, 2024);

• Model Average computed the weighted sum of the predictions as in Equation 3. We learn the

weight using gradient-descent for optimizing the validation metric;

• DivBO (Shen et al., 2022): uses Bayesian Optimization for querying the best ensemble, by applying

an acquisition function that accounts for both the diversity and performance. We implemented

the method following the setup described by the authors in their paper;

• Ensemble Optimization (Levesque et al., 2016): uses Bayesian Optimization for selecting iter-

atively the model to replace another model inside the ensemble. We implemented the method

following the default setup described by the authors;

19

Table 3: Average Ranked NLL

FTC NB-Micro NB-Mini QT-Micro QT-Mini TR-Class TR-Reg

Single-Best 17.6667±0.9832 16.6667±2.3094 15.3333±2.7538 7.0167±2.5103 7.5333±2.5221 8.6325±4.6487 9.0294±4.5705

Random 20.0000±0.0000 9.3333±5.6862 12.3333±2.3094 19.0333±1.3060 19.0167±0.9143 14.0301±5.0166 16.4118±2.9803

Top5 13.6667±3.2660 11.6667±1.5275 8.3333±1.5275 6.9000±1.9360 8.5667±2.3146 7.0542±4.1083 8.4118±5.1455

Top50 13.3333±1.7512 5.3333±1.5275 5.0000±1.0000 13.9667±2.0212 13.9500±2.0776 7.6747±3.6729 8.1176±4.4984

Quick 7.6667±1.9664 7.3333±3.7859 4.3333±3.5119 4.7333±2.0331 6.1333±2.7131 6.9036±3.4273 7.0000±4.1231

Greedy 4.5000±1.3784 4.3333±3.2146 12.1667±2.7538 3.5167±1.7786 4.7000±2.5278 6.6506±3.6138 7.8824±4.1515

CMAES 15.3333±5.5737 16.6667±2.3094 15.3333±2.7538 15.8667±4.0809 17.4000±2.1066 11.4578±4.7094 7.3529±2.9356

Random Forest 8.6667±2.7325 15.6667±3.0551 17.0000±1.7321 15.0000±1.5702 11.1500±4.9674 13.3614±6.1159 9.6471±5.5895

Gradient Boosting 4.0000±5.4037 17.3333±3.0551 15.8333±3.6171 11.9667±6.8857 12.3000±6.8778 13.2771±5.8400 9.6471±5.4076

SVM 13.3333±1.6330 11.6667±8.5049 13.0000±8.6603 17.5333±1.5533 14.4500±6.5828 12.4639±5.0827 14.5882±6.9826

Linear 9.3333±2.1602 13.0000±2.6458 13.0000±3.6056 7.0000±3.1073 6.7833±3.4433 11.8434±6.0897 17.8824±4.4565

XGBoost 13.1667±5.4559 12.6667±4.1633 14.0000±6.2450 14.1333±2.1413 12.2500±3.0562 16.9819±3.4698 16.1765±3.7953

CatBoost 3.5000±3.3317 15.0000±2.6458 15.6667±2.3094 11.7000±1.8919 12.9667±3.5548 11.3012±4.8583 10.4118±4.8484

LightGBM 10.6667±6.1860 17.0000±5.1962 17.0000±5.1962 13.4333±2.8093 15.1333±2.8945 17.6867±3.7900 13.2353±5.2978

Akaike 13.5000±3.3166 5.0000±1.0000 4.6667±0.5774 12.5333±2.0083 12.6833±1.9761 7.9639±4.0166 7.3824±4.6788

MA 14.1667±3.8687 8.0000±1.7321 5.0000±3.4641 16.7667±1.4003 16.1000±2.1270 10.3916±4.9226 9.9412±6.5141

DivBO 8.5000±4.5497 11.0000±6.2450 4.3333±4.0415 4.9500±2.5876 5.2000±2.7687 7.4337±3.5585 7.8824±3.6552

EO 7.1667±4.5789 6.0000±2.0000 9.0000±2.6458 5.8833±2.2194 5.6167±2.5484 7.0241±3.4144 8.2353±3.4192

NE-Stack 7.6667±5.9889 1.0000±0.0000 4.0000±5.1962 3.3000±3.6874 2.4000±2.3282 11.7470±7.1326 15.2353±4.6169

NE-MA 4.1667±3.3116 5.3333±3.5119 4.6667±2.3094 4.7667±2.1445 5.6667±2.1389 6.1205±3.8553 5.5294±2.7184

• Machine Learning Models as Stackers: We used the default configurations provided by Sckit-

learn (Pedregosa et al., 2011) for these stackers. The input to the models is the concatenation

of all the base models’ predictions. We concatenated the probabilistic predictions from all the

classes in the classification tasks. This sometimes produced a large dimensional input space, and

a large memory load. The model was trained on the validation set. Specifically, we apply popular

models: SVM, Random Forest, Gradient Boosting, Linear Regression, XGBoost, LightGBM;

• Akaike Weighting or Pseudo Model Averaging (Wagenmakers and Farrell, 2004) computes

weights using the relative performance of every model. Assuming that the lowest metric from

the pool of base models is ℓmin ∈ {ℓ1, ..., ℓ𝑀 }, then the weight is computed using Δ𝑖 = ℓ𝑖 − ℓmin as:

𝑤𝑖 =
exp

− 1

2
Δ𝑖∑

𝑚 exp
− 1

2
Δ𝑚

(21)

• Dynamic Ensemble Search Baselines learn a model that ensembles different models per instance.

We used baselines from the DESlib library (Cruz et al., 2020) such as KNOP (Cavalin et al., 2013),

KNORAE (Ko et al., 2008) andMetaDES (Cruz et al., 2015).

F Additional Results Related to Research Question #1

In this Section we report additional results from our experiments:

• Average Ranking of baselines for the Negative Log-likelihood (Table 3) and Classification Errors

(Table 4).

• Average NLL in Scikit-learn Pipelines metadataset (Figure 6).

20

Table 4: Average Ranked Error

FTC NB-Micro NB-Mini QT-Micro QT-Mini TR-Class TR-Class (AUC)

Single-Best 14.6667±3.4593 18.3333±0.2887 17.1667±1.5275 11.0167±4.8128 9.7333±4.0231 10.7048±5.2452 11.2840±4.3236

Random 19.3333±1.6330 14.6667±1.1547 14.8333±0.7638 19.8667±0.3198 19.6667±0.6065 13.8193±6.5698 15.0494±5.8130

Top5 6.5833±4.4768 13.3333±2.0817 10.6667±3.5119 4.8833±3.3725 4.8667±3.3859 10.5181±4.6751 8.5741±5.0013

Top50 16.5000±3.3317 4.3333±1.5275 2.3333±1.5275 9.6333±4.9444 10.9000±3.2094 9.6988±5.1234 8.6605±4.7189

Quick 6.8333±4.8442 8.6667±1.1547 7.3333±2.3094 6.1000±4.0480 3.6333±2.4066 10.0301±4.0412 7.9136±4.9319

Greedy 5.5833±4.3865 13.0000±3.4641 11.3333±1.5275 10.1167±4.3543 7.5000±3.7093 9.7108±4.1069 8.1975±4.5830

CMAES 5.0833±2.3752 6.0000±3.6056 7.3333±2.0817 9.6333±3.9105 6.6167±2.6152 10.5060±4.8341 11.6173±6.0220

Random Forest 7.1667±4.6224 9.0000±5.1962 11.1667±5.5752 13.8000±4.5837 14.3667±2.7697 10.5542±4.6302 10.6667±5.9119

Gradient Boosting 12.5000±4.4159 19.0000±0.8660 17.6667±2.2546 9.6667±5.1551 14.2333±4.1351 11.0181±5.9671 11.0185±6.6635

SVM 3.8333±3.3714 9.0000±1.7321 10.5000±5.8949 12.0000±6.0955 15.6500±3.5261 8.3855±4.7788 13.0185±7.1144

Linear 8.8333±3.1252 13.6667±5.0332 14.1667±3.6856 6.2500±3.5834 7.9333±3.2872 9.3916±6.3745 10.9259±6.7519

XGBoost 11.4167±5.5355 14.6667±2.3094 13.0000±1.7321 17.0000±3.2350 16.1333±3.0932 12.5120±5.8304 11.6111±4.4651

CatBoost 14.6667±3.3267 17.0000±0.0000 17.5000±1.5000 12.0500±3.8155 14.5167±3.2310 11.9699±5.5179 11.4506±4.2834

LightGBM 10.5833±5.0241 17.0000±5.1962 17.0000±5.1962 15.7833±3.4433 17.5167±2.4193 11.7470±6.1947 11.4815±4.6094

Akaike 13.3333±6.6608 2.6667±2.0817 3.3333±0.5774 9.1500±4.8551 10.1500±3.5016 9.9639±5.0677 11.7654±4.2925

MA 16.0000±3.4641 5.3333±1.1547 2.6667±2.0817 11.6833±4.3519 12.7833±3.7132 10.1024±5.3487 10.4815±4.7994

DivBO 11.2500±4.8760 12.3333±1.1547 15.6667±2.7538 11.2167±3.8117 7.9000±3.8336 9.8193±4.5830 10.1667±4.6657

EO 12.6667±5.7504 5.3333±3.7859 4.6667±2.5166 10.5167±3.4851 9.0667±3.0618 9.9036±5.3905 8.8889±4.0226

NE-Stack 5.5000±3.3317 4.0000±1.7321 8.3333±0.5774 3.7500±2.7189 2.7833±2.2995 10.8313±6.6403 9.3148±7.0986

NE-MA 7.6667±2.2509 2.6667±1.5275 3.3333±2.5166 5.8833±4.3225 4.0500±2.4046 8.8133±4.9137 7.9136±4.8456

G
BT

K
NO

RAE RF

NE-S
ta

ck
in

g

Lin
ea

r

G
re

ed
y

Si
ng

le

Q
ui

ck

NE-M
A
SV

M

M
et

aD
ES

K
NO

P

Top
M M

A

Ran
do

m

Method

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

N
L

L

0.274

0.447 0.482
0.611

0.683

0.879
1.0 1.023 1.044

1.214

1.746

1.886

2.592 2.643

3.626

Method Type

Constant

DES

Neural

Stacking

Figure 6: Average Normalized NLL in Scikit-learn pipelines (Validation).

F.1 Unnormalized Results

We report the results for the research question 1 in Tables 5 and 6, omitting the normalization.

This helps us to understand how much the normalization is changing the results. However, as the

different datasets have metrics with different scales, it is important to normalize the results to get a

better picture of the relative performances. This is especially problematic in the regression tasks, as

it depends on the target scale, therefore we omit it. Even without the normalization, our proposed

approach achieves the best results across different datasets. The ranking results remain the same

independently of the normalization.

21

Table 5: Average Unnormalized NLL.

FTC NB-Micro NB-Mini QT-Micro QT-Mini TR-Class

Single-Best 0.3412±0.3043 1.9175±1.2203 1.5696±0.8119 0.4499±0.5107 0.6339±0.5276 0.3647±0.3300

Random 0.4521±0.2982 1.2202±1.0069 1.3005±0.9988 2.1473±0.6480 2.7139±1.0686 0.4344±0.3341

Top5 0.2975±0.2799 1.2940±0.9934 1.1911±0.9833 0.4234±0.4473 0.6702±0.5330 0.3576±0.3306

Top50 0.2819±0.2631 1.1515±0.9713 1.1496±0.9797 0.7813±0.5492 1.2587±0.8605 0.3561±0.3331

Quick 0.2443±0.2128 1.1679±0.9614 1.1455±0.9608 0.3952±0.4441 0.6030±0.4869 0.3562±0.3326

Greedy 0.2366±0.2107 1.1498±0.9652 1.2953±0.9657 0.3895±0.4453 0.5817±0.4870 0.3566±0.3317

CMAES 0.3552±0.2130 1.9175±1.2203 1.5696±0.8119 1.1665±0.7614 1.8487±0.6070 0.3862±0.3325

Random Forest 0.2434±0.2033 1.7354±1.4580 1.6589±1.4265 0.8846±0.6550 0.9870±0.8090 0.4452±0.3734

Gradient Boosting 0.2262±0.1915 2.2979±0.5750 1.8206±0.6327 1.2480±1.6045 1.7043±1.9723 0.4708±0.4264

SVM 0.2626±0.2241 1.6698±1.4024 1.6590±1.4274 1.3608±0.3953 1.8931±1.2176 0.3951±0.3356

Linear 0.2496±0.2130 1.3021±0.9815 1.3626±0.9836 0.4701±0.5151 0.6582±0.6088 0.4095±0.3914

XGBoost 0.2678±0.2250 1.5484±1.2487 1.5788±1.2796 0.8328±0.4807 0.9423±0.5402 0.5503±0.4738

CatBoost 0.2329±0.2074 1.6813±1.3589 1.6531±1.3327 0.6392±0.6006 1.0816±0.7100 0.3954±0.3839

LightGBM 0.2442±0.2000 6.7760±5.5841 6.7783±5.5802 0.7957±0.7383 2.5903±3.4557 0.6301±0.5723

Akaike 0.3012±0.3010 1.1503±0.9699 1.1499±0.9822 0.7369±0.5221 1.0655±0.6000 0.3561±0.3334

MA 0.2804±0.2074 1.1612±0.9664 1.1530±0.9720 1.0974±0.5102 1.5240±0.8090 0.3788±0.3342

DivBO 0.2643±0.2526 1.2355±0.8746 1.1659±0.9729 0.4065±0.4489 0.5906±0.4825 0.3588±0.3339

EO 0.2599±0.2481 1.1532±0.9801 1.2024±0.9656 0.4144±0.4542 0.5937±0.4804 0.3572±0.3329

NE-Stack 0.2375±0.2031 1.0706±0.9554 1.1543±1.0696 0.3747±0.4494 0.4923±0.4658 0.4587±0.4479

NE-MA 0.2399±0.2176 1.1486±0.9892 1.1596±0.9991 0.3998±0.4474 0.5832±0.4900 0.3536±0.3311

Table 6: Average Unnormalized Error.

FTC NB-Micro NB-Mini QT-Micro QT-Mini TR-Class TR-Class (AUC)

Single-Best 0.0868±0.0853 0.4320±0.3331 0.4509±0.3019 0.1285±0.1499 0.1667±0.1477 0.1604±0.1545 0.1169±0.1164

Random 0.1012±0.0910 0.3092±0.2444 0.3502±0.2417 0.5677±0.2487 0.5295±0.2306 0.1840±0.1632 0.1422±0.1356

Top5 0.0831±0.0825 0.3005±0.2374 0.3007±0.2251 0.1079±0.1375 0.1502±0.1359 0.1594±0.1527 0.1125±0.1142

Top50 0.0881±0.0829 0.2778±0.2266 0.2788±0.2262 0.1334±0.1495 0.1816±0.1555 0.1584±0.1524 0.1139±0.1160

Quick 0.0831±0.0824 0.2840±0.2304 0.2842±0.2289 0.1121±0.1409 0.1504±0.1425 0.1583±0.1517 0.1145±0.1192

Greedy 0.0824±0.0811 0.3253±0.2827 0.2958±0.2368 0.1251±0.1487 0.1596±0.1450 0.1562±0.1523 0.1140±0.1186

CMAES 0.0822±0.0810 0.2788±0.2247 0.2869±0.2358 0.1234±0.1478 0.1579±0.1456 0.1589±0.1541 0.1269±0.1311

Random Forest 0.0833±0.0829 0.2958±0.2444 0.3706±0.3698 0.1666±0.1955 0.2122±0.1874 0.1591±0.1528 0.1198±0.1210

Gradient Boosting 0.0838±0.0809 0.4682±0.2852 0.4920±0.2559 0.1425±0.1773 0.2092±0.1855 0.1620±0.1592 0.1240±0.1293

SVM 0.0819±0.0806 0.2917±0.2431 0.3356±0.2444 0.1627±0.2031 0.2341±0.2032 0.1553±0.1550 0.1407±0.1358

Linear 0.0830±0.0816 0.3098±0.2200 0.3469±0.2097 0.1191±0.1503 0.1670±0.1547 0.1577±0.1568 0.1195±0.1203

XGBoost 0.0848±0.0840 0.3546±0.2824 0.3554±0.2836 0.1903±0.1452 0.2144±0.1598 0.1654±0.1574 0.1193±0.1199

CatBoost 0.0874±0.0863 0.4022±0.3034 0.4217±0.3411 0.1450±0.1754 0.2090±0.1822 0.1629±0.1606 0.1199±0.1224

LightGBM 0.0843±0.0833 0.5941±0.4476 0.5907±0.4475 0.1666±0.1604 0.3442±0.3146 0.1633±0.1586 0.1196±0.1222

Akaike 0.0857±0.0802 0.2767±0.2252 0.2797±0.2273 0.1311±0.1487 0.1769±0.1538 0.1589±0.1527 0.1228±0.1305

MA 0.0874±0.0803 0.2795±0.2271 0.2765±0.2248 0.1435±0.1618 0.1971±0.1651 0.1609±0.1580 0.1186±0.1262

DivBO 0.0846±0.0832 0.3024±0.2489 0.3817±0.1893 0.1295±0.1431 0.1616±0.1458 0.1573±0.1540 0.1170±0.1200

EO 0.0851±0.0829 0.2786±0.2283 0.2813±0.2274 0.1330±0.1561 0.1659±0.1471 0.1589±0.1577 0.1177±0.1237

NE-Stack 0.0824±0.0817 0.2781±0.2275 0.2879±0.2339 0.1033±0.1348 0.1424±0.1314 0.1607±0.1511 0.1152±0.1159

NE-MA 0.0828±0.0818 0.2772±0.2264 0.2773±0.2262 0.1093±0.1344 0.1490±0.1383 0.1551±0.1515 0.1149±0.1211

22

1234567891011121314151617181920

Random Forest
LightGBM

Gradient Boosting
CatBoost

Single-Best
CMAES

XGBoost
Linear

SVM
Random Greedy

EO
Top5
MA
Top50
Akaike
NE-MA
DivBO
Quick
NE-Stack

CD
NB (100)

(a)

1234567891011121314151617181920

Gradient Boosting
LightGBM

Single-Best
CMAES

Random Forest
CatBoost

Linear
XGBoost

Top5
SVM DivBO

Random
MA
Quick
EO
Top50
NE-MA
Akaike
Greedy
NE-Stack

CD
NB (1000)

(b)

1234567891011121314151617181920

Random
SVM
MA

CMAES
Random Forest

XGBoost
Top50

LightGBM
Akaike

Gradient Boosting CatBoost
Single-Best
Linear
Top5
EO
DivBO
NE-MA
Quick
Greedy
NE-Stack

CD
QT-Micro

(c)

1234567891011121314151617181920

Random
CMAES

MA
LightGBM

SVM
Top50

CatBoost
Akaike

Gradient Boosting
XGBoost Random Forest

Top5
Single-Best
Linear
Quick
NE-MA
EO
DivBO
Greedy
NE-Stack

CD
QT-Mini

(d)

1234567891011121314151617181920

LightGBM
XGBoost
Random

Random Forest
Gradient Boosting

SVM
Linear

NE-Stack
CMAES

CatBoost MA
Single-Best
Akaike
Top50
DivBO
Top5
EO
Quick
Greedy
NE-MA

CD
TR-Class

(e)

1234567891011121314151617181920

Linear
Random
XGBoost
NE-Stack

SVM
LightGBM
CatBoost

MA
Random Forest

Gradient Boosting Single-Best
Top5
EO
Top50
DivBO
Greedy
Akaike
CMAES
Quick
NE-MA

CD
TR-Reg

(f)

Figure 7: Critical Difference (CD) diagrams aggregating datasets across metadatasets

G Critical Difference Diagrams

We want to gain deeper insights into the difference between our proposed method and the baselines.

Critical Difference Diagrams. To this end, we present critical difference (CD) diagrams to

visualize and statistically analyze the performance of different methods across multiple datasets. The

CD diagrams are generated using the autorank library3, which automates the statistical comparison

by employing non-parametric tests like Friedman test followed by the Nemenyi post-hoc test. These

3https://github.com/sherbold/autorank

23

https://github.com/sherbold/autorank

1234567891011121314151617181920

Random
Single-Best

CMAES
MA

Top5
Akaike
Top50

SVM
XGBoost

LightGBM Linear
Random Forest
DivBO
NE-Stack
Quick
EO
Greedy
NE-MA
Gradient Boosting
CatBoost

CD
FTC

(a)

1234567891011121314151617181920

Random
LightGBM
XGBoost

SVM
CMAES

Random Forest
MA

Gradient Boosting
CatBoost

Linear Top50
Akaike
Single-Best
NE-Stack
Top5
EO
DivBO
Quick
Greedy
NE-MA

CD
Aggregate Across All Metadatasets

(b)

Figure 8: Critical Difference (CD) diagrams aggregating datasets across metadatasets

123

Random

Greedy

NE-Stack

CD

Figure 9: CD Diagram in datasets with a lot of classes.

diagrams show the average ranks of the methods along the horizontal axis, where methods are

positioned based on their performance across datasets. The critical difference value, which depends

on the number of datasets, is represented by a horizontal bar above the ranks. Methods not

connected by this bar exhibit statistically significant differences in performance.

Evaluation. We computed CD diagrams across all datasets in all metadatasets (Figures 7a-8a)

and an aggregated diagram across all datasets in all metadatasets (Figure 8b). We observe that

although the performance difference is not substantial compared to other top-performing post-hoc

ensembles like Greedy and Quick, our Neural Ensembler (NE-MA) consistently achieves the best

performance in the aggregated results (Figure 8b). We also highlight that the NE versions were the

top-performing approaches across all metadatasets except FTC, even though we did not modify the

method’s hyperparameters.

Significance on Challenging Datasets. Given the high performance between Greedy and

NE-MA, we wanted to understand when the second one would obtain strong significant results.

We found that that NE-MA is particularly well performing in challenging datasets with a large

number of classes. Given Table 11, we can see that four meta-datasets have a high (> 10) number

of classes, thus they have datasets with a lot of classes. We selected these metadatasets (NB(100),
NB(1000), QT-Micro, QT-Mini), and plotted the significance compared to Greedy and Random Search.
The results reported in Figure 9 demonstrate that our approach is significantly better than Greedy

in these metadatasets.

24

H Empirical Analysis of Computational Cost

To better understand the trade-off between performance and computational cost, we analyze

the average normalized Negative Log-Likelihood (NLL) and the runtime of various ensembling

techniques. Our focus is on post-hoc ensembling methods, assuming that all base models are

pre-trained. This allows us to isolate and compare the efficiency of the ensembling processes

themselves, in contrast to methods like DivBO, which sequentially train models during the search,

leading to higher computational demands. We measure only the post-hoc ensembling time, i.e.

training the ensembler or selecting the group of base models for the final ensemble.

As shown in Figure 10, the Neural Ensemblers (NE-MA and NE-Stack) achieve the best average
performance while maintaining a competitive runtime. Notably, our method has a shorter runtime

than the Greedy ensembling method and surpasses it in terms of performance. Additionally, the

Neural Ensemblers are faster than traditional machine learning models such as Gradient Boosting,
Support Vector Machines (SVM), Random Forests, and optimization algorithms like CMAES. While

simpler methods like Top5 and Top50 exhibit faster runtimes, they do so at the expense of reduced

accuracy.

100 101 102 103

Avg. Runtime

100

9.5× 10−1

1.05× 100

1.1× 100

1.15× 100

1.2× 100

1.25× 100

A
v
g.

N
or

m
al

iz
ed

N
L

L

CMAES

Greedy

NE-Stack

NE-MA

MA

Quick

Single-Best

Random Forest

Gradient Boosting
Linear

SVM

Top5

Top50

Figure 10: Trade-off between performance and computational cost for different ensembling methods.

The Neural Ensemblers achieve the best performance with competitive runtime, outper-

forming other methods in both accuracy and efficiency.

I Proof-of-Concept with Overparameterized Base Models

A key question is whether dynamic ensemblers like our Neural Ensembler (NE) offer benefits when

base models are overparameterized and potentially overfit the data. Specifically, does the advantage

of the NE persist in scenarios where the base models have high capacity?

To explore this, we extend our Proof-of-Concept experiment by ensembling 10th-degree poly-

nomials instead of 2nd-degree ones, thereby increasing the complexity of the base models and

introducing the risk of overfitting. We follow the same protocol as in Section 2.1, comparing the

performance of the NE with the fixed-weight ensemble method.

As illustrated in Figure 11, even with overparameterized base models that tend to overfit

the training data, the NE (specifically the weighted Model-Averaging version) achieves the best

performance on unseen data. This improvement occurs because the NE dynamically adjusts the

ensemble weights based on the input. Thus, dynamic ensembling is advantageous not only when

25

base models underfit but also when they overfit the data. In contrast, the fixed-weight approach

lacks this adaptability and cannot compensate for the overfitting behavior of the base models.

−1.0 −0.5 0.0 0.5 1.0
x

−2.5

−2.0

−1.5

−1.0

y

Training Data

True Polynomial

Training Data 1

Training Data 2

Training Data 3

−1.0 −0.5 0.0 0.5 1.0
x

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5
Validation Data and Base Models

True Polynomial

Validation Data

z1(x)

z2(x)

z3(x)

−1.0 −0.5 0.0 0.5 1.0
x

−3.0

−2.5

−2.0

−1.5

−1.0

Ensembler’s Output

True Polynomial∑
i θ(z(x);m) · zm(x)

f (z(x))∑
i θm · zm(x)

Figure 11: Proof-of-Concept experiment with overparameterized base models (10th-degree polyno-

mials). The Neural Ensembler outperforms fixed-weight ensemble method by mitigating

overfitting through dynamic, input-dependent weighting.

J Ablation Study on Validation Data Size
To assess the Neural Ensembler’s (NE) dependence on validation data size and its sample efficiency,

we conducted an ablation study by varying the proportion of validation data used for training.

In this study, we evaluate the NE in stacking mode across all metadatasets, using different

percentages of the available validation data: 1%, 5%, 10%, 25%, 50%, 100%. For each configuration,

we compute the Negative Log Likelihood (NLL) on the test set and normalize these values by the

performance achieved when using 100% of the validation data. This normalization allows us to

compare performance changes across different tasks, accounting for differences in metric scales. A

normalized NLL value below 1 indicates performance better than the baseline with full validation

data, while a value above 1 indicates a performance drop.

The results are presented in Figure 12. We observe that reducing the amount of validation

data used for training the NE leads to a relative degradation of the performance. However, the

performance drops are relatively modest in three metadatasets. For these experiments we used

the same dropout rate 0.75. We could improve the robustness in lower percentages of validation

data by using a higher dropout rate. The DropOut mechanism prevents overfitting by randomly

omitting base models during training, while parameter sharing reduces the number of parameters

and promotes learning common representations.

K Effect of Merging Training and Validation Data
In our experimental setup (Section 4), we train the base models using the training split and the

ensemblers using the validation split, then evaluate on the test split. An important question is

whether merging the training and validation data could improve the performance of both the base

models and the ensemblers. Specifically, we explore:

(a) Can baseline methods that do not require a validation split, such as Random, achieve better

performance if the base models are trained on the merged dataset (training + validation)?

(b) Would training both the base models and the ensemblers on the merged dataset be beneficial,

given that more data might enhance their learning?

To investigate these questions, we conducted experiments on two metadatasets: Scikit-learn
Pipelines and FTC. We trained the base models on the merged dataset and also trained the ensemblers

26

0 20 40 60 80 100

Percentage

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

N
or

m
al

iz
ed

N
L

L

Validation Data (MA)

FTC

NB (1000)

NB (100)

QT-Micro

QT-Mini

TR-Class

TR-Reg

(a)

0 20 40 60 80 100

Percentage

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
or

m
al

iz
ed

N
L

L

Validation Data (Stack)

FTC

NB (1000)

NB (100)

QT-Micro

QT-Mini

TR-Class

TR-Reg

(b)

Figure 12: Ablation study on the percentage of validation data used for training the Neural Ensembler.

The normalized NLL is plotted against the percentage of validation data, with values below

1 indicating performance better than or equal to using the full validation set.

on this same data. Five representative baselines were compared: NE-MA,NE-Stack, Greedy, Random
and Single-best.

Figure 13b presents the test set performance on the Scikit-learn Pipelines metadataset. Training

on the merged dataset did not improve performance compared to training on the original splits. In

fact, the results are similar to the Random ensembling method, indicating no significant gain. This

suggests that training both the base models and ensemblers on the same (larger) dataset may lead

to overfitting, hindering generalization to unseen data.

Further evidence of overfitting is shown in Figure 13a, where we report the Negative Log Like-

lihood (NLL) on the merged dataset (effectively the training data). The NLL values are significantly

lower for models trained on the merged dataset, confirming that they fit the training data well but

do not generalize to the test set.

Similar observations were made on the FTC metadataset, as presented in Table 14a and Fig-

ure 14b. Although the Random method trained on the merged dataset shows a slight improvement,

the overall performance gains are minimal.

From these results, we conclude that:

(a) Training base models on the merged dataset does not significantly enhance the performance

of baseline methods that do not require a validation split.

(b) Using the merged dataset to train both the base models and the ensemblers is not beneficial

and may lead to overfitting, reducing generalization to the test set.

27

G
re

ed
y

(M
er

ge
d)

Si
ng

le-
Bes

t (M
er

ge
d)

NE-S
ta

ck
in

g
(M

er
ge

d)

NE-M
A

(M
er

ge
d)

NE-M
A

(O
rig

in
al

In
pu

t)

NE-S
ta

ck
in

g

G
re

ed
y

Si
ng

le

Q
ui

ck

NE-M
A
Top

M M
A

Ran
do

m
(M

er
ge

d)

Ran
do

m

Method

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

N
L

L

0.035 0.036 0.037 0.069

0.285

0.611

0.879
1.0 1.023 1.044

2.592 2.643

3.328

3.626

Method Type

Constant

MergedSplit

Neural

OriginalInput

(a) Performance on merged dataset (training

data) for Scikit-learn Pipelines.

NE-S
ta

ck
in

g

G
re

ed
y

NE-M
A
Si

ng
le

Q
ui

ck

Top
M M

A

NE-S
ta

ck
in

g
(M

er
ge

d)

NE-M
A

(M
er

ge
d)

G
re

ed
y

(M
er

ge
d)

NE-M
A

(O
rig

in
al

In
pu

t)

Ran
do

m
(M

er
ge

d)

Ran
do

m

Si
ng

le-
Bes

t (M
er

ge
d)

Method

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

N
L

L

0.801
0.908

0.993 1.0 1.047

2.547
2.634

2.752

3.04

3.377
3.485

3.561 3.561
3.658

Method Type

Constant

MergedSplit

Neural

OriginalInput

(b) Test set performance on Scikit-learn
Pipelines with merged training.

Figure 13: Impact of training on merged dataset for Scikit-learn Pipelines. Training on the merged

dataset leads to overfitting, as evidenced by low NLL on training data but no improvement

on test data.

Algorithm FTC (Avg. Normalized NLL) FTC (Avg. Rank)

Single-Best 1.0000±0.0000 11.4167±1.5626

Single-Best (Merged) 1.2816±0.6710 11.2500±4.0466

Random 1.5450±0.5289 14.0000±0.8944

Random (Merged) 1.5365±0.7142 13.0833±2.2454

Top5 0.8406±0.0723 8.6667±2.9439

Top50 0.8250±0.1139 8.3333±1.9664

Quick 0.7273±0.0765 4.6667±1.7512

Greedy 0.6943±0.0732 2.8333±1.6021

Greedy (Merged) 0.7537±0.2652 6.5833±4.3637

CMAES 1.2356±0.5295 10.3333±3.4448

MA 0.9067±0.1809 8.8333±2.4014

NE-Stack 0.7562±0.1836 5.3333±4.6762

NE-Stacking (Merged) 0.7428±0.2208 5.5833±3.3529

NE-MA 0.6952±0.0730
2.8333±2.2286

NE-MA (Merged) 0.7461±0.2084 6.2500±2.6410

(a)

123456789101112131415

Random

Random (Merged)

Single-Best

Single-Best (Merged)

CMAES

MA

Top5

Top50

Greedy (Merged)

NE-MA (Merged)

NE-Stacking (Merged)

NE-Stack

Quick

NE-MA

Greedy

CD

FTC

(b)

Figure 14: Merged-split baselines on the FTC metadataset: (a) Test set performance with merged

training, (b) Critical Difference diagram.

L Neural Ensemblers Operating on the Original Input Space

In Section 3.1, we discussed that the Neural Ensembler in model-evaragingmode (NE-MA) computes

weights 𝜃𝑚 (𝑧; 𝛽) that rely solely on the base model predictions 𝑧 for each instance. Specifically, the

weights are defined as:

𝜃𝑚 (𝑧; 𝛽) = exp 𝑓𝑚 (𝑧; 𝛽)∑
𝑚′ 𝑓𝑚′ (𝑧; 𝛽) (22)

where 𝑧 represents the base model predictions for an instance 𝑥 ∈ X , and X denotes the

original input space. As our experiments encompass different data modalities, 𝑥 can be a vector of

tabular descriptors, an image, or text.

28

An alternative formulation involves computing the ensemble weights directly from the original

input instances instead of using the base model predictions. This approach modifies the weight

computation to:

𝑦 =
∑︁
𝑚

𝜃𝑚 (𝑥 ; 𝛽) · 𝑧𝑚 (𝑥) =
∑︁
𝑚

exp 𝑓𝑚 (𝑥 ; 𝛽)∑
𝑚′ exp 𝑓𝑚′ (𝑥 ; 𝛽) · 𝑧𝑚 (𝑥) (23)

where 𝑓𝑚 now operates on the original input space X to produce unnormalized weights.

However, adopting this formulation introduces challenges in selecting an appropriate function

𝑓𝑚 for different data modalities. For example, if the instances are images, 𝑓𝑚 must be a network

capable of processing images, such as a convolutional neural network. This requirement prevents us

from using the same architecture across all modalities, limiting the generalizability of the approach.

To evaluate this idea, we tested this alternative neural ensembler on the Scikit-learn Pipelines
metadataset, which consists of tabular data. We implemented 𝑓𝑚 as a four-layer MLP. Our results,

represented by the yellow bar in Figure 13b, indicate that this strategy does not outperform the

original approach proposed in Section 3, which uses the base model predictions as input.

We hypothesize that computing ensemble weights directly from the original input space may

be more susceptible to overfitting, especially when dealing with datasets that have noisy or high-

dimensional features. Additionally, this strategy may require tuning the hyperparameters of

the network 𝑓𝑚 for each dataset to achieve optimal performance, reducing its effectiveness and

generalizability across diverse datasets.

M Do Neural Ensemblers need a strong group of base models, i.e. found using Bayesian
Optimization?

Experimental Protocol. Practitioners use some methods such as greedy ensembling as post-hoc

ensemblers, i.e., they consider a set of models selected by a search algorithm such as Bayesian

Optimization as base learners. DivBO enhances the Bayesian Optimization by accounting for the

diversity in the ensemble in the acquisition function. We run experiments to understand whether

the Neural Ensemblers’ performance depends on a strong subset of 50 base models selected by

DivBO, and whether it can help other methods. We conduct additional experiments by randomly

selecting 50 models to understand the impact and significance of merely using a smaller set of base

models. We normalize the base of the metric on the single-best base model from the complete set

contained in the respective dataset.

Results. We report in Table 7 the results with the two selection methods (random and DivBO)
using a subset of common baselines, where we normalize using the metric of the single-best from
the whole set of models. We can compare directly with the results in Table 1. We observe that

reducing the number of base models with DivBO negatively affects the performance of the Neural

Ensemblers. Surprisingly, randomly selecting the subset of base models improves the results in two

metadatasets (TR-Class and NB-1000). We hypothesize that decreasing the number of base models is

beneficial for these metadatasets. With over 1000 base models available, the likelihood of identifying

a preferred model and overfitting the validation data increases in these metadatasets. Naturally,

decreasing the number of base models can also be detrimental for the Neural Ensemblers, as this

happens for some metadatasets such as TR-Reg and QT-Micro. In contrast to the Neural Ensemblers,

selecting a subset of strong models with DivBO improves the performance for some baselines such

as Model Averaging (MA) or TopK (𝐾 = 25). In other words, it works as a preprocessing method for

these ensembling approaches. Overall, the results in Table 7 demonstrate that Neural Ensemblers
do not need a strong group of base models to achieve competitive results.

29

Table 7: Average NLL for Subset of Base Models selected Randomly or using DivBO

FTC NB-Micro NB-Mini QT-Micro QT-Mini TR-Class TR-Reg

Single 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000

Single + DivBO 1.0000±0.0000 1.0000±0.0000 0.8707±0.3094 1.7584±2.0556 1.1846±0.2507 1.1033±0.9951 1.0039±0.0424

Random + DivBO 0.9305±0.3286 0.6538±0.2123 0.9724±0.0478 1.1962±1.0189 0.9717±0.1919 1.0107±0.3431 1.0302±0.1250

Top25 + DivBO 0.7617±0.1136 0.5564±0.1961 0.9762±0.0413 1.1631±0.9823 0.9431±0.2035 1.0023±0.3411 1.0247±0.1473

Quick + DivBO 0.7235±0.0782 0.6137±0.1945 0.9646±0.0614 1.2427±1.1130 0.9544±0.2050 1.0014±0.3423 1.0400±0.1949

Greedy + DivBO 0.7024±0.0720 0.6839±0.3003 0.9762±0.0413 1.1659±0.9789 0.9435±0.2029 1.0024±0.3410 1.0271±0.1531

CMAES + DivBO 0.8915±0.1759 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0166±0.3319 1.0265±0.1521

Random Forest + DivBO 0.7932±0.1194 0.9338±0.3436 1.1609±0.2787 2.5998±2.6475 1.7330±0.9898 1.3308±0.6640 1.0559±0.1240

Gradient Boosting + DivBO 0.7908±0.1848 1.4011±0.5359 1.0000±0.0000 3.1558±1.8843 3.0103±1.3714 1.3173±1.1519 1.1285±0.4153

Linear + DivBO 0.7433±0.0870 0.6471±0.2272 1.0199±0.0345 1.5843±1.6159 1.2392±0.5343 1.0786±1.0100 1.0326±0.1265

SVM + DivBO 0.8312±0.0943 0.7406±0.2612 1.0730±0.1264 5.5177±3.3684 5.0079±3.4926 1.4542±1.4518 2.7702±2.9398

XGB + DivBO 0.7884±0.1286 0.7519±0.2361 1.0000±0.0000 3.1705±2.8221 2.0159±1.8026 1.7698±1.6369 1.3226±0.6368

CatBoost + DivBO 0.6941±0.0953 0.8110±0.2405 1.0000±0.0000 2.3936±2.4785 2.4792±2.3078 1.3149±1.3954 1.0730±0.0815

LightGBM + DivBO 0.7706±0.1919 3.7392±2.7136 1.0000±0.0000 2.1979±2.2093 2.2706±2.2088 1.6938±1.1246 1.6427±2.0133

Akaike + DivBO 0.8757±0.0944 0.8159±0.2196 1.0000±0.0000 1.2270±1.0049 1.0452±0.2362 1.0202±0.3379 1.0564±0.1884

MA + DivBO 0.7245±0.0788 0.5712±0.2185 0.9678±0.0558 1.0559±0.7452 0.9501±0.1617 1.0068±0.4141 1.0237±0.1502

Single + Random 1.0067±0.0164 1.0000±0.0000 0.9240±0.3504 1.2915±0.9952 1.1261±0.3134 1.0225±0.3353 1.1378±0.4641

Top25 + Random 0.8397±0.1000 0.5848±0.1980 0.6526±0.3019 3.6553±2.7053 3.0436±2.1378 1.2599±1.5015 1.0611±0.2799

Quick + Random 0.7305±0.0764 0.5958±0.1917 0.6656±0.2968 1.7769±2.1443 1.1646±0.3728 1.0797±1.0007 1.0151±0.1546

Greedy + Random 0.7024±0.0720 0.5783±0.1857 0.6617±0.2839 1.6723±2.1446 0.9961±0.1290 1.0725±0.9978 1.0023±0.0961

CMAES + Random 1.2164±0.3851 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.1579±0.9913 1.0004±0.0851

RF + Random 0.7505±0.0915 0.8325±0.2255 0.8654±0.3179 3.8684±2.8060 3.0156±1.9975 1.2034±0.4063 1.0079±0.0795

GBT + Random 0.7235±0.1605 1.8377±1.4510 0.9533±0.0809 2.3407±1.3498 3.1659±2.0795 1.3344±1.1611 1.0500±0.1940

Linear + Random 0.7541±0.0897 0.7400±0.2827 0.7732±0.2331 2.0502±2.2932 1.9028±1.3239 1.0423±1.0174 1.0430±0.1224

SVM + Random 0.8010±0.0903 0.7767±0.3006 0.9268±0.5498 5.4773±3.3607 5.5665±3.3068 1.3964±1.4267 2.8271±3.0203

XGB + Random 0.8288±0.1463 0.7369±0.2384 0.8875±0.5032 3.7747±3.1635 2.6163±2.1103 1.7214±1.5419 1.1962±0.3298

CatBoost + Random 0.6911±0.1007 0.8294±0.2366 0.9472±0.4823 2.6695±2.6137 2.7315±2.3219 1.2006±1.2116 1.0559±0.2144

LightGBM + Random 0.7960±0.1977 3.6975±2.6631 5.2689±4.6347 2.8698±2.6137 3.6272±3.2791 1.7133±1.0934 1.6848±2.1630

Akaike + Random 0.8045±0.0987 0.6538±0.1831 0.6905±0.2981 2.2022±2.4118 1.5073±0.6848 1.1180±1.0381 0.9970±0.0886

MA + Random 0.9069±0.1812 0.8677±0.2292 0.6698±0.2898 4.8593±3.1360 3.4575±2.6490 1.4759±1.9396 1.4286±1.7242

NE(S) + Random 0.7709±0.2204 0.7551±0.2493 0.6187±0.2950 0.8292±0.5466 0.8160±0.3852 0.9540±0.5077 4.2183±3.4808

NE(MA) + Random 0.6972±0.0712 0.7911±0.2147 0.6650±0.2750 1.6877±2.1535 1.0903±0.2578 1.0674±0.9998 1.0277±0.1994

NE(S) + DivBO 0.7715±0.2141 0.6204±0.2234 1.0000±0.0000 1.5040±1.9442 0.8329±0.2659 0.9729±0.3952 6.9453±3.4749

NE(MA) + DivBO 0.7036±0.0698 0.5704±0.2345 1.0000±0.0000 1.1237±0.9964 0.9200±0.1966 1.0016±0.3407 1.0070±0.0977

0.00 0.25 0.50 0.75 1.00
Mean Weight Per Model

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
E

rr
or

Dropout 0

0.00 0.25 0.50 0.75 1.00
Mean Weight Per Model

0.0

0.1

0.2

0.3

0.4

0.5
Dropout 0.3

0.00 0.25 0.50 0.75 1.00
Mean Weight Per Model

0.0

0.1

0.2

0.3

0.4

0.5
Dropout 0.6

0.00 0.25 0.50 0.75 1.00
Mean Weight Per Model

0.0

0.1

0.2

0.3

0.4

0.5
Dropout 0.9

Figure 15: Mean weights assigned to the base models decrease with DropOut rate. Every data point is

a model. The errors and weights are the mean values across many datasets for every model.

N Visualizing the effect of the regularization on the model weights

In Figure 15, we study the effect of the DropOut rate on the ensembler weights, in Model-Averaging

model using the QT-Micro meta-dataset. When there is no DropOut some weights are close to one,

i.e. they are preferred models. As we increase the value, many models with high weights decrease.

If the rate is very high (e.g. 0.9), we will have many models contributing to the ensemble, with

weights different from zero.

30

O Details On Meta-Datasets

In Table 11 we provide further information about the meta-datasets, such as the number of datasets,

the average samples in the test and validation splits and the average number of classes.

O.1 Scikit learn Pipelines

Search Space. Our primary motivation is to investigate the ensembling of automated machine

learning pipelines to enhance performance across various classification tasks. To effectively study

ensembling methods and benchmark different strategies, we require a diverse set of pipelines.

Therefore, we construct a comprehensive search space inspired by the TPOT library (Olson et al.,

2016), encompassing a wide range of preprocessors, feature selectors, and classifiers. The pipelines

are structured in three stages: preprocessor, feature selector, and classifier. This allows us to explore

numerous configurations systematically. This extensive and diverse search space enables us to

examine the impact of ensembling on a variety of models and serves as a robust benchmark for

evaluating different ensembling techniques. Detailed descriptions of the components and their

hyperparameters are provided in Tables 8, 9, and 10.

Datasets We utilized the OpenML Curated Classification benchmark suite 2018 (OpenML-

CC18) (Bischl et al., 2019) as the foundation for our meta-dataset. OpenML-CC18 comprises

72 diverse classification datasets carefully selected to represent a wide spectrum of real-world

problems, varying in size, dimensionality, number of classes, and domains. This selection ensures

comprehensive coverage across various types of classification tasks, providing a robust platform

for evaluating the performance and generalizability of different ensembling approaches.

Meta-Dataset Creation To construct our meta-dataset, we randomly selected 500 pipeline

configurations for each dataset from our comprehensive search space. Each pipeline execution

was constrained to a maximum runtime of 15 minutes. During this process, we had to exclude

three datasets (connect-4, Devnagari-Script, Internet-Advertisements) due to excessive computational

demands that exceeded our runtime constraints. For data preprocessing, we standardized the

datasets by removing missing values and encoding categorical features. We intentionally left other

preprocessing tasks to be handled autonomously by the pipelines themselves, allowing them to

adapt to the specific characteristics of each dataset. This approach ensures that the pipelines can

perform necessary transformations such as scaling, normalization, or feature engineering based on

their internal configurations, which aligns with our objective of evaluating automated machine

learning pipelines in a realistic setting.

31

Table 8: Classifiers and their hyperparameters used in the TPOT search space.

Classifier Hyperparameters
sklearn.naive_bayes.GaussianNB None

sklearn.naive_bayes.BernoulliNB alpha (float, [1e-3, 100.0], default=50.0)
fit_prior (categorical, {True, False})

sklearn.naive_bayes.MultinomialNB alpha (float, [1e-3, 100.0], default=50.0)
fit_prior (categorical, {True, False})

sklearn.tree.DecisionTreeClassifier criterion (categorical, {’gini’, ’entropy’})
max_depth (int, [1, 10], default=5)
min_samples_split (int, [2, 20], default=11)
min_samples_leaf (int, [1, 20], default=11)

sklearn.ensemble.ExtraTreesClassifier n_estimators (constant, 100)
criterion (categorical, {’gini’, ’entropy’})
max_features (float, [0.05, 1.0], default=0.525)
min_samples_split (int, [2, 20], default=11)
min_samples_leaf (int, [1, 20], default=11)
bootstrap (categorical, {True, False})

sklearn.ensemble.RandomForestClassifier n_estimators (constant, 100)
criterion (categorical, {’gini’, ’entropy’})
max_features (float, [0.05, 1.0], default=0.525)
min_samples_split (int, [2, 20], default=11)
min_samples_leaf (int, [1, 20], default=11)
bootstrap (categorical, {True, False})

sklearn.ensemble.GradientBoostingClassifier n_estimators (constant, 100)
learning_rate (float, [1e-3, 1.0], default=0.5)
max_depth (int, [1, 10], default=5)
min_samples_split (int, [2, 20], default=11)
min_samples_leaf (int, [1, 20], default=11)
subsample (float, [0.05, 1.0], default=0.525)
max_features (float, [0.05, 1.0], default=0.525)

sklearn.neighbors.KNeighborsClassifier n_neighbors (int, [1, 100], default=50)
weights (categorical, {’uniform’, ’distance’})

p (categorical, {1, 2})

sklearn.linear_model.LogisticRegression penalty (categorical, {’l1’, ’l2’})
C (float, [1e-4, 25.0], default=12.525)
dual (categorical, {True, False})
solver (constant, ’liblinear’)

xgboost.XGBClassifier n_estimators (constant, 100)
max_depth (int, [1, 10], default=5)
learning_rate (float, [1e-3, 1.0], default=0.5)
subsample (float, [0.05, 1.0], default=0.525)
min_child_weight (int, [1, 20], default=11)
n_jobs (constant, 1)
verbosity (constant, 0)

sklearn.linear_model.SGDClassifier loss (categorical, {’log_loss’, ’modified_huber’})

penalty (categorical, {’elasticnet’})
alpha (float, [0.0, 0.01], default=0.005)
learning_rate (categorical, {’invscaling’, ’constant’})
fit_intercept (categorical, {True, False})
l1_ratio (float, [0.0, 1.0], default=0.5)
eta0 (float, [0.01, 1.0], default=0.505)
power_t (float, [0.0, 100.0], default=50.0)

sklearn.neural_network.MLPClassifier alpha (float, [1e-4, 0.1], default=0.05)
learning_rate_init (float, [0.0, 1.0], default=0.5)

32

Table 9: Preprocessors and their hyperparameters used in the TPOT search space.

Preprocessor Hyperparameters
None None

sklearn.preprocessing.Binarizer threshold (float, [0.0, 1.0], default=0.5)

sklearn.decomposition.FastICA tol (float, [0.0, 1.0], default=0.0)

sklearn.cluster.FeatureAgglomeration linkage (categorical, {’ward’, ’complete’, ’average’})

metric (categorical, {’euclidean’, ’l1’, ’l2’, ’manhattan’, ’cosine’})

sklearn.preprocessing.MaxAbsScaler None

sklearn.preprocessing.MinMaxScaler None

sklearn.preprocessing.Normalizer norm (categorical, {’l1’, ’l2’, ’max’})

sklearn.kernel_approximation.Nystroem kernel (categorical, {’rbf’, ’cosine’, ’chi2’, ’laplacian’, ’polynomial’,

’poly’, ’linear’, ’additive_chi2’, ’sigmoid’})

gamma (float, [0.0, 1.0], default=0.5)
n_components (int, [1, 10], default=5)

sklearn.decomposition.PCA svd_solver (categorical, {’randomized’})

iterated_power (int, [1, 10], default=5)

sklearn.preprocessing.PolynomialFeatures degree (constant, 2)
include_bias (categorical, {False})
interaction_only (categorical, {False})

sklearn.kernel_approximation.RBFSampler gamma (float, [0.0, 1.0], default=0.5)

sklearn.preprocessing.RobustScaler None

sklearn.preprocessing.StandardScaler None

tpot.builtins.ZeroCount None

tpot.builtins.OneHotEncoder minimum_fraction (float, [0.05, 0.25], default=0.15)
sparse (categorical, {False})
threshold (constant, 10)

Table 10: Feature selectors and their hyperparameters used in the TPOT search space.

Selector Hyperparameters
None None

sklearn.feature_selection.SelectFwe alpha (float, [0.0, 0.05], default=0.025)

sklearn.feature_selection.SelectPercentile percentile (int, [1, 100], default=50)

sklearn.feature_selection.VarianceThreshold threshold (float, [0.0001, 0.2], default=0.1)

sklearn.feature_selection.RFE step (float, [0.05, 1.0], default=0.525)
estimator (categorical, {’sklearn.ensemble.ExtraTreesClassifier’})

Estimator Hyperparameters:
n_estimators (constant, 100)
criterion (categorical, {’gini’, ’entropy’})
max_features (float, [0.05, 1.0], default=0.525)

sklearn.feature_selection.SelectFromModel threshold (float, [0.0, 1.0], default=0.5)
estimator (categorical, {’sklearn.ensemble.ExtraTreesClassifier’})

Estimator Hyperparameters:
n_estimators (constant, 100)
criterion (categorical, {’gini’, ’entropy’})
max_features (float, [0.05, 1.0], default=0.525)

Table 11: Metadatasets Information

Meta-Dataset Modality Task Information No. Datasets Avg. Samples
for Validation

Avg. Samples
for Test

Avg. Models
per Dataset

Avg. Classes
per Dataset

Nasbench (100) Vision NAS, Classification (Dong and Yang, 2020) 3 11000 6000 100 76.6

Nasbench (1K) Vision NAS, Classification (Dong and Yang, 2020) 3 11000 6000 1K 76.6

QuickTune (Micro) Vision Finetuning, Classification (Arango et al., 2024a) 30 160 160 255 20.

QuickTune (Mini) Vision Finetuning, Classification (Arango et al., 2024a) 30 1088 1088 203 136.

FTC Language Finetuning, Classification, Section (Arango et al., 2024b) 6 39751 29957 105 4.6

TabRepo Clas. Tabular Classification (Salinas and Erickson, 2023) 83 1134 126 1530 3.4

TabRepo Reg. Tabular Regression (Salinas and Erickson, 2023) 17 3054 3397 1530 -

Sk-Learn Pipelines. Tabular Classification, Section O 69 1514 1514 500 5.08

33

	Introduction
	Background and Motivation
	Motivating Dynamic Ensembling

	Neural Ensemblers
	An Architecture with Parameter Sharing
	Ensemble Diversity
	Base Models' DropOut

	Experiments and Results
	Experimental Setup
	Research Questions and Associated Experiments

	Related Work
	Conclusions
	Proofs
	Limitations, Broader Impact and Future Work
	Space complexity of Neural Ensemblers
	Related Work Addendum
	Baselines Details
	Additional Results Related to Research Question #1
	Unnormalized Results

	Critical Difference Diagrams
	Empirical Analysis of Computational Cost
	Proof-of-Concept with Overparameterized Base Models
	Ablation Study on Validation Data Size
	Effect of Merging Training and Validation Data
	Neural Ensemblers Operating on the Original Input Space
	Do Neural Ensemblers need a strong group of base models, i.e. found using Bayesian Optimization?
	Visualizing the effect of the regularization on the model weights
	Details On Meta-Datasets
	Scikit learn Pipelines

